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Rate Control with Pairwise Inter-session Network
Coding

Abdallah Khreishah, Chih-Chun Wang, Ness B. Shroff

Abstract—In this paper we develop a distributed rate control
algorithm for networks with multiple unicast-sessions when
network coding is allowed across different sessions. Building
on recent flow-based characterization of pairwise inter-session
network coding, the corresponding optimal rate-control problem
is formulated as a convex optimization problem. The formulation
exploits pairwise coding possibilities between any pair of sessions,
where any coded symbol is formed by coding over at most
two original symbols. The objective function is the sum of the
utilities based on the rates supported by each unicast session.
Working on the Lagrangian of the formulated problem, a
distributed algorithm is developed with little coordination among
intermediate nodes. Each unicast session has the freedom to
choose its own utility function. The only information exchange
required by the source is the weighted sum of the queue length
of each link, which can be piggy-backed to the acknowledgment
messages. In addition to the optimal rate control algorithm,
we propose a decentralized pairwise random coding scheme that
decouples the decision of coding from that of rate-control, which
further enhances the distributiveness of the proposed scheme. The
convergence of the rate control algorithm is proven analytically
and verified by extensive simulations. Simulation results also
demonstrate the advantage of the proposed algorithm over the
state-of-the-art in terms of both throughput and fairness.

Index Terms—Inter-session network coding, multiple-unicast-
sessions problem, rate control, distributed algorithm, capacity
region, fairness.

I. INTRODUCTION AND RELATED WORK

Over the last several years, there has been tremendous
interest in the study of network optimization techniques
to maximize network performance, while at the same time
achieving fairness across flows (see, for example, [1]–[5]).

More recently, a new area of research has emerged called
network coding that has the potential to further increase
the achievable throughput by packet mixing at intermediate
nodes [6]. There are two types of network coding: inter-session
network coding where coding is permitted between the packets
of different sessions and intra-session network coding where
coding is restricted to be performed between the packets of
the same session. Both intra and inter-session network coding
have demonstrated significant capacity improvement. In this
work we focus on inter-session network coding with multiple
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unicast sessions, of which a key challenge is to provide a
solution that not only satisfies optimality considerations but is
distributed and easy to implement. To that end, in this paper,
we use inter-session network coding to develop a distributed
algorithm that maximizes network performance and enhances
fairness, under the constraint that two symbols/packets from
any arbitrary pairs of the coexisting sessions can be mixed
together.

In the literature, beginning with the seminal paper [6],
network coding for a single multicast session (intra-session
network coding) have been extensively studied. Follow-up
works include [7], which shows that linear network coding
is sufficient for a single multicast session. In [8], the authors
develop a useful algebraic approach to network coding and [9]
provides a distributed implementation based on random linear
network coding. Several other related works of intra-session
network coding can be found in [10]–[12].

Nonetheless, most network traffic is unicast. Intra-session
network coding, although providing strict throughput improve-
ment for multicast sessions, has no throughput gain over
the non-coded solution when only unicast traffic is present.
Therefore, in order to enhance the capacity and fairness
for multiple unicast sessions, inter-session network coding is
needed.

To see that inter-session network coding can be used to
enhance fairness, consider the following classical butterfly
topology, shown in Fig. 1(a). In this simple butterfly config-
uration, we assume that each link can sustain a throughput
of at most 1 packet per second (in subsequent discussions
we drop the units). Sources s1 and s2 want to send packets
to destinations t1 and t2, respectively. The shaded regions
in Fig. 1(b) represent the capacity regions for the butterfly
network with and without network coding. The capacity re-
gions represent all the possible rates R1 for session (s1, t1)
and R2 for session (s2, t2) that can be supported. As shown
by the capacity regions, if the objective is to achieve strict
fairness (i.e., transmissions at equal rates from both sources),
network coding doubles the rate of both sessions. Another
example is the so-called grail topology shown in Fig. 2(a)
introduced in [13]. Again, each link has a unit capacity and two
unicast sessions (s1, t1) and (s2, t2) coexist in the network.
For the grail topology the capacity regions for the coded
and non-coded solutions are in Fig. 2(b). As is evident from
Fig. 2(b), network coding provides a bigger capacity region,
which enhances the fairness and improves the throughput of
the network.

Inter-session network coding for multiple unicast/multicast
sessions has been less studied. In [14] it was shown that linear



2

s1 s2

?
X1

?
X2

v1 v2

j
X1

¼
X2

v3

?

X1 + X2

v4

jX1 + X2¼X1 + X2

v5 v6

t2 t1
?

X2
?

X1

?

X1 X2

?

(a) The full butter-
fly.

6

-R1

R2

1

6

-R1

R2

1

1

1
Non-coded solution

Coding solution

(b) Capacity regions.

Fig. 1. The butterfly topology and its capacity regions with and without
network coding.
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Fig. 2. The grail topology and its capacity regions with and without network
coding.

coding is no longer capable of achieving the optimal capacity
region in the multiple unicast/multicast case in contrast to
the case of the single multicast session. Since then, many
studies have targeted charactizing the capacity region of inter-
session network coding and suboptimal solutions to the multi-
session unicast problem using inter-session network coding
as in [15]–[19]. For wireless networks, the nature of the
links further enriches the coding possibility, as broadcasting
can be achieved without power penalty. Therefore, a much
smaller number of transmissions is necessary when compared
to its wired counterpart. Based on the broadcast nature of
wireless networks, opportunistic exclusive OR (XOR) coding
is introduced in [20], and further improved and analyzed
in [21].

The main subject of this work is for wireline networks,
while the same principle can be applied to wireless networks
in a similar way, as in [22], [23]. For wireline networks,
an achievable butterfly-based capacity region was introduced

in [24], which searches for any possible butterfly structure
in the network. Two distributed algorithms for stabilizing the
butterfly-based capacity region were provided in [25] and [26]
using back-pressure techniques. In these two algorithms, the
queue length information has to be exchanged among inter-
mediate nodes. The purpose of the queue-length exchange
is to determine the location of the encoding, decoding, and
remedy generating nodes in [25], and for remedy packets
requests in [26]. Like most back-pressure algorithms, these
two algorithms focus on stabilizing the given network load
instead of dynamic rate control for fairness improvement.

In this paper, our main contributions are as follows:

1) The development of a distributed algorithm with rate
control and utility maximization for inter-session net-
work coding for multiple unicast flows, which can be
easily generalized for the case of multiple multicast
flows [27]. Our results show that the utility-optimization-
based rate-control algorithm, originally designed for
non-coded transmissions [2]–[5] and later generalized
for intra-session network coding [12], [28]–[32] can
be extended to pairwise inter-session network coding
for the first time. This is a non trivial generalization
considering the characteristic difference between inter
and intra-session network coding.

2) Our result is developed based on finding good paths
rather than finding specific structures in the network
(such as the butterfly structures in [24]). This enables
more efficient solutions since one can leverage upon
existing work on how to choose good paths through the
network. Further, we show empirically that the capacity
region obtained via our approach can be considerably
larger than those obtained via the pattern search algo-
rithm [24]–[26].

3) A pairwise random coding scheme is proposed, which is
a modified version of the random linear coding scheme
in [9]. The pairwise random coding scheme decouples
the coding and rate-control decisions and facilitates the
development of a fully distributed algorithm. Combining
the distributed rate control and the decentralized coding
scheme, we eliminate unnecessary queue length infor-
mation exchange among intermediate nodes, which re-
sults in improved efficiency of the overall scheme com-
pared to the back-pressure algorithms in [25] and [26].

