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Abstract—When there exists only a single multicast session
in a directed acyclic/cyclic network, the existence of a network
coding solution is characterized by the classic min-cut/max-flow
theorem. For the case of more than one coexisting sessions,
network coding also demonstrates throughput improvement over
non-coded solutions. This paper proposes pairwise intersession
network coding, which allows for arbitrary directed networks
but restricts the coding operations to being between two symbols
(for acyclic networks) or between two strings of symbols (for
cyclic networks). A graph-theoretic characterization of pairwise
intersession network coding is proven based on paths with
controlled edge-overlap. This new characterization generalizes
the edge-disjoint path characterization of non-coded network
communication and includes the well-studied butterfly graph as a
special case. Based on this new characterization, various aspects
of pairwise intersession network coding are studied, including
the sufficiency of linear codes, the complexity of identifying
coding opportunities, its topological analysis, and bandwidth- and
coding-efficiency.

Index Terms—Controlled edge-overlap, edge-disjoint paths,
intersession network coding, intrasession network coding, the
min-cut/max-flow theorem.

I. INTRODUCTION

The goal of network communication is to exchange informa-
tion packets simultaneously between different pairs of sources
and sinks using the “edges/links” in the network. In this work,
we model the networks by directed graphs. Traditionally, each
information packet is regarded as an unsplittable commodity
[8] and takes different routes from the sources to the sinks
in the network. Each route occupies an exclusive share of the
capacity of the edges. Network coding, on the other hand,
allows for not only information relaying but also information
mixing at the intermediate nodes [1], [16], [19], [20], which
has been shown to achieve significant throughput advantages
over simple non-coded solutions.

For a single multicast session problem, namely, when all
sinks are interested in the same set of information flowing
along the network, network coding is performed on packets
of the same session and is thus termed intrasession network
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coding. The characterization of the corresponding capacity
region is well understood. For directed cyclic/acyclic graphs,
network coding is able to achieve the long standing min-
cut/max-flow bound, and one can further restrict the choice of
allowed coding operations and use only linear network codes
without loss of efficiency [4], [16], [19]. For undirected graphs,
network coding is able to approximate a similar cut bound
within a constant factor of two [20].

The setting that different sinks are interested in different
subsets of information is equivalent to the coexistence of
multiple sessions competing for network resources. The benefit
of network coding across multiple multicast sessions, generally
termed intersession network coding, is clearly demonstrated
in the butterfly graph of [1], [14], [19]. Nonetheless, with
multiple coexisting sessions, a network coding solution has
to balance the cooperative coding efforts of the intermedi-
ate nodes with the conflicting objectives of maximizing the
throughput of each individual session, which significantly
complicates the problem. For example, linear network coding
is no longer throughput optimal for multiple multicast sessions
[5]. Even for simple directed acyclic graphs, deciding the
existence of a linear intersession network coding solution can
be NP-complete [18] rather than polynomial time [22]. Until
now, no coding gain has been observed in any undirected graph
[21].

The capacity region or equivalently the feasibility of inters-
ession network coding is also less understood for multiple mul-
ticast sessions. Only for very special graphs can the capacity
region be characterized, such as directed cycles [10], degree-2
three-layer directed acyclic networks [29], and special bipar-
tite undirected graphs [10]. For general arbitrary graphs, the
intrinsic hardness of the problem hampers a full understanding
of intersession network coding. The capacity characterization
has been studied from an information-theoretic perspective,
including the fundamental regions in the entropy space [24],
entropy calculus [13], and an entropy-based description of the
achievable region [30]. Several graph-theoretic outer bounds
on the capacity region have been devised based on the gen-
eralized edge cut conditions: the network-sharing bound for
acyclic networks [29], the information dominance condition
for acyclic networks [10], and the edge-cut bounds for di-
rected networks [17]. The achievability results, i.e., the inner
bound on the capacity region, is determined generally by
linear programming in a fashion similar to that of solving
fractional multi-commodity flow, including the butterfly-based
construction [26], the pollution-treatment with powerset-based
flow division [28], and the analysis of a practical intersession
network coding protocol [23]. The capacity region of a special
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class of conservative network coding is studied in [9].
Studying general intersession network coding on special

classes of directed graphs has relatively limited practical
applicability to real communication networks. In this paper,
we study the characterization of pairwise intersession net-
work coding (PINC), which allows for arbitrary directed
acyclic/cyclic networks, but restricts the coding operations to
being between two symbols (for acyclic networks) or between
two strings of symbols (for cyclic networks). More explicitly,
source nodes s1 and s2 would like to transmit two symbols
X and Y (resp. two strings of symbols X1, · · · , Xt and
Y1, · · · , Yt) to two groups of destinations d1 = {d1,i}i and
d2 = {d2,j}j in a directed acyclic/cyclic network, and each
group is interested in one symbol (or one string of symbols),
respectively. Destination sets d1 and d2 may be disjoint or
not. One possible application of this setting is multi-resolution
video multicast by network coding, for which s1 = s2 = s, X
and Y represent the low and high resolution bits respectively,
and d1 ⊇ d2. Potentially, PINC is an appealing solution for
delay-sensitive data, such as video streaming, since the larger
the number of the to-be-coded sessions, the longer the delay
in an asynchronous network.

It is well known that for two multicast sessions, the exis-
tence of a non-coded scheme is equivalent to the existence
of two edge-disjoint sets of paths (or more precisely, two
sets of pairwise edge-disjoint Steiner trees). In this work, we
first prove an analogous result that the existence of a PINC
scheme is equivalent to the existence of sets of paths with con-
trolled edge overlaps, which includes the well-studied butterfly
graph as a special case. This result bridges the gap between
the characterization theorems of multiple-session non-coded
solutions and of single-session network-coded solutions for
the non-trivial case of two source symbols. Based on this
new characterization, various aspects of PINC are studied,
including the sufficiency of linear codes, the complexity of
identifying coding opportunities, its topological analysis, and
bandwidth- and coding-optimal conditions (defined and dis-
cussed in Section III.C.4). For example, for directed cyclic
networks, deciding the existence of a non-coded solution, or
equivalently deciding the existence of a pair of edge-disjoint
paths, is an NP-complete problem. Nonetheless, we have
shown that deciding the existence of a PINC solution takes
only polynomial time, a dramatic complexity improvement
using network coding. Another feature of the proposed new
characterization is its flow-based form in contrast with the
cut-based form of the existing outer bounds. The construc-
tive nature of the flow-based form admits efficient design
of practical PINC schemes including the sequentially-reset
scheme used in this work when proving the achievability part
of the characterization. Other practical implementations taking
advantages of the flow-based form can be found in [15].

The remainder of this paper is organized as follows. Sec-
tion II discusses the setting and formulations for both acyclic
and cyclic directed networks and provides some basic graph-
theoretic definitions and notations for completion. Section III
presents the main characterization results for PINC, which
will be stated for acyclic and cyclic networks separately.
Several examples will be used for illustration purpose. Various

Fig. 1. Illustration of parallel edges.

implications of the new characterization will also be discussed
in Section III. Section IV contains the complete proofs of the
main characterization theorems. Proofs regarding the complex-
ity and the topological analyses will be provided in Sections V
and VI, respectively. Section VII concludes this paper.

II. SETTINGS AND FORMULATION

A. Basic Graph-Theoretic Definitions and Notations

Consider a finite-sized directed graph G = (V, E), where
V is the set of nodes and E is the set of directed edges.
The size of G is denoted by |G| = |V | + |E|. Each edge
e ∈ E can be represented by e = uv, where u = tail(e) and
v = head(e) are the tail and head of edge e, respectively. We
allow the existence of parallel edges, namely two edges e1

and e2 may share the same tail and head nodes1 (see Fig. 1).
A loop e = uu is also allowed although its impact on the
network is little (one can remove all loops in G without loss
of generality).

A path (or a walk) P is a sequence of edges e1e2 · · · ek

such that head(ei) = tail(ei+1) for i = 1, · · · , k − 1 and
is sometimes denoted by a sequence of nodes u0u1 · · ·uk.
The distinction between a path and a walk is that a walk may
contain cycles while a path is always free of any cycle, namely,
ui 6= uj for i 6= j. For acyclic graphs, the definition of a walk
and a path is interchangeable. We use v ∈ P (resp. e ∈ P ) to
indicates that a node v (resp. an edge e) is used by P . V (P )
denotes the vertex set used by a given path P . Similarly E(P )
denotes the edge set of P . For any two sets of nodes S, T ⊂ V ,
we say a path is from S to T if it starts from an s ∈ S and
ends in a t ∈ T .

For a collection of paths P = {P1, · · · , Pk} and a given
edge e ∈ E, the Number of Coinciding Paths for edge e is
defined as ncpP(e) ∆= |{P ∈ P : e ∈ P}|, i.e., the number of
paths that use edge e. We often use Pu,v (or Qu,v) to denote
a path starting from node u and ending at node v. A node v
is reachable from u if there exists a Pu,v path. An edge e2 is
reachable from e1 if tail(e2) is reachable from head(e1). For
acyclic networks, we sometimes say that v is a downstream
node of u (or u is an upstream node of v) if v is reachable from
u. The downstream/upstream edges can be defined similarly.
A k-edge cut separating node sets u ⊆ V and v ⊆ V is a
collection of k edges such that after the removal of those k
edges, there is no path connecting u ∈ u and v ∈ v for any u
and v. Two paths are edge-disjoint if they share no common
edge. Two paths are independent if they are interior-vertex-
disjoint.

For two paths P and Q and three nodes x, y, and z, xPy
denotes the path segment connecting nodes x and y using

1To rigorously represent parallel edges, one has to use the incidence
mapping A : E 7→ V 2. For simplicity, we describe an edge e by its head
and tail unless when we have to distinguish parallel edges.
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Fig. 2. Illustration of the critical 1-edge cut. Both e1 and e2 are 1-edge cuts
while e2 is the unique critical 1-edge cut.

path P . Similarly, xPyQz denotes a walk connecting nodes
x, y, and z while P and Q are used during the x–y and
y–z segments, respectively. For cyclic graphs, xPyQz may
contain cycles and thus only be a walk even when both P and
Q are valid paths. The above notation for path concatenation
can be generalized for concatenating multiple paths such as
x0P1x1 · · ·xk−1Pkxk.

We also define the critical 1-edge cut as follows.
Definition 1: For any node u in a directed acyclic / cyclic

network, the critical 1-edge cut e∗ is a 1-edge cut separating
{s1, s2} and u that is the farthest from u. That is, any path
from {s1, s2} to u will meet cut e∗ before meeting any other
1-edge cut.

Fig. 2 illustrates the concept of the critical 1-edge cut. Both
e1 and e2 are 1-edge cuts while e2 is the unique critical 1-edge
cut. Note that for acyclic networks, the concept of being the
farthest is unambiguous as one can use the topological order
of the edges to define the farthest edge. The following lemma
proves the existence and the uniqueness of the critical 1-edge
cut even in a cyclic network.

Lemma 1: If there exists a 1-edge cut separating {s1, s2}
and u, then e∗ always exists and is unique.

Proof: For cyclic networks, one needs to show that the
farthest 1-edge cut is well-defined and does not change when
different paths are considered.

Choose an arbitrary path P connecting {s1, s2} and u. By
definition, all 1-edge cuts are in P . Choose e∗ that is the
farthest from u according to their order in the path P . Suppose
that there exists another path P ′ from {s1, s2} to u that meets
another 1-edge cut e before e∗. Since e ∈ P , P ′eP is a walk
from {s1, s2} to u without using e∗, which contradicts the
construction that e∗ is a 1-edge cut. Therefore, such e∗ must
be unique.

B. PINC on Directed Acyclic Networks

We consider the following network coding problem with
two simple multicast sessions. Given a finite directed acyclic
graph G = (V, E), two source nodes s1 and s2, and two
groups of destination nodes d1 = {d1,i}i and d2 = {d2,j}j ,
whether two symbols X and Y , emanated from s1 and s2

respectively, can be transmitted simultaneously to d1,i and
d2,j for all d1,i and d2,j within a single time slot, say a
second, using network coding? It is assumed that each edge
is capable of carrying one symbol per second, and there is
no propagation delay. High-rate links are modelled by parallel
edges. For comparison, if network coding is prohibited, the
existence of a non-coded solution is equivalent to the existence

of two edge-disjoint paths (for two unicast sessions) and of
two edge-disjoint Steiner trees (for two multicast sessions).
This work studies the characterization when network coding
is allowed.

Without loss of generality, we assume that each s1 and s2

has only one outgoing edge and no incoming edges. If not,
say s1 has more than one outgoing edge or has at least one
incoming edge, we add an additional node s′1 and an additional
edge e′ = s′1s1 to the graph G. After the addition, use s′1
as the new source node and treat the old s1 as an ordinary
intermediate node. Any network coding solution for the old
graph can be mapped bijectively to a network coding solution
for the new graph. Similarly, without loss of generality, we
assume that each d1,i and d2,j has only one incoming edge and
no outgoing edge. By the same technique of adding auxiliary
nodes and edges, we can further assume that s1 6= s2 and
all d1,i and d2,j are distinct without loss of generality. For
notational simplicity, we sometimes use interchangeably s1 as
the source node or as the unique outgoing edge of the source.
Similarly, s2, d1,i, and d2,j denote interchangeably the nodes
or their uniquely associated edges.

Both symbols X and Y are drawn from a finite field GF(q)
with sufficiently large q (see [11], [16] and the reference
therein). Since the size of q is not of our primary interest,
unless otherwise mentioned, the readers may safely assume
that X and Y take integer values instead, provided a suf-
ficiently large q is adopted. Throughout the paper, we also
assume that Ps1,d1,i and Ps2,d2,j exist for all d1,i ∈ d1 and
d2,j ∈ d2, which can be checked within polynomial time.
Otherwise network communication is simply impossible.

C. PINC on Directed Cyclic Networks

For cyclic networks, we follow the basic two-multicast set-
ting (s1,d1) and (s2,d2) in the previous subsection. However,
to be consistent with the law of causality, propagation delay
in a cyclic network has to be handled with care and we adopt
the setting of slotted transmission. For a given directed cyclic
network G, we assume that each edge is capable of sending
one packet per second and the propagation delay is also one
second. High-rate links are modelled by parallel edges. Large-
delay links are modelled by longer paths with added auxiliary
interior nodes. We consider the following PINC problem on
cyclic networks.

Source s1 sends a string of T i.i.d. packets X1, · · · , XT to
destination d1,i ∈ d1 in a duration of T seconds. Source s2

sends i.i.d. packets Y1, · · · , YT to d2,j ∈ d2. Each packet is
in GF(q) for some q. Let Me,t ∈ GF(q) denote the coded
symbol sent along edge e in the t-th second, and we use
[Me]t1

∆= {Me,τ : τ = 1, · · · , t} to denote the collection of
coded symbols in the first t seconds. Destinations {d1,i}i and
{d2,j}j receive [Md1,i ]

T
1 and [Md2,j ]

T
1 in the entire duration.

We say that a cyclic network G admits a network coding
solution with asymptotic rate 1 if for any ε > 0, there exists
a sufficiently large T such that there exists a PINC scheme
satisfying the following inequalities for all d1,i ∈ d1 and



IEEE TRANSACTIONS ON INFORMATION THEORY 4

d2,j ∈ d2:

1
T

I([X]T1 ; [Md1,i
]T1 ) > (1− ε) log(q)

and
1
T

I([Y ]T1 ; [Md2,j
]T1 ) > (1− ε) log(q),

where I(·; ·) is the mutual information. It is worth noting that
when each edge induces a delay, it is generally impossible to
achieve an exact rate-1 transmission (unless the source and
destination are only 1-hop away) and the ε-term has to be
included for the asymptotic analysis. For the following, we
sometimes drop the adjective “asymptotic” for simplicity.

