
Accepted Manuscript

FEC-based AP downlink transmission schemes for multiple flows:
Combining the reliability and throughput enhancement of intra- and
inter-flow coding

Chih-Chun Wang, Dimitrios Koutsonikolas, Y. Charlie Hu, Ness Shroff

PII: S0166-5316(11)00112-X
DOI: 10.1016/j.peva.2011.07.021
Reference: PEVA 1627

To appear in: Performance Evaluation

Please cite this article as: C.-C. Wang, D. Koutsonikolas, Y.C. Hu, N. Shroff, FEC-based AP
downlink transmission schemes for multiple flows: Combining the reliability and throughput
enhancement of intra- and inter-flow coding, Performance Evaluation (2011),
doi:10.1016/j.peva.2011.07.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.peva.2011.07.021

FEC-Based AP Downlink Transmission Schemes For Multiple
Flows: Combining The Reliability and Throughput Enhancement of

Intra- and Inter-flow Coding

Chih-Chun Wang1, Dimitrios Koutsonikolas2, Y. Charlie Hu1, and Ness Shroff3
1Purdue University, 2University at Buffalo, SUNY, 3The Ohio State University

Abstract

We consider downlink access point (AP) networks and the corresponding reliable transmission schemes. It is well
known that one can protect the network traffic against packet erasures by forward-error-correcting-codes (FEC). In
addition to ensuring reliable delivery, FECs could substantially reduce the amount of feedback traffic, which is critical
when designing high-performance AP protocols.

In this work, we generalize the FEC-based schemes, also known as intra-flow coding schemes, for multiple down-
link flows. In contrast with the classic approach that performs FEC separately on individual flows, we propose a new
protocol MU-FEC, which incorporates the recent idea of inter-flow coding to further enhance the achievable through-
put. Specifically, MU-FEC guarantees 100% reliability, is oblivious and robust to the underlying erasure probabilities,
has near-optimal throughput, higher than any existing inter-flow coding protocols, and can be practically implemented
on top of 802.11. The design of MU-FEC consists of three components: batch-based operations, a systematic phase-
based network coding decision policy, and smooth integration of inter-flow and intra-flow coding. We analytically
show that MU-FEC can achieve much higher throughput than intra- or inter-flow coding alone, and validate its perfor-
mance gain via extensive simulations. To our knowledge, MU-FEC is the first practical protocol that leverages both
intra-flow and inter-flow network coding to solve a real-world problem in single-hop wireless networks.

1 Introduction

Consider a typical scenario of an 802.11 WLAN. Multiple clients are associated to the Access Point (AP). The AP
forwards traffic between each client and the wired Internet and uses 802.11 unicast for packet transmissions between
itself and the clients. We focus on the downlink traffic, i.e., in the direction from the AP to each client, as the downlink
traffic dominates the uplink traffic in typical AP deployments.

To deal with packet losses due to the inherent lossy wireless medium and due to interference and collisions from
other clients and other WLANs in the neighborhood, the 802.11 protocol employs a simple retransmission mecha-
nism for unicast communication. A sender waits for an acknowledgment (ACK) after each packet transmission and
retransmits the packet if the ACK is not received after a short, fixed amount of time. Each packet is retransmitted up
to a maximum number of times and is then dropped. Under high loss rates, this simple retransmission mechanism can
cause significant overhead and severely limit the throughput of the WLAN, as the AP may spend a significant portion
of the airtime retransmitting lost packets. This motivates the need for novel, more efficient retransmission schemes.

It is well known that one can use Forward Error-correcting Codes (FECs), also known as intra-flow network cod-
ing [9], to ensure 100% delivery ratio as well. That is, the AP keeps sending randomly mixed packets generated from a
single batch. Once the destination receives a sufficient number of packets for decoding, a batch ACK is sent back to the
AP. AP can then move on to the next batch. The benefits of FEC-based schemes is multi-fold. First, 100% reliability
is guaranteed. Second, when there is only a single flow in the network, the achievable throughput approaches the
theoretic optimum. Third, the amount of feedback traffic is substantially reduced and the network thus experiences less
interference. Fourth, without complicated timeout mechanisms, the FEC scheme is oblivious to the underlying erasure
probabilities and offers robust performance even when the channel conditions evolves over time. The main cost of a
FEC scheme, in exchange of the aforementioned benefits, is the incurred delay during batch decoding. An FEC scheme
is thus an ideal candidate for high-rate data traffic.

The above FEC scheme can also be viewed as an intra-flow coding scheme as packet-mixing is performed within
the single flow. In contrast, a different form of network coding, termed inter-flow coding, can be used to to significantly
enhance the achievable throughput (while leaving the reliability and robustness parts untouched). Specifically, consider

1

an AP and two clients C1, C2. The AP has two packets, p1, p2, one for each client, respectively. In a lossy wireless
network, it may happen that both packets are lost and the AP would have to retransmit both of them. However, due
to the broadcast nature of the wireless medium, it can also happen that C1 received the packet p2 destined to C2 and
C2 received the packet p1 destined to C1. In that case, the AP can XOR the two packets and broadcast the combined
packet p1 ⊕ p2. Then C1 can extract its own packet p1 by XORing p1 ⊕ p2 with p2 and similarly, C2 can extract p2

by XORing p1 ⊕ p2 with p1, thus saving one transmission. This simple idea can be extended beyond the two-client
example, further improving the achievable throughput.

The potential benefits of inter-flow coding based AP downlink transmission scheme were first considered by MU-
ARQ [11]. For subsequent reference, we termed the ideas in [11] the MU-ARQ principle. A practical implementation
of the MU-ARQ principle was proposed in [15]. Nonetheless, the throughput benefits of MU-ARQ rely on carefully
coordinating multiple concurrent flows. This further exacerbates the problem of designing the corresponding ACK
and retransmission mechanisms. Therefore, complicated time-out mechanisms with unpredictable time dynamics have
to be implemented [15]. The resulting protocol is thus sensitive to the number of flows to be coded together and the
underlying packet erasure probabilities, and does not guarantee 100% reliability.

In this paper, we propose a new protocol MU-FEC, which combines the robustness of intra-flow coding with
the throughput enhancement feature of inter-flow coding. Specifically, MU-FEC inherits the same simple interactive
relationship between the AP and the users of any FEC-based scheme: AP keeps sending coded packets until receiving
batch ACK from the users. This thus enables reliable and robust performance that is oblivious to the underlying
packet erasure probabilities without resorting to complicated time-out mechanisms. Moreover, with new advanced
network code design (describing how to generate the FEC coded packets), MU-FEC also fully captures the throughput
advantage of MU-ARQ inter-flow coding principle. As will be discussed further in Section 2, the existing inter-flow
coding protocol [15] faces an NP-hard challenge: Deciding which flows should be mixed together for the next coded
packet transmission. Several heuristics are thus used in ER [15], which further reduce the achievable throughput
and make its performance sensitive to the underlying network environment. In MU-FEC, the inherent FEC-based
structure (intra-flow coding) allows us to robustly circumvent the above challenge without resorting to heuristics and
thus no performance degradation. Furthermore, we show analytically that MU-FEC achieves the optimal broadcast
channel capacity with feedback [17, 8, 7], which strictly outperforms the theoretically achievable rate of the MU-
ARQ principle. The main cost of MU-FEC is the incurred delay during batch decoding, which is inevitable for any
FEC-based schemes.1

Our extensive simulations also show that MU-FEC achieves throughput close to the theoretically optimal in both
low- and high-loss rate environments. The gap between MU-FEC and the best possible throughput of any schemes,
termed the theoretic gap, is at most 9–16% for MU-FEC . For comparison, the theoretic gap of the ER protocol is
30–38%. Note that ER is sensitive to parameter tuning. If we assume that the AP is able to fine tune the parameters
of ER on the fly (such optimization is done by us, not by the original paper [15]), then the theoretic gap of ER can
be reduced to 14–21%. As a result, MU-FEC with reliable delivery outperforms unreliable ER protocol by 12–42%
depending on whether on-the-fly fine tuning of ER is allowed. Based on FECs, the performance of MU-FEC is also very
robust in various network environments, consistently outperforming ER under both homogeneous and heterogeneous
loss patterns. In short, MU-FEC successfully combines the benefits of both intra- and inter-flow coding and solves a
real-world problem in single-hop wireless networks.

2 Previous Results

2.1 From the MU-ARQ principle to the theoretic capacity

One of the earliest paper regarding inter-flow coding for AP networks is the MU-ARQ principle in [11]. The analysis of
the MU-ARQ principle is straightforward under several idealistic assumptions, including zero-cost feedback, infinitely
large batch sizes, and perfect channel symmetry. Accordingly, [11] quantifies the throughput efficiency of the MU-ARQ
principle, which is also known as the sum-rate capacity and is defined as

η =
MN

T
(1)

1The delay is mostly determined by the batch size. For the same batch size, the delay of MU-FEC is smaller than that of the existing FEC
schemes since the higher throughput of MU-FEC ensures that each user can accumulate packets for decoding in a faster way than the existing FEC
schemes.

2

(a) The overhearing patterns (b) Coding opportunities

Figure 1: Illustration of the MU-ARQ protocol.

(a) The overhearing patterns
when the AP sends [X3 + Z3]
and then [X2 + Y1].

(b) Sending [X2 + Y1 + Z3] will
take advantage of the previously
overheard [X2 + Y1] packet.