The rest of the paper is organized as follows. In Section II,
the graph theoretic characterization of pairwise inter-session
network coding is reviewed for completeness. In Section III,
we describe the system settings and the formulation of our
optimization problem. In Section IV, we solve the dual
problem to obtain the optimal distributed rate control al-
gorithm for pairwise inter-session network coding. Several
practical implementation issues are in Section V including the
pairwise random coding scheme. In Section VI we propose
two approaches to reduce the complexity of the rate control
algorithm. Section VII is devoted to simulation results. We
conclude the paper in Section VIII.
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II. SETTINGS AND PRELIMINARIES

A. System Settings

We model the network by a directed acyclic graph (DAG)
G = (V,E), where V and E are the sets of all nodes and
links, respectively. We use In(v) to represent the set of all
incoming links to node v and Out(v) to represent the set
of all outgoing links from node v. Two types of graphs are
considered depending on the corresponding edge capacity:
graphs with integral edge-capacity and graphs with fractional
edge-capacity. For the former type, each edge has unit capacity
and carries either one or zero packet per unit time. (No
fractional packets are allowed.) For the latter type, each edge
e has a fractional capacity, denoted by Ce, and can transmit
at any rate between 0 and Ce. An integral graph models the
packet-based transmission in a network, for which a high-rate
link is represented by parallel edges. On the other hand, the
fractional graph can be viewed as a time-averaged version
of the integral graph, which focuses on the “transmission
rates” rather than the packet-by-packet behavior. For the rate-
control algorithm in this paper, we use the fractional graph
model. When discussing the detailed coding operations among
different packets, we use the integral graph model.

For networks modelled by fractional graphs, the rate con-
trol problem is defined by the set of tuples (si, ti, Ui(Ri))
i ∈ 1, 2, . . . , N , where N is the number of coexisting unicast
sessions. si and ti are the source and destination nodes of
session i and Ui(·) is the utility function of session i that is
concave and monotonically increasing. Ri is the transmission
rate supported in the i-th session.

Some graph-theoretic definitions will also be used in this
work. We use Pv,w or Qv,w to denote paths from nodes v to
w. Here, we used two different notations to describe a path
from u to v to make the characterization in Theorem 1 easier
to understand. We use P to represent a set of paths, and the
Number of Coinciding Paths at link e, ncpP(e), is defined as
the number of paths in the set P that use link e.

B. Preliminary Results

In our previous work [13], we have studied the problem of
network coding with two simple unicast sessions for integral
DAGs. The main result in [13] is summarized as follows.

Theorem 1: For an integral DAG with two coexisting uni-
cast sessions between the source-sink pairs (s1,t1), (s2,t2),
there exists a linear network coding scheme that can transmit
two packets (one for each session) simultaneously if and only
if one of the following two conditions holds.
• [Condition 1] There exists two edge disjoint paths (EDPs)

between (s1, t1) and (s2, t2), i.e a collection P of two
paths Ps1,t1 and Ps2,t2 , such that maxe∈E ncpP(e) ≤ 1.

• [Condition 2] There exist a collection P of three paths
{Ps1,t1 , Ps2,t2 , Ps2,t1} and a collection Q of three paths
{Qs1,t1 , Qs2,t2 , Qs1,t2}, such that maxe∈E ncpP(e) ≤ 2
and maxe∈E ncpQ(e) ≤ 2.

Remark: Theorem 1 focuses on the problem of mixing two
packets, one from every source. It does not characterize mixing
of more than one packet from each source.

If condition 1 is satisfied, the problem is feasible even
by non-coded solutions. If only condition 2 is satisfied, then
only network-coding-based schemes can transmit two packets
simultaneously for both sessions. For example, the butterfly
network in Fig. 1(a) can transmit two packets simultaneously
and satisfies only condition 2 with the following choices of
paths Ps1,t1 = s1v1v3v4v6t1, Ps2,t2 = s2v2v3v4v5t2, Ps2,t1 =
s2v2v6t1, Qs1,t1 = s1v1v3v4v6t1, Qs2,t2 = s2v2v3v4v5t2, and
Qs1,t2 = s1v1v5t2. Another example where only condition 2
is satisfied is the grail network in Fig. 2(a) with

Ps1,t1 = s1v2v3v4v5t1, Ps2,t2 = s2v1v2v3v6t2,

Ps2,t1 = s2v1v4v5t1, Qs1,t1 = s1v2v3v4v5t1,

Qs2,t2 = s2v1v4v5v6t2, Qs1,t2 = s1v2v3v6t2. (1)

Two packets can thus be transmitted simultaneously using
intersession network coding for the grail structure. In this
paper we call any collection of six paths that satisfy condi-
tion 2 of Theorem 1 a Pairwise Inter-session network Coding
Configuration (PICC).

C. Superposition Approach

Theorem 1 serves as the building foundation of inter-session
network coding over pairs of unicast sessions.

Consider N source-&-sink pairs and each source si would
like to transmit at rate Ri packets per unit time to the
corresponding sink ti over a fractional DAG. The rate vector
(R1, · · · , RN ) is feasible if the original graph G can be viewed
as the superposition of one graph G′ and many PICCs such that
(i) non-coded transmission is performed for every (si, ti) pair
in G′, (ii) pairwise linear network coding across (si, ti) and
(sj , tj), i 6= j is performed in each PICC individually, and
(iii) the transmission rates (R1, · · · , RN ) can be supported.
Here, Ri is the sum of the non-coding transmission rate
between si and ti through G′ and all the rates supported in
any PICC where inter-session network coding is performed
between session i and some other session j.

Based on this superposition principle the above construction
describes the achievable rate region of Pairwise Inter-session
Network Coding (PINC). In the next section we will describe
the corresponding PINC achievable rate region by a set of
constraints.

III. PROBLEM FORMULATION

Since in the PINC region, the rate Ri is expressed as
the sum of rates with/without inter-session network coding,
two sets of parameters and variables will be used in our
formulation. Some parameters and variables are for the non-
coded transmission and the others capture the inter-session
network coding performed on the PICCs. For the non-coded
transmission, we define the parameters Pi and Hk

i (e), and
the variable xk

i . Let Pi represent the collection of all paths
between si and ti. If link e is used by the k-th path between
si and ti, where k ranges from 1 to |Pi|, then the indicator
function Hk

i (e) = 1. Otherwise it is set to zero. xk
i represents

the uncoded transmission rate supported through the k-th
path between si and ti in G′. For the coded transmission
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through the PICCs, we define the parameters P(i, j), and
Ep

ij(e), and the variable xpm
ij . P(i, j) is the set of all tuples

containing all possible choices of paths {Psi,ti
, Psj ,tj

, Psj ,ti
}.

Because each PICC contains two sets of 3 paths, therefore,
any PICC between sessions i and j can be indexed by p and
m jointly, where the p and m means that the p-th tuple in
P(i, j) and the m-th tuple in P(j, i) are used to generate
the PICC of interest. The rate supported for sessions i and
j over that PICC is denoted by xpm

ij . We also define −→x
as a column vector containing xk

i , ∀i, k and xpm
ij , ∀i, j, p, m.

Therefore, the total supported rate for session i becomes
Ri =

∑|Pi|
k=1 xk

i +
∑

j:j 6=i

∑|P(i,j)|
p=1

∑|P(j,i)|
m=1 xpm

ij .
Consider a specific link e. The capacity consumed by

pure routing traffic is:
∑N

i=1

∑|Pi|
k=1 Hk

i (e)xk
i . For the PICC

between sessions i and j, indexed by p and m, the capacity
consumed by the path selection P is Ep

ij(e)x
pm
ij , where Ep

ij(e)
is defined in the following manner:

Ep
ij(e) =





0 if no path in the p-th tuple in P(i, j)
uses link e

1 if 1 or 2 paths in the p-th tuple in
P(i, j) use link e

2 if 3 paths in the p-th tuple in P(i, j)
use link e.