For future reference, we use “2-multicast acyclic networks”
to denote the problem of finding network coding (or non-
coded) solutions for directed acyclic networks with two mul-
ticast sessions. Similarly, we use the following terms “2-
multicast cyclic networks,” “2-unicast acyclic networks,” and
“2-unicast cyclic networks” to refer to different settings of
interest. Note that unicast is a special case of multicast. All
our results regarding the case of “2-multicast” hold for the
case of “2-unicast” as well.

III. MAIN RESULTS

We first state the characterization theorems for PINC on
acyclic and cyclic networks, and then discuss their correspond-
ing implications. All proofs of the theorems and propositions
are provided in Sections IV to VI.

A. Characterization for Acyclic Networks

Theorem 1 (Cut-Based Characterization): For 2-multicast
acyclic networks, the existence of a network coding solution
is equivalent to the following condition being satisfied: Let
ei = uivi denote2 the critical 1-edge cut of d1,i ∈ d1 and
similarly let ej = ujvj denote the critical 1-edge cut of
d2,j ∈ d2. Then any d1,i ∈ d1 is reachable from s1 using
only edges in G\{ej : d2,j ∈ d2} and any d2,j ∈ d2 is
reachable from s2 using only edges in G\{ei : d1,i ∈ d1}.

Take Fig. 3 for example in which d1 = {d1,1, d1,2} and
d2 = {d2,1}. In Fig. 3(a), the critical 1-edge cuts for d1 and
d2 are:

e1,1 = v8d1,1, e1,2 = v4v5, and e2,1 = v7d2,1.

It can be checked that the conditions in Theorem 1 hold
for such e1,1, e1,2, and e2,1. A network coding solution is
illustrated in Fig. 3(a). On the other hand, in Fig. 3(b), the
critical 1-edge cuts for d1 and d2 are:

e1,1 = v2v3, e1,2 = v4v5, and e2,1 = v7d2,1,

and d2,1 is not reachable from s2 using only edges in
G\{e1,1, e1,2}. Theorem 1 guarantees that no coding solution
exists for Fig. 3(b).

It is worth noting that Fig. 3(b) is a non-trivial example and
satisfies the generalized cut-conditions in [10], [29] even when

2By our assumption in Section II, any destination d has only one incoming
edge. Therefore, the only incoming edge entering d itself is a 1-edge cut
separating {s1, s2} and d. By Lemma 1, the critical 1-edge cut of destination
d always exists.

(a) A Feasible example. (b) An Infeasible Example.

Fig. 3. Two examples demonstrating Theorem 2. (a) satisfies Theorem 1
and the corresponding network coding solution is as described. (b) does not
satisfy Theorem 1 and no network coding solution exists for (b). Note if only
one of d1,1 and d1,2 in (b) is requesting symbol X , then finding a non-
coded/network coding solution is possible. If both are requesting X , then
simultaneous transmission becomes impossible.

no network coding solution exists. Moreover, if only one of
d1,1 and d1,2 is requesting X and the other one is dormant, the
degenerate two-unicast problem becomes feasible. Only when
both d1,1 and d1,2 are requesting symbol X simultaneously,
does the two-multicast problem become infeasible.

The above cut-based description facilitates upper bounding
the achievable rates (the necessary condition). In the following,
we provide an equivalent path-based characterization that is
more helpful for explicit code construction (the sufficient
condition) and practical implementation [15].

Theorem 2 (Flow-Based Characterization): For 2-
multicast acyclic networks, the existence of a network coding
solution is equivalent to the existence of |d1| + |d2| + 2
collections of paths: Pi,∀d1,i ∈ d1, Qj , ∀d2,j ∈ d2, QI , and
PJ such that

∀d1,i ∈ d1, Pi =

{
{Ps1,d1,i , Ps2,d1,i} if ∃ a (s2, d1,i) path
{Ps1,d1,i} otherwise

∀d2,j ∈ d2, Qj =

{
{Qs2,d2,j , Qs1,d2,j} if ∃ a (s1, d2,j) path
{Qs2,d2,j} otherwise

QI = {Qs1,d1,i : ∀d1,i ∈ d1}
PJ = {Ps2,d2,j : ∀d2,j ∈ d2}

satisfy the following controlled edge-overlap conditions.

• Condition 1: maxe∈E ncpPi∪{Ps2,d2,j
}(e) ≤ 2 for all

d1,i ∈ d1 and d2,j ∈ d2.
• Condition 2: maxe∈E ncpQj∪{Qs1,d1,i

}(e) ≤ 2 for all
d1,i ∈ d1 and d2,j ∈ d2.

Continue our example in Fig. 3(a). The following selec-
tions of P1 = {Ps1,d1,1 , Ps2,d1,1}, P2 = {Ps1,d1,2 , Ps2,d1,2},
Q1 = {Qs2,d2,1 , Qs1,d2,1}, QJ = {Qs1,d1,1 , Qs1,d1,2}, and
PI = {Ps2,d2,1} with
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Ps1,d1,1 = s1v2v3v6v8d1,1

Ps2,d1,1 = s2v1v8d1,1

Ps1,d1,2 = s1v2v3v4v5d1,2

Ps2,d1,2 = s2v1v4v5d1,2

Ps2,d2,1 = s2v1v2v3v6v7d2,1

Qs2,d2,1 = s2v1v4v5v7d2,1

Qs1,d2,1 = s1v2v3v6v7d2,1

Qs1,d1,1 = s1v2v3v6v8d1,1

Qs1,d1,2 = s1v2v3v4v5d1,2

satisfy Theorem 2.
When only two single destinations are considered d1 =

{d1} and d2 = {d2}, Theorem 2 collapses to that for 2-unicast
acyclic networks:

Corollary 1: For 2-unicast acyclic networks, a network
coding solution exists if and only if one of the following two
conditions holds.
• There exist two edge-disjoint paths Ps1,d1 and Ps2,d2 .
• There exist a collection P of three paths Ps1,d1 , Ps2,d2 ,

and Ps2,d1 , and a collection Q of three paths Qs1,d1 ,
Qs2,d2 , and Qs1,d2 , such that maxe∈E ncpP(e) ≤ 2 and
maxe∈E ncpQ(e) ≤ 2.
Proof: This corollary is a straightforward restatement of

Theorem 2 for 2-unicast acyclic networks.
Another interesting case is when d1 = d2,3 i.e. all destina-

tions are interested in both symbols. Condition 1 of Theorem 2
guarantees the min-cut between d1,i and {s1, s2} is two.
Therefore, Theorem 2 collapses to the classic min-cut/max-
flow characterization for the single-session problem.

The intuition behind Theorem 1 is that the critical 1-
edge cuts must carry pure, non-corrupted symbols for their
corresponding destinations. The feasibility of a network coding
solution thus requires the existence of a path connecting si and
di but not using any critical 1-edge cuts of the destinations in
the other session dj ∈ d2. This corresponds to the necessary
part of the cut-based characterization of PINC. On the other
hand, Corollary 1 and Theorem 2 show that as long as we
can identify paths with controlled edge overlaps (as described
in Conditions 1 and 2 of Theorem 2), then we can carry
the desired information along those paths by network coding.
Since these paths have controlled edge overlap, network cod-
ing ensures that the packets can be mixed with other sessions
in a way that the interference can be removed in a later
stage. The proofs of these theorems in Section IV follow this
intuition.

B. Characterization for Cyclic Networks

Most existing theoretic studies of network coding focus on
DAGs due to its simpler structure and due to the fact that one
can always convert a cyclic network to its acyclic counterpart
by taking into account the time index and the causality of
information transmission [19].

Nonetheless, when studying PINC on a cyclic network, one
cannot rely on this cyclic-to-acyclic conversion since after
conversion, there are T symbols in the (s1,d1) (resp. (s2,d2))

3Since we assume previously that all destination nodes are distinct and
with only one incoming edge, we obviously will not have d1 = d2. To be
consistent, a more precise statement is that {tail(d1,i) : ∀d1,i ∈ d1} =
{tail(d2,j) : ∀d2,j ∈ d2}. Namely, at each physical location tail(d1,i) =
tail(d2,j), both symbols X and Y have to be decoded successfully.

M3 = Xt−4 + Yt−2

M4 = Xt−5 + Yt−3

M5 = Xt−2 + Yt−4

M7 = Xt−3 + Yt−5

Fig. 4. Pairwise intersession network coding on cyclic networks.

multicast session and network coding allows complete freedom
of mixing the 2T symbols [X]T1 and [Y ]T1 . Coding can be
performed either within its own session (mixing Xt and Xτ

for some t 6= τ ) or across different sessions (mixing Xt

and Yτ ). More than two symbols will be mixed with each
other, which is beyond the scope of Theorem 1. Therefore,
simply combining Theorem 1 (for acyclic networks) and the
cyclic-to-acyclic conversion does not characterize PINC on
a cyclic network. To properly address the behavior of a 2-
multicast cyclic network, one has to consider both intrasession
(mixing within its own string of symbols) and intersession
network coding (mixing across different strings of symbols).
For the following, we provide a characterization theorem for 2-
unicast cyclic networks, which takes into account the interplay
between intra- and intersession network coding.

Theorem 3 (Characterization): Theorem 1 and the equiva-
lent Theorem 2, first stated for 2-multicast acyclic networks,
hold for 2-unicast cyclic networks as well.

Fig. 4 illustrates a cyclic network that admits a rate-
1 network coding solution. The critical 1-edge cuts are
e1 = v8d1 and e2 = v6d2, which satisfy Theorem 1.
If we choose the P = {Ps1,d1 , Ps2,d1 , Ps2,d2} paths and
Q = {Qs2,d2 , Qs1,d2 , Qs2,d2} paths as follows:

Ps1,d1 = s1v1v5v7v3v4v8d1

Ps2,d1 = s2v2v8d1

Ps2,d2 = s2v2v3v4v5v7v6d2

Qs2,d2 = s2v2v3v4v5v7v6d2

Qs1,d2 = s1v1v6d2

Qs1,d1 = s1v1v5v7v3v4v8d1.

then Theorem 2 is satisfied. Fig. 4 describes the corresponding
network-coding solution. The expression along each edge
corresponds to the coded symbol along that edge in the t-th
second. For example, Xt and Yt are sent along s1v1 and
s2v2, respectively, in the t-th second. With propagation delay,
Xt−1 and Yt−1 are sent along v1v5, v1v6, v2v3, and v2v8

respectively in the t-th second. In the beginning of the t-th
second, node v5 has received (t− 1) packets {Xτ−1 : τ < t}
from v1 and (t − 1) packets {(Xτ−5 + Yτ−3) : τ < t} from
v4. By its knowledge about Xt−6, Xt−2, and (Xt−6 + Yt−4),
v5 generates coded packet M5 = Xt−2 + Yt−4 and sends
it along edge v5v7 in the t-th second. Following the coding
operations depicted in Fig. 4, an asymptotic rate of 1 packet
per second can be achieved. Note that at node v5, both
packets Xt−6 and Xt−2 from the same session are used to
encode the outgoing symbol M5. That is, in Fig. 4, both
intra- and intersession network coding are performed in order
to achieve rate-1 transmission.

The proof of the necessary condition follows from the
intuition that the critical 1-edge cuts must carry non-corrupted
symbols, similar to that of the acyclic networks. On the other
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hand, the looping nature of cyclic networks poses additional
challenges for the achievability analysis. In particular, a special
topology has been identified, which is unique for cyclic
networks and requires careful coordination of both intra- and
intersession network coding. We conclude this subsection
by stating a necessary condition for the 2-multicast cyclic
networks and leave the achievability direction as a conjecture.

Theorem 4 (Necessary Condition): For 2-multicast cyclic
networks, the necessary part of Theorem 1 (or equivalently the
necessary part of Theorem 2) still holds. Namely, if there exists
a rate-1 network coding solution, then there exist |d1|+|d2|+2
collections of paths satisfying Theorem 2.

Conjecture 1 (Sufficient Condition): For any 2-multicast
cyclic network, if there exist |d1| + |d2| + 2 collections of
paths satisfying Theorem 2, then there exists a rate-1 network
coding solution.

C. Implications

Several implications of Theorems 1 to 3 are discussed as
follows.

C.1 — Sufficiency of Linear Codes
Corollary 2: Linear network codes are sufficient both for 2-

multicast acyclic networks and for 2-unicast cyclic networks.
Proof: This corollary is a byproduct of the proof of the

achievability of Theorems 1 to 3.

C.2 — Complexity of Deciding the Feasibility of PINC
Since finding the cuts is a polynomial time task, the cut-

based characterization in Theorem 1 enables efficient algo-
rithms that decide the feasibility of a rate-1 PINC solution:

Proposition 1: Deciding the existence of a network coding
solution for 2-multicast acyclic networks is a polynomial-time
problem with respect to (|G|+ |d1|+ |d2|).

In [18], it is shown that when the number of coexisting
sessions N is unbounded, deciding the existence of a network
coding solution for N -unicast acyclic networks is an NP-
complete problem. Proposition 1 shows that when the number
of coexisting sessions is bounded by two, such a problem has
polynomial-time complexity with respect to the size of G and
the total number of destinations.

A more intriguing complexity result is for 2-unicast cyclic
networks.

Proposition 2: Deciding the existence of a network coding
solution for the 2-unicast cyclic networks is a polynomial-time
problem with respect to |G|.
The proofs of Propositions 1 and 2 are relegated to Section V.

Cycles in a network have long provided unique challenges
for graph-theoretic studies. For example, when a non-coded
solution is used, the existence of a rate-1 solution is equivalent
to the existence of two edge-disjoint paths connecting (s1, d1)
and (s2, d2) respectively. Therefore, deciding the existence of
a non-coded solution is equivalent to deciding the existence of
two edge-disjoint paths. In [6], it is shown that for 2-unicast
acyclic networks, such a task is polynomial-time with respect
to |G| but for 2-unicast cyclic networks, such a task is NP-
complete when s1 6= s2 and d1 6= d2. There is a significant
complexity gap between acyclic and cyclic networks. In con-
trast, when network coding is allowed, one can decide the
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Fig. 5. Three classes of graphs for which simultaneous transmission of X and
Y along (s1, d1) and (s2, d2) is feasible via network coding or non-coded
solutions.

existence of a rate-1 network coding solution in polynomial
time even for cyclic networks. A similar complexity reduction
of network coding was first observed in [20].

We believe this complexity reduction is a universal advan-
tage of both inter- and intrasession network coding over non-
coded solutions. In [3], it is shown that for a single multi-
cast session with one source s and two distinct destinations
d = {d1, d2} in a directed cyclic network, deciding whether
there exists a non-coded scheme that sends two symbols
simultaneously from s to both destinations d1 and d2 is an
NP-complete problem. However, when coding is allowed, one
only needs to test whether both the max-flow values for (s, d1)
and for (s, d2) are no less than two, which is a polynomial time
task. Proposition 2 and this example suggests that both intra-
and intersession network coding enable easier determination
of the corresponding feasibility.

C.3 — Minimal Bandwidth Requirements
Corollary 3: For 2-multicast acyclic networks and for 2-

unicast cyclic networks, if there exists a PINC solution, then
there exists a network coding solution using at most 3|d1| +
3|d2| paths during transmission.

Proof: Corollary 3 is a straightforward result from Theo-
rems 2 and 3, since one can remove any edges not used by the
3|d1|+3|d2| paths in Pi, ∀d1,i ∈ d1, Qj , ∀d2,j ∈ d2, QI and
PJ . By Theorems 2 and 3, a network coding solution exists
for the trimmed graph as well.

For the special case of 2-unicast acyclic networks, the
above bandwidth statement can be further strengthened by the
topological analysis presented in the following subsection.

