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Abstract—This paper studies an optimal channel assignment studied a problem of how to optimally place sniffers and
problem for passive monitoring in multi-channel wireless ret-  assign their channels to monitor multi-channel WMNSs, as-
works, where a set of sniffers capture and analyze the netwér suming stationary networks. Chhegi al. [7] have studied
traffic to monitor the network. The objective of this problem is . . (s
to maximize the total amount of traffic captured by sniffers by tWQ models Of. Snmer? that assume different C.apab'“t'és 0
judiciously assigning the radios of sniffers to a set of chamels. Snhiffers’ capturing traffic. The first, calleaser-centric model,

This problem is NP-hard, with the computational complexity assumes that frame-level information can be captured go tha
growing exponentially with the number of sniffers. We devebp  activities of different users are distinguishable. Theoseg
distributed online solutions to this problem for large-scale and called sniffer-centric model, assumes only binary information

dynamic networks. Prior works have attained constant facto reqarding channel activities. i.e hether some usertigei
of 1 — L of the maximum monitoring coverage in a centralized '€93rdINg IViies, 1.€., w usertsealr

setting. Our algorithm preserves the same ratio while prowiing @ Specific channel near a sniffer. In both of the works [6], [7]
a distributed solution that is amenable to online implemenation.  the authors assume that a prior knowledge of the topology and
Also, our algorithm is cost-effective, in terms of communiation  the channel usages of nodes to be monitored is given to, or can
and computational overheads, due to the use of only local com q jnferred by, sniffers. On the other hand, Areral. [8] have
munication and the adaptation to incremental network changs. . Lo . .
We present two operational modes of our algorithm for two types studied a trade-off betwegn assigning the radios of ssifer
of networks that have different rates of network changes. Os channels known to be busiest based on the current knowledge,
is a proactive mode for fast varying networks, while the otheis  versus exploring channels that are under observed. Iniaddit
a reactive mode for slowly varying networks. Simulation resilts ~ Subhadrabandha al. [9]-[11] have studied a problem of how
demonstrate the effectiveness of the two modes of our algthim. optimally place a set of intrusion detection modules for
misuse detection isingle-channel wireless networks.
One can obtain a good approximate solution to OSCA,
We consider a channel assignment problem for passive mevhich is an NP-hard problem (see Section 11-B), by extending
itoring in multi-channel wireless networks. Passive maitg  algorithms in [6], [7]. The work [7] studies a special case
is a widely-used and effective technique to monitor wirgledf OSCA, where each sniffer has only one radio, while our
networks, where a set of sniffers (i.e., software or haréwaprior work [6] studies a generalized version of OSCA, i.e.,
devices that intercept and log packets) are used to capttite optimal selection of sniffers and their channels. Blg t
and analyze network traffic between other nodes to estimailgorithms in [6], [7] are centralized and offline algoritem
network conditions and performance. Such estimates are that is, the algorithms require a central authority thatt firs
lized for efficient network operation, such as network reseu gathers, from all sniffers, either a prior knowledge of the
management, network configuration, fault detection/disigr network topology and the channel usages of all nodes to be
and network intrusion detection. Recently, it has beenrextemonitored [6], or primitive information to estimate the qri
sively studied to use multiple channels in wireless netwpriknowledge [7], then runs the algorithm and distributes the
especially in wireless mesh networks (WMNs) [1]-[5]. Isolution to all sniffers.
has been shown that equipping nodes with multiple radiosThese centralized algorithms are not suitable for largdesc
tuned to different non-overlapping channels can signifigan and dynamic networks, due to several reasons. The central-
increase the capacity of the network. In multi-channel leBs ized algorithms require an efficient and cost-effective -two
networks, a major challenge with passive monitoring is howay global communication mechanism between the central
to assign a set of channels to each sniffer’s radios such thathority and all sniffers, i.e., the communications froth a
as large an amount of traffic or large a number of nodes swiffers to the central authority for the delivery of the qori
possible are captured. We call this thtimal sniffer-channel  knowledge, and also the communication from the central
assignment (OSCA) problem. authority to all sniffers for the distribution of the solo.
Previous works [6]-[8] have studied variants of OSCAdowever, this is difficult to achieve in large-scale netwsgrk
in different perspectives. In our prior work [6], we haveespecially in multi-hop wireless networks. Also, such a-two
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algorithms are difficult to be deployed in ad hoc wireless Fig. 1. Distributed Algorithm for OSCA (DA-OSCA).
networks, which lack the central authority or a powerful @od

