Common Information of Random Linear Network Coding Over A 1-Hop Broadcast Packet Erasure Channel

Chih-Chun Wang, ${ }^{\dagger}$ Jaemin Han
Center of Wireless Systems and Applications (CWSA)
School of Electrical and Computer Engineering, Purdue University

Presented in ISIT, 08/04/2011

Sponsored by NSF CCF-0845968 and CNS-0905331.

Motivation - The COPE Principle

- The COPE protocol - 2-hop relay networks [Katti et al. 06]

4 transmissions w/o coding vs. 3 transmissions w. coding

- r sends $[X+Y] ; d_{1}$ decodes X by subtraction.
- Empirically, 40-200\% throughput improvement.

Motivation - The COPE Principle

- The COPE protocol - 2-hop relay networks [Katti et al. 06]

4 transmissions w/o coding vs. 3 transmissions w. coding

- r sends $[X+Y] ; d_{1}$ decodes X by subtraction.
- Empirically, 40-200\% throughput improvement.

- The capacity can be defined over the corresponding PEC network.

The Capacity Region for $M=2$

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.

The Capacity Region for $M=2$

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.
- The capacity region for $M=2$, [W, Asilomar 09]:

$$
\begin{aligned}
& R_{1} \leq \min \left(p_{s_{1} ; r}, p_{r ; 1}-\left(R_{2}-p_{s_{2} ; 1}\right)^{+}\right) \\
& R_{2} \leq \min \left(p_{s_{2} ; r}, p_{r ; 2}-\frac{p_{r ; 2}}{p_{r ; 1}}\left(R_{1}-p_{s_{1} ; 2}\right)^{+}\right)
\end{aligned}
$$

The Capacity Region for $M=2$

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.
- The capacity region for $M=2$, [W, Asilomar 09]:

$$
\begin{aligned}
& \left.R_{1} \leq \stackrel{s}{\min \left(p_{s_{1} ; r},\right.} p_{r ; 1}-\left(R_{2}-p_{s_{2} ; 1}\right)^{+}\right) \\
& R_{2} \leq \min \left(p_{s_{2} ; r}, p_{r ; 2}-\frac{p_{r ; 2}}{p_{r ; 1}}\left(R_{1}-p_{s_{1} ; 2}\right)^{+}\right)
\end{aligned}
$$

- Transmit all info from s_{i} to r.

The Capacity Region for $M=2$

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.
- The capacity region for $M=2$, [W, Asilomar 09]:
$s \rightarrow r$ avail. slots min inter.

$$
\begin{aligned}
& R_{1} \leq \min \left(p_{s_{1} ; r}, p_{r ; 1}-\left(R_{2}-p_{s_{2} ; 1}\right)^{+}\right) \\
& R_{2} \leq \min \left(p_{s_{2} ; r}, p_{r ; 2}-\frac{p_{r ; 2}}{p_{r ; 1}}\left(R_{1}-p_{s_{1} ; 2}\right)^{+}\right)
\end{aligned}
$$

- Transmit all info from s_{i} to r.
- The cost of carrying the not overheard info for the other session.

The Capacity Region for $M=2$

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.
- The capacity region for $M=2$, [W, Asilomar 09]:

$$
\begin{aligned}
& R_{1} \leq \min \left(p_{s_{1} ; r,}, p_{r ; 1}-\left(R_{2}-p_{s_{2} ; 1}\right)^{+}\right) \\
& R_{2} \leq \min \left(p_{s_{2} ; r}, p_{r ; 2}-\frac{p_{r ; 2}}{p_{r ; 1}}\left(R_{1}-p_{s_{1} ; 2}\right)^{+}\right)
\end{aligned}
$$

- Transmit all info from s_{i} to r.
- The cost of carrying the not overheard info

The Capacity Region for $M=2$

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- Assume round-based schemes, and $p_{r ; d_{1}} \geq p_{r ; d_{2}}>0$.
- The capacity region for $M=2$, [W, Asilomar 09]:
$s \rightarrow r$ avail. slots min inter.

