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Abstract—This work considers a commonly encountered wire-
less transmission scenario: Two nearby 1-hop flows s1 → d1 and
s2 → d2 are within the transmission range of each other. The
network nodes thus have to share the time resources, which limits
the sum-rate performance. On the other hand, both si and di can
(occasionally) overhear the transmission of the other pair (sj , dj)
for all i �= j, which opens up the opportunity of using network
coding (NC) and ACK/NACK to improve the throughput. The key
challenge, however, is that any dedicated communication between
s1 and s2 also consumes the precious time resources. Hence NC
coordination must be achieved through unreliable overhearing.

In this work, the above scenario is modeled as four wireless
nodes interconnected by broadcast erasure channels with channel
state feedback. The corresponding capacity region (R1, R2)
is fully characterized for the setting of symmetric, spatially
independent erasure channels.

I. INTRODUCTION

This work considers a commonly encountered wireless

transmission scenario: Two nearby 1-hop flows from s1 to d1
and from s2 to d2 are within the transmission range of each

other, see Fig. 1(a). Assuming the node-exclusive interference

model, commonly used in the network scheduling literature

[7], the network nodes thus have to share the time resources,

which limits the sum-rate performance. On the other hand,

both si and di can (occasionally) overhear the transmission

of the other pair (sj , dj), which opens up possibility of

cooperative transmission. The above scenario can be modeled

as four wireless nodes s1, d1, s2, and d2 interconnected by two

broadcast packet erasure channels (PECs). That is, a packet X1

sent by s1 can be heard by a (random) subset of {s2, d1, d2}
and a packet X2 sent by s2 can be heard by a (random) subset

of {s1, d1, d2}, see Fig. 1(b). We also assume causal network-
wide channel state information (CSI) feedback. That is, after si
sends a packet Xi, all four nodes {s1, s2, d1, d2} know which

of the three nodes {sj , d1, d2} has received Xi successfully.

This can be achieved by sj , d1, and d2 each broadcasting

its ACK/NACK signals over the network via a very low-rate1

control channel or via piggybacking the forward traffic. We

term this setting (Fig. 1(b)) the proximity network. This work

aims to characterize the corresponding capacity region under

some symmetry conditions.

The study of the proximity network is critical to the

understanding of general wireless networks. For example, the

XOR-in-the-air protocol [5] shows that if two coexisting 2-

hop flows s1 → r → d1 and s2 → r → d2 share a common

relay r, the so called wireless X network, then relay r can

perform network coding (NC) and enhances the throughput

1The feedback rate is 3 bits per each forward packet transmission.

Fig. 1. (a) Two nearby 1-hop flows; (b) The corresponding wireless
erasure network model; (c) The application to multi-relay networks. The
rectangles represent the PECs; (d) A 2-receiver access-point network; (e) The
corresponding 2-receiver broadcast erasure channel.

by 40–200% [5]. However, in practice a more likely scenario

is that the 2-hop flows s1 → r1 → d1 and s2 → r2 → d2 have

two distinct relays r1 and r2 that are in close proximity, see

Fig. 1(c). A nature question is thus how much NC throughput

gain one can still have when the two flows do not share a

common relay r. As can be seen in the boxed area of Fig. 1(c),

a critical component of this problem is the proximity network.

One key motivation of this work is to study the throughput

benefit of CSI feedback for erasure networks [1]. Existing re-

sults on the erasure-network CSI-feedback capacity include the

K-receiver broadcast channel capacity under various settings

[2]–[4], [9], the 2-receiver XOR-in-the-air capacity with CSI

feedback [6], and the linear NC capacity of the 2-receiver

MIMO broadcast erasure channel [10].

