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Abstract—This paper studies an optimal channel assignment
problem for passive monitoring in multi-channel wireless net-
works, where a set of sniffers capture and analyze the network
traffic to monitor the network. The objective of this problem is
to maximize the total amount of traffic captured by sniffers by
judiciously assigning the radios of sniffers to a set of channels.
This problem is NP-hard, with the computational complexity
growing exponentially with the number of sniffers. We develop
distributed online solutions to this problem for large-scale and
dynamic networks. Prior works have attained constant factor
of 1 −

1

e
of the maximum monitoring coverage in a centralized

setting. Our algorithm preserves the same ratio while providing
a distributed solution that is amenable to online implementation.
Also, our algorithm is cost-effective, in terms of communication
and computational overheads, due to the use of only local com-
munication and the adaptation to incremental network changes.
We present two operational modes of our algorithm for two types
of networks that have different rates of network changes. One
is a proactive mode for fast varying networks, while the other is
a reactive mode for slowly varying networks. Simulation results
demonstrate the effectiveness of the two modes of our algorithm.

I. I NTRODUCTION

We consider a channel assignment problem for passive mon-
itoring in multi-channel wireless networks. Passive monitoring
is a widely-used and effective technique to monitor wireless
networks, where a set of sniffers (i.e., software or hardware
devices that intercept and log packets) are used to capture
and analyze network traffic between other nodes to estimate
network conditions and performance. Such estimates are uti-
lized for efficient network operation, such as network resource
management, network configuration, fault detection/diagnosis
and network intrusion detection. Recently, it has been exten-
sively studied to use multiple channels in wireless networks,
especially in wireless mesh networks (WMNs) [1]–[5]. It
has been shown that equipping nodes with multiple radios
tuned to different non-overlapping channels can significantly
increase the capacity of the network. In multi-channel wireless
networks, a major challenge with passive monitoring is how
to assign a set of channels to each sniffer’s radios such that
as large an amount of traffic or large a number of nodes as
possible are captured. We call this theoptimal sniffer-channel
assignment (OSCA) problem.

Previous works [6]–[8] have studied variants of OSCA
in different perspectives. In our prior work [6], we have

studied a problem of how to optimally place sniffers and
assign their channels to monitor multi-channel WMNs, as-
suming stationary networks. Chhetriet al. [7] have studied
two models of sniffers that assume different capabilities of
sniffers’ capturing traffic. The first, calleduser-centric model,
assumes that frame-level information can be captured so that
activities of different users are distinguishable. The second,
calledsniffer-centric model, assumes only binary information
regarding channel activities, i.e., whether some user is active in
a specific channel near a sniffer. In both of the works [6], [7],
the authors assume that a prior knowledge of the topology and
the channel usages of nodes to be monitored is given to, or can
be inferred by, sniffers. On the other hand, Aroraet al. [8] have
studied a trade-off between assigning the radios of sniffers to
channels known to be busiest based on the current knowledge,
versus exploring channels that are under observed. In addition,
Subhadrabandhuet al. [9]–[11] have studied a problem of how
to optimally place a set of intrusion detection modules for
misuse detection insingle-channel wireless networks.

One can obtain a good approximate solution to OSCA,
which is an NP-hard problem (see Section II-B), by extending
algorithms in [6], [7]. The work [7] studies a special case
of OSCA, where each sniffer has only one radio, while our
prior work [6] studies a generalized version of OSCA, i.e.,
the optimal selection of sniffers and their channels. But, the
algorithms in [6], [7] are centralized and offline algorithms.
That is, the algorithms require a central authority that first
gathers, from all sniffers, either a prior knowledge of the
network topology and the channel usages of all nodes to be
monitored [6], or primitive information to estimate the prior
knowledge [7], then runs the algorithm and distributes the
solution to all sniffers.