C.4 — Topological Analyses for 2-Unicast Acyclic Networks
Consider three simple graphs: the 2 edge-disjoint paths

(2-EDPs) (see Fig. 5(a)), the butterfly (Fig. 5(b)), and a
special graph termed the grail (Fig. 5(c)). As described in the
corresonding figures, for all these three graphs, it is feasible
to simultaneously send two symbols X and Y from s1 and
s2 to d1 and d2 respectively. In parallel, Corollary 1 proves
the equivalence between the feasibility of network coding and
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The graph is 2-EDG, a full butterfly, or a full grail.

⇓ ⇑by Fig. 5 ?answered by Theorem 5

There exists a network coding solution.

⇓ ⇑Corollary 1 Corollary 1

There exist P and Q as described in Corollary 1.

Fig. 6. Comparison of Corollary 1 and Theorem 5.

the existence of two special path collections P and Q. Fig. 6
summarizes our knowledge about 2-unicast acyclic networks,
in which three arrows have been established, except the upper
right one. We will complete the picture by showing that for a
2-unicast acyclic network, if a network coding solution exists,
then the graph must “contain” one of the three simple graphs:
2-EDPs, the butterfly, and the grail. This statement is made
rigorous in the following theorem.

Theorem 5: Consider any 2-unicast acyclic network and
assume that all sources and destinations have degree one. If a
network coding solution exists, then one of the following two
conditions must hold.

1) There exist two EDPs connecting (s1, d1) and (s2, d2).
2) Graph G contains a subgraph G′ that can be obtained

from a full butterfly (Fig. 5(b)) or from a full grail
(Fig. 5(c)) by replacing the edges with independent paths
connecting the corresponding ends.4 A more formal
statement can be made by the language of subgraph
homeomorphism [6]. More explicitly, the sources and
destinations of the butterfly (resp. the grail) are mapped
to the sources and destinations of G and other intermedi-
ate nodes of the butterfly (resp. the grail) can be mapped
to any node in G. The subgraph G′ is homeomorphic to
the butterfly (resp. the grail).

The proof of Theorem 5 is based on the topological analysis of
the path-/cut-based characterization theorem. More explicitly,
it relies on the relative positions of the critical 1-edge cuts.
When the two critical 1-edge cuts e1 and e2 are parallel
to each other, then the network corresponds to the butterfly
structure. (In Fig. 5(b), the critical 1-edge cuts e1 = u6d1 and
e2 = u5d2 are parallel to each other.) When one critical 1-
edge cut (e1) is upstream of the other (e2), then the network
corresponds to the grail structure. (In Fig. 5(c), the critical 1-
edge cut e1 = v4v5 is upstream of e2 = v6d2.) The detailed
proof is relegated to Section VI.

Fig. 7 contains two other examples that admit network
coding solutions and we note that the sources and destinations
in Fig. 7 have degrees more than one. After converting Fig. 7
so that all sources and destinations have degree one (as
discussed in Section II-B), the two examples in Fig. 7 are
indeed the full butterfly and the full grail as predicted in

4Unlike the butterfly, the grail graph is asymmetric for source-destination
pairs (s1, d1) and (s2, d2). A mirrored image of the grail can be obtained
by swapping (s1, d1) and (s2, d2) of Fig. 5(c). For simplicity, Theorem 5
does not explicitly discuss the mirrored image of the grail but the inclusion
of the mirrored image of the grail is implicitly implied.
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Fig. 7. Two examples of graphs that can be obtained from the full butterfly
and the full grail by edge contraction.

Theorem 5.
Theorem 5 says that if a network coding solution exists,

then it is either the case that a non-coded solution also exists
(with 2-EDPs) or the case in which the graph contains a
subgraph that is topologically identical to a butterfly or to
a grail. The closest counterpart of Theorem 5 for intrasession
network coding is the information-decomposition arguments in
[7], which specify the minimal coding-based topology. There
are at least three fundamental differences between Theorem 5
and the results in [7]. First, the subject of the former is the
2-unicast acyclic network while the latter focuses on the 1-
multicast acyclic network. Second, Theorem 5 is obtained
from the pure graph-theoretic argument rather than coding-
based simplification. Third, Theorem 5 focuses directly on the
graph G rather than its line graph, which in turn provides
a tighter description of the graph structure. For example,
from the coding perspective [7], the question of whether
two paths share a vertex is irrelevant as long as these two
paths are edge disjoint. For comparison, Theorem 5 makes a
stronger statement on the vertex-disjointness via the notion of
independent paths.

Theorem 5 can be translated to the corresponding network
coding statement. Namely, the network coding solutions for
Figs. 5(b) and 5(c) can be applied in a straightforward
manner to the graph G by letting the independent paths in
G′ ⊆ G carry the same messages as the corresponding edges
in Figs. 5(b) and 5(c). From the above observation, we have
the following corollaries.

Corollary 4: If there exists any network coding solution for
the 2-unicast acyclic network, there exists a binary linear net-
work coding solution as well. Furthermore, either a non-coded
solution exists or one needs exactly three binary exclusive OR
(XOR) operations for the entire network encoding/decoding
solution.

Proof: This corollary is proven in a straightforward
manner by Theorem 5 and by observing that there are exactly
three binary XOR operations in the cases of a butterfly and
a grail. The discussions on the number of coding nodes for
intrasession network coding can be found in [2].

Theorem 5 also implies the following results on the band-
width and coding efficiency of network coding solutions.

Definition 2: Consider two network coding solutions NC1



IEEE TRANSACTIONS ON INFORMATION THEORY 8

and NC2 for the same 2-unicast acyclic network based on finite
fields GF(q1) and GF(q2), respectively. Use G1 = (V1, E1) ⊆
G to denote the active nodes and edges used in NC1 and
similarly use G2 = (V2, E2) ⊆ G for NC2. We say that NC1

is more bandwidth-efficient than NC2 if E1 ⊆ E2. NC1 is
more coding-efficient than NC2 if q1 ≤ q2.
A network coding solution is bandwidth-optimal (resp. coding-
optimal) if it is more bandwidth-efficient (resp. coding-
efficient) than any other network coding solution with the same
support rates.

Corollary 5: Let NC be a network coding solution that is
of a form different than those in Fig. 5(a–c). There exists
another solution NCopt of the form in Fig. 5(a–c) that is both
more bandwidth-efficient and more coding-efficient than NC.
In other words, the three cases in Fig. 5 are the only solutions
that are jointly bandwidth-&-coding optimal.

We close this section by stating the source-sink reciprocity
for 2-unicast acyclic and cyclic networks.

Corollary 6 (Source-sink Reciprocity): Consider the com-
munication problem of a 2-unicast acyclic/cyclic network in
the reverse direction. Namely, construct GR by reversing the
orientation of all edges in G and swap the roles of the source
si and destination di for i = 1, 2. A network coding solution
for G exists if and only if a network coding solution for GR

exists. In other words, the feasibility in one orientation implies
the feasibility in the reverse orientation.

Proof: Suppose there exists a network coding solution
for the forward direction. Then there exist path collections P
and Q satisfying Corollary 1. Once the orientation is reversed,
the path collections become P ′ = {P ′d1,s1

, P ′d1,s2
, P ′d2,s2

} and
Q′ = {Q′

d2,s1
, Q′

d2,s2
, Q′d1,s1

}. Since both P ′ and Q′ satisfy
the controlled edge overlap condition, there exists a network
coding solution for the reverse direction. The proof is thus
complete.

IV. THE PROOFS OF THE CHARACTERIZATION THEOREMS

In this section, we present the proofs of the characterization
theorems in Section III.

A. The Equivalence Between Theorems 1 and 2

We first prove the equivalence between the cut-based con-
ditions in Theorem 1 and the path-based conditions in Theo-
rem 2.

Proof of the equivalence between Theorems 1 and 2:
Suppose that the cut-based conditions in Theorem 1 are not
satisfied. Namely, there exists a d1,i0 such that d1,i0 is not
reachable from s1 using edges in G\{ej : d2,j ∈ d2}, or
equivalently, any Qs1,d1,i0

path has to use at least one ej0 for
some d2,j0 ∈ d2. Since this d2,j0 is reachable from s1 (using
part of the Qs1,d1,i0

path), the corresponding Qj0 contains two
paths {Qs1,d2,j0

, Qs2,d2,j0
}. Since such ej0 is a critical 1-edge

cut, Qj0 = {Qs1,d2,j0
, Qs2,d2,j0

} must have ncpQj0
(ej0) = 2,

which implies ncpQj0∪{Qs1,d1,i0
}(ej0) = 3 for any possible

choices of Qj0 . Since for any Qs1,d1,i0
path there is at least

one ej0 such that ncpQj0∪{Qs1,d1,i0
}(ej0) = 3, one cannot find

QI and Qj for all d2,j ∈ d2 that satisfy jointly Condition 2
of Theorem 2.

Suppose the cut-based conditions are satisfied. We can
construct the path collections Pi, Qj , PJ , and QI satisfying
Theorem 2 in the following way.

For each d1,i0 that is not reachable from s2, we can
arbitrarily choose any Ps1,d1,i0

path and use it as Pi0 . Since
there are totally only two paths in Pi0 ∪ {Ps2,d2,j

} for any j,
Condition 1 of Theorem 2 is satisfied for any choice of PJ .
Hence, we only need to focus on the construction for those
d1,i that are reachable from both s1 and s2.

For each critical 1-edge cut ei = uivi for d1,i, construct
two edge-disjoint paths Ps1,ui and Ps2,ui , which is always
possible since ei is a critical 1-edge cut and d1,i is reachable
from both s1 and s2. Let Pvi,d1,i

denote any path connecting
vi and d1,i. Let P

G\{∀ei}
s2,d2,j

denote any path connecting s2 and
d2,j using only edges in G\{ei : ∀d1,i ∈ d1}. Consider the
following construction:

∀d1,i ∈ d1,Pi
∆=

{
Ps1,ui

uiviPvi,d1,i
, Ps2,ui

uiviPvi,d1,i

}

PJ
∆=

{
P

G\{∀ei}
s2,d2,j

: ∀d2,j ∈ d2

}
. (1)

We will show that the above collections contain only valid
paths (no cycles) and jointly they satisfy Condition 1 of
Theorem 2.

For acyclic networks, the above construction contains no
cycle and they are indeed valid paths. For cyclic networks,
since ei = uivi is a 1-edge cut, Ps1,ui and Pvi,d1,i must not
share any vertex. Therefore Ps1,uiuiviPvi,d1,i is a valid path
containing no cycle. Similarly, Ps2,uiuiviPvi,d1,i is a valid
path.

Suppose there is an edge e that violates Condition 1 of
Theorem 2. Since by construction, Ps1,ui and Ps2,ui are edge-
disjoint and share no common edge, such e must satisfy e ∈
uiviPvi,d1,i . By our construction of PJ in (1), any Ps2,d2,j ∈
PJ must not use uivi. Therefore, the violating edge e must
satisfy

e ∈ Pvi,d1,i and e ∈ Ps2,d2,j (2)

for some d2,j . Nonetheless, since ei = uivi is a 1-edge cut
separating {s1, s2} and d1,i and by (2) the walk Ps2,d2ePvi,d1,i

is from s2 to d1,i, we must have uivi ∈ Ps2,d2,j . This
contradicts the construction of PJ in (1). As a result, no such
violating edge e exists and the proof is complete.

B. The Necessary Condition for 2-Multicast Acyclic/Cyclic
Networks

We first prove Theorem 4, the necessary condition for 2-
multicast cyclic networks. Since acyclic networks are a special
class of cyclic networks, the proof of the necessary condition
of Theorems 1 and 2 for the 2-multicast acyclic networks
follows similarly and its detailed derivation is omitted.

The equivalence of the conditions in Theorems 1 and 2
allows us to prove the necessary condition based on the cut-
based characterization in Theorem 1. Assuming there exists an
asymptotic rate-1 PINC solution, we show that for any d2,j

there must exist a Ps2,d2,j path that does not use any critical
1-edge cuts of any d1,i. The symmetric case for the existence
of Ps1,d2,j in G\{ei : d1,i ∈ d1} can be proven by symmetry.



IEEE TRANSACTIONS ON INFORMATION THEORY 9

We need the following lemma before the proof.
Lemma 2: Suppose a rate-(1− ε) PINC solution exists in a

2-multicast cyclic network with duration T for some ε > 0. For
each edge e, define the edge weight we ∈ R by the conditional
mutual information:

we
∆=

1
T

I([Me]T1 ; [Y ]T1 |[X]T1 ).

For any d2,j ∈ d2, then there must exist a path Ps2,d2,j
such

that

∀e ∈ Ps2,d2,j
, we ≥ 1

|E| (1− ε) log(q). (3)

Proof: If there exists no path Ps2,d2,j
with

mine∈Ps2,d2,j
we ≥ 1

|E| (1 − ε) log(q), then s2 and d2,j

must be disconnected after removing all edges with
we < 1

|E| (1− ε) log(q). Let C denote the collection of those
removed edges. C must be an edge-cut separating s2 and
d2,j . Since the network coding solution is feasible, we have
the following contradiction:

(1− ε) log(q) ≤ 1
T

I([Md2,j
]T1 ; [Y ]T1 ) (4)

≤ 1
T

I({[Me]T1 , e ∈ C}; [Y ]T1 ) (5)

≤ 1
T

I({[Me]T1 , e ∈ C}; [Y ]T1 |[X]T1 ) (6)

≤
∑

e∈C

1
T

I([Me]T1 ; [Y ]T1 |[X]T1 ) (7)

=
∑

e∈C

we ≤ |E|max
e∈C

we < (1− ε) log(q), (8)

where (4) is by the definition of being a feasible network
coding solution, (5) follows from the information conservation
law that the mutual information between the cut messages
{[Me]T1 , e ∈ C} and [Y ]T1 must be no less than that between
[Md2,j ]

T
1 and [Y ]T1 . (6) follows from that conditioning on

the “independent interference” [X]T1 will only increase the
mutual information. (7) follows from the basic entropy equal-
ities/inequalities explained below:

T · (6) = H({[Me]T1 , e ∈ C}|[X]T1 )

−H({[Me]T1 , e ∈ C}|[Y ]T1 , [X]T1 )

= H({[Me]T1 , e ∈ C}|[X]T1 )− 0

=
|C|∑

i=1

H([Mei ]
T
1 |[X]T1 , {[Mej ]

T
1 , j < i})

≤
|C|∑

i=1

H([Mei ]
T
1 |[X]T1 )

=
∑

e∈C

I([Me]T1 ; [Y ]T1 |[X]T1 ).

The contradiction in (8) completes the proof.
To prove the necessary condition, we assume that one can

achieve asymptotically rate-1 transmission by network coding.
We then choose an ε such that (1 − ε)(1 + 1

|E| ) > 1. By the
definition of achievability, there exists a rate-(1 − ε) PINC
solution for the given ε with a sufficiently large duration T .
By Lemma 2, there exists a Ps2,d2,j satisfying (3) for any d2,j .

In the following, we show that any such Ps2,d2,j does not use
any critical 1-edge cuts of d1,i.

We prove this by contradiction. Suppose a Ps2,d2,j satisfying
(3) uses a critical 1-edge cut ei of d1,i for some i. Then

I([Mei
]T1 ; [X]T1 , [Y ]T1 )

= I([Mei ]
T
1 ; [X]T1 ) + I([Mei ]

T
1 ; [Y ]T1 |[X]T1 ). (9)

The left-hand side of (9) is no larger than H([Mei ]
T
1 ) ≤

T log(q). The first term of the right-hand side of (9) satisfies

I([Mei
]T1 ; [X]T1 ) ≥ I([Md1,i

]T1 ; [X]T1 ) ≥ T (1− ε) log(q),

since ei is a 1-edge cut separating {s1, s2} from d1,i and since
the code has rate (1−ε). The second term of the right-hand side
of (9) is Twei

≥ T
|E| (1 − ε) log(q). By the above reasoning,

we have the following contradiction

T log(q) ≥ T (1− ε) log(q) +
T

|E| (1− ε) log(q)

= T (1− ε)(1 +
1
|E| ) log(q) > T log(q). (10)

Therefore, Ps2,d2,j does not use the critical 1-edge cut ei for
any d1,i. The proof is complete.