that has a high computational power, a large memory, and o o

no significant energy constraint. Moreover, the powerfudeo 1€+ Ks = {K.c : ¢ € C}. Our objective is to maximize the
needs to be fault-tolerant or easily replaceable when Iis, faitot@! weight of the nodes covered by judiciously choosing on

since otherwise the entire monitoring system may fail due §9Verage-set from each group. Here, the constraint that onl
a single-point failure. one coverage-set can be chosen from each group arises since

In this paper, we develogistributed andonline solutions to each sniffer has a single radio and can thus tune its radio to
OSCA for large-scale and dynamic networks. Our distributéf!ly 0ne channel at a time. We refer to this problem as the
algorithm, called DA-OSCA, can always achieve at least. ~ OPtimal sniffer-channel assignment (OSCA) problem.

(~ 0.632) of the maximum monitoring coverage, regardless of For ease of exposition, we assume that all of the nodes and

the network topology and the channel assignment of nodes#§ sniffers have only one radio. However, the multi-radise;
be monitored. Previously, the centralized algorithms in[§ where nodes and sniffers are equipped with multiple radios,

have also attained the ratio— % However, our DA-OSCA ¢an be easily mapped to this single-radio case (refer t0).[14]
preserves the same ratio while providing a distributedt8iu g Hardness of OSCA

that is amenable to online implementation. Also, DA-OSCA is
cost-effective, in terms of communication and computational
overheads, since it requires only local communication agnon Theorem 1 (Theorem 1 [7]): OSCA is NP-hard.

nﬁ'ghbon?\% nodes iﬂd :ISO a}[dalptsdlncrgmgnt?lly tot nettwo[rhis means that the computational complexity to solve OSCA
changes. Moreover, the decentralized and adaptive Stelolu grows exponentially with the number of sniffers, unlg3s=
DA-OSCA allows us to implement DA-OSCA in two opera-y;

tional modes; one is a proactive mode for fast-varying netwo
while the other is a reactive mode for slow-varying networks o
We demonstrate through simulations the effectiveness ef th Theorem 2 (Corollary 2 [7]): For anye > 0, it is NP-hard

We present existing results on the hardness of OSCA.

Also, we have an inapproximability result for OSCA.

two modes of DA-OSCA. to approximate OSCA within a factor &f-+ e of the optimum.
Il. PROBLEM FORMULATION Thus, the best achievable approximation ratio for OSCA is at
A Optial Sniffer-Channel Assgnment (OSCA) Problem ™St
We are given a setV of nodes to be monitored, and [Il. THE DISTRIBUTED ALGORITHM FOROSCA