$$
\begin{aligned}
& R_{1} \leq \min \left(p_{s_{1} ; r}, p_{r ; 1}-\left(R_{2}-p_{s_{2} ; 1}\right)^{+}\right) \\
& R_{2} \leq \min \left(p_{s_{2} ; r}, p_{r ; 2}-\frac{p_{r ; 2}}{p_{r ; 1}}\left(R_{1}-p_{s_{1} ; 2}\right)^{+}\right)
\end{aligned}
$$

- Transmit all info from s_{i} to r.
- The cost of carrying the not overheard info
 for the other session.

A Competing Technique

A Competing Technique

A Competing Technique

- Opportunistic Routing: Allow d_{1} to directly hear from s_{1}. [Chachulski et al. 07].
- No (intersession) coding at relay.

A Competing Technique

- Opportunistic Routing: Allow d_{1} to directly hear from s_{1}. [Chachulski et al. 07].
- No (intersession) coding at relay.
- Capacity of Opp. Routing is characterized by the min-cut/max-flow theorem [Dana et al. 06].

$$
R_{1} \leq \min \left(p_{s_{1} ;\left\{r \text { or } d_{1}\right\}}, p_{s_{1} ; r}+p_{s_{1} ; d_{1}}\right) .
$$

A Competing Technique

- Opportunistic Routing: Allow d_{1} to directly hear from s_{1}. [Chachulski et al. 07].
- No (intersession) coding at relay.
- Capacity of Opp. Routing is characterized by the min-cut/max-flow theorem [Dana et al. 06].

$$
R_{1} \leq \min \left(p_{s_{1} ;\left\{r \text { or } d_{1}\right\}}, p_{s_{1} ; r}+p_{s_{1} ; d_{1}}\right) .
$$

Can we combine the benefits of Network

Coding \& Opportunistic Routing?

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

$p_{r ; 1}, p_{r ; 2}$: The CH parameters,
The total \# of to-be-sent symbols:

The overheard info.:

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

$p_{r ; 1}, p_{r ; 2}$: The CH parameters,
The total \# of to-be-sent symbols:
[What r has heard]

The overheard info.:

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

$p_{r ; 1}, p_{r ; 2}$: The CH parameters,
The total \# of to-be-sent symbols:
[What r has heard]
- [What r and d_{1} both have heard]

The overheard info.:

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

$p_{r ; 1}, p_{r ; 2}$: The CH parameters,
The total \# of to-be-sent symbols:
[What r has heard]
- [What r and d_{1} both have heard]

The overheard info.:
[What r and d_{2} have heard]

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

$p_{r ; 1}, p_{r ; 2}$: The CH parameters,
The total \# of to-be-sent symbols:
[What r has heard]
- [What r and d_{1} both have heard]

The overheard info.:
[What r and d_{2} have heard] $-\left[\right.$ What r, d_{2}, and d_{1} all have heard $]$

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

2-Stage Scheme takes the following as input:
$p_{r ; 1}, p_{r ; 2}$: The CH parameters, $n R_{1}, n R_{2}$: The total \# of to-be-sent symbols, $n p_{s_{1} ; d_{2}}, n p_{s_{2} ; d_{1}}$: The overheard info.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

The total \# of to-be-sent symbols:
[What r has heard]
$\underset{(2)}{(r)}$ PECDmmon Info. $\longrightarrow-$ [What r and d_{1} both have heard]
The overheard info.:
Common Info. \longrightarrow [What r and d_{2} have heard]
Common Info. $\longrightarrow-\left[\right.$ What r, d_{2}, and d_{1} all have heard $]$

Initial Thoughts

- Without direct $s_{i} \rightarrow d_{i}$ communication:

With this motivation, this work studies the Common Info. of Random Linear Network Coding.