The capacity of Fig. 1(b) is highly related to that of the

2-receiver broadcast PEC with CSI feedback [4] since if the

logical sources s1 and s2 are situated at the same physical

node s, then Fig. 1(b) collapses to Fig. 1(e). Compared to the

results on broadcast erasure channels [4], there are two main

challenges when characterizing the capacity of the proximity

network. Firstly, s1 and s2 can only be coordinated through

random overhearing. Secondly, what s1 transmitted in the

past can affect the current NC decision of s2, which in turn

influences s1’s NC decisions in the future. Questions like “how

many time slots one should schedule s1 and s2, respectively,

and in what order” thus need to be carefully addressed. The

challenges of coordination through overhearing and transmis-
sion node scheduling do not exist when there is only one

transmission node s as in the case of broadcast PECs [4].

The cooperation between two nearby flows has been actively

investigated under the subject of interference channels with



source cooperation, see [8], [11] and the references therein. In

contrast with the interference channel results, several distinct

features of this work include: (i) Interference is fully avoided

through time-sharing. We can thus separate the benefits of CSI

feedback from that of the interference mitigation techniques;

(ii) In addition to overhearing the (corrupted) packets over the

air, we assume network-wide CSI, which is a form of dedicated

feedback that can be easily implemented in practice; and (iii)

We characterize the full capacity region (R1, R2), which is

stronger than the sum-rate capacity characterization.

II. PROBLEM FORMULATION AND THE MAIN RESULT

Assume slotted transmission. Within a total time budget of

n time slots, source si would like to send n · Ri packets

Wi
Δ
= (Wi,1, · · · ,Wi,nRi) to destination di for i ∈ {1, 2}.

Each packet Wi,l, l = 1, · · · , nRi, is chosen independently

and uniformly randomly from a finite field GF(q). For any

time t ∈ [n]
Δ
= {1, · · · , n}, consider a random 6-dimensional

channel state vector:

Z(t) =(Zs1→s2(t), Zs1→d1(t), Zs1→d2(t),

Zs2→s1(t), Zs2→d1(t), Zs2→d2(t)) ∈ {∗, 1}6
where “∗” and “1” represent erasure and successful reception,

respectively. That is, for any i = 1, 2, when si transmits

a packet Xi(t) ∈ GF(q) in time t, node v (v can be any

of {sj , d1, d2} where j �= i) receives Ysi→v(t) = Xi(t) if

Zsi→v(t) = 1 and receives Ysi→v(t) = ∗ if Zsi→v(t) = ∗. For

simplicity, we use Ysi→v(t) = Xi(t) ◦Zsi→v(t) as shorthand.

We also assume Z(t) is independent of W1 and W2.

To model interference, we assume that only one node can be

scheduled in each time slot. We use σ(t) ∈ {s1, s2} to denote

the scheduling decision at time t. For convenience, when si
is not scheduled at time t, we simply set Ysi→v(t) = ∗, i.e.,

Ysi→v(t) = Xi(t) ◦ Zsi→v(t) ◦ 1{σ(t)=si}.

We assume the two PECs in Fig. 1(b) are memoryless, sta-

tionary, symmetric, and spatially independent. That is, for all

i ∈ {1, 2} the success probability Prob(Zsi→dk
(t)) = p for all

k ∈ {1, 2} and Prob(Zsi→sj (t)) = q for all j ∈ {1, 2}\i; Each

coordinate of Z(t) is independently distributed; and Z(t) is

independently and identically distributed over the time axis t.
We use brackets [·]t1 to denote the collection from time 1 to t.

For example, [Z, Ys1→d2 ]
t
1

Δ
= {Z(τ), Ys1→d2(τ) : ∀τ ∈ [1, t]}.