each noden € N is tuned to a wireless channel chosen We develop a distributed algorithm to solve OSCA, re-
from a setC' of available wireless channels, whell€| > 2.  ferred to as DA-OSCA. The basic structure of DA-OSCA
The channels are chosen according to one of many availaiglehased on the Linear Program (LP) rounding technique. In
channel assignment algorithms (e.g., [3], [4], [12]). Eadde LP rounding,we first solve the LP relaxation of OSCA, and
n is given a non-negative weight,. These weights of nodesthen round the (fractional) solution of the LP relaxatiorato
can be used to capture various application-specific olbEsti integer solution that is feasible to the original OSCA pesbl
of monitoring. For example, one can assign higher weights lgure 1 shows an overview of how DA-OSCA yields an
the nodes that transmit larger volumes of data, therebyrigasapproximate solution to OSCA. DA-OSCA consists of two
our algorithm to monitor such nodes more. Or, for securigfomponents: 1) the Distributed Algorithm for solving the LP
monitoring, one can assign higher weights to more suspiciotélaxation of OSCA (DA-LBsca); 2) Opportunistic Channel
nodes. Assignment Algorithm (OCAA) which performs distributed
We are given a set of sniffers, each of which needs torounding of the fractional solution yielded by DA-bBca.
determine a wireless channel frofhto tune its radio to. We o . . )
say that a sniffer and a node ameighbors if the sniffer can A. Distributed Algorithm for Solving LP relaxation of OSCA
overhear the node, and also that two sniffersraighbors if LP relaxation of OSCA. We first formulate OSCA into an
there exists a node that can be overheard by both the sniffénseger linear program (ILP). We assign an indicator vdegab
We say that a node icovered if the node is overheard by atz,, € {0,1} to each nodex € N, wherez,, = 1 indicates
least one sniffer being tuned to the same channel as the ndtlat noden is covered by the given solution. We assign an
We are given a collection of coverage-séfs= {K; . C N : indicator variabley; . € {0,1} to a coverage-sek; . € K,
s €S, c e C}, where acoverage-set K . contains the nodes andy; . = 1 indicates that sniffes will be tuned to channel.
that can be covered by snifferbeing tuned to channel We The ILP formulation of OSCA, denoted by IlbBca, is given
define agroup as a collection of all coverage-sets of a sniffely



Algorithm 1 DA-LPosca

1: while TRUE do

ILP OSCA-
maximize Z WnTn 1 2
neN 3:
subject to z,, < Z Ys,e VN EN, 2)
s,c:neEKg o
> yse <t Vs € S, ®3)
ceC

0< 2y, ysc <1
xnays,c S {Oa 1}

Since ILRysca cannot be solved in polynomial time, we
relax the integer constraint (5) and obtain the LP relaxatio
of OSCA, i.e., Egs. (1)—(4), denoted by &&a. In LPosca,
the variablesr,,’s andy; .'s can now take any value i, 1],

VYne N,se S ceC, (4)
Yn € N,se S,ceC. (5)

including fractional values. 4

DA-LP osca. We present the Distributed Algorithm for solv- 5
ing LPosca (DA-LPOSCA) in AIg 1. DA-LPosca is based on
the Proximal Optimization Algorithm (POA) [13, Ch. 3.4.3].
The derivation of DA-LRsca is provided in [14].

DA-LPosca has two levels of iterations: inner-level itera-
tions (i.e., thef or loop in lines 2—7) and outer-level iterations
(i.e., thewhi | e loopin lines 1-9). In the outer-level iterations,

DA-LPosca sequentially updates the values of the two kinds&

of variables, i.e., first the primal variables,’s and y; 's,
and then the auxiliary variables§™s andy3'‘s. In the inner-
level iterations, DA-LRsca updates the values of the primal
variables through + 1 iterations, each of alternately updating
the values of the primal variables and the dual variaplgs.
DA-LPosca can start with any initial values. In Alg. 1, and
[ are positive constants. In Eq. (6), the projectic}ﬁs can be
easily obtained, e.g., using an algorithm provided in [14].

for i=0to I do
Each node: computesr,, (i) according to

(i) = [12%+ d(wn — pa ()] -
Also, each sniffers computesy, (i) according to
+
o) = | |92 +d Y puli)iceC
nEK, Y.

Here,Y; = {¥s: Y cc¥s,e < 1, ysc > 0 Ve} and
[p]} denotes the projection to a sdt Then, sniffer
s sends the updated valugs(i) to its neighboring
nodes.
if ¢+ # I then

Each node: computesp,, (i + 1) according to

Pu(i+1) = [pu(i) + 8- 9n ()] | o) » Where
gn(l) = In(l) - Z

(s,¢)meKs ¢

ys,c(l)-

Then, noden sendsp, (i + 1) to its neighboring
nodes and sniffers.
end if
end for
Each node: and each sniffes set initial values of their
variables for the next iteration as

22 < 2, (I) andp, (0) < p, (1)

—auXx

1/3 — gS(I)

(noden)
(sniffer s).