Figure 2: Aggressive exploitation of the overheard
coded packets..

where M is the number of clients, N is the number of packets at the AP for each client, and T is the overall number
of time slots required to finish the transmission of the MN packets. Obviously, η is at most 1 by definition as each
time slot can carry at most one packet even with perfect channels. The higher the throughput efficiency η, the larger
throughput is for the entire system. The throughput efficiency of MU-ARQ for infinitely large N is computed in [11]
by

lim
N →∞

ηMU-ARQ =
1− (1− p)M

1 + 1−p
Mp2 (1− (1− p)M −Mp(1− p)M −1)

(2)

where it is assumed that the probability that a packet sent by the AP is received by Client Ci successfully is p for all
i ∈ [M], and the success events are independent for different Clients Ci 6= Cj .

The achievable throughput of the MU-ARQ is significantly higher than the traditional FEC-only schemes, which
have ηFEC.only = p. On the other hand, recent theoretic studies [17, 8, 7] show that the throughput efficiency of any
scheme must obey

η ≤ M
∑M

k=1
1

1−(1−p)k

, (3)

Moreover, theoretically one can design an optimal scheme that achieves η∗ equal to the outer bound (3) and thus
strictly outperforms an MU-ARQ scheme (since “(3) ≥ (2) ≥ ηFEC.only = p” always holds).

The remaining question is thus whether the throughput benefits of the theoretically optimal schemes in [17, 8, 7]
can be robustly realized in an ever-changing practical environment when considering the necessary overheads. Our
work answers this question in an affirmative way.

2.2 Limitations of the MU-ARQ protocol

There are several inherent challenges when implementing the idealistic MU-ARQ principle. We use the example in
Figure 1 for illustration.

Suppose in the initial stage, the AP s transmits 9 native packets among which X1 to X3 are intended for client d1;
Y1 to Y3 are intended for d2; and Z1 to Z3 are intended for client d3, respectively. All 9 packets are sent using wireless
broadcast, and due to the randomness of the wireless channel, clients d1 to d3 may have different overhearing patterns,
as illustrated in Figure 1(a).

MU-ARQ takes advantage of the “diversity” of the overhearing patterns at the clients. For example, packet X2 is
heard by d2 but not by {d1, d3}, packet X3 is heard by both d2 and d3 but not d1. Packet Y1 is heard only by d1 and
packet Z3 is heard only by {d1, d2}. See Figure 1(b) for the list of the 4 overheard packets that may lead to potential
coding opportunities. MU-ARQ then searches for the inter-flow coding opportunities that combine 2 flows (or even 3
flows) together. See Figure 1(b) for the opportunities mixing 2 flows. Since there is no Y packet that is heard by both
{d1, d3}, there is no coded packet in this example that can simultaneously mix 3 flows.

An inherent limitation of MU-ARQ is the following: Issue 1: The protocol is overly conservative and exploits
coding opportunities in a passive way. Continue our example in Figure 1. Suppose the AP decides to send [X3 +Z3]
and then [X2 + Y1]. Due to the channel randomness, [X3 + Z3] and [X2 + Y1] are heard by d1 and by d3, respectively;
see Figure 2(a) for the overhearing pattern table. By hearing [X3 + Z3], d1 can now decode X3 as illustrated in
Figure 2(b).

The remaining question is thus what is the optimal choice of the next coded packet. MU-ARQ answers this question
in the following conservative way. We first notice that the coded packet [X2 + Y1] heard by d3 cannot be used to

3

(a) MU-ARQ sending [X3+Y1] first.
At least two more transmissions are
necessary.

(b) MU-ARQ sending [X3 +Z3] and
[X2 + Y1] instead. No further trans-
mission is necessary.

Figure 3: The impact of different choices of coded packets.

decode any additional information, since d3 has heard neither X2 nor Y1 in the past. As a result, MU-ARQ discards
the overheard coded packet [X2 + Y1] at d3. Since each of d1 to d3 only needs one additional packet (more explicitly,
they need X2, Y1, and Z3, respectively), MU-ARQ checks whether they can be mixed together. Since X2 is now heard
only by d2 (resp. Y1 is heard only by d1) as illustrated in Figure 2(a), these three packets will not be mixed together by
MU-ARQ. As a result, MU-ARQ needs at least two additional packets to complete transmission.

On the other hand, we can aggressively exploit the coded packet [X2 + Y1] overheard by d3. That is, we can
broadcast a coded packet [X2 + Y1 + Z3]. If d1 receives such packet, d1 can decode the desired X2 packet by
subtracting Y1 and Z3 based on d1’s existing knowledge about Y1 and Z3. If d2 receives such packet, d2 can decode
the desired Y1 packet by subtracting X2 and Z3 based on d2’s existing knowledge about X2 and Z3. For d3, d3 has
neither the knowledge about X2 nor the knowledge about Y1, which is the reason why MU-ARQ chooses not to mix
the three packets together in the first place. However, we note that although d3 does not know the individual packets
X2 and Y1, d3 did overhear a coded packet [X2 + Y1]. Therefore, d3 can still decode the desired Z3 by subtracting
the previously heard coded packet [X2 + Y1] from the new received packet. In this way, we recoup the benefits of
overheard coded packets that are not immediately decodable, which further pushes throughput efficiency from the
MU-ARQ scheme (2) closer to the optimal (3).

Issue 2: The performance of ER with a finite batch size is sensitive to the decision of which coded packet to
send in each time slot. Previously, we assumed that the AP first sends [X3 + Z3] and then [X2 + Y1]. In Fig. 1(b) we
note that there is actually one other coding opportunity [X3 + Y1] in addition to the previous choices [X3 + Z3] and
[X2 + Y1]. What if the AP decides to send [X3 + Y1] first (instead of the previous choices)? Also suppose that both
d1 and d2 receive [X3 + Y1] and use it to decode X3 and Y1, respectively. After the first packet, the new overhearing
pattern becomes Figure 3(a).

Now d2 has received all three Y packets; d1 only needs to receive one more packet X2; d3 only needs to receive
one more packet Z3; but X2 and Z3 cannot be coded together since X2 is not overheard by d3. As a result, we need
at least two more time slots to complete transmission. The total number of necessary transmissions is thus 1 + 2 = 3
when we send [X3 + Y1] first. In contrast, suppose we use the original choices [X2 + Y1] and [X3 + Z3] and they are
heard by {d1, d2} and by {d1, d3}, respectively; see Figure 3(b) for the overhearing pattern table. In this case, all three
clients d1 to d3 can decode all the desired X , Y , and Z packets after two transmissions. The decision of not sending
[X3 + Y1] first thus saves 1 transmission.

Deciding which packets to be sent first turns out to be highly non-trivial (NP-hard in some cases) [15]. By assuming
the wireless channels are noiseless, [15] proposed to use an integer-programming (IP) solver for this problem. However,
since in practice the wireless channel is not perfect, the coding decision of ER is far from optimal even when using the
optimal IP solver.

The above two limitations plus the timeout-based design substantial hinder the performance of ER. For example,
as pointed out in [15] and verified empirically in Section 6, the performance gain of [15] degrades substantially when
the number of to-be-mixed flows increases and when in a high-loss rate environment. We argue that such performance
loss is caused strictly by the implementation choice of ER. The intuition behind is that the more number of flows to
be mixed together, the more coding opportunities to choose from, and the higher the throughput should be. And the
higher the loss rate is, the more “diverse” of the overhearing pattern (more frequently to see a packet received by one
but not the other when compared to a packet received by both clients), the higher coding gain should be. Such intuition
also fits the theoretic prediction in (2) and (3). As we will see in Section 3, by using the FEC (equivalently intra-flow
coding) as the building blocks, we can successfully circumvent the above limitations. The resulting MU-FEC protocol

4

demonstrates properly monotonic increasing improvement with respect to the number of flows and the loss rates, and
achieves robust throughput under various network environments.

2.3 Related work

Recent results that combine intra- and inter-flow coding. The smooth combination of the benefits of intra- and
inter-flow coding has been a grand challenge for wireless network designers. Recently, [16] proposes to combine intra-
and inter-flow coding in a wireless relay environment. Compared to our work, their approach of combining intra- and
inter-flow coding is performed at the batch-level. That is, intra-flow coding is performed within a batch, which alters
the “overhearing pattern from a batch’s perspective.” Then inter-flow coding is performed based on the overhearing
batches. The C&M protocol [20] also combines the two types of coding at the batch level but in reverse order: a node
first creates a batch of inter-flow coded packets by mixing packets belonging to different flows and then sends out linear
combinations of the created coded packets. Finally, I2MIX [14] simply performs random linear network coding on all∑M

i=1 Ni packets (assuming M flows and a batch of Ni packets for flow i). As we will see in Section 3.1, this approach
can be highly inefficient. Note that all these works refer to a topology and traffic pattern fundamentally different from
the one we are considering in this paper - multihop wireless mesh networks with multihop flows intersecting at some
intermediate router vs. single hop WLANs with single hop flows from the same source (AP) to multiple clients.

In our work, the integration of intra- and inter-flow coding is performed at the packet level. MU-FEC makes the
joint intra- and inter-flow coding decision for each packet based on the overhearing patterns at the packet level. As can
be seen, such low-level packet-based combination is key to the robustness and high performance of MU-FEC.

Theoretic Studies. The 1-hop WLAN corresponds to the classic “broadcast channel” problem in the information
theory society, which has been an active research subject in the past four decades. Some example related works in this
extremely rich literature include the 2-user feedback capacity exploration for the erasure channel [8, 18], the Gaussian
channel [13], and the discrete memoryless channels [5]. The results in this work can also be viewed as a generalization
of the index coding problem [1] from the noiseless channels to the random wireless broadcast erasure channels.

