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Motivation — The COPE Principle
The COPE protocol — 2-hop relay networks [Kattiet al.06]

4 transmissions w/o codingvs.3 transmissions w. coding

r sends[X + Y]; d1 decodesX by subtraction.

Empirically, 40–200% throughput improvement.
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4 transmissions w/o codingvs.3 transmissions w. coding

r sends[X + Y]; d1 decodesX by subtraction.
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Opportunistic Routing:Allow d1 to directly

hear froms1. [Chachulskiet al.07].

No (intersession) coding at relay.
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A Competing Technique

Can we combine the benefits ofNetwork

Coding& Opportunistic Routing?
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Initial Thoughts
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Initial Thoughts

pr;1, pr;2: The CH parameters,

The total # of to-be-sent symbols:
[What r has heard]
−[What r andd1 both have heard]

Theoverheardinfo.:
[What r andd2 have heard]
−[What r, d2, andd1 all have heard]

Common Info.−→

Common Info.−→
Common Info.−→

With this motivation, this work studies theCommon Info.

of Random Linear Network Coding.

Without directsi → di communication:

With directsi → di communication: We thus need
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Settings and Definitions
Random Linear Network Coding (RLNC)

N packets:W
∆
= (W1, · · · , WN) ∈ (GF(q))N .

Each timet, source sendsYt = vtW
T via an erasure CH.

Rt: The set of destinations receive the packet at timet.

vt is randomly generated, but is known to all receivers.
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The total # of to-be-sent symbols:
[What r has heard]−

[What r andd1 both have heard]

Theoverheardinfo.:
[What r andd2 have heard]−

[What r, d2, andd1 all have heard]

Our goal: Quantifyingrank
(

⋂K
k=1 Ωk

)

for all combina-

tions ofK, N, and{Rt : ∀t} assuming largeGF(q).
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The Main Challenge

DOES NOT HOLD!!
An example is provided in the paper.
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Main Result
A partition of {1, · · · , K} is a collection of disjoint subsets

{Sm}
∆
= {S1, S2, · · · , SM} such that

⋃M
m=1 Sm = {1, · · · , K}.

Theorem 1 Define(·)+ ∆
= max(·, 0). For any receiving sets

{Rt : ∀t}, with sufficiently largeGF(q) we have

rank

(

K
⋂

k=1

Ωk

)

= max

{

N −
M

∑
m=1

(N − TSm)+ : ∀ partition {Sm}

}

.
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Proof of A Simplified Example
We prove adegenerate casein this presentation. Assume
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− (|S| − 1)N ≥ TS.
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K
k=1 Tk − (K − 1)N.
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Proof (Cont’d)
[Koetteret al.03, Hoet al.06]: If we can finddeterministically7 vectors s.t.

then foralmost all random choicesof the 7 vectors,rank(Ω1 ⊕ Ω2) = 5.
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[New]: If we can finddeterministically10 vectors:v1, v2, v3, plus 7, s.t.

then foralmost all rand. choicesof the 7 vectors,rank((Ω1 ∩ Ω2) ⊕ Ω3) = 5.

The Common Info. problem of RLNC is reduced to finding adeterministic

assignmentsatisfying theFully SpannedandFully Intersected Conds.

It does not matter how we choosev1, v2, v3, plus 7,

and in what order we construct the vectors.

Any deterministic construction will suffice!
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Intuition of the FS and FI Conds.
The Common Info. problem of RLNC is reduced to finding adeterministic

assignmentsatisfying theFully SpannedandFully Intersected Conds.

Let x denote theinput coding vectorsand thelocal mixing kernels.

Then in RLNC, each message along an edge has the form of
M = ( f1(x), f2(x), · · · , fN(x))

where fi(x) are polynomials ofx. [Koetteret al.03].
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.

[Fully Intersected]associates a deterministicx0 assignment with the

corresponding fractional expressions;[Fully Spanned]guarantees both

gn(x) anddet ([vi]) are non-zero.
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Conclusion & Future Works
The Common Info. problem of RLNC is reduced to finding adeterministic

assignmentsatisfying theFully SpannedandFully Intersected Conds.
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Main motivation:

Future works: (i)Arbitrary combinations: Ex: (Ω1 ⊕ Ω2) ∩ Ω3.

(ii) Common Information of RLNC overmulti-hop networks.
Wang, ISIT 2011 – p. 15/15
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