This is because by Theorem 1, successful pairwise network
coding requires that ncpP(e) ≤ 2. If all three paths in P
use link e, then the traffic along these three paths must
use two parallel edges instead of a single one. Otherwise,
ncpP(e) = 3, which violates the necessary condition for
pairwise inter-session network coding. The same argument
holds for the traffic along the paths in Q, the m-th tuple
in P(j, i), for which the network coded traffic consumes
Em

ji (e)xpm
ij . From the above reasoning, the total capacity

consumed by inter-session coding for the PICC between
sessions i and j, indexed by p and m is the maximum of the
two which is formally expressed as max(Ep

ij(e), Em
ji (e))xpm

ij .
Summing over all pairs of sessions i 6= j, and all p-
th and m-th tuples of P(i, j) and P(j, i), the total ca-
pacity consumed by inter-session network coding becomes∑

(i,j):i<j

∑|P(i,j)|
p=1

∑|P(j,i)|
m=1 max(Ep

ij(e), Em
ji (e))xpm

ij .
Let PICCij represent the collection of all PICCs between

sessions i and j. For simplicity we use xl
ij instead of xpm

ij ,
where l is the index indicating that the l-th PICC of PICCij

is used. Since any union of the p-tuple and the m-th tuple of
P(i, j) and P(j, i) can be mapped to the l-th PICC between
i and j. We can also define

H l
ij(e) =

1
2

max(Ep
ij(e), Em

ji (e)). (2)

From the above discussion, the following constraints represent
the PINC capacity region.

N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i + 2
∑

(i,j):i<j

|PICCij |∑

l=1

H l
ij(e)x

l
ij

≤ Ce, ∀e ∈ E (3)

xl
ij = xl

ji, ∀i < j, l. (4)

Thus, our optimization problem becomes:

max−→x≥0

N∑

i=1

Ui(
|Pi|∑

k=1

xk
i +

∑

j:i6=j

|PICCij |∑

l=1

xl
ij) (5)

subject to −→x satisfying (3) and (4).
By change of variable indices i and j we have

∑

(i,j):i<j

|PICCij |∑

l=1

H l
ij(e)x

l
ij =

∑

(i,j):j<i

|PICCij |∑

l=1

H l
ji(e)x

l
ji.

Since xl
ij = xl

ji according to (4), the constraints in (3) can be
rewritten as:

N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i +
∑

(i,j):i 6=j

|PICCij |∑

l=1

H l
ij(e)x

l
ij

≤ Ce, ∀e ∈ E (6)

For the following we focus on the rate control problem
satisfying constraints (4) and (6) with the objective function
being (5).

IV. THE RATE CONTROL ALGORITHM

Note that even if every utility function Ui(·) is strictly
concave, the objective function in (5) may not be strictly
concave due to the presence of the linear terms

∑|Pi|
k=1 xk

i +∑
j:i 6=j

∑|PICCij |
l=1 xl

ij . Thus, a direct application of standard
convex optimization techniques might lead to multiple so-
lutions, for which the output of an iterative method may
oscillate. However, we can apply the “proximal method”
described in [33] page 233 to ensure convergence. The idea
behind the proximal method is to solve a series of problems,
each of which has a strictly concave objective function. The
limit of the series approaches a single solution of the original
problem. A detailed description of the proximal method is
in [33]. To implement the proximal method, we now introduce
auxiliary variables −→y = {yk

i , yl
ij} with the same size of−→x . The intermediate optimization problem of the proximal

method becomes:

max−→x≥0

N∑

i=1

Ui(
|Pi|∑

k=1

xk
i +

∑

j:i 6=j

|PICCij |∑

l=1

xl
ij) (7)

−
N∑

i=1

|Pi|∑

k=1

γi

2
(xk

i − yk
i )2 −

∑

(i,j):i 6=j

|PICCij |∑

l=1

γi

2
(xl

ij − yl
ij)

2

subject to −→x satisfying (4) and (6), where γi is a positive
constant.

In the following, we focus on the dual of the intermediate
maximization problem. Since the Slater condition holds (see
for reference [34]), there is no duality gap between the primal
and the dual problems. Hence, we can use the dual approach
to solve the problem.

Associate Lagrange multiplier λe with each link e, and
µl

ij with the l-th PICC between sessions i and j. Also, let−→
λ and −→µ be two column vectors with elements λe and
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µl
ij , respectively. The Lagrange function of the above primal

intermediate problem is:

L(−→x ,
−→
λ ,−→µ ,−→y ) =

N∑

i=1

Ui(
|Pi|∑

k=1

xk
i +

∑

j:i 6=j

|PICCij |∑

l=1

xl
ij)

−
N∑

i=1

|Pi|∑

k=1

γi

2
(xk

i − yk
i )2 −

∑

(i,j):i 6=j

|PICCij |∑

l=1

γi

2
(xl

ij − yl
ij)

2

−
∑

e

λe





N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i +
∑

(i,j):i 6=j

|PICCij |∑

l=1

H l
ij(e)x

l
ij





+
∑

e

λeCe−
∑

(i,j):i<j

|PICCij |∑

l=1

µl
ijx

l
ij +

∑

(i,j):i<j

|PICCij |∑

l=1

µl
ijx

l
ji

Since
∑

(i,j):i<j

∑|PICCij |
l=1 µl

ijx
l
ji =∑

(i,j):j<i

∑|PICCij |
l=1 µl

jix
l
ij , by a simple change of variables

the Lagrange function is separable and we can rewrite it as:

L(−→x ,
−→
λ ,−→µ ,−→y ) =

N∑

i=1

Bi(−→x ,
−→
λ ,−→µ ,−→y ) +

∑
e

λeCe.

Here,

Bi(−→x ,
−→
λ ,−→µ ,−→y ) = Ui(

|Pi|∑

k=1

xk
i +

∑

j:i 6=j

|PICCij |∑

l=1

xl
ij)

−
|Pi|∑

k=1

γi

2
(xk

i − yk
i )2 −

∑

j:i 6=j

|PICCij |∑

l=1

γi

2
(xl

ij − yl
ij)

2

−
|Pi|∑

k=1

(∑
e

Hk
i (e)λe

)
xk

i −
∑

j:i6=j

|PICCij |∑

l=1

(∑
e

H l
ij(e)λe

)
xl

ij

−
∑

j:i<j

|PICCij |∑

l=1

µl
ijx

l
ij +

∑

j:i>j

|PICCij |∑

l=1

µl
jix

l
ij .

The objective function of the dual problem is

D(
−→
λ ,−→µ ,−→y ) = max−→x≥0

L(−→x ,
−→
λ ,−→µ ,−→y ),

and the dual problem is:

min−→
λ≥0,−→µ

D(
−→
λ ,−→µ ,−→y ).

The dual optimization problem can be solved using the gradi-
ent method.

Based on the above discussion we have the following
distributed rate control algorithm (Algorithm A).
Algorithm A:
• Initialization phase: Find all paths between all sources

and destinations. This can be done using any routing
protocol that finds multiple paths in a distributed way as
in [35], [36]. After this, sources send control messages to
every link e to set the values of Hk

i (e) and H l
ij(e). Each

link sets its corresponding λe(0) to zero, each destination
ti sets its corresponding µl

ij(0) to zero, and each source

si chooses the values of yk
i (0), yl

ij(0), xk
i (0) and xl

ij(0)
arbitrarily.

• Iteration phase: At the τ -th iteration:
1) Fix

−→
λ (τ, 0) =

−→
λ (τ), −→µ (τ, 0) = −→µ (τ), and−→x (τ, 0) = −→x (τ).

2) perform the following steps sequentially for κ =
0, . . . ,K − 1.
– Update the dual variables at each link e by:

λe(τ, κ + 1) =
[
λe(τ, κ) + αe

(
N∑

i=1

|Pi|∑

k=1

Hk
i (e)xk

i (τ, κ)+

∑

(i,j):i6=j

|PICCij |∑

l=1

H l
ij(e)x

l
ij(τ, κ)− Ce

)]+

. (8)

Here, [.]+ is a projection on [0,∞)
and αe is a positive step size.
Also, (

∑N
i=1

∑|Pi|
k=1 Hk

i (e)xk
i (τ, κ) +∑

(i,j):i6=j

∑|PICCij |
l=1 H l

ij(e)x
l
ij(τ, κ) − Ce)

is the queue length change at link e during the
time from the κ-th to the (κ + 1)-th step.