Other network coding based retransmission schemes. ER [15] was the first practical implementation of the MU-
ARQ principle. The design of ER aims to capitalize the throughput benefits of inter-flow coding while addressing
several practical issues, such as feedback frequency, packet delay time-out, link asymmetry, that were previously
ignored in MU-ARQ. Recently, XORR [4], was proposed to improve the performance of ER by considering the impact
of different link data rates on the coding decision and incorporating a network-coding-aware opportunistic scheduler
to the AP, to provide fairness among clients of different link qualities. However, XORR’s coding strategy can be far
from optimal. As in MU-ARQ/ER, XORR also drops overheard coded packets that are not immediately decodable,
and only considers the head-of-line packet of each flow when making coding decisions, which also limits the coding
gain. Note that the idea of MU-ARQ appeared in dozens of papers other than [11]. Some other theory papers that use
the same idea of MU-ARQ can be found in [12], and [6]. However, none of them achieves the theoretic optimum (3)
for ≥ 3 clients.

3 MU-FEC: Main ideas

The MU-FEC protocol consists of three important design components: (i) Batch-based operations, (ii) A systematic
phase-based coding decision policy, and (iii) The smooth combination of inter-flow coding and intra-flow coding. MU-
FEC not only enables practical implementation but also admits provably optimal theoretical performance, when there is
a sufficiently large number of clients in the system. In this section, we discuss the main ideas in the design of MU-FEC.
We then give a detailed description of the protocol in Section 4.

3.1 Prerequisite: The Batch-Based Approach

We first note that it is generally more beneficial to wait for more coding opportunities before starting inter-flow coding.
However, as it is impractical to wait indefinitely for new coding opportunities, we use a batch-based design that curtails
the delay impact and also regulates the associated header size for each coded packet. As will be seen later, this
batch-based approach enables new systematic design of recouping overheard coded packets and scheduling new coded
transmissions that are difficult to implement in a timer-based approach [15].

5

(a) The Phase 1 Operation (b) The Phase 2 operation

Figure 4: Phase-based operation of the proposed algorithm. Figure 5: MU-FEC flow chart.

Batch-based operation: Each flow i has Ni packets to transmit in each batch. If there are M flows to be served
by the AP, then an inter-flow batch contains

∑M
i=1 Ni packets. The protocol will intelligently decide how to mix the∑M

i=1 Ni packets. Our goal is to finish the transmission of the Ni packets for each flow in the shortest amount of time.

3.2 Addressing Issue 1: Phase-based Inter-flow Coding

A critical observation towards recouping the benefits of overheard coded packets is that for any given packet, the
number of overhearing clients is monotonically increasing. For example, suppose a packet X intended for d1 is heard
by d2, and we retransmit X for the second time. This time, X is received only by d3. Even though d2 does not receive
X in the second time, d2 still knows X from the first transmission. Therefore, X is now overheard by both d2 and d3.
The number of clients overhearing X thus increases monotonically over time. Similar statements hold for inter-flow
coded packets as well. That is, if a coded packet is created by mixing two flows, then the overheard coded packet can
only create new coding opportunities for mixing > 2 flows. In our example of Figure 2(b), the coded packet [X2 + Y1]
is created for mixing 2 flows. Once [X2 + Y1] is overheard by d3, it can be used for mixing 3 flows.

The above observation prompts the following phase-based design. We define a k-flow packet as a packet that mixes
exactly k flows together, k ranging from 1 to M . Any k-flow packet thus serves k clients simultaneously. If a k-flow
packet is heard by a client other than the intended k clients, it is not immediately decodable. As discussed previously,
MU-FEC will recoup this kind of packet and use it as side information when mixing over > k flows in the future.
Since overhearing a k-flow packet may only create a new opportunity for mixing h flows with some h > k, an optimal
solution is to send out k-flow packets first, and hopefully this will create new opportunities for mixing h flows together
where h > k. Based on this reasoning, we divide an inter-flow batch into M phases. Each batch goes through Phases 1
to M in sequence. During Phase k, the AP only sends out k-flow packets; overhearing these packets can create new
coding opportunities of mixing h > k flows in the future phases.

An example of phase-based operations: We again use a 3-client scenario as our running example, see Figure 4.
Each inter-flow batch contains N1 + N2 + N3 = 9 packets. In Phase 1 (see Figure 4(a)), the AP transmits packets
mixing only 1 flow, i.e., no inter-flow coding is performed. As can be seen, some Phase 1 packets successfully reach
the intended client while some do not. The latter are called the overheard packets, and in our example, X2, X3, Y1,
and Z3 are overheard packets. These overheard Phase-1 packets will later be used in Phases 2 and 3.

After spending some time in Phase 1, AP switches to Phase 2 based on the feedback from the clients. In Phase 2,
AP starts to send packets mixing exactly 2 flows, see Figure 4(b). In our example, based on the overhearing record,
Phase 2 sends packets like [X3 + Z3] and [X2 + Y1] that mix the overheard Phase-1 packets.

Again, after spending some time in Phase 2, AP switches to Phase 3 based on the feedback from the clients. In
Phase 3, AP sends packets mixing exactly 3 flows. One such example is the [X2 + Y1 + Z3] packet described in
Figure 2(b). The way we create it is by mixing two packets [X2 + Y1] and [Z3]. Again, [Z3] is an overheard packet
transmitted in Phase 1. [X2 + Y1] is an overheard packet transmitted in Phase 2, which is now recouped in the MU-
FEC protocol (in contrast with being discarded in ER). The Phase-3 packet [X2 + Y1 + Z3] is indeed constructed by

6

overheard packets in the previous Phases k, k < 3. By monotonically progressing from Phases 1 to 3, we increase the
maximum amount of k-flow coding opportunities for each individual phase.

3.3 Addressing Issue 2: Intra-flow Coding Within A Single Phase

The phase-based operation gives higher priority to sending k-flow packets for a smaller k. However, as discussed in
the example of Figure 3, even when we are only sending packets mixing the same number of flows, it is still critical
to decide which packet should be sent earlier. We observe that the problem of deciding which packet to send under a
noisy broadcast channel model is essentially identical to the packet forwarding problem in the original opportunistic
routing protocol ExOR [2]. Motivated from the success of using random intra-flow coding to efficiently solve the
packet forwarding problem (the MORE protocol [3]), MU-FEC uses the same heuristic, i.e., random intra-flow coding
(with the coding coefficients randomly chosen from a Galois Field GF (2b)), to simplify the packet selection decision,
without resorting to complicated integer programming solvers or simplified suboptimal heuristics.

3.4 When to stop (in a given phase)? A New Rank-Aware Phase Transition

The key concept of any FEC (intra-flow coding) scheme is to use feedback to inform the AP that a client has collected
a sufficient number of packets and the AP can stop transmission. Since we now have several phases within a batch, the
key question becomes when to stop the transmission in the current Phase k and move on to Phase (k +1); and when to
stop transmission for the current batch and move on to the next batch. Note that if we move to the next phase too late,
then the throughput suffers as it takes longer than necessary to finish transmission. If we move to the next phase too
early, some clients may fail to receive all the desired information. Since the “information of network coded traffic” is
quantified by the rank of the corresponding linear space, we design a near-optimal mechanism that traces the evolution
of “the ranks for the individual phases” and use it as an indicator when to move from one phase to the other.

4 MU-FEC Design

4.1 Protocol Overview

A flow chart of the protocol operation at the AP and the client is given in Figure 5.
The AP maintains M buffers Bi, i = 1, · · · ,M (jointly shown as Payload Buffer in Figure 5); the i-th buffer stores

the payloads of the Ni packets for the current batch. To fully exploit/recoup all possible coding opportunities, the AP
also needs to keep track of all data packets in the air. For that purpose, the AP keeps a queue Qout that stores the inter-
flow coding vectors (not the payloads) of all the outgoing packets for the current batch. Each inter-flow coding vector

v stores the coding coefficients for the Ntotal
∆=

∑M
i=1 Ni packets of the M flows, i.e., it is a row vector of size Ntotal.

We set the maximum allowable number of vectors in Qout to be 10 ×
(∑M

i=1 Ni

)
. Each coding vector is associated

with an overhearing bit map and a creation bit map, each of size M bits, and a unique 2-byte sequence number.
The overhearing bit map records which client has overheard this packet. Since each outgoing coding vector/packet is
created by mixing a subset of M flows, the creation bit map of an inter-flow vector is used to indicate which flows were
used to generate this vector.

The unique sequence number for each inter-flow coding vector is to facilitate cumulative feedback. The sequence
number is defined within the same inter-flow batch, not within the same flow. Therefore, each client periodically sends
back a list of sequence numbers acknowledging which coded/uncoded it has received without the need to distinguish
which flows the packets belong to. Upon the receipt of the list of ACK’ed sequence numbers, the Qout updates the
corresponding overhearing map accordingly.

The Qout buffer is used by the phase-based operation to make the coding decision, which starts from Phase 1
and ends in Phase M . When the phase-based operation is in Phase k, the AP generates a coded k-flow packet and
broadcasts it whenever there is a transmission opportunity. More explicitly, the phase-based operation generates the
inter-flow coding vector for the next to-be-transmitted packet. The coding vector is then used by a separate routine to
construct the coded payload from the payload of native packets stored in the payload buffer.