- With direct $s_{i} \rightarrow d_{i}$ communication: We thus need

| $X_{1} \cdots X_{n R_{1}}$ | $Y_{1} \cdots Y_{n R_{2}}$ |
| :---: | :---: |$p_{r ; 1}, p_{r ; 2}$: The CH parameters,

The total \# of to-be-sent symbols:

Common Info. $\longrightarrow-\left[\right.$ What r, d_{2}, and d_{1} all have heard $\}$

Settings and Definitions

- Random Linear Network Coding (RLNC)
- N packets: $\mathbf{W} \triangleq\left(W_{1}, \cdots, W_{N}\right) \in(G F(q))^{N}$.
- Each time t, source sends $Y_{t}=\mathbf{v}_{t} \mathbf{W}^{\mathrm{T}}$ via an erasure CH.
- \mathcal{R}_{t} : The set of destinations receive the packet at time t.
- \mathbf{v}_{t} is randomly generated, but is known to all receivers.

Settings and Definitions

- Random Linear Network Coding (RLNC)
- N packets: $\mathbf{W} \triangleq\left(W_{1}, \cdots, W_{N}\right) \in(G F(q))^{N}$.
- Each time t, source sends $Y_{t}=\mathbf{v}_{t} \mathbf{W}^{\mathrm{T}}$ via an erasure CH.
- \mathcal{R}_{t} : The set of destinations receive the packet at time t.
- \mathbf{v}_{t} is randomly generated, but is known to all receivers.
- Knowledge Space: $\Omega_{k}=\operatorname{span}\left\{\mathbf{v}_{t}: \forall t\right.$ such that $\left.d_{k} \in \mathcal{R}_{t}\right\}$.
- If \mathbf{Z}_{k} denotes the pkts rcv'd by d_{k}, then $I\left(\mathbf{W} ; \mathbf{Z}_{k}\right)=\operatorname{rank}\left(\Omega_{k}\right)$.

Settings and Definitions

- Random Linear Network Coding (RLNC)
- N packets: $\mathbf{W} \triangleq\left(W_{1}, \cdots, W_{N}\right) \in(G F(q))^{N}$.
- Each time t, source sends $Y_{t}=\mathbf{v}_{t} \mathbf{W}^{\mathrm{T}}$ via an erasure CH.
- \mathcal{R}_{t} : The set of destinations receive the packet at time t.
- \mathbf{v}_{t} is randomly generated, but is known to all receivers.
- Knowledge Space: $\Omega_{k}=\operatorname{span}\left\{\mathbf{v}_{t}: \forall t\right.$ such that $\left.d_{k} \in \mathcal{R}_{t}\right\}$.
- If \mathbf{Z}_{k} denotes the pkts rcv'd by d_{k}, then $I\left(\mathbf{W} ; \mathbf{Z}_{k}\right)=\operatorname{rank}\left(\Omega_{k}\right)$.
- Common Information (CI): rank $\left(\bigcap_{k=1}^{K} \Omega_{k}\right)$.
- Gács-Körner CI among \mathbf{Z}_{1} to \mathbf{Z}_{K} is rank $\left(\bigcap_{k=1}^{K} \Omega_{k}\right)$.

Settings and Definitions

- Random Linear Network Coding (RLNC)
- N packets: $\mathbf{W} \triangleq\left(W_{1}, \cdots, W_{N}\right) \in(G F(q))^{N}$.
- Each time t, source sends $Y_{t}=\mathbf{v}_{t} \mathbf{W}^{\mathrm{T}}$ via an erasure CH.
- \mathcal{R}_{t} : The set of destinations receive the packet at time t.
- \mathbf{v}_{t} is randomly generated, but is known to all receivers.
- Knowledge Space: $\Omega_{k}=\operatorname{span}\left\{\mathbf{v}_{t}: \forall t\right.$ such that $\left.d_{k} \in \mathcal{R}_{t}\right\}$.
- If \mathbf{Z}_{k} denotes the pkts rcv'd by d_{k}, then $I\left(\mathbf{W} ; \mathbf{Z}_{k}\right)=\operatorname{rank}\left(\Omega_{k}\right)$.
- Common Information (CI): $\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)$.
- Gács-Körner CI among \mathbf{Z}_{1} to \mathbf{Z}_{K} is rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$.
- Other notations: $\mathcal{T}_{S} \triangleq \mid\left\{\forall t: S \subseteq \mathcal{R}_{t} \mid\right.$: The amount of time when all d_{k} in S receive the pkt; $A \oplus B=\operatorname{span}(\mathbf{v}: \mathbf{v} \in A \cup B)$.
- Our goal: Quantifying rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$ for all combinations of K, N, and $\left\{\mathcal{R}_{t}: \forall t\right\}$ assuming large $\operatorname{GF}(q)$.