Given the traffic load (R1, R2), a network code is defined

by n scheduling decision functions

∀t ∈ [n], σ(t) = fσ,t([Z]
t−1
1 ), (1)

2n encoding functions at s1 and s2, respectively: For all t ∈
[n], i ∈ {1, 2}, and j ∈ {1, 2}\i,

Xi(t) = fsi,t(σ(t),Wi, [Ysj→si ,Z]
t−1
1 ), (2)

and 2 decoding functions at d1 and d2, respectively:

Ŵi = fdi([σ, Ys1→di , Ys2→di ,Z]
n
1 ), ∀i ∈ {1, 2}. (3)

Namely, the scheduling decision at time t is based on the

network-wide CSI in time 1 to (t−1). Encoding at si depends

on the scheduling decision, the information messages, what si
overhears from sj , and the past CSI. In the end, di decodes

Wi based on the past scheduling decisions, what di has

received, and the past network-wide CSI. We can then define

the capacity of the proximity network, Fig. 1(b), as follows.
Definition 1: Fix the p and q values. A rate vector

(R1, R2) is achievable if for any ε > 0, there exists a

network code with sufficiently large n and GF(q) such that

max∀i∈{1,2} Prob(Wi �= Ŵi) < ε. The capacity region is the

closure of all achievable (R1, R2).
The main result of this work is described as follows.
Proposition 1: A rate vector (R1, R2) is in the capacity

region if and only if the following inequalities are satisfied.

R1

p
+

R2

1− (1− p)2
≤ 1 (4)

R1

1− (1− p)2
+

R2

p
≤ 1 (5)

R1 +R2 ≤ 1− (1− p)(1− q). (6)

A detailed sketch of the proof is provided in the next section.
Remark: One can quickly see that the larger the q value is,

the easier source si can overhear packets from the other source

sj , the stronger coordination s1 and s2 can achieve through

random overhearing, and the closer the proximity network in

Fig. 1(b) is to the 2-receiver broadcast PEC in Fig. 1(e). One

implication of Proposition 1 is that even with relatively weak

overhearing between s1 and s2, as long as q ≥ p
3−p (i.e.,

roughly 1/3 to 1/2 of the p value), nodes s1 and s2 can be

fully coordinated and the capacity of the proximity network

is identical to that of the 2-receiver broadcast PEC. Also see

the discussion in Section III-A.

III. PROOF OF THE MAIN RESULT

A. The outer bound proof
One challenge of the problem is that s1 and s2 have to

coordinate through unreliable overhearing. A straightforward

outer bound is thus to connect s1 and s2 through an auxil-

iary information pipe with infinite capacity, which effectively

merges s1 and s2 into a single source s and eliminates the

coordination problem. The original setting is thus converted

into a symmetric 2-receiver broadcast PEC with each sub-

channel s → di having success probability p. The capacity of

the latter is described in (4) and (5), see [4], which serves as

an outer bound of the original problem.
The third inequality (6) is a cut-set bound and can be derived

as follows. For any feasible network code, we notice that con-

ditioning on [Z]n1 , we have Wi → [Ysi→di , Ysi→sj ]
n
1 → Ŵi,

j �= i, being a Markov chain. As a result,

I(Wi;Ŵi) ≤ H
(
[Ysi→di , Ysi→sj ]

n
1

∣
∣ [Z]n1

)

≤ (1− (1− p)(1− q)) · ti
where I(·; ·) is the mutual information and ti is the expected

number of si’s transmissions, i.e., ti
Δ
= E

(∑n
τ=1 1{σ(τ)=si}

)

with 1{·} being the indicator function. As a result, we have

I(W1;Ŵ1) + I(W2;Ŵ2)

1− (1− p)(1− q)
≤ t1 + t2 = n. (7)
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Fig. 2. The capacity region for the case of p = 0.5 and q = 0.1. The four
corner points of the capacity region are denoted by A to D, which will be
referred to in the achievability proof.

By Fano’s inequality we can choose a feasible network code

with I(Wi;Ŵi) ≥ n(Ri − ε) for any ε. (7) thus implies (6).

Fig. 2 illustrates the capacity region for the case of p = 0.5
and q = 0.1. Note that the larger the q value is, the less

restrictive is the constraint in (6). When q > p
3−p the line

R1 + R2 = 1 − (1 − p)(1 − q) no longer intersects with the

capacity region of the 2-receiver broadcast erasure channel.

Hence s1 and s2 are fully coordinated as long as q ≥ p
3−p .