As discussed in Section 3, the monotonic progression from Phase 1 to Phase M gives higher priority to coding
over a smaller number of flows. On the other hand, we also want to quickly move to higher phases so that we can
code over a large number of flows and thus capitalize the largest amount of coding benefits. To that end, we need a

7

new component: the Phase Completion Status Indicators (PCSIs). As already mentioned, when the AP receives a
feedback packet from a client, the AP will update the overhearing status of Qout. A separate process then takes the
updated Qout as input to compute the PCSIs. The PCSIs are then used by the phase-based operation to decide when to
switch from Phase k to Phase (k + 1), or to decide whether we have finished the last Phase M and are ready to move
to the next inter-flow batch.

The clients (Rx) store all overheard packets. Throughout the transmission, each client periodically sends back
cumulative ACKs, similar to [15, 10], that tell the AP which coded and uncoded packets it has received in the past.
Since each packet is associated with an inter-flow coding vector, one can view that the periodic feedback tells the AP
which coding vectors have been received by which client.

Unlike the MU-ARQ and ER, MU-FEC uses batch decoding to extract the benefits of network coding in a similar
way as the MORE protocol and any other FEC-based protocols. More explicitly, each client collects all the packets it
has heard and performs decoding at the end of the current inter-flow batch.

4.2 Phase-Based Operation

In the beginning of each inter-flow batch, we add Ntotal elementary basis vectors to Qout. That is, if we concatenate the
elementary row vectors vertically, we have an Ntotal ×Ntotal identity matrix after initialization. For an elementary row
vector corresponding to the i-th client, its i-th bit of the creation bit map is set to one and all other creation bits are set
to zero. The creation map thus indicates that this elementary coding vector contains the information from flow j. Since
no packet has been transmitted yet (thus no overhearing), all the overhearing bit maps are set to all-zero.

We use [M] to denote the integer set {1, 2, · · · ,M}. The phase-based operation maintains (2M − 1) floating-point
variables aS indexed by S. Each subscript S is a non-empty subset of [M]. For example, when M = 2, we have
(2M − 1) = 3 different non-empty subsets {1}, {2}, and {1, 2}. Therefore, we have three floating-point variables
a{1}, a{2}, and a{1,2}. We use |S| to denote the number of elements in S. The phase-based operation also maintains a
register K, which records the current phase index.

The number of aS variables grows exponentially with respect to M and is a tradeoff between performance and
computational complexity. The value of M depends on the modern microprocessor capabilities. As will be seen, the
larger the M value, the higher the throughput. In our implementation, we only use M = 5 (using 31 variables). Our
results show that mixing only 5 flows together in an efficient way already outperforms the state-of-the-art ER protocol,
which mixes all flows together.

Initialization of the path-based operation: In the beginning of each inter-flow batch, let aS ← 0 for all non-
empty set S ⊆ [M]. Let K ← 1.

Normal operation in Phase K:
Step I — Choosing the flows to be coded together: Whenever there is a transmission opportunity and the AP is in
Phase K, the AP will mix K flows together. More explicitly, for any given non-empty subset S ⊆ [M] that has
K = |S| elements, the AP can mix together all flows i ∈ S in Phase K. The first key question is thus how to choose
a subset S of size K for the AP to code the corresponding flows together. In MU-FEC, the module “Phase completion
status indicators” will output a non-negative integer dS for each subset S. The larger the dS is for a given S, the more
important it is to code the flows in S. To perform tie-breaking between different S, every time we can transmit a packet,
we use the following subroutine to choose S:

1: Consider all non-empty subset S ⊆ [M] satisfying both (i) the size is K, and (ii) the corresponding dS generated
from PCSIs is non-zero.

2: Among those S, choose the S∗ with the largest aS value.
3: Let aS∗ ← aS∗ − 1

dS∗ .
Intuition: Using the auxiliary aS variables, the frequency of selecting a subset S will be proportional to the corre-
sponding importance indicator dS .

Step II — Generate a new coding vector: Once the S∗ is determined, use the following subroutine to generate a
new inter-flow coding vector v, which is a row vector of dimension Ntotal. We need the following definition for the
subroutine.
Definition 1 An inter-flow coding vector v in Qout is compatible to a non-empty subset S ⊆ [M] if both the following
two conditions are satisfied: (i) In the creation bit map of v, all the bits outside S are zero. (ii) For all i ∈ S, either
the i-th bit of the creation map is 1, or the i-th bit of the overhearing map is 1.
In other words, v is compatible to S if the subset S “covers” the creation bit map; and jointly the creation plus the
overhearing maps “cover” the subset S. Intuitively, a vector v being compatible to S means that for any i ∈ S, either

8

receiver i has already overheard v in the past (the overhearing map), or v carries information that can benefits receiver
i. Borrowing the wisdom of intra-flow coding, we randomly mix all such eligible vectors v together to avoid making
the decision which packets to be mixed. In other words, the final output vout is the random summation of all the inter-
flow coding vectors compatible to S∗. We use this vout as the inter-flow coding vector for the to-be-transmitted packet.
Store the new vout back into Qout (see the flow chart Fig. 5). Set the overhearing map to 0. For all i ∈ [M], set the
i-th bit of the creation map to 1 or 0 depending on whether i ∈ S∗ or not. Append to vout a unique 2-byte sequence
number. Note that the creation bit map of this new vout will not change anymore. However, the overhearing bit map
will be updated in the future according to the feedback from the receivers back to the AP.

Step III — Construct the coded payload and send the coded packet: Based on the new inter-flow coding vector
vout = (v1, · · · , vNtotal), we can assemble the coded payload by summing up the native payloads (stored in the payload
buffer) with the corresponding coefficients v1, · · · , vNtotal . The final outgoing coded packet contains the 2-byte sequence
number, the new inter-flow coding vector, the coded payload, and the creation bit map. The inclusion of the creation
bit map is to reduce the size of the packet header, in particular the part occupied by the inter-flow coding vector. More
explicitly, one can prove that for any vector vout in MU-FEC, the value of a coordinate is non-zero only if it corresponds
to a flow-i packet such that the i-th bit of the creation map is one. Therefore, when sending a k-flow packet, k < M , we
only include in the packet header the segments of the inter-flow coding vector corresponding to the chosen k flows. The
clients use the creation bit map to reconstruct the whole inter-flow coding vector by filling the segments corresponding
to the remaining (M − k) flows with 0’s.

4.3 Phase Completion Status Indicators

An important component of MU-FEC is the PCSI computation, which decides whether the AP can stop the current
Phase k and move to Phase (k + 1). Note that the overhearing maps of the vectors in Qout are updated only after
receiving an ACK from the destinations. Therefore, we only need to run the following routine during the initialization
of Qout for each inter-flow batch (see Section 4.1), and when the AP receives a cumulative ACK from a client. The
computation of the PCSIs is as follows:

There is one PCSI for each non-empty subset S ⊆ [M], which is denoted by dS . For any given S, the computation
of dS is carried out as follows.

1: dS ← 0.
2: for all i ∈ S do
3: If |S| < M , consider all vectors in Qout that satisfy at least one of the following two conditions: Cond. 1: it

is received by di (by checking the i-th overhearing bits); Cond. 2: it is compatible to at least one S′ ⊆ [M]
satisfying |S′| > |S|. If |S| = M , consider all vectors in Qout that satisfy Cond. 1.

4: Project2 all these vectors onto flow i.
5: Compute the rank of the projected vectors. Let r1 denote the computed rank and store it for later use.
6: If |S| < M , consider all vectors in Qout that satisfy at least one of the following three conditions: Cond. 1,

Cond. 2 as defined in Line 3, or Cond. 3: it is compatible to S. If |S| = M , consider all vectors in Qout that
satisfy at least one of the two conditions: Cond. 1 and Cond. 3.

7: Project all these vectors onto flow i.
8: Compute the rank of the projected vectors. Let r2 denote the computed rank.
9: dS ← dS + (r2 − r1).

10: end for
Intuition: The PCSIs answer when we can switch to the next phase. Suppose we are in Phase k and try to mix k flows in
S (|S| = k). If we know that what we can possibly achieve by mixing |S| flows (in terms of conveying packets to their
designated clients) can also be achieved by mixing |S′| flows for some S′ ⊆ [M] satisfying |S′| > |S|, then it means
that the conservative approach of mixing only |S| flows can be superseded by a more aggressive approach of mixing
|S′| flows. In this case, we obviously want to start mixing |S′| flows rather than wasting more time on only mixing
|S| flows. In essence, PCSIs quantify and compare “what can possibly be achieved” by mixing |S| flows with that of
mixing |S′| flows. Such task is achieved by simple rank-based computation, which is based on a critical property of
MU-FEC that will be introduced shortly after in Proposition 1 of Section 5.

More explicitly, the rank r2 computed by PCSIs represents the benefits of “staying in the current Phase k” while
the rank r1 represents the benefits of “moving out of the current Phase k and focusing on the higher-phase S′ flows.”

2The projection of an inter-flow coding vector v to flow i is the subvector of v corresponding to the symbols of flow i.

9

When the difference is zero, it means that it is time to move to the next phase, Note that dS is the sum of r2 − r1 for
all i ∈ S. The reason is that mixing S flows potentially benefits all i ∈ S. Therefore, we compute the benefit r2 − r1

for each individual flow i and sum them up for the computation of dS .
Deciding whether to move to the next phase/batch: After the computation of dS for all non-empty subsets

S ⊆ [M], the AP needs to decide whether to move to the next phase/batch or not. Suppose the current phase is k for
some 1 ≤ k ≤ M − 1. We check all S ⊆ [M] with |S| = k. If all those S have dS = 0, then it means staying
in Phase k is redundant and we move to Phase (k + 1). Otherwise, stay in Phase k. When k = M , there is no next
phase to move to. We stay in Phase M until all destinations have sent feedback acknowledging that the decoding of
the inter-flow batch is successful. Once all destinations have acknowledged the current inter-flow batch, we move to
the new batch.