These centralized algorithms are not suitable for large-scale
and dynamic networks, due to several reasons. The central-
ized algorithms require an efficient and cost-effective two-
way global communication mechanism between the central
authority and all sniffers, i.e., the communications from all
sniffers to the central authority for the delivery of the prior
knowledge, and also the communication from the central
authority to all sniffers for the distribution of the solution.
However, this is difficult to achieve in large-scale networks,
especially in multi-hop wireless networks. Also, such a two-
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way global communication needs to be achieved without too
much delay, otherwise the centralized algorithms are not agile
to frequent network changes, such as channel-usage changesof
nodes and network topology changes due to mobility of nodes
and arrivals/departures of sniffers. In addition, the centralized
algorithms are difficult to be deployed in ad hoc wireless
networks, which lack the central authority or a powerful node
that has a high computational power, a large memory, and
no significant energy constraint. Moreover, the powerful node
needs to be fault-tolerant or easily replaceable when it fails,
since otherwise the entire monitoring system may fail due to
a single-point failure.

In this paper, we developdistributed andonline solutions to
OSCA for large-scale and dynamic networks. Our distributed
algorithm, called DA-OSCA, can always achieve at least1− 1

e

(≈ 0.632) of the maximum monitoring coverage, regardless of
the network topology and the channel assignment of nodes to
be monitored. Previously, the centralized algorithms in [6], [7]
have also attained the ratio1 − 1

e
. However, our DA-OSCA

preserves the same ratio while providing a distributed solution
that is amenable to online implementation. Also, DA-OSCA is
cost-effective, in terms of communication and computational
overheads, since it requires only local communication among
neighboring nodes and also adapts incrementally to network
changes. Moreover, the decentralized and adaptive structure of
DA-OSCA allows us to implement DA-OSCA in two opera-
tional modes; one is a proactive mode for fast-varying network,
while the other is a reactive mode for slow-varying networks.
We demonstrate through simulations the effectiveness of the
two modes of DA-OSCA.

II. PROBLEM FORMULATION

A. Optimal Sniffer-Channel Assignment (OSCA) Problem

We are given a setN of nodes to be monitored, and
each noden ∈ N is tuned to a wireless channel chosen
from a setC of available wireless channels, where|C| ≥ 2.
The channels are chosen according to one of many available
channel assignment algorithms (e.g., [3], [4], [12]). Eachnode
n is given a non-negative weightwn. These weights of nodes
can be used to capture various application-specific objectives
of monitoring. For example, one can assign higher weights to
the nodes that transmit larger volumes of data, thereby biasing
our algorithm to monitor such nodes more. Or, for security
monitoring, one can assign higher weights to more suspicious
nodes.

We are given a setS of sniffers, each of which needs to
determine a wireless channel fromC to tune its radio to. We
say that a sniffer and a node areneighbors if the sniffer can
overhear the node, and also that two sniffers areneighbors if
there exists a node that can be overheard by both the sniffers.
We say that a node iscovered if the node is overheard by at
least one sniffer being tuned to the same channel as the node.
We are given a collection of coverage-sets,K = {Ks,c ⊆ N :
s ∈ S, c ∈ C}, where acoverage-set Ks,c contains the nodes
that can be covered by sniffers being tuned to channelc. We
define agroup as a collection of all coverage-sets of a sniffer,

Fig. 1. Distributed Algorithm for OSCA (DA-OSCA).

i.e., Ks = {Ks,c : c ∈ C}. Our objective is to maximize the
total weight of the nodes covered by judiciously choosing one
coverage-set from each group. Here, the constraint that only
one coverage-set can be chosen from each group arises since
each sniffer has a single radio and can thus tune its radio to
only one channel at a time. We refer to this problem as the
optimal sniffer-channel assignment (OSCA) problem.

For ease of exposition, we assume that all of the nodes and
the sniffers have only one radio. However, the multi-radio case,
where nodes and sniffers are equipped with multiple radios,
can be easily mapped to this single-radio case (refer to [14]).

B. Hardness of OSCA

We present existing results on the hardness of OSCA.

Theorem 1 (Theorem 1 [7]): OSCA is NP-hard.