B. Proof of the inner bound

Due to space limit, we focus on the more interesting case

of q < p
3−p , for which the capacity region described in (4)

to (6) is a pentagon with 4 corner points A to D, see Fig. 2.

The coordinates of Point A are (R1, R2) = (p, 0), which can

be achieved by letting only s1 transmit. The coordinates of

Point B are (R1, R2) = (p− q, q(2− p)). For the following,

we will prove that Point B can be achieved asymptotically. By

symmetry, Points C and D can also be approached. We can

then achieve the entire capacity region through time sharing.

The following scheme approaches Point B, i.e., (R1, R2) =
(p− q, q(2−p)). The scheme consists of 4 major phases. The

first two phases contains 2 sub-phases, one for the transmission

of s1 and one for s2. The network code executes the following

(sub-)phases in sequence.

In Phase 1.s1, source s1 keeps transmitting an uncoded

packet W1,l until it is received by at least one of {s2, d1, d2}.

s1 then moves on to the next packet W1,l+1. Phase 1.s1 stops

when all W1 packets have been heard by at least one of

{s2, d1, d2}. Phase 1.s2 is symmetric to Phase 1.s1.

After Phase 1.s1, we can partition all W1 packets into 7

groups A1 to A7 based on their reception status. For example,

the reception status of W1,l being s2d1d2 means that W1,l is

received by s2 and d2 but not by d1. The reception status of

each group, A1 to A7, is summarized as follows.

A1: s2d1d2, A2: s2d1d2, A3: s2d1d2, A4: s2d1d2,

A5: s2d1d2, A6: s2d1d2, and A7: s2d1d2. (8)

Symmetrically, after Phase 1.s2 we can partition all W2

packets into 7 groups: B1 to B7, for which the reception status

are

B1: s1d1d2, B2: s1d1d2, B3: s1d1d2, B4: s1d1d2,

B5: s1d1d2, B6: s1d1d2, and B7: s1d1d2. (9)

The purpose of Phases 1.s1 and 1.s2 is to populate the network

with the information packets W1 and W2.
After Phase 1.s2, we move on to Phases 2.s1 and 2.s2:

§ PHASE 2.s1
1: Set l4 ← 1 and l7 ← 1.

2: while l7 ≤ |B7|, the number of W2 packets in B7 do
3: Source s1 transmits a linear sum of two packets: the

l7-th packet in B7 and the l4-th packet in A4.

4: if at least one of {d1, d2} receives the packet then
5: Set l7 ← l7 + 1.

6: end if
7: if at least one of {s2, d1} receives the packet then
8: Set l4 ← l4 + 1.

9: end if
10: end while
Phase 2.s2 is a symmetric version of Phase 2.s1. That is,

source s2 transmits a linear sum of a B4 and an A7 packets.
The purpose of Phase 2.s1 is two-fold. Firstly, B7 contains

the W2 packets that have been heard by neither d1 nor d2, see

(9). Therefore, to facilitate NC in the subsequent phases, s1
would like to transmit the B7 packets. Secondly, A4 contains

the W1 packets that have been heard by d2 but not by d1,

see (8). Such a mismatched reception is a good candidate for

NC. However, A4 is not heard by s2, which means that if we

would like to perform NC that involves the A4 packets, only

s1 is up to such a task. To broaden the possibility so that s2
can also perform NC that involves the A4 packets, s1 would

also like to transmit the A4 packets. Instead of sending the A4

and B7 packets separately, s1 transmits a linear sum instead.

The purpose of Phase 2.s2 is symmetric to that of Phase 2.s1.
After Phase 2.s1, each of the B7 packets, say the l7-th

packet of B7, can be classified as one of the 3 groups: B7.1

to B7.3, depending on the reception status when sending the

linear sum of the l7-th packet of B7 and an A4 packets. The

reception status of B7.1 to B7.3 is summarized as follows.