Complexity: The computation of (2M − 1) PCSIs every time the AP receives a cumulative ACK from a client
is a computationally intense component of MU-FEC. (Note that the PCSI computation is on the vector only, not on
the payload.) However, the computation can be made much more efficient by noticing that there are a lot of repeated
computations. For example, any vector in Qout that satisfies Conds. 1 and 2 in Line 3 for some i and S1 must also
satisfy Conds. 1 and 2 for the same i and all other S2 satisfying |S2| = |S1|. Therefore, the computation of r1 for the
pair (i, S1) must be identical to that for the pair (i, S2).

It is also important to notice that the complexity of the PCSI computation in MU-FEC increases exponentially with
the number of flows (M), while the complexity of ER/MU-ARQ is exponential with the total number of packets. The
dependence on the number of flows allows us to limit M to a small number (by grouping M flows together and only
coding packets from those flows). This simple heuristic allows MU-FEC to achieve performance close to the optimal
in practice. In contrast, the heuristic used in [15] performs much lower than the optimal coding strategy which can
only be discovered if we consider all possible ways of coding all the packets.

4.4 Batch Decoding at the Client

Each receiver uses the same batch-based decoding algorithm. For simplification, we consider only receiver 1. Rx i for
i > 1 can be obtained by symmetry.

During the batch transmission, Rx 1 stores all the inter-flow coding vectors in a queue Qrx vec, and these vectors in
Qrx vec form a |Qrx vec|×Ntotal matrix. We then deliberately rearrange the columns such that the columns corresponding
to flow 1 are the last N1 columns. (If focusing on other clients, say Rx 3, we shuffle the columns of flow 3 to the last
N3 columns.) When adding newly received inter-flow coding vector v to Qrx vec, we perform Gaussian elimination on
both the coding vector and on the corresponding coded payload, which keeps the Qrx vec matrix upper triangular. Note
that this is a two-step process. We first test the independence only for the coding vector. Only when the coding vector
is linearly independent, then we process the payload, which reduces the computation complexity.

When decoding, consider the rows of which the only non-zero entries corresponding to flow 1. Since we shuffle
the columns of flow 1 to the last N1 columns and since Qrx vec is upper triangular, those rows must be the last few rows.
When the number of those rows is N1, we perform decoding. That is, we use the last N1 rows and the corresponding
coded payload to decode as if we are performing intra-flow decoding.
Intuition: The critical step is shuffling the flow-1 columns to the last N1 columns. In this way, Gaussian elimination
will automatically eliminate the “interference” caused by other flows so that we can decode the flow-1 packets as if
decoding from intra-flow coded packets. (The only non-zero entries in the last few rows are all in the columns of
flow 1.) As a result, we can decode the flow-1 packets from inter-flow coded packets as if decoding from intra-flow
coded packets.

4.5 Client Feedback Reduction

We notice that with the PCSI computation, we move to Phase 2 only when each packet is overheard by at least one of

the M receivers. Therefore, it takes at least Ntotal
∆=

∑M
i=1 Ni transmissions to finish Phase 1. Since feedback is used

only to decide when to move to the next phase, the clients do not need to transmit feedback back to the AP during the
first Ntotal transmissions. As a result, to reduce the amount of feedback traffic, at the beginning of each batch, clients
do not send any feedback and use the arrival time and the sequence numbers of their received packets to estimate when
the AP will finish the first Ntotal transmissions. After that, each client starts sending periodic feedback.

In contrast, feedback in ER is used to determine the retransmission time of each individual packet and hence, it has
to be sent periodically for the whole duration of the protocol operation.

10

5 Correctness Guarantee and Performance Analysis

The MU-FEC protocol is designed with rigorous mathematical foundation. In this section, we describe a key property
of the MU-FEC protocol and provide the corresponding performance analysis.

For any receiver Rx i, we notice that by construction the corresponding Qrx vec is an upper triangular matrix. Let
rproj denote the rank of the submatrix of Qrx vec induced by the columns of flow i. Let rlower denote the number of the
last few rows for which all the non-zero entries are in columns of flow i. We have the following proposition.

Proposition 1 For any time instant, rproj = rlower.
Intuition: This proposition says that the “rank” of the projected space on flow i (rproj) can be fully extracted by Gaussian
elimination when focusing on the last rlower rows for decoding (the decodable rows). Therefore, the inter-flow coding
problem is now simplified to an intra-flow coding problem since the rank of the projected space on each flow (as if
coding only among the flow of interest) is equal to the rank of information space after inter-flow decoding (based on
Gaussian elimination that removes interference). Moreover, the AP can now simply look at the individual projected
spaces of all the clients to decide whether to move to the next phase (rproj) and MU-FEC automatically guarantees that
the clients can receive coded packets (rlower) by removing undesired packets of other clients.

It is worth emphasizing that the basic structure of MU-FEC is no different than the traditional FEC-based schemes.
Namely, the AP keeps transmitting and use the feedback to move to the next phase and/or next batch. The advanced
coding computation, such as the PCSIs, can be viewed as generalizing FECs to accommodate the ideas of inter-flow
coding. Moreover, the computation at the clients is minimal. The client simply needs to perform Gaussian elimination
and periodically sends a bit map indicating which packets it has received. All the advanced computation is performed
within the AP.

The most intriguing feature of MU-FEC is that such simple feedback and FEC-based design is also theoretically
optimal. That is, under the same theoretic setting as used in MU-ARQ [11], our practice-oriented MU-FEC strictly out-
performs the overly idealistic MU-ARQ principle and achieves throughput efficiency (2), the best possible throughput
over any idealistic/practical schemes one can envision.

To rigorously state the above optimality claim, we use the same channel model as used in Eqs. (1) and (2) of
Section 2. Unlike MU-ARQ [11], which assumes instant feedback, we assume periodic feedback is sent every F > 1
time slots using a separate channel, and prove that

Proposition 2 The throughput efficiency of MU-FEC achieves the theoretic upper bound in (3) when GF(2b) → ∞
and N →∞, where N is the common batch size for all flows and GF(2b) is the finite field.

Remark: The feedback period F affects how fast a client can send its reception status back to the AP. The intuition
behind Proposition 2 is that for any fixed F , the inefficiency of MU-FEC caused by the AP not getting the latest
reception status is negligible when an infinitely large batch size is used. Note that even for small batch sizes Ni = 32–
48, the batch-based design of MU-FEC can greatly mitigate the impact of not receiving instant feedback. This also
ensures that the impact of the loss of feedback packets is absorbed without too much throughput degradation.

The proofs of Propositions 1 and 2 are relegated to the appendix.

6 Simulation Study

In this section, we compare the performance of MU-FEC against that of ER and 802.11 using the Glomosim simu-
lator [19]. Since a major contribution of MU-FEC is to realize the throughput gain of inter-flow coding, we still use
the ER protocol for comparison even though ER does not guarantee 100% reliability. For performance comparison
with respect to FEC-only protocols, since there are several different FEC protocols, ex: Reed-Solomon codes, fountain
codes, intra-flow coding, we use the theoretic value ηFEC.only ·(erasure-free rate) as proxy, also see Section 2.1, which
will be strictly larger than any practical FEC scheme with overhead.

6.1 Methodology

We follow the evaluation methodology in [15]. We place an AP in the center of the simulation area and up to 20 clients
uniformly on a circle around the AP. To evaluate the performance of the protocols under different loss scenarios, the
clients are placed close to the AP and we generate link loss rates in a controlled manner, by artificially dropping
packets at each client following a Bernoulli model. We consider both homogeneous and heterogeneous loss rates. In
the homogeneous case, the loss rates of all links are the same, varied between 10% and 90% in different simulations.

11

(a) 20% loss. (b) 50% loss.

Figure 6: Theory vs. practice: Throughput comparison for different numbers of clients under homogeneous losses.

In the heterogeneous case, the loss rate for each link is randomly selected between 0 and an upper bound varying from
10% to 90%.

In every simulation run, the AP transmits 1500-byte packets for 100 sec. The results in the following sections are
averages over 10 runs. Note that the standard deviations are very low in all cases except for the heterogeneous loss
scenarios in Section 6.4. Hence, in the interest of clarity, we do not plot the standard deviation in the rest of the results.

We noticed the performance of ER heavily depends on three parameters: retransmission queue threshold, retrans-
mission queue timeout, and period of cumulative ACKs. Further, the optimal set of values for the three parameters
depends on the number of clients. [15] uses a threshold of 25 packets and a timeout of 250ms and does not discuss the
third parameter. Note also that [15] used a simplified simulator that did not model timing dynamics. Hence, it did not
evaluate the actual ER implementation, but a simplified version of the protocol, where a sender sends a constant-size
batch of packets at a time and then (after instant feedback from the clients) retransmits lost packets until all of them
are received by the destined clients. With this simplified (but not practical) version, the authors were not able to study
the interdependence of the three parameters of the actual implementation.

In ER’s favor, we decided to tune the three parameters to maximize ER’s performance. We skip the details of
tuning due to space limitation. We found that using a base ACK period of 20ms, and scaling all three parameters by K
when there are K clients, gave the best performance among different configurations. We denote this version of ER as
ER scale. We repeated the same procedure to choose the ACK period for MU-FEC, the only parameter in our protocol,
and we set the ACK period to 10 ·K ms for MU-FEC. Finally, we use a batch of 48 packets for each flow and a Galois
Field GF(24) (half byte).