The total \# of to-be-sent symbols:
[What r has heard] -
[What r and d_{1} both have heard]
The overheard info.:
[What r and d_{2} have heard] -
[What r, d_{2}, and d_{1} all have heard]

- Our goal: Quantifying rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$ for all combinations of K, N, and $\left\{\mathcal{R}_{t}: \forall t\right\}$ assuming large $\mathrm{GF}(q)$.

The total \# of to-be-sent symbols: rank $\left(\Omega_{r}^{\left[s_{1}\right]}\right)-$
[What r and d_{1} both have heard]
The overheard info.:
[What r and d_{2} have heard] -
[What r, d_{2}, and d_{1} all have heard]

- Our goal: Quantifying rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$ for all combinations of K, N, and $\left\{\mathcal{R}_{t}: \forall t\right\}$ assuming large $\operatorname{GF}(q)$.

The total \# of to-be-sent symbols:

$$
\begin{aligned}
& \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]}\right)- \\
& \quad \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{1}}^{\left[S_{1}\right]}\right)
\end{aligned}
$$

The overheard info.:
[What r and d_{2} have heard] -
[What r, d_{2}, and d_{1} all have heard]

- Our goal: Quantifying rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$ for all combinations of K, N, and $\left\{\mathcal{R}_{t}: \forall t\right\}$ assuming large $\operatorname{GF}(q)$.

The total \# of to-be-sent symbols:

$$
\begin{aligned}
& \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]}\right)- \\
& \quad \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{1}}^{\left[s_{1}\right]}\right)
\end{aligned}
$$

The overheard info.:
rank $\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{2}}^{\left[s_{1}\right]}\right)-$
[What r, d_{2}, and d_{1} all have heard]

- Our goal: Quantifying rank $\left(\cap_{k=1}^{K} \Omega_{k}\right)$ for all combinations of K, N, and $\left\{\mathcal{R}_{t}: \forall t\right\}$ assuming large $\operatorname{GF}(q)$.

The total \# of to-be-sent symbols:

$$
\begin{aligned}
& \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]}\right)- \\
& \quad \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{1}}^{\left[s_{1}\right]}\right)
\end{aligned}
$$

The overheard info.:

$$
\begin{aligned}
& \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{2}}^{\left[s_{1}\right]}\right)- \\
& \quad \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{2}}^{\left[s_{1}\right]} \cap \Omega_{d_{1}}^{\left[s_{1}\right]}\right)
\end{aligned}
$$

The Main Challenge

$$
\operatorname{rank}\left(\cap_{k=1}^{K} \Omega_{k}\right)
$$

The Main Challenge

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)
$$

- When $K=1$, then $\operatorname{rank}\left(\Omega_{1}\right)=\min \left(\mathcal{T}_{1}, N\right)$.