B7.1: d1d2, B7.2: d1d2, B7.3: d1d2. (10)

We can partition the A4 packets similarly. However, since the

termination condition of Phase 2.s1 is based on using up the

B7 packets (Line 2 of Phase 2.s1), there may be some A4

packets that have not been received by any of {s2, d1} yet

(those with indices beyond the last l4 value when Phase 2.s1
ends). As a result, A4 can be partitioned into 4 groups A4.1

to A4.4 with reception status being

A4.1: s2d1, A4.2: s2d1, A4.3: s2d1, A4.4: s2d1. (11)

Symmetrically after Phase 2.s2, we can partition the A7

packets into 3 groups A7.1 to A7.3 and the B4 packets into 4

groups B4.1 to B4.4 with the reception status being

A7.1: d1d2, A7.2: d1d2, A7.3: d1d2 (12)

B4.1: s1d2, B4.2: s1d2, B4.3: s1d2, B4.4: s1d2. (13)



For throughput enhancement, we would like to mix some

W1 packets that have been heard by d2 but not d1 with some

W2 packets that have been heard by d1 but not d2. However,

since s1 and s2 are not located in the same physical node,
those NC-eligible W1 and W2 packets are spread between
s1 and s2. We first focus on s1. Recall that s1 has all the W1

packets to begin with. Among them, the ones that are heard

by d2 but not by d1 are in A3 and A4 (equivalently A4.1

to A4.4), see (8).2 Note that s1 can decode B4.1 and B4.3

during Phase 2.s2 by subtracting the A7 packets it received in

Phase 1.s1. Therefore, among all the W2 packets that s1 has,

the ones that are heard by d1 but not by d2 are B3, B4.1 and

B4.3. As a result, if s1 sends a linear sum of one packet from

the first group {A3, A4.1, · · · , A4.4} and one packet from the

second group {B3, B4.1, B4.3}, then such a transmission can

serve both destinations simultaneously. However, as will be

elaborated shortly after, there are other combinations s1 can
send that also serve both destinations simultaneously.

We first argue that any packet in A7.2 or A7.3 can also be

viewed as a W2 packet that is heard by d1 but not d2. We

first notice that all the B4.2 and B4.3 packets are mixed one-

to-one with the A7.2 and A7.3 packets as they correspond to

the time instants for which a Phase 2.s2 packet is received by

d2, see (13) and (12). Hence, whenever d2 receives an A7.2

(resp. A7.3) packet, d2 can subtract such a packet from one of

the linear sums it received during Phase 2.s2 and decode one

of B4.2 and B4.3 packets. As a result, A7.2 and A7.3 can be

viewed as W2 packets that have not been heard by d2. Since

A7.2 and A7.3 are pure W1 packets, they will not interfere
with any s1 → d1 communications,3 and can thus be viewed

as “transparent” or equivalently as “heard by d1”.

By the above arguments, we can enlarge the second group

from {B3, B4.1, B4.3} to {B3, B4.1, A7.2, A7.3}. Note that

upon receiving all A7.2 and A7.3 packets d2 can decode all

B4.2 and B4.3 packets. We thus remove B4.3 from the second

group since B4.3 is now superseded by A7.2 and A7.3.

Let Bsum
7.2 denote the linear sums in which the B7.2 packets

participated during Phase 2.s1. The difference between B7.2

and Bsum
7.2 is that packets in B7.2 are pure uncoded W2 packets

while each packet in Bsum
7.2 is a linear sum of one B7.2 packet

and one A4 packets that was sent during Phase 2.s1 and

received by d1 but not by d2, see Line 3 of Phase 2.s1 and

(10). We note that upon receiving a linear sum in Bsum
7.2 , d2

can decode the corresponding B7.2 packet by subtracting the

A4 packet it received during Phase 1.s1. Also, each linear

sum in Bsum
7.2 is heard by d1 during Phase 2.s1, see (10).