– Set

µl
ij(τ, κ + 1) = µl

ij(τ, κ)+

αl
ij(x

l
ij(τ, κ)− xl

ji(τ, κ)), ∀i < j. (9)

This can be implemented at each destination ti,
where αl

ij is a positive step size.
– Let −→x (τ, κ + 1) = arg max−→x≥0

L(−→x ,
−→
λ (τ, κ + 1),−→µ (τ, κ + 1),−→y (τ)).

This can be computed in a distributed way at
each source since the L function is separable. It
is worth noting that computing −→x (τ, κ+1) needs
the values of (i)

∑
e H l

ij(e)λe(τ, κ + 1), ∀i <
j, l,m, which can be computed along the paths,
(ii) µl

ij(τ, κ+1), ∀i < j, l, and (iii)µl
ji(τ, κ+1),

∀i > j, l. All of this information can be sent back
to the source using an acknowledgment message
as will be explained in Section V-A.

3) Let
−→
λ (τ+1) =

−→
λ (τ, K) and −→µ (τ+1) = −→µ (τ,K).

Set −→y (τ + 1) = −→x (τ, K)

and −→x (τ + 1) = −→x (τ,K).

For sufficiently large K and sufficiently large number of
iterations, −→x (τ) converges to the optimizing −→x ∗ for the
original problem with the objective function in (5) and the
constraints (4) and (6).

Theorem 2: As K −→ ∞, with the step sizes (αe, α
l
ij)

satisfying the following:
(L ·maxe αe + 2 max{i,j,l} αl

ij) < 2mini(γi), where

L =
∑

e

( N∑

i=1

|Pi|∑

k=1

Hk
i (e) +

∑

(i,j):i6=j

|PICCij |∑

l=1

(H l
ij(e))

2
)
,
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Algorithm A converges to the optimal solution of (5) subject
to the constraints (4) and (6).
The proof is provided in Appendix D. For the case when K is
bounded away from infinity, the convergence of Algorithm A
is verified by simulations. Similar proofs to those in [5] can
be used to rigorously prove the convergence of Algorithm A
with fixed K and with noisy and delayed measurements. This
makes Algorithm A suitable for practical implementation.

V. IMPLEMENTATION DETAILS

In this section, we discuss several practical issues that may
impact the implementation of our algorithm. In Section V-A
we show how to collect the implicit costs needed for Algo-
rithm A. The pairwise random coding scheme is introduced
in Section V-B, followed by a discussion of the transient
behavior before Algorithm A converges in Section V-C. A
brief discussion of how to deal with non-concave objective
functions for real-time traffic is in Section V-D.

A. Collecting implicit costs

Each source si needs to collect
∑

e λeH
l
ij(e), ∀j 6= i,

l ∈ {1, . . . , |PICCl
ij |} in order to compute the update rate xl

ij .
To do so, special control messages Sl

ij(u, e) and Sl
ij(e, v) are

used. Sl
ij(u, e) is the control message sent from node u to link

e to collect
∑

e λeH
l
ij(e). Similarly, Sl

ij(e, v) is the control
message sent from link e to node v to collect

∑
e λeH

l
ij(e).

More explicitly, collecting
∑

e λeH
l
ij(e), ∀j 6= i is done

according to the following.
• Each source si sets Sl

ij(si, e) = 0 to all of it’s outgoing
links e that satisfy H l

ij(e) 6= 0.
• Assuming e = (u, v), then at link e, Sl

ij(e, v) =
Sl

ij(u, e) + λeH
l
ij(e).

• At every intermediate node v, let Inl
ij(v) be the set of

incoming links to node v such that H l
ij(e) 6= 0, and

Outl
ij(v) be the set of outgoing links from node v such

that H l
ij(e) 6= 0. Then node v arbitrarily chooses one

ev ∈ Outl
ij(v) and sets Sl

ij(v, ev) =
∑

e∈Inl
ij(v) Sl

ij(e, v)

and Sl
ij(v, e) = 0 for all links e ∈ Outl

ij(v)\ev .
The third step avoids overcounting the implicit costs. In
the end,

∑
e∈Inl

ij(ti)
Sl

ij(e, ti) +
∑

e∈Inl
ij(tj)

Sl
ij(e, tj) =∑

e λeH
l
ij(e). The first term of the left hand side can be

obtained at ti while the second can be obtained at tj . Both of
them can be sent back using the acknowledge messages and
si can obtain

∑
e λeH

l
ij(e).

B. The Coding Scheme

The optimization problem and the solution described thus
far allocate rates at each link so that the utility function can
be optimized subject to −→x being in the PINC region. The next
question is what is the network coding scheme that can achieve
the optimal rate assignment? In this section, we propose the
use of a scheme we call the pairwise random coding scheme.
Suppose rate xl

ij is sustained along the l-th PICC between
sessions i and j. From a packet-by-packet perspective it means
that every 1

xl
ij

unit time one packet will be sent from si to ti

and another packet will be sent form sj to tj . Therefore, we
can focus on coding over those two packets (every 1

xl
ij

unit
time) along the corresponding PICC. Let the integral graph
G′′ represent the underlying PICC. Without loss of generality
we assume that G′′ is for the session pair (s1, t1) and (s2, t2).
We further assume that the packets for the unicast sessions
(s1,t1), (s2,t2) are X1, X2, respectively.

One choice of the coding scheme that is widely used is
the random linear coding scheme, as in [9]. Unfortunately
directly using random network coding for pairwise inter-
session network coding without modification is infeasible.
Take Fig. 3(a) for example, which is a typical choice of random
network coding over GF(17) where the vector (θ1, θ2) at edge
e in the figure represents that the packet at link e contains
θ1X1 + θ2X2. In this case t1 will not be able to decode both
X1 and X2, as random mixing is performed at v3 and t1
will receive 9X1 + 2X2. If both t1, t2 have min-cut max-
flow values being ≥ 2, random network coding is sufficient
for PINC, because both t1, t2 can decode both symbols. The
infeasibility of random network coding is caused by the min-
cut max-flow value from s1 and s2 to either t1 or t2 being 1.
If the min-cut max-flow value from s1 and s2 to either t1 or
t2 is 1, either the paths in the set Q1 = {Ps1,t1 , Ps2,t1 , Qs1,t1}
or the paths in the set Q2 = {Ps2,t2 , Qs1,t2 , Qs2,t2} share
the same edge in G′′ based on the path selection in (1). For
example, in Fig. 3(c) all paths in the setQ1 share edge (v3, v4).
Motivated by this observation, the pairwise random coding
scheme performs pure routing and random network coding on
most part of the network and performs decoding on only two
nodes. The pairwise random network coding is described as
follows.

Find the furthest edge e1 = (u1, v1) from t1 such that (i)
ncpQ1

(e1) = 3. (ii) For all paths in Q1 the segments from
v1 to t1 are edge disjoint from the path Ps2,t2 . Also find the
furthest edge e2 = (u2, v2) from t2 such that (a) ncpQ2

(e2) =
3. (b) For all paths in Q2 the segments from v2 to t2 are edge
disjoint from the path Ps1,t1 . After that perform random linear
network coding through all the edges of G′′ except edges e1

and e2. Decode X1 on e1 and forward it to t1 through the
segment of path Qs1,t1 that goes from u1 to t1, decode X2 on
e2 and forward it to t2 through the segment of path Ps2,t2 that
goes from u2 to t2. For example, if we use pairwise random
coding in Fig. 3(b), (v3, v4) will be the first edge that satisfies
the conditions for e1 in the pairwise coding scheme as is clear
from Fig. 3(c). Therefore, v3 will decode X1 instead of random
mixing and forward it to t2.