This means that the computational complexity to solve OSCA
grows exponentially with the number of sniffers, unlessP =
NP .

Also, we have an inapproximability result for OSCA.

Theorem 2 (Corollary 2 [7]): For anyǫ > 0, it is NP-hard
to approximate OSCA within a factor of78+ǫ of the optimum.

Thus, the best achievable approximation ratio for OSCA is at
most 7

8 .

III. T HE DISTRIBUTED ALGORITHM FOR OSCA

We develop a distributed algorithm to solve OSCA, re-
ferred to as DA-OSCA. The basic structure of DA-OSCA
is based on the Linear Program (LP) rounding technique. In
LP rounding,we first solve the LP relaxation of OSCA, and
then round the (fractional) solution of the LP relaxation toan
integer solution that is feasible to the original OSCA problem.
Figure 1 shows an overview of how DA-OSCA yields an
approximate solution to OSCA. DA-OSCA consists of two
components: 1) the Distributed Algorithm for solving the LP
relaxation of OSCA (DA-LPOSCA); 2) Opportunistic Channel
Assignment Algorithm (OCAA) which performs distributed
rounding of the fractional solution yielded by DA-LPOSCA.

A. Distributed Algorithm for Solving LP relaxation of OSCA

LP relaxation of OSCA. We first formulate OSCA into an
integer linear program (ILP). We assign an indicator variable
xn ∈ {0, 1} to each noden ∈ N , wherexn = 1 indicates
that noden is covered by the given solution. We assign an
indicator variableys,c ∈ {0, 1} to a coverage-setKs,c ∈ K,
andys,c = 1 indicates that sniffers will be tuned to channelc.
The ILP formulation of OSCA, denoted by ILPOSCA, is given
by
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ILP OSCA:

maximize
∑

n∈N

wnxn (1)

subject to xn ≤
∑

s,c:n∈Ks,c

ys,c ∀n ∈ N, (2)

∑

c∈C

ys,c ≤ 1 ∀s ∈ S, (3)

0 ≤ xn, ys,c ≤ 1 ∀n ∈ N, s ∈ S, c ∈ C, (4)

xn, ys,c ∈ {0, 1} ∀n ∈ N, s ∈ S, c ∈ C. (5)

Since ILPOSCA cannot be solved in polynomial time, we
relax the integer constraint (5) and obtain the LP relaxation
of OSCA, i.e., Eqs. (1)–(4), denoted by LPOSCA. In LPOSCA,
the variablesxn’s andys,c’s can now take any value in[0, 1],
including fractional values.

DA-LPOSCA. We present the Distributed Algorithm for solv-
ing LPOSCA (DA-LPOSCA) in Alg. 1. DA-LPOSCA is based on
the Proximal Optimization Algorithm (POA) [13, Ch. 3.4.3].
The derivation of DA-LPOSCA is provided in [14].

DA-LPOSCA has two levels of iterations: inner-level itera-
tions (i.e., thefor loop in lines 2–7) and outer-level iterations
(i.e., thewhile loop in lines 1–9). In the outer-level iterations,
DA-LPOSCA sequentially updates the values of the two kinds
of variables, i.e., first the primal variablesxn’s and ys,c’s,
and then the auxiliary variablesxaux

n ’s andyaux
s,c ’s. In the inner-

level iterations, DA-LPOSCA updates the values of the primal
variables throughI+1 iterations, each of alternately updating
the values of the primal variables and the dual variablespn’s.
DA-LPOSCA can start with any initial values. In Alg. 1,d and
β are positive constants. In Eq. (6), the projection[·]+Ys

can be
easily obtained, e.g., using an algorithm provided in [14].

Note that DA-LPOSCA requiresonly local communications
among neighboring nodes. In many monitoring applications,
it would be desirable that DA-LPOSCA should be run by only
sniffers since DA-LPOSCA is for sniffers to determine their
channels. In such cases, we can let one of neighboring sniffers
of noden act as a proxy and take over the noden’s duty of
updating values of the variablesxn, xaux

n andpn. Thus, each
sniffer s needs to update values of its own variables~ys and
~yaux
s , and also variablesxn’s, xaux

n ’s, andpn’s for some of its
neighboring nodes.