We used the Aggregate Throughput as our evaluation metric. The throughput per client is defined as the total
number of unique packets (excluding duplicates) received for 802.11 and ER, or the total number of decoded packets
for MU-FEC, multiplied by the packet payload size, and divided by the total time required to collect/decode those
packets. The aggregate throughput is the sum of the throughputs of all clients.

6.2 Overall Result

Figures 6(a), 6(b) plot the throughput of MU-FEC, ER, and 802.11 when the number of clients varies from 1–7, for a
homogeneous loss rate of 20% and 50%, respectively. For ER, we plot two versions, the original one and the version
where we scale all the parameters with the number of clients, denoted as ER scale. For MU-FEC, we ignore for now
the computational complexity issue and group all flows together (i.e., M = 7).

We also include in these two graphs the theoretically predicted throughput for MU-FEC (MU-FEC theo) and for
ER (ER theo or MU-ARQ). To plot these curves, we first ran a simulation with a single client using 802.11 under
a 0% loss scenario and measured the throughput (1693 Kbps). We consider this value as the theoretically optimal
throughput when there is no packet loss.3 We then calculated the theoretical throughput for 2–7 clients, by multiplying
this optimal throughput value with the throughput efficiency, given by equations (2) and (3), for ER theo and MU-
FEC theo, respectively.

3This value 1693-Kbps is also used as the theoretic (erasure-free rate) when computing the FEC-only throughput ηFEC.only ·
(erasure-free rate) = p · 1693 Kbps where p is the packet delivery probability.

12

(a) 20% loss. (b) 50% loss.

Figure 7: Throughput comparison for different numbers of clients under homogeneous losses.

We notice that the theoretic FEC-only throughputs for 20% and 50% loss rate are 1354Kbps and 847Kbps, re-
spectively, which are significantly lower than our practical MU-FEC implementation even when mixing only M ≥ 3
clients. Therefore, for the following, we focus on throughput comparison to the unreliable ER scheme. We make the
following observations:

First, the theoretically optimal throughput of ER is strictly lower compared to the theoretically optimal throughput
of MU-FEC. While the difference between the two curves is negligible for low loss rates (Figure 6(a)), it can be clearly
observed under high loss rates (Figure 6(b)). In the same figure, we also observe that the gap between the two curves
increases with the number of clients.

Second, the systematic design of MU-FEC allows the protocol to achieve throughput close to the theoretically
optimal even under high loss rates. Comparing the theoretical and practical throughput for each protocol, we observe
that the gap between the two values for MU-FEC is smaller than for ER. Specifically, the gap for MU-FEC is at most
9% of the theoretical value under 20% loss and at most 16% under 50% loss. For example, when mixing 7 flows in
a noisy environment of 50% loss rate, MU-FEC, with all the necessary overhead for coding and coordinating 7 flows
simultaneously, achieves at least 84% of the throughput of any possible scheme (including the theoretic schemes that
do not incur any overhead). In contrast, the gap for ER scale can be as high as 14% of the theoretical value under 20%
loss and as high as 21% under 50% loss. The gaps for the original version of the ER protocol are even larger, up to
30% under 20% loss and up to 38% under 50% loss.

Third, comparing the practical throughput values for each protocol, we observe that MU-FEC clearly outperforms
ER, especially under high loss rates. Under a 50% loss, MU-FEC outperforms ER scale by up to 12% and the original
ER by up to 42%.

Fourth, the two graphs show the robustness of the systematic design MU-FEC over the ad-hoc design of ER. In both
figures, the throughput of MU-FEC increases with the number of clients, following the same trend as the theoretical
curves. In contrast, the throughput of the scaled version of ER increases at a much slower rate under 50% loss and
starts dropping for more than 5 clients under 20% loss. Note also, that in order for ER scale to achieve performance
close to that of MU-FEC, we had to finely tune 3 different parameters, which requires a significant amount of effort in
practice. Without tuning, the protocol cannot scale beyond 3–4 clients.

In the remaining of Section 6, we compare the scalability of the two protocols with the number of clients and with
the loss rate. Since the computational complexity of our protocol increases exponentially with the number of flows M ,
in the remaining simulations we always use M = 5 (i.e., we divide the flows into groups of 5 and we only mix together
packets from flows in the same group).

6.3 Varying the Number of Clients

Performance comparison. Figures 7(a)–7(b) plot the throughput of MU-FEC, ER, and 802.11 with 1–20 clients for a
loss rate of 20% and 50%. We make the following observations:

First, we observe that the performance of ER drops dramatically with the number of clients. Even 802.11 outper-
forms ER with more than 4 clients under a 20% loss rate and with more than 10 clients under a 50% loss rate. Note
again the complete ER protocol was evaluated in [15] with only up to 6 clients.

13

Figure 8: Throughput comparison with 15 clients under varying homogeneous loss rates.

Second, ER scale substantially outperforms ER and always outperforms 802.11 (but not much for the case of 20
clients). Still, its performance degrades with the number of clients.

Third, MU-FEC outperforms ER scale. The throughput gain of MU-FEC over ER scale is as high as 14% under
a 20% loss rate and as high as 25% under a 50% loss rate, with 20 clients. Compared to original ER, MU-FEC’s
throughput gain is much higher, up to 126% and 166% under 20% and 50% loss rates, respectively. Finally, compared
to 802.11, MU-FEC’s throughput gain is as high as 13% under a 20% loss rate and as high as 51% under a 50% loss
rate. Moreover, the protocol scales well with the number of clients in spite of only allowing to encode packets from
groups of 5 flows.

To understand where the gains of MU-FEC come from, we looked at the breakdown of coded and uncoded trans-
missions for the three protocols. Details are omitted due to lack of space. In summary, with ER and ER scale, the
number of retransmitted packets increases with the number of clients, and the percentage of coded transmissions de-
creases. In contrast, the fraction of packets in each phase with MU-FEC remains unchanged with the number of clients,
which shows that MU-FEC scales well with the number of clients.

6.4 Varying the Loss Rate

We now evaluate the performance for varying loss rates. Since ER scale performs much better than the original ER
without scaling, we will only use this version in the remaining of this section.
Homogeneous losses Figure 8 plots the aggregate throughput with MU-FEC, ER scale, and 802.11, with 15 clients,
when the loss rate varies from 10% to 90%. We observe that MU-FEC outperforms ER scale and 802.11 for all
loss rates and the improvement is higher with higher loss rates, which also agrees with the theoretical results. The
throughput gain of MU-FEC over ER scale varies from 9% (with 10% loss rate) up to 25% (with 90% loss rate) and
the gain over 802.11 varies from 5% up to 161%.
Heterogeneous losses We now consider heterogeneous loss rates. This scenario can arise when different clients have
different loss rates either because they are located in different distances from the AP or due to multipath fading or
because they experience different numbers of collisions (when other clients or neighboring APs act as hidden terminals,
e.g., in urban environments).

Figure 9(a) plots the aggregate throughput with MU-FEC, ER scale, and 802 11, with 15 clients, when the loss rate
bound varies from 10% to 90%. Again, MU-FEC outperforms ER scale and 802 11 for all loss rate bounds and the
improvement is higher with higher loss rate bounds, i.e., with higher heterogeneity. The throughput gain of MU-FEC
over ER scale varies from 7% (with 10% loss rate) up to 52% (with 90% loss rate) and the gain over 802.11 varies from
2% up to 43%. Note that in the heterogeneous case, ER scale barely outperforms 802.11, while the gain of MU-FEC
over 802.11 is robust.

Figure 9(b) plots the cumulative distribution function (CDF) of the per-client throughput gain of MU-FEC over
ER scale for all 10 scenarios (i.e., for 10× 15 = 150 clients) and for 4 different loss rate bounds. The throughput gain

of MU-FEC over ER scale for a client c is defined as
T c

MU −F EC −T c
ER

T c
ER

, where T c
MU −FEC , T c

ER is the throughput of
client c with MU-FEC and ER scale, respectively. We observe that MU-FEC offers higher throughput than ER scale
to all clients under low (20% loss bound) and moderate (40 % loss bound) loss rates and heterogeneity, and to more

14

(a) Throughput comparison under varying
loss rate bounds.

(b) CDFs of the gain of MU-FEC over ER
for 4 different loss rate bounds.

Figure 9: Performance comparison with 15 clients under heterogeneous losses. For clarity, the points of the MU-FEC and 802.11
curves in Figure 9(a) are offseted horizontally.

than 90% of the clients under high loss rates and heterogeneity. This shows again the robustness of the protocol. The
median throughput improvement is 9%, 12%, 17%, and 29%, under a 20%, 40%, 60%, and 80% loss rate bound,
respectively. The 90-th percentile is much higher, especially under high heterogeneity and loss rates.

7 Conclusion

In this paper, we developed a new network coding based retransmission protocol for WLANs, called MU-FEC. The
design of MU-FEC is accompanied by a theoretical underpinning yet enables practical implementation on off-the-
shelf 802.11 hardware. We showed that, when the batch size N is sufficiently large, MU-FEC attains the provably
optimal inter-flow coding gain that is strictly better than that of the MU-ARQ principle, especially when the number
of clients is from moderate to large. Even though the complexity of MU-FEC is exponential with the number of flows
M , the use of intra-flow coding allows us to greatly simplify the computation (by grouping M flows together and
only coding packets from those flows) and at the same time to achieve performance close to the optimal in practice.
Our performance evaluation, through extensive simulations shows that the performance of MU-FEC is very robust and
consistently outperforms ER in a variety of scenarios.