Theorem 3: Given that pairwise network coding is feasible
on PICC G′′ as in Theorem 1, the probability that the
pairwise random coding scheme is able to transmit X1 and X2

successfully for sessions (s1, t1) and (s2, t2), is lower bounded
by Pr(success) ≥ (1 − 2

q )|E
′′|. Here, q is the field size and

|E′′| is the number of edges in G′′.
Proof: Pr(success) is lower bounded by the probability

that both u1 and u2 recover both X1 and X2 successfully.
Because (i) G′′ is directed acyclic, (ii) the min-cut from s1

and s2 to u1 is ≥ 2, (iii) the min-cut from s1 and s2 to u2 is
≥ 2, we have three cases. Case 1: There is no path from v1 to
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(10,12)
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v2

v3

v4

t2 t1

(3,12)

(9,2)(16,13)

(a) Random
network coding
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(10,12)

s1 s2

v1

v2

v3

v4

t2 t1
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(b) Pairwise
random coding

t1

s1 s2

t2

(c) The set Q1

s1 s2

t2 t1

(d) The set Q2

Fig. 3. Applying both the random network coding and the pairwise random
network coding to the grail structure.

u2 nor there is a path from v2 to u1. The problem is the same
as multicasting both X1 and X2 to both u1 and u2 when all
the coding coefficients are random and the inequality holds.
Case 2: There exists a path from v1 to u2. Here we construct
another graph F ′′ from G′′ by removing all outgoing edges
from v1 and replacing them by new edges from s1 to the
same vertices that the removed edges were going to. We send
X1 through these edges and perform pairwise random coding
through the rest of the edges in F ′′. The probability that both
u1 and u2 recover both X1 and X2 on G′′ is the same of that
on F ′′, which satisfies the inequality. Case 3: There exists a
path from v2 to u1. This case is symmetric to case 3 and so
we remove the outgoing edges of v2 and replace them by new
edges from s2 to show that the inequality holds.
The pairwise random coding scheme can be implemented in
a distributed way. Two trace messages can be sent back by
the destinations t1 and t2 during the initialization phase to
identify edges e1 and e2 to perform decoding. Furthermore, by
Theorem 3, we can see that the success probability of pairwise
random coding scheme approaches one when the size of the
finite field is sufficiently large. In practice [37] moderately-
sized q = 216 or q = 28 is sufficient without incurring too
much overhead (generally 3-6%).

C. Coding Scheme when xl
ij 6= xl

ji

The above pairwise random coding scheme assumes that
two sessions (si, ti) and (sj , tj) share the same pairwise cod-
ing rates xl

ij = xl
ji, which is achieved after the convergence of

the Algorithm A (as proven in Theorem 2). However, during
the transient time before convergence, we might have unequal
cross-coding rates assigned by each individual session respec-
tively. Furthermore, it is difficult to know when Algorithm A
converges. To overcome these difficulties the coding scheme
can be modified in the transient state when xl

ij 6= xl
ji. The

basic idea is if xl
ij(τ) > xl

ji(τ), we perform pairwise network
coding at the smaller rate xl

ji(τ) and send uncoded packets at
rate (xl

ij(τ)−xl
ji(τ)). Therefore, tj can receive coded packets

at rate xl
ji while ti can receive coded packets at rate xl

ji and
uncoded packets at rate xl

ij − xl
ji (the total rate is still xl

ij).
For example, assume that xl

ij(τ) = 3 and xl
ji(τ) = 2, then

packets with sequence numbers 1,2,4,5,7,8,10,11 of si will
be coded with packets with sequence numbers 1,2,3,4,5,6,7,8
of sj . Packets with sequence numbers 3,6,9,12 of si will
be forwarded as shown in Fig. 4(b). Take the well studied

butterfly structure as an example, the assignment of the code
on the edges of this PICC in the transient state is represented
in Fig. 4(a). In the figure we assume that the rate is 3 for s1

and 2 for s2. Therefore, in one time slot s1 will send X1, X2,
and X3 and s2 will send Y1 and Y2. Packets X1 and X2 will
be coded with packets Y1 and Y2, respectively, and packet X3

will be forwarded without coding. In this way t1 is able to
receive at rate 3 and t2 is able to receive at rate 2.
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X3
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Fig. 4. (a) The assignment of the codes on the butterfly as an example of the
l-th PICC between sessions i and j with unequal rates xl

ij = 3 and xl
ji = 2

during the transient state. (b) The upper sequence represents the sequence
numbers of packets sent by si through the l-th PICC between sessions i and
j, and the lower sequence represents the sequence numbers of packets sent
by sj through the same PICC. If a packet in the upper sequence is to be
coded with another one in the lower sequence, there is a link between them.
Packets without links are those for which no coding is performed.

D. Dealing with non-concave objective functions for real-time
traffic

Our assumption here is that the utility function is concave
which does not hold for transmission scenarios like real-
time traffic. Real-time traffic can be modelled by sigmoidal
functions. In this case Algorithms A can be modified as
in [38] to achieve the optimal rate control when the number of
sessions is sufficiently large. This is possible because of the
path based formulation we use.

VI. COMPLEXITY REDUCTION

The complexity of Algorithm A depends on the number
of PICCs in the network. This is because for the l-th PICC
between sessions i and j we assign two primal variables xl

ij

and xl
ji. Also every link e has to maintain variables of the form

H l
ij(e) and each destination ti has to maintain variables of the

form µl
ij . Furthermore, to compute xl

ij in every update, source
si has to collect

∑
e λeH

l
ij(e) as explained in Section V-A.

Using the approach in Section III, the number of PICCs
between session i and j is

(|Pii|2 · |Pjj |2 · |Pij | · |Pji|
)
, and so

the total number of PICCs in the network is
∑

(i,j):i6=j |Pii|2 ·
|Pjj |2 · |Pij | · |Pji|. Here, |Pij | represents the number of paths
between si and tj . From the above discussion, reducing the
number of PICCs in the network plays a major role in the
practical implementation of the proposed algorithm. In this
section we provide two approaches to reduce the complexity of
Algorithm A. The first approach reduces the number of PICCs
without sacrificing performance, while the second chooses
paths and PICCs adaptively and may sacrifice performance.
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A. Excluding redundant PICCs in the initialization step

By construction, the l-th PICC between sessions i and j
satisfies condition 2 of Theorem 1 and supports the coded
traffic rate xl

ij . In this section we provide rules to see whether
condition 1 of Theorem 1 is also satisfied on that PICC at
rate xl

ij . If so, we can remove xl
ij and H l

ij(e), ∀e from the
optimization problem (5) and still achieve the same optimal
solution. This is because the 2EDPs in that PICC can be used
to send uncoded traffic which has already been characterized
by xk

i , the uncoded data rate in (3). The rules also help
detecting whether a given PICC contains redundant links
such that there exists another PICC whose links are a proper
subset of the links used by the given PICC. Since for these
PICCs, we can use a strictly smaller part of the PICC while
still providing the same throughput improvement, we term
those PICCs redundant PICCs. The following rules remove
redundant PICC and result in a tremendous reduction in the
complexity of Algorithm A. In the following we assume
the same simplification as in section V-B by considering the
integral graph G′′ for session pair (s1, t1), (s2, t2). To identify
the PICCs that should be removed from the optimization
problem, we have the following rules:

• Rule 1: For G′′, if neither Ps1,t1 = Qs1,t1 nor Ps2,t2 =
Qs2,t2 , then G′′ is a redundant PICC.

• Rule 2: For a given path P , let E(P ) be the set of edges
in path P . If the two sets of edges E(Ps1,t1)

⋃
E(Qs1,t1)

and E(Ps2,t2)
⋃

E(Qs2,t2) are disjoint, then G′′ is a
redundant PICC.

• Rule 3: If H l
ij(e) = 1 for some link e, then the l-th PICC

between sessions i and j is redundant.

If a PICC is classified as redundant by a rule, we say that the
PICC is declared redundant by that rule. Otherwise, we say
that the PICC passes that rule.

Theorem 4: Rules 1-3 identify redundant PICCs. All redun-
dant PICCs can be removed without sacrificing the achievable
rate.
Based on Theorem 4, we have the following reduced-
complexity algorithm which achieves the same capacity region
as by Algorithm A.
(Algorithm B):

1) Path Finding: Every source finds a set of paths to every
destination, and announces the sizes of these sets to the
links in these paths and to other sources. Every PICC
that passes Rule 1 will have a unique ID number which
can be computed locally at every link in the network.

2) Source si sends trace message through all paths Psitj .
This message includes i, j, and the path number.