The Main Challenge

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)
$$

- When $K=1$, then $\operatorname{rank}\left(\Omega_{1}\right)=\min \left(\mathcal{T}_{1}, N\right)$.
- When $K=2$, we have
$\operatorname{rank}\left(\Omega_{1} \cap \Omega_{2}\right)=\operatorname{rank}\left(\Omega_{1}\right)+\operatorname{rank}\left(\Omega_{2}\right)-\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)$

$$
=\min \left(\mathcal{T}_{1}, N\right)+\min \left(\mathcal{T}_{2}, N\right)-\min \left(\mathcal{T}_{1}+\mathcal{T}_{2}-\mathcal{I}_{\{1,2\}}, N\right)
$$

The Main Challenge

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)
$$

- When $K=1$, then $\operatorname{rank}\left(\Omega_{1}\right)=\min \left(\mathcal{T}_{1}, N\right)$.
- When $K=2$, we have

$$
\begin{aligned}
\operatorname{rank}\left(\Omega_{1} \cap \Omega_{2}\right) & =\operatorname{rank}\left(\Omega_{1}\right)+\operatorname{rank}\left(\Omega_{2}\right)-\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right) \\
& =\min \left(\mathcal{T}_{1}, N\right)+\min \left(\mathcal{T}_{2}, N\right)-\min \left(\mathcal{T}_{1}+\mathcal{T}_{2}-\mathcal{T}_{\{1,2\}}, N\right)
\end{aligned}
$$

- Our first thought was when $K=3$, we should have

$$
\operatorname{rank}\left(\bigcap_{k=1}^{3} \Omega_{k}\right)^{\prime}=\sum_{k=1}^{K} \operatorname{rank}\left(\Omega_{k}\right)-\sum_{i<j} \operatorname{rank}\left(\Omega_{i} \oplus \Omega_{j}\right)+\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2} \oplus \Omega_{3}\right)
$$

The Main Challenge

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)
$$

- When $K=1$, then $\operatorname{rank}\left(\Omega_{1}\right)=\min \left(\mathcal{T}_{1}, N\right)$.
- When $K=2$, we have

$$
\begin{aligned}
\operatorname{rank}\left(\Omega_{1} \cap \Omega_{2}\right) & =\operatorname{rank}\left(\Omega_{1}\right)+\operatorname{rank}\left(\Omega_{2}\right)-\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right) \\
& =\min \left(\mathcal{T}_{1}, N\right)+\min \left(\mathcal{T}_{2}, N\right)-\min \left(\mathcal{T}_{1}+\mathcal{T}_{2}-\mathcal{T}_{\{1,2\}}, N\right)
\end{aligned}
$$

- Our first thought was when $K=3$, we should have

$$
\begin{gathered}
\operatorname{rank}\left(\bigcap_{k=1}^{3} \Omega_{k}\right)^{\prime}=\sum_{k=1}^{K} \operatorname{rank}\left(\Omega_{k}\right)-\sum_{i<j} \operatorname{rank}\left(\Omega_{i} \oplus \Omega_{j}\right)+\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2} \oplus \Omega_{3}\right) \\
\mathrm{DOESNOTHOLD} \text { NO }
\end{gathered}
$$

An example is provided in the paper.

Main Result

- A partition of $\{1, \cdots, K\}$ is a collection of disjoint subsets $\left\{S_{m}\right\} \triangleq\left\{S_{1}, S_{2}, \cdots, S_{M}\right\}$ such that $\bigcup_{m=1}^{M} S_{m}=\{1, \cdots, K\}$.

Theorem 1 Define $(\cdot)^{+} \stackrel{\Delta}{=} \max (\cdot, 0)$. For any receiving sets $\left\{\mathcal{R}_{t}: \forall t\right\}$, with sufficiently large $\mathrm{GF}(q)$ we have
$\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\max \left\{N-\sum_{m=1}^{M}\left(N-\mathcal{T}_{S_{m}}\right)^{+}: \forall\right.$ partition $\left.\left\{S_{m}\right\}\right\}$.

Proof of A Simplified Example

- We prove a degenerate case in this presentation. Assume

$$
\begin{aligned}
& N \geq \max _{k \in[K]} \mathcal{T}_{k} \\
& \forall S \subseteq[K],\left(\sum_{k \in S} \mathcal{T}_{k}\right)-(|S|-1) N \geq \mathcal{T}_{S} .
\end{aligned}
$$

- We will prove that $\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\sum_{k=1}^{K} \mathcal{T}_{k}-(K-1) N$.