For future work we plan to incorporate bitrate adaptation into MU-FEC, and devise online batch size selection
algorithms to allow the smooth operation of the protocol under higher layer protocols that set delay requirements (e.g.,
streaming protocols or TCP).

References
[1] Z. Bar-Yossev, Y. Birk, T. Jayram, and T. Kol. Index coding with side information. In Proc. of IEEE FOCS, 2006.

[2] S. Biswas and R. Morris. ExOR: Opportunistic multi-hop routing for wireless networks. In Proc of ACM SIGCOMM, 2005.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for randomness in wireless opportunistic routing. In ACM SIGCOMM, 2007.

[4] F. chun Kuo, K. Tan, X. Li, J. Zhang, and X. Fu. XOR Rescue: Exploiting Network Coding in Lossy Wireless Networks. In Proc. of IEEE SECON, 2009.

[5] A. El Gamal. The feedback capacity of degraded broadcast channels. Trans. IT, 25(2), 1978.

[6] A. Eryilmaz, A. Ozdaglar, and M. Medard. On delay performance gains from network coding. In Proc. of IEEE CISS, 2006.

[7] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Multiuser broadcast erasure channel with feedback — capacity and algorithms. In Proc. of NetCoop, 2010.

[8] L. Georgiadis and L. Tassiulas. Broadcast erasure channel with feedback — capacity and algorithms. In Proc. of NetCod, 2009.

[9] M. Ghaderi, D. Towsley, and J. Kurose. Reliability Gain of Network Coding in Lossy Wireless Networks . In Proc. of IEEE INFOCOM, 2008.

[10] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. Xors in the air: Practical wireless network coding. In Proc. of ACM SIGCOMM, August 2006.

[11] P. Larsson and N. Johansson. Multi-User ARQ. In Proc. of IEEE VTC-Spring, 2006.

[12] D. Nguyen, T. Nguyen, and B. Bose. Wireless Broadcasting Using Network Coding. In Proc. of NetCod Workshop, 2007.

[13] L. Ozarow and S. Leung-Yan-Cheong. An achievable region and outer bound for the Gaussian broadcast channel with feedback. Trans. IT, 30(4), 1984.

[14] C. Qin, Y. Xian, C. Gray, N. Santhapuri, and S. Nelakuditi. I2MIX: Integration of Intra-flow and Inter-flow Wireless Network Coding. In Proc. of IEEE International
Workshop on Wireless Network Coding (WiNC), 2008.

[15] E. Rozner, A. P. Iyer, Y. Mehta, L. Qiu, and M. Jafry. ER: Efficient retransmission scheme for wireless lans. In Proc. of CoNEXT, 2007.

[16] H. Seferoglu and A. M. nad K. K. Ramakrishnan. I2nc: Intra- and inter-session network coding for unicast flows in wireless networks. In Proc. of IEEE INFOCOM,
2011.

15

[17] C.-C. Wang. Capacity of 1-to-K broadcast packet erasure channels with channel output feedback. In Proc. 48th Annual Allerton Conf. on Comm., Contr., and
Computing, 2010.

[18] F. Xue and X. Yang. Network coding and packet-erasure broadcast channel. In Proc. of IEEE SECON, 2008.

[19] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A library for parallel simulation of large-scale wireless networks. In Proc. of PADS Workshop, May 1998.

[20] X. Zhu, H. Yue, Y. Fang, and Y. Wang. A batched network coding scheme for wireless networks. ACM Wireless Networks, 15, 2009.

A Proofs

We first introduce the following lemmas, which will be used to prove Proposition 1.

Lemma 1 For any time instant of the AP, suppose the AP is in Phase l and a packet is generated according to a set
S satisfying |S| = l. Consider one client i0 ∈ S. If the i0-th client receives that packet, then after Client-i0 performs
Gaussian elimination, the new vector will have zero elements for all columns corresponding to flow-j, for all j 6= i0.

Intuition: This proposition says that for any client i0 ∈ S, all the “interference” from flow j, j 6= i0 can be canceled.
This is similar to the “immediate decodability concept” of COPE. That is, for the COPE protocol, upon the reception
of one packet mixing all flows in S satisfying i0 ∈ S, Client i0 can cancel all the interference and decode one more
native packet. The difference for MU-FEC is that now di0 can cancel all the interference and obtain one more linearly
independent intra-flow coded packet.
Proof: We prove this by double induction on the size of |S| and on the k-th packet in Phase |S|.

When |S| = 1 and k = 1, there is only one element i0 in S. The vector pool used to generate this packet must only
consist of the elementary basis vectors for flow i0 that are put in the queues during initialization. As a result, if that
packet is received by Client-i0, then after Gaussian elimination the new vector will have zero elements for all columns
corresponding to flow-j, for all j 6= i0. The lemma is satisfied.

Based upon the basic case |S| = 1 and k = 1, we will prove the following two cases. Case 1: for any integer
h ≥ 1, l > 1, if Lemma 1 holds for |S| = h and k ≤ l − 1 and for |S| ≤ h − 1 and all k, then Lemma 1 holds for
|S| = h and k = l as well. Case 2: for any h > 1, if Lemma 1 holds for |S| ≤ h− 1 and any k, then Lemma 1 holds
for |S| = h and k = 1 as well.

Case 1: For |S| = h and k = l, since the compatibility condition requires that S covers the creation bit map of the
vectors of interest and since we only move between phases in a monotonic fashion, the vector pool used to generate this
packet must only consist of (i) old Phase |S| packets generated using the same S, or (ii) packets generated from some
S1 ⊂ S and i0 ∈ S1, or (iii) packets generated from some S1 ⊂ S and i0 /∈ S1. Among the vector pool, those packets
of type-(i), by induction, will have zero elements for all columns corresponding to flow-j after Gaussian elimination,
for all j 6= i0. Those packets of type-(ii), by induction, will have zero elements for all columns corresponding to flow-j
after Gaussian elimination, for all j 6= i0. Those packets of type-(iii) will be transparent to Client-i0, since i0 /∈ S1

implies that such packet have been overheard by Client-i0 (the compatibility condition implies that the overhearing bit
map plus the creation bit map cover S1). Since the newly generated packet is a linear combination of packets of one
of the three types and all of them have zero elements after Gaussian elimination for columns of flow j 6= i0, the same
statement holds for the generated packet as well. Case 1 is thus proved.

Case 2: For |S| = h and k = 1, the vector pool used to generate this packet must only consist of (ii) packets
generated from some S1 ⊂ S and i0 ∈ S1, or (iii) packets generated from some S1 ⊂ S and i0 /∈ S1. Those packets
of type-(ii), by induction, will have zero elements for all columns corresponding to flow-j after Gaussian elimination,
for all j 6= i0. Those packets of type-(iii) will be transparent to Client-i0, since i0 /∈ S1 implies that such packet have
been overheard by Client-i0. By the same reason as in Case 1, we have proved Case 2.

Lemma 2 For any time instant of the AP, suppose the AP is in Phase l and a packet is generated according to a set S
satisfying |S| = l. Consider one client i0 /∈ S. Then the inter-flow coding vector of the newly generated packet will
have zero elements for all columns corresponding to flow-i0.

Proof: We prove this by double induction on the size of |S| and on the k-th packet in Phase |S|.
When |S| = 1 and k = 1, there is only one element j in S, j 6= i0. The vector pool used to generate this packet

must only consist of the elementary basis vectors for flow j that are put in the queues during initialization. As a result,
the new vector will have zero elements for all columns corresponding to flow-i0.

Based upon the basic case such that |S| = 1 and k = 1, we will prove the following two cases. Case 1: for any
integer h ≥ 1, l > 1, if Lemma 2 holds for |S| = h and k ≤ l − 1 and for |S| ≤ h− 1 and all k, then Lemma 2 holds

16

for |S| = h and k = l as well. Case 2: for any h > 1, if Lemma 2 holds for |S| ≤ h − 1 and any k, then Lemma 2
holds for |S| = h and k = 1 as well.

Case 1: For |S| = h and k = l, since the compatibility condition requires that S covers the creation bit map of the
vectors of interest and since we only move between phases in a monotonic fashion, the vector pool used to generate
this packet must only consist of (i) old Phase |S| packets generated using the same S, or (ii) packets generated from
some S1 ⊂ S and i0 /∈ S1. Among the vector pool, those packets of type-(i), by induction, will have zero elements for
all columns corresponding to flow-i0. Those packets of type-(ii), by induction, will have zero elements for all columns
corresponding to flow-i0. Since the newly generated packet is a linear combination of the above two types of packets
and both of them will have zero elements for the columns of flow i0, the same statement holds for the generated packet
as well. Case 1 is thus proved.

Case 2: For |S| = h and k = 1, the vector pool used to generate this packet must only consist of (ii) the packets
generated from some S1 ⊂ S and i0 /∈ S1. Those type-(ii) packets, by induction, will have zero elements for all
columns corresponding to flow-i0. By the same reason as in Case 1, we have proved Case 2.