C. The Sufficient Condition for 2-Multicast Acyclic Networks

In this subsection, we will show that if the conditions of
Theorem 1 are satisfied, then there exists a linear intersession
network coding solution for the 2-multicast acyclic network
based on a new component of sequential reset operations.

Our network code construction consists of two stages. The
first stage we construct a “strengthened generic linear code
multicast (LCM)” based on the explicit construction of LCMs
in [12], [19]. Then we perform “reset-to-X” (resp. “reset-
to-Y ”) operations sequentially on the critical 1-edge cuts
according to their topological order.

Stage 1: Strengthened Generic Linear Code Multicast (LCM)
For any linear network coding scheme, the message M

along any edge is a linear combination M = c1X+c2Y of the
symbols X and Y , and we use the corresponding coding vector
M = (c1, c2) as shorthand. To ensure the computability of
network coding, the outgoing message, as a two-dimensional
vector, must be in the span of all incoming messages. We
use Me to denote the message (vector) along a specific
edge e. We first give the intuition of our construction and a
detailed step-by-step proof will be provided shortly after. Our
construction is based on the generic LCM [19] that maintains
the independence among all messages in the network to the
largest possible degree. More rigorously, for a generic LCM
on the 2-multicast acyclic network, by Theorem 3.3 in [19],
we must have

1) If two messages on edges e1 and e2 are linearly depen-
dent, then the min-cut/max-flow value between {s1, s2}
and {tail(e1), tail(e2)} must be one.

By Theorem 5.1 in [19], every acyclic network admits a
generic LCM, which can be explicitly constructed in poly-
nomial time [12] for sufficiently large GF(q).
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For a sufficiently large field space GF(q), we can further
strengthen a generic LCM such that the following properties
are also satisfied.

2) If two messages M1 and M2 are not identical, they are
linearly independent.

3) Along any edge that is reachable from si, the i-th
component of the corresponding message must be non-
zero.

The second property is to remove the ambiguity of scaling by
a constant. The third property is to ensure that the influence
of s1 and s2 on the intermediate edges are preserved during
the construction of a generic LCM.

For acyclic networks, a simple exponential-time algorithm
for constructing a strengthened generic LCM is to assign cod-
ing vectors in an edge-by-edge fashion, starting from the most
upstream to the most downstream edges while maintaining
the largest degree of independence (ensuring Property 1) and
preserving the influence of s1 and s2 on the intermediate edges
(ensuring Property 3). This sequential construction was first
used in the proof of Theorem 5.1 in [19] and will be the basis
of our explicit construction.

The strengthened generic LCM will then be complemented
with the “reset-to-X” and “reset-to-Y ” operations described
as follows. Take the reset-to-X operation, for example, and
consider the sequential construction according to the topolog-
ical order of the edges. For any edge e = uv that has two
independent incoming messages, the designer of the network
code can choose whether to apply the reset-to-X operation
or to use the regular construction of a strengthened generic
LCM. If the reset-to-X operation is chosen, then instead of
ensuring the satisfaction of Properties 1 to 3, one simply
set Me = (1, 0). The message Me is indeed “reset” to X .
The coding vector of the remaining edges can be assigned
sequentially with the objective functions of maximizing the
independence between different edges and preserving the
effects of s1 and s2 to the maximum extent, unless another
reset operation is invoked.

The inclusion of the reset operation will affect the proper-
ties of the strengthened generic LCM. New properties after
applying reset operations are listed as follows.
• Property 1: If two messages M1 and M2 on edges e1

and e2 are identical, it is either that the min-cut/max-flow
value between {s1, s2} and {tail(e1), tail(e2)} is one, or
M1 = M2 is of value either (1, 0) or (0, 1).

• Property 2: If two messages M1 and M2 are not identical,
they are linearly independent.

• Property 3: Along any edge that is not reset to Y and
is reachable from s1 without using edges that are “reset
to Y ”, the X-component of the corresponding message
must be non-zero. Symmetrically, along any edge that is
not reset to X and is reachable from s2 without using any
reset-to-X edges, the Y -component of the corresponding
message must be non-zero.

Based on the above discussion, we describe, in the follow-
ing, a sequential method of constructing a strengthened generic
LCM with reset operations such that the resulting network
code satisfies the above three properties. To that end, we first

index the edges from the most upstream (e = 1) to the most
downstream edges (e = |E|). The coding vectors of the edges
will be assigned from e = 1 to e = |E| and we will prove
that the above three properties hold during construction by
induction on the edge e being processed.

When e = 1, the edge e must be a source edge, say
s1. There is no incoming edge to the source edge. The
only possible coding vector assignment is (1, 0) (ignoring the
scaling coefficient). The three properties hold for e = 1. For an
intermediate edge e = k, we assume that the three properties
hold for edges 1 to k − 1. Consider two cases depending on
whether a reset operation is performed on e = k or not.

Case 1: the designer is allowed to perform the reset-to-X
operation on e and indeed chooses to reset. For Property 1,
if there exists an e′ < e = k such that Me = Me′ ,
then Me = Me′ = (1, 0). Property 1 thus holds for the
first k edges. To prove Property 2, suppose Me is linearly
dependent to another Me′ with e′ < k and Me 6= Me′ .
Then Me′ must be of the form (x, 0) for some x 6= 1.
Nonetheless, since Ms1 = (1, 0) 6= Me′ and Property 2
holds for e = 1, · · · , k − 1, we must have Ms1 = (1, 0)
being independent of Me′ = (x, 0) for some x 6= 1. This
contradiction proves that Property 2 holds for the first k
edges. For Property 3, since Me = (1, 0) contains non-zero
X component and e is reset-to-X , Property 3 holds for e = k
by definition. Since all three properties hold after processing
e = k, by induction, the proof is complete. The proof for the
symmetric scenario in which the designer chooses to perform
the reset-to-Y operation follows by symmetry.

Case 2: No reset operation is performed on e. We have two
subcases. Case 2.1: The designer is not allowed to perform
a reset operation, i.e., all incoming edges entering e carry
identical coding vectors. In this sub-case, we simply set the
coding vector of e by Me = Mein,l

for any incoming edge
ein,l. For Property 1, if there exists another e′ such that
Me′ = Me = Mein,l

, by induction, one possibility is that
Me′ = Mein,l

= Me are (1, 0) or (0, 1). Property 1 is thus sat-
isfied for e = k. The other possibility is that the min-cut/max-
flow value from {s1, s2} to {tail(e′), tail(ein,l)} is one for all
incoming edges ein,l entering e and the min-cut/max-flow value
from {s1, s2} to {tail(ein,l1), tail(ein,l2)} for all ein,l1 and ein,l2

entering e. It can be shown that in this case the min-cut/max-
flow value from {s1, s2} to {tail(e′)} ∪ {tail(ein,l) : ∀l} must
also be one since they share the same unique critical 1-edge
cut as predicted in Lemma 1. Therefore, the min-cut/max-flow
value from {s1, s2} to {tail(e′), tail(e)} is also 1 as ein,l are
the edges entering e = k. Property 1 thus holds for Case 2.1.
For Property 2, for any Me′ 6= Me = Mein,l

, by induction, we
must have Me′ being independent to Mein,l

= Me. Property
2 thus holds for Case 2.1. For Property 3, if e is reachable
from s1 without using any reset-to-Y edges, then one of the
ein,l is not reset-to-Y and is reachable from s1 without using
any reset-to-Y edges. Therefore, the X component of Mein,l

is
non-zero, so is the X component of Me. All three properties
hold for Case 2.1.

Case 2.2: At least two incoming edges carry distinct coding
vectors. By induction, e must receive two independent coding
vectors. In this case, the designer is allowed to perform a reset
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operation but chooses not to. Since tail(e) can decode both X
and Y , the designer has the freedom to send any (a, b) vector
along e. To satisfy the three properties, one can simply choose
a 6= 0 and b 6= 0 such that the coding vectors are independent
to any upstream edges of e = k. With a sufficiently large
GF(q), such a choice always exists. All three properties thus
hold for Case 2.2.

By induction, a strengthened generic LCM can thus be
constructed with arbitrary reset operations. For the following,
we will refer to these three properties as Properties 1 to 3 of
a generic LCM with reset operations.

Stage 2: Sequential Reset Operations
In the previous stage, we have discussed the properties of

a generic LCM with reset operations. The remaining task is
to decide which edge to follow normal coding operation and
which edge to “reset”. It turns out that we simply need to
reset-to-X all critical 1-edge cuts ei = uivi for destinations
d1,i ∈ d1 and reset-to-Y all critical 1-edge cuts ej = ujvj for
destination d2,j ∈ d2.

We first observe that the above reset operations are unam-
biguous since the 1-edge cuts ei for d1,i are disjoint from the
critical 1-edge cuts ej for d2,j . Nonetheless, it is possible that
we cannot perform the reset operations on some of the target
edges since resetting an edge e requires that the incoming
edges of e carry independent vectors. Our goal is to prove the
following two statements: (i) it is possible to perform reset-
to-X (resp. reset-to-Y ) operations on all ei = uivi (resp.
ej = ujvj), and (ii) after performing the reset operations,
all d1,i and d2,j are able to receive their desired symbols
successfully.

We prove statement (ii) first. Take a ui0vi0 edge for ex-
ample. Suppose the reset-to-X operation can be performed,
namely, suppose the incoming messages of ui0vi0 are either
independent or are of the form (1, 0). (If the incoming
messages are dependent and of the form (a, b), b 6= 0, then
a reset-to-X operation is not possible.) Once the reset-to-X
operation is performed, d1,i0 is able to receive X successfully
since as ui0vi0 being a critical 1-edge cut, there is no other
“interfering path” that can corrupt the transmission from ui0vi0

to d1,i0 . The newly reset symbol X can thus arrive d1,i0

without contamination. Similarly, for any d2,j0 , if the reset-
to-Y operation is performed on uj0vj0 , then d2,j0 will receive
Y successfully. Statement (ii) is thus proven.

It remains to show that on each uivi or ujvj , performing the
reset operation is indeed always feasible. Take an ei0 = ui0vi0

edge for example. If there are two incoming edges entering
ei0 that carry distinct messages, then u0 can decode both X
and Y and reset-to-X is always possible. Suppose that all
incoming edges entering ei0 carry identical coding vectors.
Consider the following cases. The conditions in Theorem 1
guarantee that there is a Ps1,d1,i0

path that does not use any
critical 1-edge cut ujvj of destination d2,j . Since ui0vi0 is a 1-
edge cut separating {s1, s2} and d1,i0 , such Ps1,d1,i0

path must
use ui0vi0 . Since we only perform reset-to-Y operations on the
critical 1-edge cut ujvj of destination d2,j , the ei0 = ui0vi0

edge is reachable from s1 (through the Ps1,d1,i0
path) without

using any reset-to-Y edges. By Property 3 of the strengthened

generic LCM with reset operations, at least one incoming
edges of ei0 = ui0vi0 must have a non-zero X component.
So the incoming edges must carry identical coding vectors
of the form (a, b) for some a 6= 0. Since ei0 is a critical
1-edge cut, there are two edge-disjoint paths Ps1,ui0

and
Ps2,ui0

. Therefore, there are at least two incoming edges
ein,l1 and ein,l2 entering ui0 such that the min-cut/max-flow
value between {s1, s2} and {tail(ein,l1), tail(ein,l2)} is two.
Since Mein,l1

= Mein,l2
= (a, b), by Property 1 of the

strengthened generic LCM with reset operations, we must have
(a, b) = (1, 0). Therefore the reset-to-X is always possible on
ei0 = ui0vi0 . The proof is complete.

D. The Sufficient Condition for 2-Unicast Cyclic Networks

The looping behavior of cyclic networks and the associated
delay constraint increase the complexity of analysis. For exam-
ple, in the 2-multicast acyclic network, one needs only to apply
reset operations to the critical 1-edge cut for each destination.
Messages on other edges are based on the generic LCM and
can be approximated by random linear network coding. For
cyclic networks, more edges have to cooperate jointly with
each other in a non-random fashion and one generally needs
both intra- and intersession network coding when two strings
of symbols X1, · · · , Xt and Y1, · · · , Yt are considered.

For the following, we assume that the path-based conditions
in Corollary 1 are satisfied for a 2-unicast cyclic network,
for which a linear PINC solution will be constructed. If there
exists a pair of edge-disjoint paths Ps1,d1 and Ps2,d2 , one can
achieve rate-1 communication by a non-coded solution. We
focus on the more interesting scenario and assume that there
exists no such edge-disjoint path pair. For a node v ∈ V , we
use [v]t1 to denote the collection {[Me]t1 : head(e) = v} that
is the cumulative information available to v after the first t
seconds.

Let e1 = u1v1 denote the critical 1-edge cut separating
{s1, s2} and d1. Similarly, e2 = u2v2 is the critical 1-edge
cut separating {s1, s2} and d2. We have e1 6= e2 otherwise
e1 = e2 is a 1-edge cut separating {s1, s2} and {d1, d2}, and
Corollary 1, as a necessary condition, cannot be satisfied. By
the construction of ei as critical 1-edge cuts, there must exist
two vertex-disjoint paths P

G\{e1,e2}
v1,d1

and P
G\{e1,e2}
v2,d2

in the
subgraph G\{e1, e2}. Otherwise, either (i) one of {e1, e2} is
not a critical 1-edge cut, or (ii) e1 and e2 coincides, which
contradicts our construction.

Consider the following three major cases, and for each case
we describe within the parentheses the main intuition behind
the network code construction.

Case 1: (Direct construction based on the concept
of generations.) There exist two edge-disjoint paths
(PG\{e1,e2}

s1,u1 , P
G\{e1,e2}
s2,u1 ) using only edges in G\{e1, e2}, and

there exist two edge-disjoint paths (PG\{e1,e2}
s1,u2 , P

G\{e1,e2}
s2,u2 )

using only edges in G\{e1, e2}. We first remove any edges
that are not one of the critical 1-edge cuts e1 = u1v1 and
e2 = u2v2 and are not in the following six paths:

P
G\{e1,e2}
v1,d1

, P
G\{e1,e2}
v2,d2

, PG\{e1,e2}
s1,u1

, PG\{e1,e2}
s2,u1

,

PG\{e1,e2}
s1,u2

, and PG\{e1,e2}
s2,u2

. (11)
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Fig. 8. Cases 1 and 2 of Section IV-D.

We will show that one can construct a rate-1 network coding
solution on the remaining graph (see Fig. 8(a)).

Since both the max-flow values from {s1, s2} to u1 and
from {s1, s2} to u2 are two, respectively, [19] shows that for
any ε > 0, there exists a linear network code (the generic
LCM [19]) with sufficiently large duration T such that after
T second,

1
T

I([u1]T1 ; [X]T1 , [Y ]T1 ) > 2(1− ε) log(q)

1
T

I([u2]T1 ; [X]T1 , [Y ]T1 ) > 2(1− ε) log(q),

i.e. u1 and u2 can recover both [X]T1 and [Y ]T1 .5 We will
use this particular generic LCM without modification for t =
1, · · ·T . It is crucial to notice that the existence of a generic
LCM does not guarantee that node u1 can decode [X]t1 based
on [u1]t1 on the fly for t < T , but only guarantees that after T
seconds, u1 can decode all T symbols [X]T1 at once. Therefore,
in the first T seconds, destination d1 (resp. d2) cannot receive
uncorrupted messages as u1 (resp. u2) does not decode [X]t1
on the fly. We define the first T seconds as the first period and
denote the corresponding symbols as [X(1)]T1 and [Y (1)]T1 .