3) Link e sets up H l
ij(e) for all PICCs that pass Rule 1.

4) The following steps are executed at every link e in
parallel

• If P l
si,ti

or Ql
si,ti

share link e with P l
sj ,tj

or Ql
sj ,tj

a notification message of type X is sent back to
si, sj , with the ID number of the l-th PICC between
sessions i and j. This means that the PICC passes
Rule 2. Here, P l

si,ti
represents the path from si to

ti in the set P in Theorem 1 for the l-th PICC

between sessions i and j. Ql
si,ti

, Ql
sj ,tj

, and P l
sj ,tj

are defined in the same way.
• If H l

ij(e) = 1, link e sends a notification message
of type Y to si, sj , with the ID number of the l-th
PICC between sessions i and j. This means the l-th
PICC between i and j is redundant by Rule 3.

5) Sources si and sj delete all PICC for which a notifi-
cation message of type Y is received or no notification
message of type X is received.

6) Run Algorithm A on the non deleted PICCs.

Steps (1)-(5) are initialization steps and executed only once.
Also, they can be executed in a distributed manner.

B. Adaptive Algorithm

The reductions in Section VI-A reduce the number of PICCs
in the initialization step without sacrificing the performance by
eliminating redundant PICCs. To further reduce the complex-
ity, we propose another type of reduction. As observed by our
simulations the rates on some PICCs converge to zero very
quickly (generally after only a few iterations), which means
that network coding over those PICCs provides no positive
gain when compared to the optimal rate-control solution. This
may be due to that non-coded solution is sufficient for those
PICCs because they satisfy both conditions of Theorem 1.
It may also be because the links used by the PICCs can be
used by more significant PICCs. We termed those PICCs as
insignificant PICCs. The adaptive scheme we propose in this
section works initially on a small number of PICCs. While the
algorithm is run on these PICCs, insignificant PICCs among
them will be deleted and new PICCs formed by the newly
found paths will be added adaptively. This approach reduces
the variable space of the optimization problem. Fig. 5 contains
a detailed description of the above scheme with an adaptive
path search mechanism.

In the flow chart in Fig. 5, every source maintains a
collection of paths Pfound and every source pair maintains
collections of PICCs PICCfound and PICCactive. Every time
new paths are found, the source puts them in Pfound which is
executed in parallel to the steps in Fig. 5. When PICCfound

becomes empty, all possible PICCs that can be formed by
the paths in the Pfound and have not been used by the
algorithm yet, are put in PICCfound. Each pair of sessions i
and j is assigned a value φij . The constant φij represents the
maximum number of PICCs (for sessions i and j) that can be
included in the maximization problem simultaneously. If the
rate of a given PICC converges to zero, it is identified as an
insignificant one. Convergence to zero is detected when the
rate of the PICC goes below a threshold value. Every time
insignificant PICCs (for sessions i and j) are removed from
the optimization problem, the complexity of the algorithm
reduces and we can afford to include one new PICC when
solving the optimization problem. Therefore, si moves some
of the PICCs (for sessions i and j) from PICCfound to
PICCactive. This is done in a way such that the total number
of PICCs for i and j in PICCactive does not exceed φij . For
distributed implementation one source of each pair is assigned
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Fig. 5. Flow chart for the adaptive algorithm.

as a controller to ensure the consistency of PICCfound and
PICCactive for the two sources.

VII. SIMULATION RESULTS

The objectives of the simulations are to verify the conver-
gence of Algorithms A and B, and to show the benefits of
the proposed inter-session network coding solution in terms
of throughput, fairness, and its complexity advantage over
existing inter-session coding rate-control solutions.

A. Convergence

To study the convergence of Algorithms A and B, we run
simulations on the so called grail topology in Fig. 2(a) with
the utility function of each source si being log2(Ri). As is
evident from the grail topology (Fig. 2(a)), there are three
paths connecting (s2,t2), two paths connecting (s1,t2), two
paths connecting (s2,t1), and one path connecting (s1,t1).
Therefore, there are six different path collections P and six
different path collections Q. Totally, there are 36 possible
PICCs. We assign the initial rates of each PICC randomly,

and vary αe, αl
ij and the number of proximal iterations K to

test the speed of convergence of Algorithm A.
The optimal solution for the grail topology is to assign unit

rate to the optimal PICC that uses the paths in (1), and zero
rates to all of the other PICCs. These are the paths that satisfy
condition 2 in Theorem 1 as explained in section II. In Fig. 6
we show the rates for the optimal PICC with different step
sizes. Every outer iteration contains K proximal iterations.
Our algorithm converges even with a very small number of
proximal iterations. As expected, increasing the step size up
to a specific value will make the algorithm converge faster.
A bigger topology in Fig. 7 with 36 nodes and unit capacity
links is used in our simulations. This topology has four unicast
sessions. The convergence results for one of the optimal PICCs
and one of the insignificant PICCs in the topology in Fig. 7
are shown in Fig. 8. In Fig. 8, the rate of the insignificant
PICC converges quickly to zero.
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Fig. 6. Convergence results for s1 in the grail topology with different step
sizes and K, the number of proximal iterations. Here, the rate corresponds to
the optimal PICC.

s1s2s3s4

t1t2t3t4

Fig. 7. Topology contains four source-sink pairs.

B. Gain and Fairness

We compare Algorithm A with existing algorithms and
quantify the benefits of inter-session network coding over
non-coded solutions. The simulation is conducted on a graph
depicted in Fig. 7. For this topology, the butterfly-based
work [24] and its distributed implementation in [25] and [26]
cannot realize any throughput benefits of network coding and
the performance of these algorithms is the same as that of
non-coded solutions since there is no butterfly substructure in
Fig. 7. It is worth noting that the distributed implementations
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Fig. 8. Convergence results for the topology in Fig. 7 with α = 0.01, and
the number of proximal iterations K = 5. We plot the convergence rate vs.
iterations for the optimal PICC and one insignificant PICC.

of the butterfly-based region in [25], [26] focus on stabilizing
the given traffic load instead of maximizing the utility function.
We define the utility gain of pairwise inter-session network
coding PINC, UG as

UG =
Utility(PINC)− Utility(non-coded)

Utility(non-coded)
.

We denote the total throughput of the network when the
optimal utility is achieved under the PINC and the non-
coded solutions by

∑
i Ri(PINC) and

∑
i Ri(non-coded),

respectively. The throughput gain, T G is defined as

T G =
∑

i Ri(PINC)−∑
i Ri(non-coded)∑

i Ri(non-coded)
.

We evaluate the gains of Algorithm A using different utility
functions presented in [1] and [2]. The first type of utility func-
tion is log2(δ + Ri), where δ is a constant in the range [0, 1].
The second type of utility function is of the form R1−σ

i

1−σ , where
σ is a constant in the range (0, 1). The results are shown in
Figs. 9 and 10. Algorithm A provides strict performance gains
over both non-coded and butterfly-based capacity region on
this topology. Moreover, the largest throughput gain happens
when fairness is the design criteria for the network, i.e, when
δ is small and when σ is large. This is the same conclusion
drawn from the capacity regions in Figs. 1(b) and 2(b).