In the following, we prove Proposition 1.
Proof: Suppose the joint decoding matrix Qrx vec is of size k ×∑M

i=1 Ni. We will prove Proposition 1 by induction of
the value of k. When Qrx vec is of size 0×∑

Ni, Proposition 1 is obviously true.
Suppose it is true for the size of Qrx vec being k0 ×

∑
Ni for some k0 ≥ 0. When the next packet arrives, we have

two cases. Case 1: i0 ∈ S. Then by Lemma 1, after Gaussian elimination, we have that i0’s columns have a vector v
and all other places are zero. Case 1.1: v = 0. In this case, the rank of the lower right submatrix does not increase. We
need to show that the projection of the original packets (before Gaussian elimination) also does not increase. This is
true since v = 0 implies that the new inter-flow vector is in the space of the already received inter-flow coding vectors
in Qrx vec. Therefore the projected vector is also in the space of the projection of the already received inter-flow vectors.
Therefore the rank of the projected space also does not increase. Case 1.2: v 6= 0 In this case, the rank of the lower
right submatrix increases. Since the rank of the projected space is no smaller than the rank of the lower right submatrix,
the rank of the projected space must also increase by one. Therefore, for both subcases, we have rproj = rlower.

Case 2: i0 /∈ S. Then by Lemma 2, even before Gaussian elimination, the inter-flow coding vector has zero
elements in the columns of flow i0. Therefore, the rank of the projected space does not increase. As a result, the rank
of the lower-right submatrix also does not increase, as the rank of the projection is no less than the rank of the lower
right submatrix. The above proves that rproj = rlower. The proof is complete.

For the following, we provide the proof of Proposition 2.
Proof:The proof of Proposition 2 consists of two parts: Part 1: The proof that the best possible throughput is bounded
by (3), and Part 2: MU-FEC indeed achieves the throughput depicted by (3).

Proof of Part 1: One can prove Part 1 by the degraded channel argument first used in [13] for the broadcast additive
white Gaussian channels and later generalized [8] for broadcast packet erasure channels (PECs) for the special case of
2 clients. We first fix a permutation π for integers 1 to M . Consider a new broadcast channel with (M − 1) artificially
created information pipes sending information from client Cπ(i) to Cπ(i+1) for i = 1 to (M − 1). With the auxiliary
pipes, any client Cπ(i), not only observes its corresponding output but also has all the information of its “upstream
receivers” Cπ(l) for all l = 1, · · · , i − 1. Since we only create new pipes, any achievable rates of the original 1-to-M
broadcast PEC must also be achievable in the new 1-to-M broadcast PEC. The capacity of the new 1-to-M broadcast
PEC with feedback is thus an outer bound on the capacity of the original 1-to-M broadcast PEC with feedback.

On the other hand, the new 1-to-M broadcast PEC is a physically degraded broadcast channel with the new success
probability of Cπ(k) being 1− (1− p)k instead of p. The reason is that any one of clients Cπ(1) to Cπ(k) in the original
channel receives the output will imply that the Cπ(k) in the new PEC receives it due to the added information pipes.
In [5] proves that feedback does not increase the capacity of any physically degraded 1-to-2 broadcast channel. By
extending the derivation steps in [5], one can easily prove that feedback does not increase the capacity of any physically
degraded 1-to-M broadcast channel for arbitrary M values. Therefore the capacity of the new 1-to-M broadcast PEC
with feedback is identical to the capacity of the new 1-to-M broadcast PEC without feedback. Since the capacity of
the new 1-to-M PEC with feedback can be described by

M∑

k=1

Rπ(k)

1− (1− p)k
≤ 1 (4)

17

where Rπ(k) is the throughput for client Cπ(k), Eq. (4) must be an outer bound of the capacity of the original 1-to-M
PEC with feedback. Note that the above procedure can be repeated for any permutation π. The overall capacity outer
bound is thus described by the M ! inequalities over the permutations. By maximizing the sum capacity

∑M
i=1 Ri over

the above polytope, we thus have

η =
M∑

i=1

Ri ≤
M

∑M
k=1

1
1−(1−p)k

. (5)

See [8, 17] for detailed steps and the corresponding references.
Proof of Part 2: We first note that for a sufficiently large batch size, the impact of sending non-instant, peri-

odic feedback is fully absorbed and becomes negligible from the throughput’s perspective. Therefore, to analyze the
performance of MU-FEC, we can assume that we do have instant feedback F = 1.

Secondly, since we also assume that all M flows have the same batch size Ni = N , the assumption that the channels
are symmetric implies that for any two sets S1 and S2 satisfying |S1| = |S2|, the corresponding PCSIs dS1 and dS2

will become 0 almost simultaneously. Therefore, we can use f(|S|) to denote the number of time slots it takes to mix
all flows in S before the PCSI outputs dS = 0. For example, f(1) is the number of time slots to finish transmitting
flow-i0 packets in Phase 1 with the chosen flow set being S = {i0}, before the PCSI outputs dS = 0. We then note that
anytime one of the M clients receives a flow-i0 packet in Phase 1 will reduce the PCSI d{i0} by one, and before the
beginning of Phase 1 we have d{i0} = N . Therefore it must take f(1) ≈ N

1−(1−p)M time slots to finish transmission of

S = {i0} in Phase 1. Since there are M different choices of S in Phase 1, overall it takes
(
M
1

)
f(1) time slots to finish

Phase 1.
Similarly, it takes

(
M
k

)
f(k) time slots to finish Phase k. Therefore, to finish all M phases, we need

∑M
k=1

(
M
k

)
f(k)

time slots. The throughput efficiency of MU-FEC is thus

MN
∑M

k=1

(
M
k

)
f(k)

. (6)

For the following, we show that the expression of f(k) can be computed by the following iterative formula:

∀k ∈ {1, · · · ,M},

f(k) +
k−1∑

j=1

(
k − 1
j − 1

)
f(j) =

N

1− (1− p)M −(k−1)
. (7)

To derive the above equality, suppose that we are focusing on S = {1, 2, 3, · · · , k} and sending flow-S packets. The
right-hand side of (7) thus corresponds to the total number of time slots it takes for a client-1 packet to be heard by at
least one of Clients 1, k + 1, k + 2, · · · ,M . Note that all those f(k) time slots for sending flow-S = {1, 2, 3, · · · , k}
must be counted toward part of it as it mixes a session-1 packets that has been heard only by Clients 2, 3, · · · , k. On the
other hand, there are also other time slots that will be counted toward the total number N

1−(1−p)M −(k−1) of time slots.
For example, when we send a session-1 packet that has been heard by none of {2, 3, · · · , k} (a Phase-1 operation),
totally there are f(1) such time slots that will be counted toward the right-hand side of (7). Similarly, when we send
a session-1 packet that has been heard by only one of {2, 3, · · · , k}, totally there are f(2) such time slots that will
be counted toward the right-hand side of (7). But there are

(
k−1
1

)
ways of being heard by only one of {2, 3, · · · , k}.

Therefore, the total contribution becomes
(
k−1
1

)
f(2). As a result, the left-hand side of (7) summarizes how many time

slots are counted before all client-1 packets are heard by at least one of Clients 1, k + 1, k + 2, · · · ,M .
To prove that (3) and (6) are identical, the remaining task is to prove that the total number of time slots used in our

scheme is

M∑

k=1

(
M

k

)
f(k) =

M∑

k=1

N

1− (1− p)k
. (8)

Eq. (8) can be derived from (7) by simple arithmetic computation. (8) then ensures the equivalence between (3) and
(6). The proof of Part 2 is complete.

18

Chih-Chun Wang joined Purdue School of Electrical and Computer
Engineering in 2006 as an Assistant Professor. He received the
B.E. degree from National Taiwan University in 1999, and the M.S. and
 Ph.D. degrees in E.E. from Princeton University in 2002 and 2005,
 respectively. His current research interests are in the
graph-theoretic and algorithmic analysis of iterative decoding and of
 network coding. His other research interests fall in the general areas
of optimal control, information theory, detection theory, coding
theory, iterative decoding algorithms, and network coding. He
 received the NSF CAREER Award in 2009.

Dimitrios Koutsonikolas received the Ph.D. degree in electrical and
computer engineering from Purdue University, West Lafayette, IN, in
2010. He worked as a Post-Doctoral Research Associate at Purdue
University from September to December 2010. He is currently an
assistant professor of Computer Science and Engineering at the
 University at Buffalo, State University of New York. His research
 interests are broadly on experimental wireless networking and mobile
 computing. He is a member of IEEE, ACM, and USENIX.

Y. Charlie Hu is a professor of electrical and computer engineering
 and computer science (by courtesy) at Purdue University. He received
 his Ph.D. degree in Computer Science from Harvard University in 1997.
 From 1997 to 2001, he was a research scientist at Rice University. His
 research interests include operating systems, distributed systems,
 computer networking, and wireless networking. He has published over
 120 papers in these areas. Dr. Hu received the NSF CAREER Award in
 2003. He is a senior member of IEEE and a distinguished scientist of
 ACM.

Ness B. Shroff currently holds the Ohio Eminent Scholar Chaired
 Professorship in Networking and Communications, in the departments of
 ECE and CSE at the Ohio State University. He is also a Guest Chaired
 Professor of Wireless Networking in the department of Electronic
 Engineering at Tsinghua University, China. Previously, he was a
 Professor of ECE at Purdue University and the director of the Center
 for Wireless Systems and Applications (CWSA), a university-wide
 center on wireless systems and applications. His research interests
 span the areas of wireless and wireline communication networks, where
 he investigates fundamental problems in the design, performance,
 pricing, and security of these networks. Dr. Shroff has received
 numerous awards for his networking research, including the NSF CAREER
 award, the best paper awards for IEEE INFOCOM 06 and IEEE INFOCOM 08.