As a result, each linear sum in Bsum
7.2 can also be viewed

as a W2 packet heard by d1 but not by d2. The second

group {B3, B4.1, A7.2, A7.3} can thus be further enlarged to

2The reason that we still count A4.2 and A4.3 even though their reception
status are s2d1 and s2d1, see (11), is as follows. Those A4 packets were
mixed with B7 packets during Phase 2.s1. Therefore even though d1 has
received a linear combination of A4.2 (resp. A4.3) and some B7 packets, d1
still cannot decode the original A4.2 (resp. A4.3) packets. Hence A4.2 and
A4.3 still belong to the category: heard by d2 but not by d1. The reason why
A7.2 is not counted is similar due to the mixture with B4.

3Detailed definition of the concept of non-interfering can be found in [9].

{B3, B4.1, A7.2, A7.3, B
sum
7.2 }.

The first row of Table I summarizes the packets that are (i)

available at s1 and (ii) can potentially be used for NC. The

second row of Table I summarizes the symmetric situation

faced by s2. One can also see that all A1, A2, A5, and A6

packets have arrived at d1 during Phase 1.s1, see (8); and all

A7.1 and A7.3 packets can be decoded by d1 during Phase 2.s2,

see (12). The first super-column of Table I thus contains all

the W1 packets that still need to be sent to d1. Symmetrically,

the second super-column of Table I also contains all the W2

packets that still need to be sent to d2.

Before proceeding, we define an extended group A3
Δ
= A3∪

A4.1∪B7.2∪B7.3∪Asum
7.2 , which contains the packets that are

available at s2 and belong to the first super-column of Table I.

Symmetrically, define B3
Δ
= B3 ∪B4.1 ∪A7.2 ∪A7.3 ∪Bsum

7.2 .

Recall that the main challenge of the problem is that s1 can

only acquire W2 packets through weak overhearing q < p
3−p .

Therefore, s1 generally does not have enough W2 packets that

can be mixed with the big amount of A3, A4.1 to A4.4 packets

it has (since s1 having all W1 packets to begin with). As a

result, at least heuristically s2 should refrain from using any
of the B3 packets and leave all of them to s1 since the B3

packets are those precious few W2 packets that are actually
overheard by s1 and can be mixed with the W1 packets at
s1. Symmetrically, s1 should refrain from using any of the A3

packets and leave all of them to s2. From the above reasoning,

s1 should mix only A4.4 and B3 packets while s2 should mix

only B4.4 and A3 packets.
Based on the above intuition, we devise the following sub-

routines that treat each packet group as a queue.

§ MIX A4.4 AND B3

1: Source s1 transmits a linear sum of two packets: the head-

of-the-line (HOTL) packet of A4.4 and the HOTL packet

of B3, the latter can already be a linear sum of multiple

packets if the HOTL packet happens to be a Bsum
7.2 packet.

2: if d1 receives the packet then
3: Let the HOTL packet of A4.4 leave the system.

4: else if s2 receives the packet then
5: Let the HOTL packet of A4.4 leave the system. Let

the current packet, a linear sum of an A4.4 and a B3

packets, enter the queue A3.

6: end if
7: if d2 receives the packet then
8: Let the HOTL packet of B3 leave the system.

9: end if

The subroutine “MIX B4.4 AND A3” is symmetric to the above

subroutine, i.e., s2 would transmit a linear sum of a packet in

B4.4 and a packet in A3. We now describe the next two phases.

§ PHASE 3

1: Phase 3 runs for tP3 time slots, where tP3
Δ
= |A4.4|−|B4.4|

p+q(1−p) .

2: For each time slot, s1 transmits the HOTL packet of A4.4.

3: if d1 receives the packet then
4: Let the HOTL packet of A4.4 leave the system.



effectively a W1 packet heard by d2 but not by d1 effectively a W2 packet heard by d1 but not by d2
packets available at s1 A3 A4.1 A4.2 A4.3 A4.4 B3 B4.1 A7.2 and A7.3 Bsum

7.2
packets available at s2 A3 A4.1 B7.2 and B7.3 Asum

7.2 B3 B4.1 B4.2 B4.3 B4.4

TABLE I
THE PACKETS AT s1 AND s2 THAT CAN POTENTIALLY BE USED FOR NC.