Proof of A Simplified Example

- We prove a degenerate case in this presentation. Assume

$$
\begin{aligned}
& N \geq \max _{k \in[K]} \mathcal{T}_{k} \\
& \forall S \subseteq[K],\left(\sum_{k \in S} \mathcal{T}_{k}\right)-(|S|-1) N \geq \mathcal{T}_{S} .
\end{aligned}
$$

- We will prove that rank $\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\sum_{k=1}^{K} \mathcal{T}_{k}-(K-1) N$.

An illustrative example w. $K=3$:

- $N=5$ dimensional vector space.
- 7 vectors with reception status $001,010,011,100,101,110,111$.
- $\mathcal{T}_{1}=\mathcal{T}_{2}=\mathcal{T}_{3}=4, \mathcal{T}_{\{1,2\}}=\mathcal{T}_{\{1,3\}}=\mathcal{T}_{\{2,3\}}=2$, and $\mathcal{T}_{\{1,2,3\}}=1$.

Proof of A Simplified Example

- We prove a degenerate case in this presentation. Assume

$$
\begin{aligned}
& N \geq \max _{k \in[K]} \mathcal{T}_{k} \\
& \forall S \subseteq[K],\left(\sum_{k \in S} \mathcal{T}_{k}\right)-(|S|-1) N \geq \mathcal{T}_{S} .
\end{aligned}
$$

- We will prove that $\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\sum_{k=1}^{K} \mathcal{T}_{k}-(K-1) N$.

An illustrative example w. $K=3$: We will prove rank $\left(\bigcap_{k=1}^{3} \Omega_{k}\right)=$

- $N=5$ dimensional vector space.

$$
4+4+4-(3-1) \cdot 5=2
$$

- 7 vectors with reception status $001,010,011,100,101,110,111$.
- $\mathcal{I}_{1}=\mathcal{T}_{2}=\mathcal{I}_{3}=4, \mathcal{I}_{\{1,2\}}=\mathcal{T}_{\{1,3\}}=\mathcal{T}_{\{2,3\}}=2$, and $\mathcal{T}_{\{1,2,3\}}=1$.

Proof (Cont'd)

Rx 1
 Rx 2

Rx 3

Proof (Cont’d)

Rx 1
 Rx 2

Rx 3
1000101100010101011

Proof (Cont'd)

Rx 1
 Rx 2

Rx 3

Proof (Cont'd)

Rx 3

Proof (Cont'd)

Rx 3

Proof (Cont'd)

Proof (Cont'd)

Proof (Cont'd)

100010 110 001 101 011

Proof (Cont'd)

Proof (Cont'd)

Proof (Cont'd)

Proof (Cont'd)

Proof (Cont'd)

$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ depend on the other three vectors.

Proof (Cont'd)

$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ depend on the other three vectors.

Proof (Cont'd)

Proof (Cont'd)

Proof (Cont'd)

$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ depend on the other three vectors.
Question: How to prove the rank is 5 , when RLNC is used?

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7, s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7, s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7, s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7, s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7, s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7 , s.t.

Proof (Cont'd)

[Koetter et al. 03, Ho et al. 06]: If we can find deterministically 7 vectors s.t. Rx 1 Rx 2

then for almost all random choices of the 7 vectors, $\operatorname{rank}\left(\Omega_{1} \oplus \Omega_{2}\right)=5$.
The rank problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned Cond.
[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7 , s.t.

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

Proof (Cont'd)

It does not matter how we choose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7 , and in what order we construct the vectors. Any deterministic construction will suffice!

[New]: If we can find deterministically 10 vectors: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, plus 7 , s.t.

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

A Deterministic Assignment

Rx 3

A Deterministic Assignment

Intuition of the FS and FI Conds.