For the second period, the sources send [X(2)]T1 and [Y (2)]T1
for a different “generation” of packets instead of the old
generation symbols [X(1)]T1 and [Y (1)]T1 . Again, we use a
generic LCM to send it to u1 and u2 with the following
modifications. In the t-th second of the second duration, u1

sends along e1 the first generation symbol X
(1)
t instead of a

linear combination of the cumulative information of the second
generation, denoted by [u(2)

1 ]t−1
1 . Similarly, u2 sends the first

generation symbol Y
(1)
t along e2. As a result, in the end of

the second period, d1 and d2 are able to recover, respectively,
[X(1)]T1 and [Y (1)]T1 sent in the first period. In the third period,
the third-generation symbols [X(3)]T1 and [Y (3)]T1 are sent by
s1 and s2 using a generic LCM and the second-generation
symbols X

(2)
t (resp. Y

(2)
t ) are sent along e1 (resp. e2). By

repeating the above scheme for a sufficiently large number of
periods K, we can send (K − 1)T (1 − ε) symbols in KT
seconds. The data rate can thus be made arbitrarily close to
(1− ε) for sufficiently large K. The construction is complete.

5More rigorously, to fully recover [X]T1 and [Y ]T1 , we have to send
(linearly) coded packets instead of i.i.d. packets since we cannot have the
mutual information I([u1]T1 ; [X]T1 , [Y ]T1 ) = 2T log(q) with equality due to
the delay of the network.

Case 2: (Direct construction based on the concepts of
generations and super-generations.) There exist two edge-
disjoint paths (PG\{e1,e2}

s1,u2 , P
G\{e1,e2}
s2,u2 ) using only edges

in G\{e1, e2}. But there exist no edge-disjoint paths
(PG\{e1,e2}

s1,u1 , P
G\{e1,e2}
s2,u1 ) using only edges in G\{e1, e2}.

Since e1 is a critical 1-edge cut, there still exist two edge-
disjoint paths P

G\e1
s1,u1 and P

G\e1
s2,u1 but one of them must use

e2. Moreover, it must be P
G\e1
s1,u1 that uses e2. Otherwise,

there exists a pair of EDPs Ps1,d1 = P
G\e1
s1,u1 e1P

G\{e1,e2}
v1,d1

and Ps2,d2 = P
G\e1
s2,u1 e2P

G\{e1,e2}
v2,d2

, which contradicts the
assumption. Remove any edges that are not one of the critical
1-edge cuts e1 = u1v1 and e2 = u2v2 and are not in the
following six paths:

P
G\{e1,e2}
v1,d1

, P
G\{e1,e2}
v2,d2

, PG\e1
s1,u1

, PG\e1
s2,u1

,

PG\{e1,e2}
s1,u2

, and PG\{e1,e2}
s2,u2

.

We will show that one can construct a rate-1 network coding
solution on the remaining graph (see Fig. 8(b) for illustration).

For this case, we need the notion of “super-period” or
correspondingly “super-generation.” More explicitly, we have
totally K1 super-periods and each super-period contains K2

periods. So the total duration of the scheme is K1K2T
seconds. The “(k1, k2) period” refers to the k2-th period of
the k1-th super-period. Let [X(k1,k2)]T1 and [Y (k1,k2)]T1 denote
the packets sent by s1 and s2 in the (k1, k2) period.

In the (1, 1) period, a generic LCM is used and after
the (1, 1) period, u2 is able to recover both [X(1,1)]T1 and
[Y (1,1)]T1 . For the (1, k2) period, k2 = 2, · · · ,K2 − 1, u2

sends [Y (1,k2−1)]T1 along edge e2 while the rest of the network
uses the original generic LCM. This is possible since there are
two edge-disjoint paths connecting {s1, s2} and u2 in G\e1

and all the contamination of the cyclic traffic (along the v2

to u1 path in Fig. 8(b)) can be cancelled by u2’s knowledge
about the X and Y in the previous periods. So u2 is able
to recover [X(1,k2)]T1 and [Y (1,k2)]T1 in the end of the (1, k2)
period. u2 then sends out the [Y (1,k2)]T1 in the (1, k2 + 1)
period. After the (1,K2 − 1) period, d2 is able to recover
[Y (1,k2−1)]T1 for 2 ≤ k2 ≤ K2 − 1. On the other hand, u1 is
facing a bigger challenge. Take the (1, 2) period as an example.
The messages received by u1 are linear combinations of the
current generation [X(1,2)]T1 , [Y (1,2)]T1 and of the previous
generation [Y (1,1)]T1 , where the latter is due to the modified
messages sent along e2. Even when u1 cancels out the impact
of [Y (1,1)]T1 by its previous knowledge obtained in the (1, 1)
period, u1 still cannot recover both [X(1,2)]T1 and [Y (1,2)]T1
since the min-cut/max-flow value between {s1, s2} and u1 is
one in G\{e1, e2}. u1 thus cannot send any uncorrupted X
packets to d1.6

To solve this problem, we perform the “unwrap operation”
in the (1,K2) period. In the (1, K2) period, the sources resend
[X(1,K2−1)]T1 and [Y (1,K2−1)]T1 of the previous (1,K2 − 1)
generation using a generic LCM without any modification. As

6In the (1, 2) period, u1 can still send [X(1,1)]T1 along e1 as u1 has
obtained [X(1,1)]T1 in the (1, 1) period. However, u1 has no uncorrupted X
symbols to send along e1 during the (1, 3) period as all symbols received by
u1 in the (1, 2) period are corrupted and cannot be recovered.
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a result, d2 is not receiving any new uncorrupted Y . The total
transmission rate for the (s2, d2) is then

(K2 − 2)(1− ε)T log(q)
K2T

,

since only {[Y (1,k2)]T1 : k2 = 1, · · ·K2 − 2} are received by
d2.

On the other hand, since a generic LCM is used, u1

receives [X(1,K2−1)]T1 and [Y (1,K2−1)]T1 successfully in the
(1,K2) period. Since u1 also has the 2T linear combinations
of [X(1,K2−1)]T1 , [Y (1,K2−1)]T1 , and [Y (1,K2−2)]T1 received
in the (1,K2 − 1) period, u1 can use the new information
[X(1,K2−1)]T1 and [Y (1,K2−1)]T1 to cancel out the effect of
[X(1,K2−1)]T1 and [Y (1,K2−1)]T1 in the 2T linear equations and
thus decode the remaining T unknown variables [Y (1,K2−2)]T1 .
This new piece of information can subsequently help de-
code another 2T symbols [X(1,K2−2)]T1 and [Y (1,K2−3)]T1 , by
cancelling the effect of [Y (1,K2−2)]T1 in the 2T linear com-
binations of [X(1,K2−2)]T1 , [Y (1,K2−2)]T1 , and [Y (1,K2−3)]T1
received in the (1, K2−2) period. Since we have 2T remaining
unknown variables, 2T equations, and since the min-cut/max-
flow value between {s1, v2} and u1 is two in G\{e1, e2},
decoding is feasible when a sufficiently large finite field
is used. By iteratively decoding information symbols based
on the linear combinations received in the (1,K2 − 2),
(1,K2 − 3), to (1, 2) periods, u1 can recover the information
of {[X(1,k2)]T1 , [Y (1,k2)]T1 : ∀k2 = 1, · · · ,K2 − 1} after the
(1,K2) period. The convoluted linear combinations are thus
unwrapped in the end of the first super-period. Note that d1

has not received any uncorrupted X symbols during the first
super-period.

For the (2, 1) period, sources send [X(2,1)]T1 and [Y (2,1)]T1 .
A generic LCM is used and after the (2, 1) period, u2 is able to
recover both [X(2,1)]T1 and [X(2,1)]T1 . For the (2, k2) period,
k2 = 2, · · · ,K2 − 1, u2 sends [Y (2,k2−1)]T1 along edge e2,
while the u1 sends the previous super-generation [X(1,k2−1)]T1
along edge e1. As a result, after the (2, k2) period, d1

and d2 recover [X(1,k2−1)]T1 and [Y (2,k2−1)]T1 , respectively.
We note that it can be shown that in the construction of
the subgraph (11), u2 is not reachable from v1. Therefore,
from u2’s perspective there is no need to worry about any
interference caused by u1 sending [X(1,k2−1)]T1 along edge
e1. Similar to that in the first super-period, u1 on the other
hand cannot recover any symbols in the current super-period
when k2 < K2. In the (2, K2) period, we again perform
the “unwrap operation.” The sources resend [X(2,K2−1)]T1
and [Y (2,K2−1)]T1 of the previous generation using a generic
LCM without any modification. All information in this super-
generation can be unwrapped and recovered at u1. Both u1

and u2 are now ready for the next super-period.
The average transmission rates r1 and r2 for (s1, d1) and

(s2, d2) respectively then become

r1 =
(K1 − 1)(K2 − 2)(1− ε)T log(q)

K1K2T

r2 =
K1(K2 − 2)(1− ε)T log(q)

K1K2T
,
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(a) Case 3
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Fig. 9. Cases 3 to 3.2 of Section IV-D. Only the main structure of the network
is drawn. Our proof still considers the possible cyclic structure, which on the
other hand is not included in these three figures for readability.

where d1 receives only K1 − 1 super generations while d2

receives full K1 super generations. By choosing a small ε > 0
and by choosing sufficiently large K1 and K2, we have a rate-
1 PINC solution.

Case 3: There exist no edge-disjoint paths
(PG\{e1,e2}

s1,u2 , P
G\{e1,e2}
s2,u2 ) using only edges in G\{e1, e2} and

there exist no edge-disjoint paths (PG\{e1,e2}
s1,u1 , P

G\{e1,e2}
s2,u1 )

using only edges in G\{e1, e2}. See Fig. 9(a) for illustration.
Depending on the network topology between {s1, s2} and
{u1, u2}, we have three sub-cases.

We first note that there must exist a pair of edge-disjoint
path connecting {s1, s2} and {d1, d2}, otherwise simultaneous
communication is simply impossible. In our assumption, we
have ruled out the case that there exists a pair of edge-
disjoint paths Ps1,d1 and Ps2,d2 . Therefore, there must exist
a pair of edge-disjoint paths Ps1,d2 and Ps2,d1 , which in turn
implies that u1 is reachable from s2 in G\{e1, e2} and u2

is reachable from s1 in G\{e1, e2}. Also note that u1 must
be reachable from s1 otherwise the cut-based condition in
Theorem 1 cannot be satisfied. From the above reasoning, u1

is reachable from both s1 and s2 in G\{e1, e2} and so is u2.
Let e′1 = u′1v

′
1 denote the critical 1-edge cut in G\{e1, e2}

that separates {s1, s2} and u1. Note that by the condition of
Case 3, the min-cut/max-flow value between {s1, s2} and u1

is one for graph G\{e1, e2}. Therefore, the new critical 1-
edge cut e′1 always exists by Lemma 1. Symmetrically, we
define the critical 1-edge cut e′2 = u′2v

′
2 separating {s1, s2}

and u2 in G\{e1, e2}. One can show that e′1 and e′2 must be
distinct. Otherwise, e′1 and e′2 will be the unique critical 1-
edge cut separating {s1, s2} and {d1, d2}, which violates the
assumption that the min-cut/max-flow value between {s1, s2}
and {d1, d2} is two. By the construction of e′1 and e′2 as the
critical 1-edge cuts, one can also prove that there exist two
edge-disjoint paths P

G\{e′1,e′2}
v′1,d1

and P
G\{e′1,e′2}
v′2,d2

in G\{e′1, e′2}.
The reason is that any EDP pair Ps1,d2 and Ps2,d1 must satisfy
e2 ∈ Ps1,d2 and e1 ∈ Ps2,d1 , which in turn implies e′2 ∈ Ps1,d2

and e′1 ∈ Ps2,d1 . We can then construct P
G\{e′1,e′2}
v′1,d1

= e′1Ps2,d1

and P
G\{e′1,e′2}
v′2,d2

= e′2Ps1,d2 . The three sub-cases can now be
described based on the relationship between the new edges e′1
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d1

v1

u1

v′1

u′1

s2

d2

v2

u2

v′2

u′2

s1

Fig. 10. Case 3.3 of Section IV-D.

and e′2.
Case 3.1: (The same construction as in Case 1.) There

exist two edge-disjoint paths P
G\{e′1,e′2}
s1,u′1

and P
G\{e′1,e′2}
s2,u′1

in

G\{e′1, e′2}, and there exist two edge-disjoint paths P
G\{e′1,e′2}
s1,u′2

and P
G\{e′1,e′2}
s2,u′2

in G\{e′1, e′2} (see Fig. 9(b)). By noticing that
e′1 = u′1v

′
1 and e′2 = u′2v

′
2 in Case 3.1 (Fig. 9(b)) have the same

role as e1 = u1v1 and e2 = u2v2 in Case 1 (Fig. 8(a)), we
can follow the same period-based construction as in Case 1.
A rate-1 PINC solution is feasible.

Case 3.2: (The same construction as in Case 2.) There
exist two edge-disjoint paths P

G\{e′1,e′2}
s1,u′1

and P
G\{e′1,e′2}
s2,u′1

in

G\{e′1, e′2}, and there exist no edge-disjoint paths P
G\{e′1,e′2}
s1,u′2

and P
G\{e′1,e′2}
s2,u′2

in G\{e′1, e′2} (see Fig. 9(c)). Recall that by
the construction of e1 there exists a pair of edge-disjoint paths
P

G\e1
s1,u1 and P

G\e1
s2,u1 . One of them must use e2 since we are

in Case 3. One can show that it must be P
G\e1
s1,u1 that uses e2

otherwise there will exist an EDP pair Ps1,d1 and Ps2,d2 , which
contradicts the assumption. By the construction of e′1 and e′2
as critical 1-edge cuts, this implies that P

G\e1
s1,u1 must use e′2 and

P
G\e1
s2,u1 must use e′1 (see Fig. 9(c) for illustration). Remove any

edges that are not one of the critical 1-edge-cuts e1, e2, e′1,
and e′2, and are not in the following six path segments:

P
G\{e1,e2}
v1,d1

, P
G\{e1,e2}
v2,d2

, PG\e1
s1,u1

, PG\e1
s2,u1

,

P
G\{e1,e′2}
s1,u′2

, and P
G\{e1,e′2}
s2,u′2

. (12)

Intuitively, the above subgraph construction is equivalent to
ignoring the path segment from v1 to u2 (the dashed arrow in
Fig. 9(c)). We then notice that e1 = u1v1 and e′2 = u′2v

′
2 in

Case 3.2 (Fig. 9(c)) now have the same role as e1 = u1v1 and
e2 = u2v2 in Case 2 (Fig. 8(b)), i.e., e1 (resp. e′2) is now the
critical 1-edge cuts separating {s1, s2} and d1 (resp. d2) and e1

and e′2 satisfy the conditions in Case 2. We can thus follow the
same super-period-based construction as in Case 2. A rate-1
PINC solution is feasible. The case that there exist two edge-
disjoint paths P

G\{e′1,e′2}
s1,u′2

and P
G\{e′1,e′2}
s2,u′2

in G\{e′1, e′2}, and

there exist no edge-disjoint paths P
G\{e′1,e′2}
s1,u′1

and P
G\{e′1,e′2}
s2,u′1

in G\{e′1, e′2} can be obtained by symmetry.
Case 3.3: (A unique case for cyclic networks that is not

present in any acyclic network. Direct construction is provided

for this case.) There exist no edge-disjoint paths P
G\{e′1,e′2}
s1,u′1

and P
G\{e′1,e′2}
s2,u′1

in G\{e′1, e′2}. And there exist no edge-

disjoint paths P
G\{e′1,e′2}
s1,u′2

and P
G\{e′1,e′2}
s2,u′2

in G\{e′1, e′2} (see
Fig. 10). In this case, there must exist two edge-disjoint
paths P

G\{e′1,e′2}
v′1,d1

and P
G\{e′1,e′2}
v′2,d2

in G\{e′1, e′2}. By the as-
sumption that there are no edge-disjoint paths Ps1,d1 and
Ps2,d2 , there must exist two edge-disjoint paths P

G\{e′1,e′2}
s2,u′1

and P
G\{e′1,e′2}
s1,u′2

as illustrated in Fig. 10. We now use Ps1,d2

and Ps2,d1 to denote the concatenation of the two EDP pairs:
(PG\{e′1,e′2}

s2,u′1
, P

G\{e′1,e′2}
s1,u′2

) and (PG\{e′1,e′2}
v′1,d1

, P
G\{e′1,e′2}
v′2,d2

). Note
that with this construction Ps1,d2 must use e′2 and e2 and
Ps2,d1 must use e′1 and e1. Moreover, Ps1,d2 and Ps2,d1 must
not share any vertex otherwise there will exist a pair of
EDPs connecting (s1, d1) and (s2, d2). By the same reasons
as in Case 3.2, we can define Pv1,u2

∆= v1P
G\e2
s2,u2 , Pv2,u1

∆=
v2P

G\e1
s1,u1 , Pv′1,u′2

∆= v′1P
G\{e1,e′2}
s2,u′2

, and Pv′2,u′1
∆= v′2P

G\{e′1,e2}
s1,u′1

.
For the following, we consider only the subgraph induced

by the following six path segments

Ps1,d2 , Ps2,d1 , Pv1,u2 , Pv2,u1 , Pv′1,u′2 , and Pv′2,u′1 , (13)

and we will establish that from a coding perspective, the six
path segments are equivalent to the vertical concatenation of
“two figure-eight knots” as illustrated in Fig. 10.

