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Two Ingredients
Packet Erasure Channels:

Input: X ∈ GF(2b) for largeb.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).
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4 transmissions w/o codingvs.3 transmissions w. coding
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Two Ingredients
Packet Erasure Channels:

Input: X ∈ GF(2b) for largeb.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).

The COPE protocol — 2-hop relay networks [Kattiet al.06]

4 transmissions w/o codingvs.3 transmissions w. coding

r sends[X + Y]; d1 decodesX by subtraction.

Empirically, 40–200% throughput improvement.

Our goal: Finding theShannon capacity of COPE-like protocols

— Non-trivial for random broadcast PECsandM > 2 sessions.
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Our Setting
Memoryless broadcast PECs: Ex: A 1-to-2 PEC is governed by

thesuccess probabilitiesps→12, ps→12c , ps→1c2, ps→1c2c .

Two-hop relay networks:

M = 2
PEC parameters forM = 2:

Joint Prob.:

ps1→2r, ps1→2rc , ps1→2cr, ps1→2crc ;

ps2→1r, ps2→1rc , ps2→1cr, ps2→1crc ;

pr→12, pr→12c , pr→1c2, pr→1c2c .

Marginal Prob.:

pr;1
∆
= pr→12 + pr→12c

Sequentially,s1 to sM, andr each can sendn packets.

Our goal: Find the largest(R1, R2, · · · , RM) vector one can

achieve, given that the PEC parameters are known to all nodes.
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Formal Definition of Feasibility
A network code is defined by five functions:

W1 = fs1
(X), W2 = fs2(Y),

Wr = fr(Z1→r, Z2→r, 1{Z1→2(·)=∗}
, 1{Z2→1(·)=∗}

),

X̂ = fd1
(Zr→1, Z2→1), Ŷ = fd2

(Zr→2, Z1→2).

sequential tx:s1 ands2 first

overhearing status
feedback beforer’s tx

joint decoding
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A network code is defined by five functions:

W1 = fs1
(X), W2 = fs2(Y),

Wr = fr(Z1→r, Z2→r, 1{Z1→2(·)=∗}
, 1{Z2→1(·)=∗}

),

X̂ = fd1
(Zr→1, Z2→1), Ŷ = fd2

(Zr→2, Z1→2).

sequential tx:s1 ands2 first

overhearing status
feedback beforer’s tx

joint decoding

Definition 1 (R1, R2) is achievable if

∀ǫ > 0, there exist a sufficiently large

n, a sufficiently large finite fieldGF(2b),

and a corresponding network code, such

that for independently and uniformly dis-

tributedX andY:

P
(

X̂ 6= X
)

+ P
(

Ŷ 6= Y
)

< ǫ.
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Comparison to Existing Litera-
tures
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Comparison to Existing Litera-
tures

Otherachievability analysisof the COPE protocol:
Random overhearing, rate-adaptation forr → {di}: [Chaporkaret al.07].

Random overhearing, deterministicr → {di}: [Rayanchuet al.08].

Range-based deterministic channels [Leet al.08].

Network wide resource allocation [Senguptaet al.07], [Cui et al.08].

Example-based MAC+Coding exploration [Zhaoet al.10].
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Range-based deterministic channels [Leet al.08].

Network wide resource allocation [Senguptaet al.07], [Cui et al.08].

Example-based MAC+Coding exploration [Zhaoet al.10].
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Round-Based Policies

M=2

Each round:s1 to sM first and thenr. Totally (M + 1) · n pkts.
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Round-Based Policies

M=2

Each round:s1 to sM first and thenr. Totally (M + 1) · n pkts.

Batch-reception report before relay’s transmission.

From the relay’s perspective, it becomes a broadcast PEC

problem with side information (SI).

No feedback is allowed during the transmission of the lastn

packets by relayr.

Wang, ISIT 2010 – p. 7/17



The Capacity Regions for M = 2

M=2

Without loss of generality: assumepr;d1
≥ pr;d2

> 0.
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The Capacity Regions for M = 2

M=2

R1 ≤ min
(

ps1;r, pr;1 − (R2 − ps2;1)
+
)

R2 ≤ min

(

ps2;r, pr;2 −
pr;2

pr;1
(R1 − ps1;2)

+

)

Without loss of generality: assumepr;d1
≥ pr;d2

> 0.

The capacity region forM = 2, [W, Asilomar 09]:
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+
)

R2 ≤ min

(

ps2;r, pr;2 −
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s→ r

Without loss of generality: assumepr;d1
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> 0.