The standard POA [13, Ch. 3.4.3], which is the DA-LPOSCA

when I → ∞, requires a two-level convergence structure.
That is, the inner-level iterations must converge before the
next outer-level iteration begins. However, such a two-level
convergence structure is not suitable for distributed algorithms
since it incurs substantial overheads due to a mechanism
required to determine when to stop inner-level iterations.
Hence, we fix the number of inner-level iterations of DA-
LPOSCA to 2 (i.e.I = 1), and find a good approximate solution.

We now show that, even withI = 1, DA-LPOSCA can
converge to the optimal solution. Let~xaux,t, ~yaux,t, and~p t be
the values of~xaux(I), ~yaux(I), and ~p(I), respectively, at the
t-th outer-level iteration. Also, we let(~xaux,∗, ~yaux,∗) and ~p∗

Algorithm 1 DA-LPOSCA

1: while TRUE do
2: for i = 0 to I do
3: Each noden computesxn(i) according to

xn(i) = [xaux
n + d(wn − pn(i))]

+
[0,1] .

Also, each sniffers computes~ys(i) according to

~ys(i) =







yaux
s,c + d

∑

n∈Ks,c

pn(i) : c ∈ C









+

Ys

.

(6)
Here,Ys =

{

~ys :
∑

c∈C ys,c ≤ 1, ys,c ≥ 0 ∀c
}

and
[~p]+A denotes the projection to a setA. Then, sniffer
s sends the updated values~ys(i) to its neighboring
nodes.

4: if i 6= I then
5: Each noden computespn(i+ 1) according to

pn(i + 1) = [pn(i) + β · gn(i)]
+
[0,+∞) ,where

gn(i) = xn(i)−
∑

(s,c):n∈Ks,c

ys,c(i).

Then, noden sendspn(i + 1) to its neighboring
nodes and sniffers.

6: end if
7: end for
8: Each noden and each sniffers set initial values of their

variables for the next iteration as

xaux
n ← xn(I) andpn(0)← pn(I) (noden)

~yaux
s ← ~ys(I) (sniffer s).

9: end while

be the primal optimal solution and the dual optimal solution,
respectively. The following theorem provides a sufficient con-
dition of β for the convergence of DA-LPOSCA with I = 1.
The proof is provided in [14].

Theorem 3: As t → ∞, a sequence of vectors
(~xaux,t, ~yaux,t, ~p t) given by DA-LPOSCA with I = 1 converges
to (~xaux,∗, ~yaux,∗, ~p∗), provided that

β <
1

2dB1B2
,

where B1 = max{|Ks,c| : s ∈ S, c ∈ C} + 1, B2 =
max{|C|,M + 1}, andM = maxn∈N |{Ks,c : n ∈ Ks,c}|.

B. Opportunistic Channel Assignment Algorithm

We present a distributed rounding algorithm in Alg. 2 which
determines the channel assignment of sniffers based on the
optimal solution~y∗ given by DA-LPOSCA. We refer to it as
theOpportunistic Channel Assignment Algorithm (OCAA). In
OCAA, a novel metricI(Ks,c; ~y

∗
N(s)) is introduced in order

to guide each sniffer to make a good decision on selecting
its channel. We can interpretI(Ks,c; ~y

∗
N(s)) as the expected
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Algorithm 2 Opportunistic Channel Assignment Algorithm

1: // Assume a partitionP = {Pi} of the setS of all sniffers
such that no two sniffers in anyPi are neighbors.