By the construction of Pv1,u2 as part of P
G\e2
s2,u2 , we have

e′2 /∈ Pv1,u2 since e′2 /∈ P
G\e2
s2,u2 as discussed in Case 3.2.

Since by construction e1, e2 /∈ Pv1,u2 , we have that Pv1,u2

does not touch any vertex in Ps1,d2u
′
2 otherwise e′2 is not a

critical 1-edge cut in G\{e1, e2} separating {s1, s2} and u2.
Since e2 is a critical 1-edge cut in G separating {s1, s2} and
d2, we also have that Pv1,u2 does not touch any vertex in
v2Ps1,d2 . Therefore, Pv1,u2 must only touch the path segment
v′2Ps1,d2u2. Without loss of generality, we can assume that
along Pv1,u2 , the first vertex that also belongs to v′2Ps1,d2u2

is u2 otherwise we can relabel the first such vertex as u2.
Similarly, assume that along Pv1,u2 , the last vertex that also
belongs to v1Ps2,d1 is v1 otherwise we can relabel the last
such vertex as v1. We then argue that Pv1,u2 also does not
touch Ps2,d1u1. Otherwise e′2 cannot be a critical 1-edge cut
in G\{e1, e2} separating {s1, s2} and u2. With the above
construction, Pv1,u2 touches Ps2,d1 and Ps1,d2 only at v1

and u2, respectively. Symmetrically, Pv2,u1 touches Ps1,d2

and Ps2,d1 only at at v2 and u1, respectively. We have thus
established the lower figure-eight knot.

By a similar argument, we can also establish the upper
figure-eight knot. That is Pv′2,u′1 touches Ps1,d2 and Ps2,d1

only at v′2 and u′1, respectively. And Pv′1,u′2 touches Ps2,d1 and
Ps1,d2 only at v′1 and u′2, respectively. For the following, we
first assume that the upper and the lower figure-eight knots do
not share any common edge and construct a coding scheme for
this scenario (as illustrated in Fig. 10). After the introduction
of the coding scheme, we then discuss the cases in which the
upper and the lower figure-eight knots do share some common
edges.

To this end, we will convert Fig. 10 to a special network in
Fig. 11 and construct a rate-1 PINC scheme for the particular
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v4v6

v3

v2

v1

s1

M
(k)
s1v1,t = X

(k)
t

M
(k)
v2v3,t = X

(k)
t−l + Y

(k)
t−3l

M
(k)
v4v6,t = M

(k)
v4v5,t = X

(k)
t−2l + Y

(k)
t−4l

When t ≤ 2l

M
(k)
v7v8,t = X

(k−1)
T−3l−(t−1)

+ Y
(k−1)
T−5l−(t−1)

When 2l < t ≤ T − 5l

M
(k)
v7v8,t = Y

(k−1)
T−5l−(t−1)

+ Y
(k−1)
T−l−(t−1)

When 4l < t ≤ T − 3l

M
(k)
d2,t = Y

(k−1)
T−3l−(t−1)

+ Y
(k−1)
T+l−(t−1)

Coding vectors for the left branch are symmetric.

Fig. 11. Detailed construction for a vertical concatenation of two figure-eight
knots

(∞
∞

)
.

graph in Fig. 11. Fig. 11 has the same two figure-eight knots
as in Fig. 10. We use thick, dashed-dotted arrows in Fig. 11
to represent independent paths while the regular thin arrows
represent single edges. We assume that each independent path
in Fig. 11 is of the same length (l− 1). To convert Fig. 10 to
a form in Fig. 11, we simply replace each “arrow” in Fig. 10
by an independent path of equal finite length l < ∞. This
is always possible as the effect of elongating the paths is
equivalent to introducing more delay and each edge e = uv
can introduce an arbitrary amount of delay by postponing
its transmission. Therefore by noting that we only need to
introduce a finite amount of delay to make each route be of the
same delay, we can assume each independent path in Fig. 11
is of the same finite length (l− 1) without loss of generality.
For easy reference, we relabel the nodes as in Fig. 11. For
example, the total delay from v2 to v4 is 1 + (l − 1) = l.

We again divide the total duration into K periods of size T ,
and the total duration is thus KT . Packet X

(k)
t is sent along

s1v1 in the t-th second of the k-th period. Similarly Y
(k)
t is

sent along s2u1 in the t-th second of the k-th period. Due
to the l-second delay of each independent path, we let v2v3

carries coded packet X
(k)
t−l+Y

(k)
t−3l in the t-th second of the k-th

period. The X component of the v2v3 packet follows from the
Ps1,v2 path, which has an l-second delay. The Y component
follows from the Ps2,u2Pu2,u4Pu4,v2 , which has a 3l-second
delay. If the subscript (t− l) (resp. (t− 3l)) is less than one,
the corresponding component X

(k)
t−l (resp. Y

(k)
t−3l) is simply

zero. Any interference caused by the cyclic feedback loop
Pv4,u2Pu2,u4Pu4,v2 can be cancelled since all packets received
by v4 come from v2, and v2 thus has complete knowledge
about the interference emitted from v4. Symmetrically, u2u3

carries coded packet X
(k)
t−3l +Y

(k)
t−l in the t-th second of the k-

th period. For the v4v5 and the v4v6 edges, we let the message
be

M
(k)
v4v5,t = M

(k)
v4v6,t = X

(k)
t−2l + Y

(k)
t−4l,

where the X
(k)
t−2l message follows from the s1-to-v4 path of

length 2l and the Y
(k)
t−4l message follows from the s2-to-v4

path of length 4l. Symmetrically,

M
(k)
u4u5,t = M

(k)
u4u6,t = X

(k)
t−4l + Y

(k)
t−2l.

The above is the full description of the packets carried in the
upper figure-eight knot.

For the first period,7 the lower figure-eight knot
({v7, v8, v9, d2, u7, u8, u9, d1}) remains idle. For the t-th sec-
ond in the k-th period, 1 ≤ t ≤ 2l, k > 1, v7v8 carry

M
(k)
v7v8,t = X

(k−1)
T−3l−(t−1) + Y

(k−1)
T−5l−(t−1). (14)

Namely, v7 buffers the packets it has received in the previous
(k − 1)-th period, and sends them along v7v8 in the current
k-th period but in a reverse order. Symmetrically, u7u8 carries

M
(k)
u7u8,t = X

(k−1)
T−5l−(t−1) + Y

(k−1)
T−3l−(t−1) (15)

in the t-th second in the k-th period.
When 2l < t ≤ T − 5l, v7 is still able to transmit packet

X
(k−1)
T−3l−(t−1) +Y

(k−1)
T−5l−(t−1) but at the same time also starts to

receive packet X
(k−1)
T−3l−(t−1)+Y

(k−1)
T−l−(t−1), a 2l-second-delayed

version of M
(k)
u7u8,t in (15). By sending the difference of the

buffered packet and the recently received packet, v7v8 sends

M
(k)
v7v8,t = Y

(k−1)
T−5l−(t−1) − Y

(k−1)
T−l−(t−1)

when 2l < t ≤ T − 5l. Symmetrically,

M
(k)
u7u8,t

=

{
X

(k−1)
T−5l−(t−1) + Y

(k−1)
T−3l−(t−1) if 1 ≤ t ≤ 2l

X
(k−1)
T−5l−(t−1) −X

(k−1)
T−l−(t−1) if 2l < t ≤ T − 5l

.

Again, we cancel the effects of the cyclic feedback loops (ex:
Pv9,u7Pu7,u9Pu9,v7 ) by the existing knowledge at the coding
nodes u7 and v7. The additional 2l-second-delays of the paths
Pv7,v9Pv9,d2 and Pu7,u9Pu9,d1 imply that d1 and d2 receive
uncorrupted packets

M
(k)
d1,t = X

(k−1)
T−3l−(t−1) + X

(k−1)
T+l−(t−1)

M
(k)
d2,t = Y

(k−1)
T−3l−(t−1) + Y

(k−1)
T+l−(t−1)

for 4l < t ≤ T − 3l, and it can be easily shown that
the received packets are linearly independent. With the k-
th period, k > 1, being capable of transmitting T − 7l
independent packets, the overall rate of the system is thus

(K − 1)(T − 7l) log(q)
KT

.

When both K and T are sufficiently large, we have a rate-1
PINC solution.

An observation is that Cases 1 and 2 (and Cases 3.1
and 3.2) are very similar to its acyclic network counterpart,
although we have to use a slightly more complicated approach
for cyclic network such as the unwrap operations and the
super-period structure. Nonetheless, all coding coefficients in
Cases 1 and 2 (and Cases 3.1 and 3.2) can be chosen randomly

7We assume T is much larger than l, and discuss the packets carried by
the lower figure-eight knot based on different values of t.
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except for the two decoding 1-edge cuts, which is similar
to that for the acyclic network. Case 3.3 (Figs. 10 and 11)
is a unique scenario for cyclic networks. The network now
has to cooperate as a whole. For example, our construction
carefully gauges the delay between each path, introduces
artificial delays, buffers the packets, and reverses the sending
order of each packet. Case 3.3 shows that in order to achieve
the capacity of a cyclic network, it is critical to design jointly
inter- and intrasession network coding even for the simple 2-
unicast scenario.

In the last part of this proof, we consider the cases in which
the upper and the lower figure-eight knots share some edges.
We will reuse the construction of the six path segments in (13)
(see Fig. 10 for illustration). The potential interfering effects
are discussed as follows.

• The case in which Pv1,u2 and Pv2,u1 share some edge:
When the two paths share an edge, let Mv1,u2 and Mv2,u1

denote the messages that should be carried originally if
the two paths do not share that common edge. Then
we let the shared edge carry c1Mv1,u2 + c2Mv2,u1 for
some randomly chosen coefficients c1 and c2, which
multiplexes two messages on a single edge. For all the
following cases in which a pair of paths share an edge,
we use this random addition to multiplex the symbols
together.
The interference caused by Pv1,u2 and Pv2,u1 sharing
the same edge will have zero effect from the coding’s
perspective. The reason is that the message along the
Pv2,u1 path will now induce interference along the Pv1,u2

paths. However, u2 is able to completely remove the
induced interference as all the information available at v2

was sent by u2. Symmetrically, u1 is able to completely
remove the interference sent by v1. After the removal of
the interference, the proposed coding scheme works in
this scenario as well.

• Similarly, in the case that Pv′1,u′2 and Pv′2,u′1 share some
edge, u′2 and u′1 can completely remove the interference
from a coding’s perspective.

• The case in which Pv2,u1 and Pv′2,u′1 share an edge. This
case is impossible. Otherwise, there will exist a {s1, s2}-
to-u1 path without using e′1, e1, and e2, which contradicts
that e′1 is a critical 1-edge cut separating {s1, s2} and u1

in G\{e1, e2}.
• The last case is when Pv2,u1 and Pv′1,u′2 share some

common edge. In this case, the information of the lower
figure-eight knot will be an interference to u′2 (and poten-
tially also an interference to u′1 if Pv′1,u′2 and Pv′2,u′1 share
an edge). Recall that in the k-th period, the upper figure-
eight knot performs coding over the k-th generation while
the lower figure-eight knot performs coding over the
(k− 1)-th generation. Since in the beginning of the k-th
period u′2 has obtained the complete knowledge of the
(k−1)-th generation in the previous (k−1)-th period, in
the k-th period u′2 can completely remove the interference
caused by the symbols of the (k − 1)-th generation.
Similarly, u′1 can also remove any interference caused
by the lower figure-eight knot. The coding scheme thus

works verbatim for the upper figure-eight knot.
On the other hand, the information of the upper figure-
eight knot will now be the interference of the lower
figure-eight knot. We first note that by our construction,
u1 is not reachable from v′2 in G\{e′1, e2}. Therefore,
if there is any additional interference along the Pv2,u1

caused by the upper and lower figure-eight knots sharing
edges, the interference must come only from v′1 instead of
v′2. Otherwise, if there is any direct interference from v′2
along Pv2,u1 , then there exists a path entering u1 without
using e′1 and e2. Therefore, we only need to cancel the
interference emitted from v′1 on the Pv2,u1 path. For this
scenario, since u1 is also receiving information directly
from v′1 along the Ps2,d1 path, u1 can completely remove
the interference from v′1. It may be possible that the
interference caused by Pv2,u1 and Pv′1,u′2 sharing an edge
also enters u2 if Pv2,u1 and Pv1,u2 share some edge.
We rule out this case by the following arguments. Since
u2 must not be reachable from v′1 in G\{e1, e

′
2}, the

interference caused by Pv2,u1 and Pv′1,u′2 share some
common edge must not reach u2 along Pv1,u2 . Otherwise
there exists a path entering u2 without using e1 and
e′2, which contradicts that e′2 is a critical 1-edge cut
separating {s1, s2} and u2 in G\{e1, e2}. By the above
reasoning, our coding scheme works verbatim for the
lower figure-eight knot.

• All other cases can be obtained by symmetry.
In summary, the original coding scheme in Fig. 11 takes

care of the primary interferences along the path segments of
the figure-eight knots. Any secondary interference caused by
Pv2,u1 , Pv1,u2 , Pv′2,u′1 , and Pv′1,u′2 cross-talking with each other
can be canceled out locally at nodes u′1, u′2, u1, and u2.