We also run simulations on the grid topology in Fig. 11.
In this topology there are four paths between s1 and t1, four
paths between s2 and t2, and only one path between s3 and
t3. Also, the path between s3 and t3 overlaps with all the
other eight paths. Therefore, without network coding the rates
of sessions 1 and 2 are about 3.7 times the rate of session
3 when δ is small 0.1 (fairness is of high priority) as shown
in Table I. Using network coding the rate ratio is reduced to
about 2.2 times with a small decrease in rates R1 and R2 and
a considerable increase in R3 from 0.29 to 0.47. When δ is
relatively large 0.6, the rate ratio without network coding is
about 21, because less emphasis is put on the smaller rate (rate
of session 3 in this case.) Surprisingly with network coding
the rate ratio is reduced to 4. This decrease in the ratio is due
to that network coding resolves the bottlenecks. The fairness

is thus improved as network coding removes the bottleneck
for the smallest-rate session 3.
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Fig. 9. Gain for the topology in Fig. 7 with the objective functionP
i log2(δ + Ri) and different values of δ.
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Fig. 11. Grid topology with three sessions

C. Complexity

In terms of computational complexity of Algorithm A and
the existing butterfly-based method [24], the path based Algo-
rithm A solves a maximization problem of 2,328 variables and
36 constraints in a distributed way for the topology in Fig. 7,
while the pattern-search-based optimization problem [24] has
more than 31,104 variables and 31,104 constraints. Further-
more, if we use Algorithm B, we can reduce the number of
variables to 22. Also, for the topology in Fig. 11 the number
of variables using the pattern search algorithm is more than
17,000 and the number of constraints is more than 30,000. The
number of variables is reduced to about 3000 using Algorithm
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δ = 0.1 δ = 0.2
R1 R2 R3 R1 R2 R3

Non-coded 1.066 1.066 0.289 1.133 1.133 0.244
PINC 1.033 1.033 0.467 1.067 1.0667 0.433

δ = 0.4 δ = 0.6
R1 R2 R3 R1 R2 R3

Non-coded 1.266 1.266 0.155 1.399 1.399 0.066
PINC 1.133 1.133 0.367 1.200 1.200 0.300

TABLE I
RATE Ri ASSIGNED FOR EACH SESSION IN FIG. 11 USING ROUTING AND

INTER-SESSION NETWORK CODING WITH THE OBJECTIVE FUNCTIONP
i log2(δ + Ri) AND DIFFERENT VALUES OF δ

A and to 300 using Algorithm B and the number of constraints
is reduced to 35 using both Algorithms A and B. In sum, the
flexible choice of utility functions, decentralized rate control
capability, superior performance in terms of utility/throughput
gains, fairness and manageable complexity with an adaptive
path search mechanism, demonstrate the efficacy of the path-
based Algorithms A and B.

VIII. CONCLUSION

In this paper we develop a distributed rate control algorithm
for the multiple-unicast-sessions problem. The algorithm sup-
ports rates in the PINC achievable rate region that allows for
inter-session network coding. We also propose a distributed
pairwise random coding scheme suitable for online implemen-
tation. Our algorithm improves both throughput and fairness
among flows in information networks.

APPENDIX A
NOTATIONS USED FOR THE PROOF OF THEOREM 2

Let

V (−→x ) =





∑N
i=1 Ui(

∑|Pi|
k=1 xk

i +∑
j 6=i

∑|PICCij |
l=1 xl

ij)
−→x ≥ 0

−∞ else.

Then V is the extended concave objective function, and we
can write our problem in the following matrix form:

maxV (−→x )

subject to: A−→x ≤ −→
C and B−→x = 0, and the Lagrangian

can be written as:

L(−→x ,
−→
λ ,−→µ ,−→y ) = V (−→x )−−→x T

[
AT BT

] [−→
λ−→µ

]

− 1
2
(−→x −−→y )T C(−→x −−→y ), (10)

where A, B, and C are constructed as follows. Let
M(i) =

∑
j:j 6=i |PICCi,j |, A is a matrix with |E| rows and

(
∑

i |Pi|+ 2M(i)) columns, where the e-th row is filled with
Hk

i (e) and H l
ij(e) in the same order as the corresponding xk

i

and xl
ij appear in −→x . Matrix B is defined as a matrix with∑

i M(i) rows and (
∑

i |Pi|+ 2M(i)) columns, such that the
(a, b) entry in B is 1 if the b-th entry in −→x is a variable of
the form xl

ij and the a-th entry in −→µ is µl
ij . The (a, b) entry

in B is −1 if the b-th entry in −→x is a variable of the form

xl
ij and the a-th entry in −→µ is µl

ji. For all other cases, the
(a, b) entry in B is 0. We define C as a diagonal matrix of
size (

∑
i |Pi|+ 2M(i)). If the a-th variable of −→x is xk

i or xl
ij

for some i, the a-th diagonal elements of C will be γi.
Throughout the proof we use the following norm

∥∥A
∥∥
D

=

AT D−1A, where D =
[
E 0
0 F

]
. Here, E is an |E| elements

diagonal matrix with the e-th entry being αe. Matrix F is
another (

∑
i M(i)) diagonal matrix, in which the a-th diagonal

element is αl
ij where i, j, l are the same indices of the a-th

element of −→µ .

APPENDIX B
Lemma 1

Lemma 1: Fix −→y . Let
[−→
λ1−→µ1

]
and

[−→
λ2−→µ2

]
be two implicit cost

vectors and let −→x1
∗ and −→x2

∗ be the corresponding maximizers
of the Lagrangian, then:

[
(
−→
λ1 −−→λ2)T (−→µ1 −−→µ2)T

] [
A
B

]
(−→x1

∗ −−→x2
∗) ≤

− (−→x1
∗ −−→x2

∗)T C(−→x1
∗ −−→x2

∗).

Proof: Let −→x0
∗ = arg max−→x L(−→x ,

−→
λ ,−→µ ,−→y ). By taking

the subgradient of (10) with respect to −→x , we can see that
there must exist a subgradient of (10) at −→x0

∗ such that:

∇V (−→x0
∗)− [

AT BT
] [−→

λ−→µ
]
−C(−→x0

∗ −−→y ) = 0. (11)

Substituting
[−→

λ−→µ
]

in (11) by
[−→
λ1−→µ1

]
and

[−→
λ2−→µ2

]
, respectively, and

taking the difference, we have:

[
AT BT

] [−→
λ1 −−→λ2−→µ1 −−→µ2

]
=

[∇V (−→x1
∗)−∇V (−→x2

∗)
]

−C(−→x1
∗ −−→x2

∗).

Since V is concave we have:
[∇V (−→x1

∗)−∇V (−→x2
∗)

]T (−→x1
∗ −−→x2

∗) ≤ 0.

Hence
[
(
−→
λ1 −−→λ2)T (−→µ1 −−→µ2)T

] [
A
B

]
(−→x1

∗ −−→x2
∗)

=
[∇V (−→x1

∗)−∇V (−→x2
∗)

]T (−→x1
∗ −−→x2

∗)

− (−→x1
∗ −−→x2

∗)T C(−→x1
∗ −−→x2

∗)

≤ −(−→x1
∗ −−→x2

∗)T C(−→x1
∗ −−→x2

∗).

APPENDIX C
Lemma 2

Lemma 2: Let L =
∑

e

(∑N
i=1

∑|Pi|
k=1 Hk

i (e) +
∑

(i,j):i 6=j

∑|PICCij |
l=1 (H l

ij(e))
2
)

. The sufficient condition for
2C−AT EA−BT FB to be positive definite is that the step
sizes αe, αl

ij fall in the following region:
(L ·maxe αe + 2 maxi,j,l α

l
ij) < 2mini(γi)
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∥∥∥∥
[−→

λ (τ, κ + 1)−−→λ0−→µ (τ, κ + 1)−−→µ0

]∥∥∥∥
D

=
∥∥∥∥
[
[
−→
λ (τ, κ) + E(A−→x (τ, κ)−−→C )]+ − [

−→
λ0 + E(A−→x0 −−→C )]+−→µ (τ, κ) + FB−→x (τ, κ)−−→µ0 + FB−→x0

]∥∥∥∥
D

≤
∥∥∥∥
[−→

λ (τ, κ) + E(A−→x (τ, κ)−−→C )−−→λ0 + E(A−→x0 −−→C )−→µ (τ, κ) + FB−→x (τ, κ)−−→µ0 + FB−→x0

]∥∥∥∥
D

=
∥∥∥∥
[−→

λ (τ, κ)−−→λ0 + EA(−→x (τ, κ)−−→x0)−→µ (τ, κ)−−→µ0 + FB(−→x (τ, κ)−−→x0)

]∥∥∥∥
D

(12)

Proof: If 2C−AT EA−BT FB is positive definite, then
−→
δxT (2C−AT EA−BT FB)

−→
δx > 0,

for all nonzero column vectors
−→
δx, which is equivalent to

2
−→
δxT C

−→
δx >

−→
δxT (AT EA + BT FB)

−→
δx.