2: for i = 1 to |P| do
3: // All sniffers inPi can choose their channels in parallel.
4: Each sniffers ∈ Pi tunes its radio to a channelc∗ ∈ C

such that

I(Ks,c∗ ; ~y
∗
N(s)) = max

c∈C
I(Ks,c; ~y

∗
N(s)), where

I(Ks,c; ~y
∗
N(s)) =

∑

n∈Ks,c

wn

∏

(s′,c):s′ 6=s,n∈K
s′,c

(1−y∗s′,c).

5: After determining its channel, the sniffers sends the
determination to its neighboring sniffers.

6: end for

coverage improvement that sniffers can achieve by tuning its
radio to channelc, by viewing y∗s′,c as the probability that
sniffer s′ tunes its radio to channelc.

OCAA has the following performance guarantee.

Theorem 4: Given an solution to LPOSCA that attains a
constant factorα of the optimal value of LPOSCA, OCAA
guarantees to achieve at leastα · (1 − 1

e
) (≈ 0.632α) of the

maximum monitoring coverage of OSCA.

The proof is provided in [14]. Here, the factorα comes from
the approximate solution of LPOSCA. However, note that we
can make the approximate solution arbitrarily close to the
optimal solution of LPOSCA as we increase the number of
outer-level iterations of DA-LPOSCA. Hence, DA-OSCA can
always achieve at least1 − 1

e
of the maximum monitoring

coverage of OSCA.

IV. ONLINE IMPLEMENTATION OF DA-OSCA

In this section, we discuss how DA-OSCA can be imple-
mented for online operation so that DA-OSCA is agile and
adapts incrementally to network changes. We discuss two
operational modes of DA-OSCA that are suitable for fast-
varying and slow-varying networks, respectively.

A. Proactive mode of DA-OSCA for fast-varying networks

For fast-varying networks, we implement DA-OSCA to
operateproactively so that it can quickly adapt to frequent
network changes. In this proactive mode, DA-OSCA executes
one outer-level iteration of DA-LPOSCA every T1 time units,
and invokes OCAA everylT1 time units. That is, DA-OSCA
keeps updating the primal and the dual variables (using DA-
LPOSCA), and periodically changes the channel assignment of
sniffers (using OCAA) based on the updated values of~y.

B. Reactive mode of DA-OSCA for slow-varying networks

For slow-varying networks, we implement DA-OSCA to
operateon demand, i.e., only when it needs to change the
channel assignment of sniffers to improve the degraded moni-
toring coverage. For this reactive operational mode, we need a

mechanism to evaluate the quality of monitoring coverage in
order to determine when to start and also when to terminate
DA-OSCA. Hence, we first present a procedure to evaluate
the quality of monitoring coverage, and then discuss how we
can implement DA-OSCA to operate in a reactive mode using
this procedure.

To evaluate the quality of monitoring coverage, sniffers per-
form a sequential procedure along a pre-constructed spanning
tree of them. The procedure is initiated by leaf sniffers and
is executed sequentially along the levels of the spanning tree
upwards to the root sniffer. At a level of the spanning tree,
sniffer s computes the followings:

Cs =
∑

s′∈CS(s)

Cs′ +
∑

n∈L(s)

wn ·min

{

1,
∑

(s,c):n∈Ks,c

ys,c

}

,

Ds =
∑

s′∈CS(s)

Ds′ +
∑

n∈Ks,c∗

pn +
∑

n∈L(s)

[wn − pn]
+, (7)

wherec∗ ∈ argmaxc∈C

∑

n∈Ks,c
pn, [x]+ = max{x, 0}, and

CS(s) andL(s) denote the set of the child sniffers of sniffer
s and the set of neighboring nodes of sniffers, respectively.
Finally, the root sniffer computesCroot and Droot according
to Eq. (7), and then decides to start DA-OSCA or terminate
DA-LPOSCA by checking ifCroot ≥ γ ·Droot, whereγ is a pre-
determined threshold. (If the condition is met, it is guaranteed
that the current monitoring coverage achieves at leastγ of the
maximum coverage [14].) Then, the determination is delivered
to all sniffers along the spanning tree.