5: else if s2 receives the packet then
6: Let the HOTL packet of A4.4 leave the queue A4.4 and

enter another queue A3.

7: end if

§ PHASE 4

1: while min(|A4.4|, |B4.4|) > 0 do
2: while |A3| > 0 do
3: Source s2 runs the subroutine “MIX B4.4 AND A3”.

4: end while
5: while |B3| > 0 do
6: Source s1 runs the subroutine “MIX A4.4 AND B3”.

7: end while
8: end while
The intuition of Phases 3 and 4 is as follows. We first take

a look at the subroutine “MIX A4.4 AND B3”. Suppose we

send a linear sum of an A4.4 and a B3 packet. When d2
receives it, d2 can decode the B3 packet by subtracting the

A4.4 packet it received in Phase 1.s1. Therefore, the B3 packet

can leave the system as specified in Line 8 of MIX A4.4 AND

B3. Similarly, when d1 receives it, d1 can decode the A4.4

packet since d1 has, effectively, heard the B3 packet, see our

previous discussion. Therefore, the A4.4 packet can leave the

system as specified in Line 3 of MIX A4.4 AND B3. When

the packet is heard by s2 but not by d1 (Line 4), s2 now has

the knowledge about the linear sum. Therefore, the linear sum

can be viewed as in the category “available at s2 and being

a W1 packet that is effectively heard by d2 but not by d1.”4

Hence, we add the linear sum to the queue A3 as in Line 5 of

MIX A4.4 AND B3. The above intuition can be made rigorous

through the packet evolution arguments in [9].

We now take a look at Phase 4. In Line 3 of Phase 4, s2
combines the B4.4 and the A3 packets until s2 uses up all A3

packets (see Line 2). During this process of executing MIX

B4.4 AND A3, we have also created new B3 packets that can be

used in Line 6 of Phase 4. After s1 uses up all B3 packets (see

Line 5), new A3 packets have been created during the process.

We are now ready to let s2 execute MIX B4.4 AND A3 again

based on the newly generated A3. The above iteration between

s2 executing MIX B4.4 AND A3 and s1 executing MIX A4.4

AND B3 continues until one of A4.4 and B4.4 becomes empty,

see Line 1 of Phase 4.

We are now ready to discuss the intuition behind Phase 3.

One key factor that guarantees the success of Phase 4 is to

ensure that the numbers of the A4.4, B4.4, A3, and B3 packets

are well-balanced so that when the iteration of Phase 4 finally

stops (min(|A4.4|, |B4.4|) = 0) all four queues A4.4, B4.4, A3,

4An alternative explanation is as follows. The event s2 overhearing the sum
of an A4.4 and a B3 packet effectively moves one entry of A4.4 from the
first row (available only at s1) to the second row (available also at s2).

and B3 are nearly empty. Note that after finishing Phase 2.s2,

we usually have too many A4.4 and too few B3 packets at s1
since R1 = p − q ≥ R2 = q(2 − p). We thus use Phase 3 to

send A4.4 packets alone, which reduces the amount of A4.4

packets without using any B3 packets. One can prove that after

Phase 3, the numbers of the A4.4, B4.4, A3, and B3 packets

are well-balanced and we are ready for Phase 4.

What remains to be proven is that for any ε > 0 there exists

a sufficiently large n such that with probability no less than

(1− ε), the above 4-phased scheme can finish transmission in

n(1+ ε) time slots without any errors5 and in the end each di
can decode at least n(Ri − ε) of the desired Wi packets. The

detailed analysis is omitted due to the lack of space.

IV. CONCLUSION

This work has characterized the full capacity region of two

symmetric nearby erasure channels with network-wide channel

state feedback. This work was supported in parts by NSF

grants CCF-0845968 and CNS-0905331.
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