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Let \mathbf{x} denote the input coding vectors and the local mixing kernels.
- Then in RLNC, each message along an edge has the form of

$$
M=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{N}(\mathbf{x})\right)
$$

where $f_{i}(\mathbf{x})$ are polynomials of \mathbf{x}. [Koetter et al. 03].

Intuition of the FS and FI Conds.

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Let \mathbf{x} denote the input coding vectors and the local mixing kernels.
- Then in RLNC, each message along an edge has the form of

$$
M=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{N}(\mathbf{x})\right)
$$

where $f_{i}(\mathbf{x})$ are polynomials of \mathbf{x}. [Koetter et al. 03].

- When constructing the basis vectors of $\bigcap_{k} \Omega_{k}$, we need to solve linear equations (i.e., being in all marginal spaces), which results in the form

$$
\mathbf{v}=\left(\frac{f_{1}(\mathbf{x})}{g_{1}(\mathbf{x})}, \frac{f_{2}(\mathbf{x})}{g_{2}(\mathbf{x})}, \cdots, \frac{f_{N}(\mathbf{x})}{g_{N}(\mathbf{x})}\right) .
$$

Intuition of the FS and FI Conds.

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Let \mathbf{x} denote the input coding vectors and the local mixing kernels.
- Then in RLNC, each message along an edge has the form of

$$
M=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{N}(\mathbf{x})\right)
$$

where $f_{i}(\mathbf{x})$ are polynomials of \mathbf{x}. [Koetter et al. 03].

- When constructing the basis vectors of $\bigcap_{k} \Omega_{k}$, we need to solve linear equations (i.e., being in all marginal spaces), which results in the form

$$
\mathbf{v}=\left(\frac{f_{1}(\mathbf{x})}{g_{1}(\mathbf{x})}, \frac{f_{2}(\mathbf{x})}{g_{2}(\mathbf{x})}, \cdots, \frac{f_{N}(\mathbf{x})}{g_{N}(\mathbf{x})}\right)
$$

- [Fully Intersected] associates a deterministic \mathbf{x}_{0} assignment with the corresponding fractional expressions; [Fully Spanned] guarantees both $g_{n}(\mathbf{x})$ and $\operatorname{det}\left(\left[\mathbf{v}_{i}\right]\right)$ are non-zero.

Conclusion \& Future Works

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

Conclusion \& Future Works

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Main Results

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\max \left\{N-\sum_{m=1}^{M}\left(N-\mathcal{T}_{S_{m}}\right)^{+}: \forall \text { partition }\left\{S_{m}\right\}\right\} .
$$

Conclusion \& Future Works

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Main Results

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\max \left\{N-\sum_{m=1}^{M}\left(N-\mathcal{T}_{S_{m}}\right)^{+}: \forall \text { partition }\left\{S_{m}\right\}\right\} .
$$

- Main motivation:

The total \# of to-be-sent symbols:

$$
\operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]}\right)-
$$

The overheard info.:

$$
\begin{aligned}
& \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{2}}^{\left[s_{1}\right]}\right)- \\
& \quad \operatorname{rank}\left(\Omega_{r}^{\left[s_{1}\right]} \cap \Omega_{d_{2}}^{\left[s_{1}\right]} \cap \Omega_{d_{1}}^{\left[s_{1}\right]}\right)
\end{aligned}
$$

Conclusion \& Future Works

The Common Info. problem of RLNC is reduced to finding a deterministic assignment satisfying the Fully Spanned and Fully Intersected Conds.

- Main Results

$$
\operatorname{rank}\left(\bigcap_{k=1}^{K} \Omega_{k}\right)=\max \left\{N-\sum_{m=1}^{M}\left(N-\mathcal{T}_{S_{m}}\right)^{+}: \forall \operatorname{partition}\left\{S_{m}\right\}\right\}
$$

- Main motivation:

- Future works: (i) Arbitrary combinations: Ex: $\left(\Omega_{1} \oplus \Omega_{2}\right) \cap \Omega_{3}$.
(ii) Common Information of RLNC over multi-hop networks.