We now describe how DA-OSCA can be implemented to
operate in a reactive mode using the above procedure. In
this mode, DA-OSCA evaluates the quality of the current
monitoring coverage periodically, e.g., everyT2 time unit,
by employing the above procedure. If the current quality
of the current monitoring coverage is above a desired level,
DA-OSCA terminates doing nothing. Otherwise, DA-OSCA
starts to run outer-level iterations of DA-LPOSCA to solve
the new OSCA due to the network changes. At everyNo

outer-level iteration, DA-OSCA checks whether the current
solution of DA-LPOSCA is sufficiently close to the optimal
solution of LPOSCA by using the above procedure. Once a near-
optimal solution to LPOSCA is obtained, DA-OSCA terminates
DA-LPOSCA and then rounds the solution of LPOSCA with
OCAA to obtain an feasible integer solution. Then, DA-OSCA
terminates.

V. SIMULATION

We conduct simulations to demonstrate the efficacy of
the two modes of DA-OSCA. In the simulation, 500 nodes
of identical weight and 50 sniffers are randomly deployed
in the network with a uniform distribution. The number of
available wireless channels is three (i.e.,|C| = 3). The
channel of each node is assigned randomly to channel 1, 2,
or, 3 with probabilities 0.2, 0.3, and 0.5, respectively. The
channel assignment of a fraction of nodes (randomly chosen
between 10% and 40%) changes every 5 time units and every
100 time units in the fast-varying and slow-varying networks,
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Fig. 2. Evolution of monitoring coverage in two modes of DA-OSCA.

respectively. Here, we define one time unit as the time that DA-
OSCA takes to run one outer-level iteration of DA-LPOSCA.

Figure 2(a) shows how the monitoring coverage evolves as
DA-OSCA in Mode-I adapts to fast changes of the channels
assigned to nodes. The monitoring coverage is normalized
by the optimal value of LPOSCA, which is an upper bound
on the maximum monitoring coverage. In this experiment,
DA-OSCA adjusts the channel assignment of sniffers after
10 time units since the experiment begins. We observe that
the fractional monitoring coverage due to the solution of
DA-LPOSCA converges rapidly (within 10 time units) until it
reaches about 90% of the maximum coverage, and it flattens
out after it goes above 90% of the maximum coverage. We
also observe that DA-LPOSCA quickly recovers the degraded
fractional monitoring coverage. Within only a few time units,
the new channel assignment of sniffers by OCAA attains
a high monitoring coverage, maintained above 95% of the
maximum coverage.

Figure 2(b) demonstrates the on-demand operation of DA-
OSCA in Mode-II for slow channel changes. We see observe
large intervals of time where the monitoring coverage is flat.
This means that DA-OSCA determined that the monitoring
coverage meets the desired level through the procedure to
evaluate the quality of monitoring coverage (in Section IV-B),
and then terminates without any processing, thereby saving
unnecessary cost. We notice that when the network changes,
the monitoring coverage suffers (note the dips) but quickly
recovers (always within 20 time units) as OCAA is executed
on demand.

Both experiments show that DA-OSCA is able to adapt
to different kinds of networks, fast-varying and slow-varying,
and is able to operate incrementally with respect to network
changes. By setting the values of threshold (i.e.,γ), the system
operator can control how close she wants the normalized
monitoring coverage to get to the value of one.

VI. CONCLUSION

In this paper, we presented a distributed online algorithm
for the optimal channel assignment problem for passive mon-
itoring in multi-channel wireless networks. Our algorithm
preserves the approximation ratio1− 1

e
that the existing cen-

tralized algorithms have previously attained, while providing a

distributed solution that is amenable to online implementation.
We discuss two operational modes of our algorithm for cost-
effective operation in two types of networks that have different
rates of network changes. Simulation results demonstrate the
effectiveness of the two modes of our algorithm.

Our future work is on how to make our distributed algorithm
execute asynchronously. Further, we are studying the security
monitoring where a node needs to covered by multiple sniffers
for reliable monitoring, due to imperfect sniffers.
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