Remark: In [16], [19], symbol-based convolutional network
codes are used to achieve the multicast capacity of a cyclic
network by incorporating the delay element D. More explic-
itly, the source messages become X(D) =

∑∞
t=1 XtD

t−1 and
Y (D) =

∑∞
t=1 YtD

t−1. Each coded symbol is Me(D) =∑∞
t=1 Me,tD

t−1 = A(D)X(D) + B(D)Y (D) for some
polynomials A(D) and B(D). Although the symbol-based
convolutional network codes can achieve the multicast capac-
ity for cyclic networks, one can show that the capacity of
Case 3.3 is not achievable by any symbol-based convolutional
network codes. This is due to the fact that the delay-element
D cannot capture the necessary buffering and packet-order-
reversing performed at nodes u7 and v7. Case 3.3 thus serves
as an example that the intersession-network-coding capacity of
symbol-based convolutional network codes is strictly smaller
than that of a block network code.

V. THE COMPLEXITY ANALYSIS

This section provides the proofs of Propositions 1 and 2 that
the complexity of deciding whether a PINC solution exists is
polynomial time with respect to |G| + |d1| + |d2| for both
2-multicast acyclic networks and 2-unicast cyclic networks.

Proof of Propositions 1 and 2: The cut-based condition
in Theorem 1 enables the following scheme to determine the
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existence a PINC solution for 2-multicast acyclic networks
and for 2-unicast cyclic network. We need some prerequisite
complexity results, which apply to both cyclic and acyclic
networks.
• For any two nodes u and v, whether v is reachable from

u can be decided in polynomial time of |G|.
• For any three nodes u, v, and w, identifying the critical

1-edge cut separating {u, v} from w can be achieved in
polynomial time of |G|. (One simply needs to construct
any arbitrary path P from one of {u, v} to w and
then identify the edges in P that are also a 1-edge
cut separating {u, v} and w. Among those 1-edge cuts,
choose the one that is the farthest away from w.)

The following 5-step algorithm decides whether there exists
a PINC solution for a given 2-multicast acyclic network or a
given 2-unicast cyclic network.

Step 1: Check all d1,i ∈ d1 whether they are reachable
from s1. If any one of them is not reachable from s1, return
NEGATIVE. Check all d2,j ∈ d1 whether they are reachable
from s2. If any one of them is not reachable from s2, return
NEGATIVE.

Step 2: For all d1,i ∈ d1, find its critical 1-edge cut ei.
Similarly, find the critical 1-edge cut ej for all d2,j ∈ d2.

Step 3: For all d1,i ∈ d1, test whether it is reachable from
s1 in the subgraph G\{ej : d2,j ∈ d2}. If the answer to any
one of them is negative, return NEGATIVE.

Step 4: For all d2,j ∈ d2, test whether it is reachable from
s2 in the subgraph G\{ei : d1,i ∈ d1}. If the answer to any
one of them is negative, return NEGATIVE.

Step 5: If the answers in Steps 1, 3, and 4 are all positive,
return POSITIVE.

The correctness of the above algorithm for 2-multicast
acyclic networks and for 2-unicast cyclic networks follows
directly by Theorem 1. The polynomial running time with
respect to |G|+ |d1|+ |d2| is straightforward from analyzing
the complexity of each step.

VI. TOPOLOGICAL ANALYSIS FOR 2-UNICAST ACYCLIC
NETWORKS

In the following, we provide detailed sketches of the proofs.
Specifically, we describe how to establish the topological
relationship in Theorem 5 from the perspective of edge-
disjointness. The proofs of path independence (interior vertex-
disjointness) are straightforward and some of them are omitted
for streamlining the discussion.

Corollary 1 states that the existence of a network coding
solution is equivalent to either the existence of two edge-
disjoint paths (2-EDPs) or the existence of path collections
P and Q with controlled edge overlap. For the following, we
assume that each source (resp. destination) has exactly one
outgoing (resp. incoming) edge, all sources and destinations
are distinct, and there exist no 2-EDPs connecting (s1, d1)
and (s2, d2), which, together with the feasibility assumption,
implies that each destination di is reachable from both s1 and
s2. We also assume that the graph G of interest is minimal,
namely, any proper subgraph G′ ( G will not admit any P
and Q paths satisfying Corollary 1.

Proof of Theorem 5: Let e1 = u1v1 denote the critical
1-edge cut separating {s1, s2} from d1. Similarly, e2 = u2v2

denotes the critical 1-edge cut separating {s1, s2} and d2.
There are two major cases depending on whether there exist
2-EDPs Ps1,u2 and Ps2,u2 in G\e1.

Case 1: There exist no 2-EDPs Ps1,u2 and Ps2,u2 in G\e1.
Since e1 is a critical 1-edge cut, there exist 2-EDPs Ps1,u1 and
Ps2,u1 . Let Pv1,d1 denote an arbitrarily chosen path connecting
v1 and d1. The relationship among Ps1,u1 , Ps2,u1 , and Pv1,d1

are illustrated in Fig. 12(a). Since e2 is a critical 1-edge cut,
there must exist a Pv1,d2 path otherwise there will be 2-EDPs
Ps1,u2 and Ps2,u2 in G\e1. Among vertices shared by Pv1,d2

and Pv1,d1 , let w1 denote the vertex that is the closest to d2.
Since G satisfies Corollary 1, there exists a Ps2,d2 path not
using e1. Among all vertices shared by Ps2,d2 and V (Ps1,u1)∪
V (Ps2,u1), let w2 denote the vertex that is the closest to d2.
Among all vertices shared by w2Ps2,d2 and w1Pv1d2 , let w3

denote the vertex that is the farthest away from d2. Note that
w2 6= w3, otherwise there is a cycle from w2 to e1 to w1 and
back to w3 = w2 (see Fig. 12(a) for illustration). Depending
on whether w2 ∈ Ps1,u1 or w2 ∈ Ps2,u1 , we have the following
two subcases.8

Case 1.1: w2 ∈ Ps2,u1 (see Fig. 12(a) for illustration of the
topological relationship among w1, w2, and w3). In this case,
consider the following two paths

Ps1,u1u1v1Pv1,d1 and Ps2,u1w2Ps2,d2w3Pv1,d2 . (16)

Ps2,u1w2Ps2,d2w3Pv1,d2 is edge-disjoint from Pv1,d1 since
Ps2,u1w2Ps2,d2w3Pv1,d2 does not use the 1-edge cut e1 =
u1v1. Ps2,u1w2Ps2,d2w3Pv1,d2 is also edge-disjoint from
Ps1,u1 due to the construction of w2 as the shared vertex
closest to d2. Therefore the above two paths in (16) are
edge-disjoint, which contradicts the initial assumption that G
contains no 2-EDPs connecting (s1, d1) and (s2, d2).

Case 1.2: w2 ∈ Ps1,u1 . In this subcase, we define two
additional nodes w4 and w5 as follows. Among all vertices
shared by Ps2,d2w2 and Ps1,u1w2, let w4 denote the vertex that
is the closest to s1. Among the vertices shared by Ps2,d2w4 and
Ps2,u1 , let w5 denote the one that is the farthest away from s2.
See Fig. 12(b) for illustration of the topological relationship
among w1 to w5. From Fig. 12(b), it is easy to see that
Case 1.2 is topologically identical to a grail in Fig. 5(c) from
the edge-disjointness perspective. To establish the interior-
vertex-disjointness among all path segments, we either use the
construction that w1 to w5 are the farthest or the closest node
along a given path, or we use contradiction based on the non-
existence of two edge-disjoint paths. For example, w1 must
be distinct from w3, otherwise there will exist 2-EDPs. Path
segment connecting (w1, w3) must be independent from the
path segment connecting (w2, w3) because the construction
of w3 as the farthest node away from d2. By exhaustively
enumerating all case combinations and devising proofs similar
to the given two examples, the interior-vertex disjointness for
Case 1.2 can be established. Detailed case discussion can be
found in Appendix A

8Two subcases may be active simultaneously. The argument of either one
of them will be sufficient for this proof.
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(a) Case 1.1 (b) Case 1.2 (c) Case 2.1 (d) Case 2.2 (e) Case 2.3 (f) Case 2.4 (g) Case 2.5 (h) Case 2.6

Fig. 12. Cases 1.1 to 2.6 for the proof of Theorem 5 in Section VI. The thick arrows represent the paths Ps1,u1 , Ps2,u1 and Pv1,d1 from the perspective
of d1. The thin arrows represent the paths Ps1,u2 , Ps2,u2 and Pv2,d2 from the perspective of d2.

Case 2: There exist 2-EDPs Ps1,u2 and Ps2,u2 in G\e1

and there exist 2-EDPs Ps1,u1 and Ps2,u1 in G\e2. Let Pv1,d1

denote an arbitrarily chosen path connecting v1 and d1 and
similarly does Pv2,d2 . Among all edges shared by Ps1,u2 and
E(Ps1,u1) ∪ E(Ps2,u1), let w1w2 denote the edge that is the
closest to d2. This choice of w1w2 is always possible since
Ps1,u2 and Ps1,u1 share at least one edge, the unique outgoing
edge of s1. Among all edges shared by Ps2,u2 and E(Ps1,u1)∪
E(Ps2,u1), let w3w4 denote the edge that is the closest to d2.
We then have six subcases.

Case 2.1: w1w2 ∈ Ps1,u1 and w3w4 ∈ Ps2,u1 (see
Fig. 12(c) for illustration). In this case, consider the following
two paths

Ps1,u1u1v1Pv1,d1 and Ps2,u1w3w4Ps2,u2u2v2Pv2,d2 . (17)

By the construction of w3w4 being the shared edge closest
to d2 and by the construction of u1v1 being a critical 1-
edge cut, Ps1,u1u1v1Pv1,d1 is edge-disjoint from w4Ps2,u2u2.
More explicitly, w4Ps2,u2u2 is edge-disjoint from Ps1,u1 since
w3w4 is constructed as the shared edge that is closest to
d2. w4Ps2,u2u2 is edge-disjoint from u1v1 since we are
in Case 2. w4Ps2,u2u2 is edge-disjoint from v1Pv1,d1 since
u1v1 /∈ w4Ps2,u2u2 is a critical 1-edge cut. As a result, the
two paths in (17) are edge-disjoint, which contradicts the initial
assumption that there are no such 2-EDPs.

Case 2.2: w1w2 ∈ Ps2,u1 and w3w4 ∈ Ps1,u1 (see
Fig. 12(d) for illustration). In this case, the following two paths

Ps1,u1u1v1Pv1,d1 and Ps2,u1w1w2Ps1,u2u2v2Pv2,d2

are edge-disjoint by similar reasons as those discussed in
Case 2.1, which contradicts again the assumption that there
are no such 2-EDPs.

Case 2.3: w1w2 ∈ Ps2,u1 , w3w4 ∈ Ps2,u1 , and w1w2 is a
downstream edge of w3w4 (see Fig. 12(e) for illustration). In
this case, the following two paths

Ps1,u1u1v1Pv1,d1 and Ps2,u1w1w2Ps2,u2u2v2Pv2,d2

are edge-disjoint, which contradicts the assumption that there
are no such 2-EDPs.

Case 2.4: w1w2 ∈ Ps2,u1 , w3w4 ∈ Ps2,u1 , and w1w2 is an
upstream edge of w3w4 (see Fig. 12(f) for illustration). In this
case, the following two paths

Ps1,u1u1v1Pv1,d1 and Ps2,u1w3w4Ps2,u2u2v2Pv2,d2

are edge-disjoint, which contradicts the assumption that there
are no such 2-EDPs.

Case 2.5: w1w2 ∈ Ps1,u1 , w3w4 ∈ Ps1,u1 , and w1w2 is a
downstream edge of w3w4 (see Fig. 12(g) for illustration). In
this case, the following two paths

Ps1,u2w1w2Ps1,u1u1v1Pv1,d1 and Ps2,u2u2v2Pv2,d2

are edge-disjoint, which contradicts the assumption that there
are no such 2-EDPs.

Case 2.6: w1w2 ∈ Ps1,u1 , w3w4 ∈ Ps1,u1 , and w1w2 is an
upstream edge of w3w4. Note that both w1w2 and w3w4 are
constructed from d2’s perspective. In this final case, we have to
consider the d1’s perspective as well. Among all edges shared
by Ps2,u1 and E(Ps1,u2)∪E(Ps2,u2), let w5w6 denote the edge
that is the closest to d1. Among all edges shared by Ps1,u1

and E(Ps1,u2) ∪ E(Ps2,u2), let w7w8 denote the edge that is
the closest to d1. If the relationship between w5w6 and w7w8

is one of the symmetric versions of Cases 2.1–2.5, then the
proof is complete. So the remaining case is to consider that
w5w6 ∈ Ps2,u2 , w7w8 ∈ Ps2,u2 , and w5w6 is an upstream
edge of w7w8. In this case, one can easily show that w3w4 =
w7w8 as this edge is the shared edge that is the closest to
{d1, d2}. See Fig. 12(h) for illustration. From the perspective
of edge-disjointness, Fig. 12(h) is clearly a butterfly. Again the
interior-vertex-disjointness can be established by exhaustively
considering all pairs of path segments. Any shared vertex will
result in either 2-EDPs or violating the minimality of G. For
example, if path segments Pw4,u2 and Pw2,u2 share at least one
common interior vertex w, among the shared vertices we can
choose the w∗ that is the farthest away from u2 and construct
new P ′w4,u2

= Pw4,u2 and P ′w2,u2
= Pw2,u2w

∗Pw4,u2 , which
contradicts the minimality of G. Detailed case discussion can
be found in Appendix B

The discussions of Cases 1.1 to 2.6 have considered all
possible cases, and the proof is thus complete.

VII. CONCLUSION

In this work, we have provided a graph-theoretic, flow-
based, characterization theorem for pairwise intersession net-
work coding on directed acyclic/cyclic networks with two
simple multicast sessions. More explicitly, network coding is
allowed only between two symbols (for acyclic networks) or
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between two strings of symbols (for cyclic networks) and
the new characterization theorem determines whether any
given network admits such a pairwise intersession network
coding solution. Practically, restricting the number of to-coded
sessions is an appealing solution for delay-sensitive data, such
as multi-resolution video multicast, since generally the larger
the number of the to-be-coded sessions, the longer the delay
in an asynchronous network.

Based on a new controlled edge-overlap condition, the
proposed characterization theorems have generalized the edge-
disjoint path characterization for non-coded solutions and
included the well-studied butterfly graph as a special case.
Various aspects of pairwise intersession network coding have
been discussed, including the sufficiency of linear codes and
the complexity advantages of identifying coding opportunities
versus identifying non-coded transmission opportunities. For
the simplest scenario of two unicast sessions in an acyclic
network, the corresponding topological analysis has been con-
ducted. An exhaustive list of three representative structures, the
two edge-disjoint paths, the butterfly, and the grail, has been
identified, and the associated bandwidth-optimal and coding-
optimal conditions have been discussed.

We conclude this paper by discussing new implications of
pairwise intersession network coding on practical systems and
some future directions.
• New capacity inner bounds for multiple multicast ses-

sions. Existing works search for the butterfly structure
and use them to construct capacity inner bounds when
N unicast sessions are present in an acyclic network
[26]. The topological analysis Theorem 5 shows that if a
pattern-search approach is used, one needs only to search
for two different structures: the butterflies and the grails
in Fig. 5, and the consideration of any other structures
is redundant. It is an open problem how the pattern-
search approach can be generalized to multicast sessions
and even to cyclic networks. Instead of searching for ad-
hoc patterns, the flow-based characterization focuses on
finding good paths and provides a more general method
of constructing new capacity inner bounds for multiple
multicast sessions and their corresponding linear network
coding schemes. Some preliminary results along this
direction can be found in [15], [27].