9: end while

Note that DA-LRysca requiresonly local communications
among neighboring nodes. In many monitoring applications,

it would be desirable that DA-L§xca should be run by only be the primal optimal solution and the dual optimal solution
sniffers since DA-LBsca is for sniffers to determine their respectively. The following theorem provides a sufficieoic
channels. In such cases, we can let one of neighboring siffgition of 3 for the convergence of DA-L&¥ca With I = 1.
of noden act as a proxy and take over the nads duty of The proof is provided in [14].

updating values of the variables,, 22"* andp,,. Thus, each
sniffer s needs to update values of its own variablgsand

neighboring nodes.
The standard POA [13, Ch. 3.4.3], which is the DAdsRa
when I — oo, requires a two-level convergence structure.

That is, the inner-level iterations must converge before thvhere B = max{| K|

Theorem 3: As ¢

(Fauxt gauxt 5ty given by DA-LRysca With 7 = 1 converges
ya, and also variables,,’s, z5"'s, andp,’s for some of its {4 (7

— o0, a sequence of vectors

pas gaux= ), provided that
1
< 3aBiBy

s € S,ce C+1, By =

next outer-level iteration begins. However, such a twaelevmax{|C|, M + 1}, and M = maxpen [{Ks.c:n € K }.

convergence structure is not suitable for distributed rtigms
since it incurs substantial overheads due to a mechani

-ngpportunistic Channel Assignment Algorithm

required to determine when to stop inner-level iterations. We present a distributed rounding algorithm in Alg. 2 which

Hence, we fix the number of inner-level iterations of DAdetermines the channel assignment of sniffers based on the

LPoscato 2 (i.e.I = 1), and find a good approximate solutionoptimal solutiony* given by DA-LRysca. We refer to it as

We now show that, even witd = 1, DA-LPgosca can

the Opportunistic Channel Assignment Algorithm (OCAA). In

converge to the optimal solution. L&f"%, 72%¢ andj* be OCAA, a novel metricI(Ksyc;gﬁv(S)) is introduced in order
the values of7®"X(I), #2%X(I), and j(I), respectively, at the to guide each sniffer to make a good decision on selecting

t-th outer-level iteration. Also, we lefz®**, j®**) and * its channel. We can interpré( K, .; iy ,)) as the expected



Algorithm 2 Opportunistic Channel Assignment Algorithm mechanism to evaluate the quality of monitoring coverage in
1: // Assume a partitiorP = {P;} of the setS of all sniffers order to determine when to start and also when to terminate
such that no two sniffers in ank; are neighbors. DA-OSCA. Hence, we first present a procedure to evaluate
2: for i =1 to |P| do the quality of monitoring coverage, and then discuss how we
3./ All sniffers in P; can choose their channels in parallelcan implement DA-OSCA to operate in a reactive mode using
4. Each sniffers € P, tunes its radio to a channel € C'  this procedure.
such that To evaluate the quality of monitoring coverage, sniffers pe
form a sequential procedure along a pre-constructed spgnni
tree of them. The procedure is initiated by leaf sniffers and

I(KS,C* ) yN(s)) = Igleaé( I(K&c; yN(S))’ Where

. . is executed sequentially along the levels of the spannieg tr
I(EKsei9ns) = Z Wn H (1=45c)- upwards to the root sniffer. At a level of the spanning tree,
neksc  (s0)is e neR sniffer s computes the followings:
5. After determining its channel, the sniffer sends the
determination to its neighboring sniffers. Ci= > Co+ > wy-min {1, > ys,c}a
6: end for s'€CY(s) neL(s) (s,0)meK, o
Dy = Z Dy + Z Pn + Z [wn _pn]+a (7)