The capacity region forM = 2, [W, Asilomar 09]:
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Is The Hybrid Scheme Optimal?
Can we finish tx in<2010 slots?
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Is The Hybrid Scheme Optimal?
Can we finish tx in<2010 slots?

The cut-set bounds do not work.
We need new outer bounding arguments.
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Information Concavity Property
Rank-concavity:
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Information Concavity Property

At leastp fractionof Rank(A) ba-

sis vectorsof A will be passed to

A(p).

⇒ Rank(A(p)) ≥ p · Rank(A).

Rank-concavity:
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Rank(A(p))/Rank(A)

At leastp fractionof Rank(A) ba-

sis vectorsof A will be passed to

A(p).

⇒ Rank(A(p)) ≥ p · Rank(A).

Rank-concavity:

When focusing on themutual info.instead, the info. concavity

argument can be generalized fornon-linear codes.
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B
∆
=

Decodability atd2 ⇒ Rank(B(1/2)) ≥ 240 + Rank(A(1/2)) = 1005.
info. interference.

Total time slots atd2:

L · 1
2 ≥ Rank(B(1/2)) ≥

1005

⇒ L ≥ 2010.

The same arguments hold
for non-linear codes as well.
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M-Session Cap. Region
Outer bound:Interference quantification + information concavity

Inner bound:Hybrid schemes with stage-based approaches + code alignment.

M = 3: It is proven that the outer and inner bounds always meet⇒ capacity.

M ≥ 4: Empirically, they meet within 1% for 99.4% of time.

R1 ≤ min(ps1;r , pr;d1
−max

(

(R2 − ps2 ;d1
)+ + (R3 − ps3 ;d1∪d2

)+, (R2 − ps2 ;d1∪d3
)+ + (R3 − ps3 ;d1

)+
)

),

R2 ≤ min(ps2;r , pr;d2
−max

(

pr;d2

pr,d1

(

(R1 − ps1 ;d2
)+ + (R3 − ps3 ;d1∪d2

)+
)

,

(

pr;d2

pr;d1

−
pr;d2
− pr;d3

pr;d1
− pr;d3

)

(R1 − ps1 ;d2∪d3
)+ +

pr;d2
− pr;d3

pr;d1
− pr;d3

(R1 − ps1 ;d2
)+

+

(

1−
pr;d1
− pr;d2

pr;d1
− pr;d3

)

(R3 − ps3 ;d1∪d2
)+ +

pr;d1
− pr;d2

pr;d1
− pr;d3

(R3 − ps3 ;d2
)+,

pr;d2

pr;d1

(R1 − ps1 ;d2∪d3
)+ + (R3 − ps3 ;d2

)+

)

),

R3 ≤ min(ps3;r , pr;d3
−max

(

pr;d3

pr;d1

(

(R1 − ps1 ;d3
)+ + (R2 − ps2 ;d1∪d3
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)

,

pr;d3

pr;d1

(R1 − ps1 ;d2∪d3
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pr;d3
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)
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The capacity region is governed bylinearinequalities.
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A 3-User Cap. Illustration
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The Throughput Improvements
Competing technologies: ←− Cross-layer (time allocation).

Opp. Routing (direct-jump)−→
←− Intersession NC (Mixing atr).
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The Throughput Improvements

2-hop random networks, Rayleigh

fading, proportional fairness.

R 2

R 1

Competing technologies: ←− Cross-layer (time allocation).

Opp. Routing (direct-jump)−→
←− Intersession NC (Mixing atr).

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of sessions (M)

S
um

 r
at

e 
(Σ

i=
1

M
 R

i)

 

 

(INC,OpR,CL)
(OpR,CL)
(INC,CL)
(INC,OpR)
(CL)
(OpR)
(INC)
baseline

Wang, ISIT 2010 – p. 16/17



Conclusion + Future Directions

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of sessions (M)

S
um

 r
at

e 
(Σ

i=
1

M
 R

i)

 

 

(INC,OpR,CL)
(OpR,CL)
(INC,CL)
(INC,OpR)
(CL)
(OpR)
(INC)
baseline

Exact capacity characterization forM = 3.

Numerically tight outer/inner bounds forM ≥ 4.

The promised throughput of the COPE principle.

Thecode-alignment-based achievability scheme sheds insights on

how toimprove the COPE protocol.
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