• Information decomposition analysis for pairwise inter-
session network coding. For a single multicast ses-
sion with source s and destinations {di}, a bandwidth-
optimal network coding solution uses only the edges
participating in the max flows between s and di for
some i. When the minimal bandwidth usage is known
to the network designer, the information decomposition
analysis in [7] focuses on finding the simplest coding
scheme on the bandwidth-optimal network and its results
lead to solutions that are both coding- and bandwidth-
optimal. The results in this work describe what is the
“minimal bandwidth usage” when network coding is
performed between two multicast sessions. Based upon
this new knowledge, we are interested in generalizing
the information-decomposition analysis and deciding the
coding- and bandwidth-optimal solutions for pairwise

intersession network coding with two multicast sessions.
This direction will generalize our discussion in Sec-
tion III-C about the coding and bandwidth optimal so-
lutions for two unicast sessions.

• Graph-theoretic characterization for multiple multicast
sessions. From the information-theoretic perspective, it
is a notoriously challenging problem to find a complete
characterization of the network coding capacity with mul-
tiple multicast sessions [16], [24], [25], [30]. This work
shows that finding the network coding capacity region (at
least for some restricted classes of linear intersession net-
work coding schemes) is a more tractable problem from
a graph-theoretic perspective. The decoupled choices of
the P and Q path selections mirror the min-cut/max-flow
theorem for the single multicast problem as in the latter
case, the max-flow between (s, di) is also identified inde-
pendently from other (s, dj), j 6= i. The controlled edge-
overlap condition also generalizes the edge-disjointness
characterizations of non-coding solutions. The proposed
concept of combining decoupled path selections with
controlled edge-overlap thus serves as a precursor to the
full understanding of general multiple-multicast-session
problems.

APPENDIX A
DETAILED CASE DISCUSSION OF CASE 1.2 IN THE

TOPOLOGICAL ANALYSIS

In this appendix, we follow directly from the discussion of
Case 1.2 in the proof of Theorem 5 in Section VI. We reuse the
notations defined in the proof of Theorem 5. We use Fig. 12(b)
for illustration purposes only.

The interior-vertex-disjointness (independence) of the path
segments in Fig. 12(b) can be derived in the following way.
• By our construction Ps1,u1 and Ps2,u1 do not use u1v1.

Also by construction Pw5,w4 and Pw2,w3 are parts of
Ps2,d2 that does not use u1v1. Pw3,d2 is part of Pv1,d2 that
does not use u1v1. Therefore Pu1,d1 is independent from
the following five path segments: Ps1,u1 , Ps2,u1 , Pw4,w5 ,
Pw2,w3 , and Pw3,d2 . Otherwise, there will be a walk from
{s1, s2} to d1 without using u1v1, which contradicts that
u1v1 is a critical 1-edge cut. By the construction of w1 as
the closest shared vertex between Pv1,d2 and Pv1,d1 , we
also have Pw1,w3 is vertex-disjoint from Pu1,d1 except for
the end node w1. The interior-vertex-disjointness is thus
established for Pu1,d1 .

• Pw1,d2 is vertex-disjoint from Ps1,u1 , Ps2,u1 , and Pw5,w4 ,
otherwise there exists a cycle in the acyclic network. By
the construction of w2 and w3 as the closest and the
furthest such nodes with respect to d2, respectively, we
also have Pw1,d2 is vertex-disjoint from Pw2,w3 except
for the end point w3. The interior-vertex-disjointness is
thus established for Pw1,d2 .

• By the construction of w2 being the closest such node
with respect to d2, we also have Pw2,w3 is edge-disjoint
from w5Ps2,u1 . Therefore, the following two paths:

Ps1,u1w2Pw2,w3w3Pw1,d2 and Ps2,u1u1v1Pv1,d1 (18)
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must also be edge-disjoint. As a result, these two edge-
disjoint paths must not share any vertex, otherwise
there will be two EDPs directly connecting (s1, d1) and
(s2, d2). Hence, Pw2,w3 is vertex-disjoint from Ps2,u1 ,
which also implies that w2 6= w5. By the construction of
w2 being the closest such node with respect to d2, Pw2,w3

is vertex-disjoint from Ps1,u1 except for the end node
w2. The interior-vertex-disjointness is thus established for
Pw2,w3 .

• By the same argument as in the previous statement,
we have Ps2,u1 is vertex-disjoint from Ps1,u1w2, which
implies that w4 6= w5. By the construction of w4 and w5

as the closest and the furthest such nodes with respect
to s1 and s2, respectively, we have Ps2,u1 is vertex-
disjoint from Pw5,w4 except for the end node w5. For
the following, we will establish that Ps2,u1 and w2Ps1,u1

are vertex-disjoint except for the end point u1. Since G is
acyclic, we must have Ps2,u1w5 and w2Ps1,u1 are vertex-
disjoint. We thus only need to show that w5Ps2,u1 and
w2Ps1,u1 are vertex-disjoint except for the end point u1.
Suppose not, let w6 denote any vertex that is shared
by w5Ps2,u1 and w2Ps1,u1 but not equal to u1. Then
remove all edges in w6Ps1,u1 . In this case, one can check
that in the remaining proper subgraph, Theorem 1 is still
satisfied, which contradicts the minimality of G. There-
fore w5Ps2,u1 and w2Ps1,u1 are vertex-disjoint except for
the end point u1. The interior-vertex-disjointness is thus
established for Ps2,u1 .

• It remains to show that Ps1,u1 is vertex-disjoint from
Pw5,w4 except for the end node w4. This holds naturally
due to our construction of w4. The one final case is to
show that w4 6= w2. If w4 = w2, then our previous
statements show that the following two paths:

Ps1,u1u1v1Pv1,d1

and Ps2,u1w5Pw5,w4Pw2,w3w3Pw1,d2 (19)

must be edge-disjoint. This contradicts the assumption
that there are no two EDPs directly connecting (s1, d1)
and (s2, d2). As a result w4 6= w2.

The interior-vertex-disjointness of Case 1.2 is thus estab-
lished. The graph G indeed contains a subdivision of the grail
topology in Fig. 5(c).

APPENDIX B
DETAILED CASE DISCUSSION OF CASE 2.6 IN THE

TOPOLOGICAL ANALYSIS

In this appendix, we follow directly from the discussion of
Case 2.6 in the proof of Theorem 5 in Section VI. We reuse the
notations defined in the proof of Theorem 5. We use Fig. 12(h)
for illustration purposes only.

We first focus on the following 10 nodes s1, s2, w2, w3,
w4, w6, u1, u2, d1, and d2, and the corresponding 11 path

segments.

Ps1,w2

∆= Ps1,u1w2, Pw2,u2

∆= w2Ps1,u2 ,

Pw2,w3

∆= w2Ps1,u1w3, Ps2,w6

∆= Ps2,u1w6,

Pw6,w3

∆= w6Ps2,u2w3, Pw6,u1

∆= w6Ps2,u1 ,

Pw3,w4

∆= w3Ps1,u1w4, Pw4,u2

∆= w4Ps2,u2 ,

Pw4,u1

∆= w4Ps1,u1 , Pu2,d2

∆= u2v2Pv2,d2 ,

Pu1,d1

∆= u1v1Pv1,d1 .

We now establish the edge-disjointness among these 11
path segments. For 10 out of the 11 path segments except
for Pw6,w3 , the edge-disjointness follows directly from the
acyclicness of the network, the two edges u1v1 and u2v2

being the critical 1-edge cuts, the construction of EDP pairs
(Ps1,u1 , Ps2,u1) and (Ps1,u2 , Ps2,u2), and the construction of
w1w2, w3w4, and w5w5 edges as the most downstream such
edges. The only possible edge-overlaps are between Pw6,w3

and Ps1,w2 , and between Pw6,w3 and Pw2,w3 .
Due to the symmetry of Case 2.6, there is an alternative

choice of Ps1,w2 and Ps2,w6 . Namely, we can let

P ′s1,w2

∆= Ps1,u2w2, P ′s2,w6

∆= Ps2,u2w6.

For the following, we show that if Pw6,w3 and Ps1,w2

share an edge, then Pw2,w3 and P ′s2,w6
must be edge-

disjoint. Conversely, if Pw2,w3 and P ′s2,w6
share an edge,

then Pw6,w3 and Ps1,w2 must be edge-disjoint. Suppose
Pw6,w3 and Ps1,w2 share an edge e1 and simultaneously
Pw2,w3 and P ′s2,w6

share an edge e2. Then there is a cyclic
walk Pw2,w3e2P

′
s2,w6

Pw6,w3e1Ps1,w2 , which contradicts the
acyclicness assumption. As a result, we can assume that
Pw6,w3 and Ps1,w2 are edge-disjoint without loss of generality.

We then establish the edge-disjointness between Pw6,w3 and
Pw2,w3 . Suppose Pw6,w3 and Pw2,w3 share an edge. Then there
exists a node w 6= w3 that is shared by Pw6,w3 and Pw2,w3 .
Among all such w, choose the w∗ that is the most upstream
one. We can then relabel w∗ as w3 and redefine

Pw6,w3

∆= w6Ps2,u2w
∗, Pw2,w3

∆= w2Ps1,u1w
∗,

and Pw3,w4

∆= w∗Ps1,u1w4. (20)

This new w3 thus guarantees the edge-disjointness between
Pw6,w3 and Pw2,w3 .

Based on the above arguments, we have established the
topological mapping between the 10 nodes and 11 path seg-
ments to that of the butterfly from an edge-disjoint perspective.
To complete the proof of the vertex-based topological analysis,
we first establish the distinction among the eight nodes: s1,
s2, w2, w3, w4, w6, u1, u2, d1, and d2, which implies that no
path is degenerate. Note that the remaining proof relies only
on the edge-disjointness of the 11 path segments and does not
rely on how the 11 path segments were constructed.
• We must have w4 6= u1. Otherwise, the two

edge-disjoint paths Ps1,w2Pw2,w3Pw3,w4Pu1,d1 and
Ps2,w6Pw6,u1Pw4,u2Pu2,d2 contradict the assumption
that there are no 2 EDPs connecting (s1, d1) and
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(s2, d2). By symmetry, we also have w4 6= u2, w2 6= w3,
w6 6= w3.

• We must have u2 6= u1. Otherwise, the two edge-disjoint
paths Ps1,w2Pw2,u2Pu1,d1 and Ps2,w6Pw6,u1Pu2,d2 con-
tradict the assumption that there are no 2 EDPs con-
necting (s1, d1) and (s2, d2). By symmetry, we also have
w2 6= w6.

• We must have that u2 6= w2, u2 6= w6, and u2 6= w3

due to the acyclicness of the graph. Similarly, u1 6= w2,
u1 6= w6, u1 6= w3, w4 6= w2, and w4 6= w6.

• By construction, s1 6= s2, d1 6= d2. Since u2 6= v2, we
must have u2 6= d2. Similarly, we have u1 6= d1, s1 6= w1,
and s2 6= w5.

The above statements thus establish the vertex distinction
among s1, s2, w2, w3, w4, w6, u1, u2, d1, and d2. The
remaining task is to show that the 11 path segments are
interior-vertex-disjoint. The proofs can be divided into three
main categories. Type I: The proofs are based on graph
minimality. In this type of proofs, we simply rename one of the
nodes to ensure interior-vertex-disjointness in a similar way as
when we replace w3 by a w∗ in the previous statements. Type
II: The proofs are based on the contradiction to the assumption
that there exist no EDPs connecting (s1, d1) and (s2, d2). Type
III: The proofs are based on the acyclicness assumption. For
the following, we list all case combinations and will explicitly
specify which type of the proofs one should use to establish
the interior-vertex-disjointness.
• Consider Pu1,d1 .

– Pu1,d1 is interior-vertex-disjoint (IVD) from Ps1,w2 ,
Ps2,w6 , Pw2,w3 , Pw6,w3 , Pw6,u1 , Pw3,w4 , and Pw4,u1

due to the acyclicness assumption (Type III).
– Pu1,d1 is IVD from Pw4,u2 . Otherwise,

suppose there exists a shared vertex w, then
we have the following two edge-disjoint
paths Ps1,w2Pw2,w3Pw3,w4Pw4,u2wPu1,d1 and
Ps2,w6Pw6,u1Pu1,d1wPw4,u2Pu2,d2 , which
contradicts the assumption that there are no 2
EDPs connecting (s1, d1) and (s2, d2) (Type II).
Similarly, Pu1,d1 is IVD from Pw2,u2 and Pu2,d2

based on a Type II proof.
• Since Pu2,d2 is symmetric to Pu1,d1 , we have also estab-

lished the interior-vertex-disjointness for Pu2,d2 .
• Consider Pw6,u1 .

– Pw6,u1 is IVD from Ps2,w6 due to the acyclicness
assumption (Type III).

– Pw6,u1 is IVD from Pw6,w3 . Otherwise, among
the interior vertices shared by Pw6,u1 and Pw6,w3 ,
choose w∗ that is the most downstream one. Relabel
w∗ as w6, change the path segments accordingly,
and remove unused edges. After relabeling, the ver-
tex distinction must still hold for the 10 vertices.
Otherwise we can repeat the vertex distinction ar-
guments in our previous discussion and lead to a
contradiction. Similarly, after relabeling, the interior-
vertex-disjointness for Pu1,d1 and Pu2,d2 must still
hold. Otherwise, we can repeat the interior-vertex-
disjointness arguments in our previous discussion

and lead to a contradiction.
Using the new w6, we thus establish that Pw6,u1 is
IVD from Pw6,w3 (Type I).

– Pw6,u1 is IVD from Pw4,u1 . Otherwise, among the
interior vertices shared by Pw6,u1 and Pw4,u1 , choose
w∗ that is the most upstream one. Relabel w∗ as u1,
change the path segments accordingly, and remove
the unused edges. This Type I proof thus follows
similarly to the previous Type I proof.

– Pw6,u1 is IVD from Pw3,w4 , Pw4,u2 , Pw2,u2 , Pw2,w3 ,
and Ps1,w2 , which can be established by a Type II
proof.

• Consider Pw4,u1 .
– Pw4,u1 is IVD from Ps1,w2 , Ps2,w6 , Pw2,w3 , Pw6,w3 ,

and Pw3,w4 due to the acyclicness assumption (Type
III).

– Pw4,u1 is IVD from Pw4,u2 . Otherwise, among the
interior vertices shared by Pw4,u1 and Pw4,u2 , choose
w∗ that is the most downstream one. Relabel w∗

as w4, change the path segments accordingly, and
remove the unused edges. This Type I proof thus
follows similarly to the previous Type I proofs.

– Pw4,u1 is IVD from Pw2,u2 , which can be established
by a Type II proof.

• Since Pw4,u2 is symmetric to Pw4,u1 , we have also
established the interior-vertex-disjointness for Pw4,u2 .

• Since Pw2,u2 is symmetric to Pw6,u1 , we have also
established the interior-vertex-disjointness for Pw2,u2 .

• Consider Pw3,w4 .
– Pw3,w4 is IVD from Ps1,w2 , Ps2,w6 , Pw2,w3 , and

Pw6,w3 due to the acyclicness assumption (Type III).
• Consider Pw6,w3 .

– Pw6,w3 is IVD from Ps2,w6 due to the acyclicness
assumption (Type III).

– Pw6,w3 is IVD from Pw2,w3 . Otherwise, among
the interior vertices shared by Pw6,w3 and Pw2,w3 ,
choose w∗ that is the most upstream one. Relabel
w∗ as w3, change the path segments accordingly,
and remove the unused edges. This Type I proof thus
follows similarly to the previous Type I proofs.

– Pw6,w3 is IVD from Ps1,w2 , which can be established
by a Type II proof.

• Since Pw2,w3 is symmetric to Pw6,w3 , we have also
established the interior-vertex-disjointness for Pw2,w3 .

• Consider Ps2,w6 .
– Ps2,w6 is IVD from Ps1,w2 , which can be established

by a Type II proof.
The above statements establish the interior-vertex-

disjointness for all 11 path segments. The proof is thus
complete.
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