We use δxi to refer to the i-th element of
−→
δx. By the

Cauchy-Schwartz Inequality, we have
−→
δxT (AT EA)

−→
δx +

−→
δxT (BT FB)

−→
δx

=
∑

e

αe(
∑

i

∑

k

Hk
i (e)δxk

i

+
∑

(i,j):i6=j

|PICCij |∑

l=1

(H l
ij(e))δx

l
ij)

2

+
∑

(i,j):i<j

∑

l

αl
ij [(δx

l
ij − δxl

ji)
2]

≤
∑

e

αe(
∑

i

∑

k

Hk
i (e)

+
∑

(i,j):i6=j

|PICCij |∑

l=1

(H l
ij(e))

2)
∑

i

δx2
i

+
∑

(i,j):i<j

∑

l

(αl
ij(2δxl

ij)
2 + 2(δxl

ji)
2)

≤ max
e

αe(
∑

e

(
∑

i

∑

k

Hk
i (e)

+
∑

(i,j):i6=j

|PICCij |∑

l=1

(H l
ij(e))

2))
∑

i

δx2
i

+(max
i,j,l

αl
ij)2

∑

i

δx2
i

= (L ·max
e

αe + 2 max
i,j,l

αl
ij)

∑

i

δx2
i

Therefore if the inequality that

(L ·max
e

αe + 2max
i,j,l

αl
ij)

∑

i

δx2
i < 2min

i
(γi)

∑

i

δx2
i

holds, then we have

2
−→
δxT C

−→
δx >

−→
δxT (AT EA + BT FB)

−→
δx

which in turn implies that 2C−AT EA−BT FB is positive
definite. The proof is complete.

APPENDIX D
PROOF OF Theorem 2

In this section, we prove Theorem 2 the convergence of
Algorithm A for the case that K tends to infinity first and
then let the number of iterations goes to infinity.

Proof: We will prove the convergence of Algorithm A
when K −→∞. To do so, we will prove the convergence of
the first step during the proximal iteration. The convergence
of the whole algorithm follows from [33] page 233. Fix−→y (τ). Let

−→
λ0,

−→µ0 be a stationary point of (8) and (9), and
let −→x0 be the corresponding primal variable. −→x0 is unique
since L(·) is strictly concave with respect to −→x , and −→x0 =
arg max−→x L(−→x ,

−→
λ ,−→µ ,−→y ). By the projection theorem in [33]

page 211 we have the inequality in (12) which gives:
∥∥∥∥
[−→

λ (τ, κ + 1)−−→λ0−→µ (τ, κ + 1)−−→µ0

]∥∥∥∥
D

≤
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

+
[
EA(−→x (τ, κ)−−→x0)
FB(−→x (τ, κ)−−→x0)

]T

D−1

[
EA(−→x (τ, κ)−−→x0)
FB(−→x (τ, κ)−−→x0)

]

+ 2
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]T

D−1

[
EA(−→x (τ, κ)−−→x0)
FB(−→x (τ, κ)−−→x0)

]

=
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

+ (−→x (τ, κ)−−→x0)T
[
AT BT

]

[
ET 0
0 FT

]
D−1

[
E 0
0 F

] [
A
B

]
(−→x (τ, κ)−−→x0)

+ 2
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]T

D−1

[
E 0
0 F

] [
A 0
0 B

]
(−→x (τ, κ)−−→x0)

=
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

+ (−→x (τ, κ)−−→x0)T
[
AT BT

]

DD−1D
[
A
B

]
(−→x (τ, κ)−−→x0)

+ 2
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]T

D−1D
[
A
B

]
(−→x (τ, κ)−−→x0)

By Lemma 1 we have:
∥∥∥∥
[−→

λ (τ, κ + 1)−−→λ0−→µ (τ, κ + 1)−−→µ0

]∥∥∥∥
D
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≤
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

+ (−→x (τ, κ)−−→x0)T
[
AT BT

]
D

[
A
B

]
(−→x (τ, κ)−−→x0)

− 2(−→x (τ, κ)−−→x0)T C(−→x (τ, κ)−−→x0)

=
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

− (−→x (τ, κ)−−→x0)T L(−→x (τ, κ)−−→x0),

where L = 2C − [
AT BT

]
D

[
A
B

]
. When L is positive

definite, we have:
∥∥∥∥
[−→

λ (τ, κ + 1)−−→λ0−→µ (τ, κ + 1)−−→µ0

]∥∥∥∥
D

≤
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

. (13)

Therefore, if the step sizes αe and αl
ij satisfy the condition

in Theorem 2, then by Lemma 2, L is positive definite.

Accordingly
∥∥∥∥
[−→

λ (τ, κ)−−→λ0−→µ (τ, κ)−−→µ0

]∥∥∥∥
D

will be a nonnegative and

decreasing sequence. Therefore, as K −→ ∞, −→x (τ,K) −→−→x0.

APPENDIX E
PROPOSITION 1

Recall the following theorem from [27].
Theorem 5: Define two sets of integral graphs, Gb and Gg ,

as follows.
1) Gb contains the full butterfly as described in Fig. 1(a),

and all graphs obtained from the full butterfly via
edge contraction. See [39] for the definition of edge
contraction and subdivision.

2) Gg contains the full grail and all graphs obtained from
the full grail via edge contraction. The full grail can be
obtained by removing one of the parallel edges between
s2 and v1, and one of the parallel edges between v6 and
d2 in Fig. 2(a).

Suppose there exists a network coding solution to the two
unicast-session problem. Then one of the following two con-
ditions must hold.
• There exist two EDPs connecting (s1, t1) and (s2, t2).
• G′′ contains an integral subgraph F = (V F , EF ) such

that (i) {s1, s2, t1, t2} ∈ V F and (ii) there exists a Gq ∈
Gb

⋃Gg such that F is a subdivision of Gq . Namely, F
can be obtained from Gq by replacing each edge of Gq

with an interior-vertex-disjoint path, also known as an
independent path.

Proposition 1: For F as defined in Theorem 5, if F con-
tains two edges that connect the same pair of vertices, then F
contains 2 EDPs connecting (s1, t1) and (s2, t2)

Proof: F is a subdivision of Gq . If F contains two edges
that connect the same pair of vertices then so does Gq . It is
easy to check that for all subgraphs in Gb or in Gg, if there are
two edges connecting the same pair of vertices, there exist two
edge-disjoint paths connecting (s1,t1) and (s2,t2). The proof
is complete.

APPENDIX F
PROOF OF THEOREM 4

Proof: For any PICC if there exist 2EDPs between
(s1,s2) and (s1,s2), we can send packets through these paths
and achieve the required rate without network coding, which
means that the PICC of interest is redundant. We exploit this
observation in the following to show that a PICC is redundant.

If G′′ is declared “redundant” by rule 2, we have 2EDPs
between (s1, t1) and (s2, t2), because of the disjointness of
E(Ps1,t1)

⋃
E(Qs1,t1) and E(Ps2,t2)

⋃
E(Qs2,t2). In the fol-

lowing, we will prove rule 3. Without loss of generality, we can
use the integral graph G′′ to represent the l-th PICC between
sessions i and j. G′′ always satisfy condition 2 of Theorem 1.
If condition 1 is satisfied, there is no need to include G′′ in
the optimization problem because there are 2 EDPs. Assume
condition 1 is not satisfied. We have two cases. Case 1: F in
Theorem 5 is the same as G′′. By (2), if H l

ij(e) = 1, then
link e is modelled as two edges connecting the same pair of
vertices. G′′ contains 2 EDPs by Proposition 1. Case 2: F is
a proper subgraph of G′′. The edges and vertices in F are
subsets of the edges and vertices in G′′, and F satisfies the
necessary and sufficient conditions for pairwise linear network
coding. Therefore, the same solution in G′′ can be achieved in
F by consuming fewer resources and hence G′′ is a redundant
PICC. Rule 1 follows by using the same technique.
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