s'€CY(s) neK, o* neL(s)
coverage improvement that sniffercan achieve by tuning its
radio to channek, by viewing y* . as the probability that Wherec® € argmax cc >onek.., Pno [2]T = max{z,0}, and
sniffer s’ tunes its radio to channel CS(s) and L(s) denote the set of the child sniffers of sniffer
OCAA has the following performance guarantee. s and the set of neighboring nodes of sniftgrrespectively.
) ] ) Finally, the root sniffer compute€or and Dyoor according
Theorem 4: Given an solution to LBsca that attains a (5 gq. (7), and then decides to start DA-OSCA or terminate
constant factora o_f the optimal valule of LBsca, OCAA DA-LPosca by checking ifCroot > 7 - Droot, Wherey is a pre-
guarantees to achieve at least (1 — ) (= 0.632a) of the  yetermined threshold. (If the condition is met, it is guaeed
maximum monitoring coverage of OSCA. that the current monitoring coverage achieves at leasftthe
The proof is provided in [14]. Here, the factarcomes from maximum coverage [14].) Then, the determination is dedider
the approximate solution of l&3ca. However, note that we to all sniffers along the spanning tree.
can make the approximate solution arbitrarily close to the We now describe how DA-OSCA can be implemented to
optimal solution of LRsca as we increase the number ofoperate in a reactive mode using the above procedure. In
outer-level iterations of DA-LBsca. Hence, DA-OSCA can this mode, DA-OSCA evaluates the quality of the current
always achieve at least — 2 of the maximum monitoring monitoring coverage periodically, e.g., evefy time unit,

coverage of OSCA. by employing the above procedure. If the current quality
of the current monitoring coverage is above a desired level,
IV. ONLINE IMPLEMENTATION OF DA-OSCA DA-OSCA terminates doing nothing. Otherwise, DA-OSCA

In this section, we discuss how DA-OSCA can be implestarts to run outer-level iterations of DA-bBca to solve
mented for online operation so that DA-OSCA is agile anthe new OSCA due to the network changes. At evéfy
adapts incrementally to network changes. We discuss twuter-level iteration, DA-OSCA checks whether the current
operational modes of DA-OSCA that are suitable for fassolution of DA-LRysca is sufficiently close to the optimal
varying and slow-varying networks, respectively. solution of LRysca by using the above procedure. Once a near-

. . optimal solution to LBsca is obtained, DA-OSCA terminates
A. Proactive mode of DA-OSCA for fast-varying networks DA-LPosca and then rounds the solution of bE:a with

For fast-varying networks, we implement DA-OSCA tdOCAA to obtain an feasible integer solution. Then, DA-OSCA
operateproactively so that it can quickly adapt to frequenterminates.
network changes. In this proactive mode, DA-OSCA executes
one outer-level iteration of DA-Lfxca every Ty time units,
and invokes OCAA everyT} time units. That is, DA-OSCA  We conduct simulations to demonstrate the efficacy of
keeps updating the primal and the dual variables (using Diie two modes of DA-OSCA. In the simulation, 500 nodes
LPosca), and periodically changes the channel assignment @ff identical weight and 50 sniffers are randomly deployed
sniffers (using OCAA) based on the updated valueg.of in the network with a uniform distribution. The number of

) . available wireless channels is three (i.&5] = 3). The
B. Reactive mode of DA-OSCA for slow-varying networks channel of each node is assigned randomly to channel 1, 2,

For slow-varying networks, we implement DA-OSCA toor, 3 with probabilities 0.2, 0.3, and 0.5, respectively.eTh
operateon demand, i.e., only when it needs to change thehannel assignment of a fraction of nodes (randomly chosen
channel assignment of sniffers to improve the degraded-mobetween 10% and 40%) changes every 5 time units and every
toring coverage. For this reactive operational mode, welmee 100 time units in the fast-varying and slow-varying netwsrk

V. SIMULATION
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Fig. 2. Evolution of monitoring coverage in two modes of DACA.

500

distributed solution that is amenable to online implemgoita
We discuss two operational modes of our algorithm for cost-
effective operation in two types of networks that have défe
rates of network changes. Simulation results demonsthate t
effectiveness of the two modes of our algorithm.

Our future work is on how to make our distributed algorithm
execute asynchronously. Further, we are studying the isgcur
monitoring where a node needs to covered by multiple ssiffer
for reliable monitoring, due to imperfect sniffers.
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