
When Locally Repairable Codes Meet Regenerating

Codes — What If Some Helpers Are Unavailable

Imad Ahmad, Chih-Chun Wang; {ahmadi,chihw}@purdue.edu

School of Electrical and Computer Engineering, Purdue University, USA

Abstract—Locally rapairable codes (LRCs) are ingeniously
designed distributed storage codes with a (usually small) bounded
number of helper nodes participating in repair. Since most
existing LRCs assume exact repair and allow full exchange of the
stored data (β = α), they can be viewed as a generalization of the
traditional erasure codes (ECs) with a much desired feature of
local repair. However, it also means that they lack the features of
functional repair and partial information-exchange (β < α) in the
original regenerating codes (RCs). Motivated by the significant
bandwidth (BW) reduction of RCs over ECs, existing works
by Ahmad et al and by Hollmann studied “locally repairable
regenerating codes (LRRCs)” that simultaneously admit all
three features: local repair, partial information-exchange, and
functional repair. Significant BW reduction was observed.

One important issue for any local repair schemes (including
both LRCs and LRRCs) is that sometimes designated helper
nodes may be temporarily unavailable, the result of multiple
failures, degraded reads, or other network dynamics. Under
the setting of LRRCs with temporary node unavailability, this
work studies the impact of different helper selection methods.
It proves, for the first time in the literature, that with node
unavailability, all existing methods of helper selection, including
those used in RCs and LRCs, are strictly repair-BW suboptimal.
For some scenarios, it is necessary to combine LRRCs with a
new helper selection method, termed dynamic helper selection, to
achieve optimal BW. This work also compares the performance
of different helper selection methods and answers the following
fundamental question: whether one method of helper selection is
intrinsically better than the other? for various different scenarios.

I. INTRODUCTION

Erasure coding (EC) is efficient in terms of reliability vs.

redundancy tradeoff in distributed storage. An (n, k) MDS

code can be used to spread a file over a network of n nodes to

tolerate (n−k) simultaneous failures. When a node fails, it is

repaired by accessing any k surviving nodes, downloading all

the coded data, and then reconstructing the original data. As a

result, we say that the repair of EC involves “full information

exchange” and “exact repair”. Regenerating codes (RCs) [3]

were proposed to reduce communication during repair, termed

the repair-bandwidth (BW). The key ideas that allow RCs to

decrease repair-BW are: (1) contact as many nodes as possible

during repair or in other words d = n − 1 nodes, termed

helper nodes, (2) download only a partial fraction of the data

(β < α) as opposed to full information-exchange (β = α),

and (3) allow functional repair instead of exact repair. These

3 ideas enable significant BW reduction of RCs over EC [3].

Another type of distributed storage codes is the locally

repairable codes (LRCs) [5], [7], [10]–[12] that use a small

number of helper nodes d during repair, which is in contrast

with RCs that were originally designed for large d (i.e., d ≥ k).

A closer look at the properties of LRCs shows that LRCs

resemble EC in that they operate with α = β and under exact

repair, except that ECs access d = k helpers while LRCs use

a smaller d value (usually ≪ k). For that reason, LRCs can be

viewed as a generalization of EC with a much desired feature

of local repair (small d). Inspired by the BW reduction of

RCs over EC, it is thus natural to propose locally repairable

regenerating codes (LRRCs), that simultaneously admit all

three features: local repair (d < k), partial information-

exchange (β < α), and functional repair.

A critical component of any LRRC design is the underlying

helper selection policy. Although not explicitly called LRRCs

in [3], the results in [3] analyze RCs for arbitrary d < n− 1,

the RC thus becoming locally repairable, while assuming the

newcomer “blindly chooses the d helpers”, termed blind helper

selection (BHS).1 The works in [1] (the full version in [2]) and

in [6] are the first works to study LRRCs with intelligent (non-

blind) helper selection. For the special cases of k = n − 1
and α = dβ or α = β, [6] upper bounds the achievable

performance of any LRRCs regardless whether an intelligent

or a BHS scheme is used. [1] answers the question: under

what (n, k, d) values can intelligent helper selection strictly

improve the performance of LRRCs when compared to the

BHS-based LRRCs in [3]. This question was answered in [1]

for any arbitrary (n, k, d) parameters. A new scheme termed

the family-repair scheme was also devised [1] that successfully

removes the d ≥ k limitation in [3] and demonstrates superior

performance (very small repair BW) while admitting local

repair (i.e., d ≪ k) and partial information-exchange.

Despite the promising preliminary results, the LRRCs in [1],

[6] do not consider the following practical issue: Because of

multiple failures or degraded reads or other network dynamics,

some designated helper nodes may be temporarily unavailable.

Therefore, for any locally repairable scheme to work in

practice, including both LRCs and LRRCs, it needs to have

an alternative set of helpers in case of node unavailability.

For LRCs, temporary node unavailability has been studied

in [9], [11], [12]. This work studies LRRC with temporary

node unavailability and, in particular, its performance under

different helper selection schemes.

Our studies are centered around three different classes of

helper selection schemes. (i) BHS; (ii) The stationary helper

selection (SHS) schemes; and (iii) A new scheme proposed

1Because of the use of BHS, the performance of RC in [3] becomes poor
when applied to the unintended scenario of d < k.

849978-1-4673-7704-1/15/$31.00 ©2015 IEEE ISIT 2015

in this work, called dynamic helper selection (DHS) and will

be discussed in Section II. Suppose for each repair, among

all (n − 1) surviving nodes, ≤ r of them are temporarily

unavailable. BHS handles node unavailability naturally, since it

blindly treats all helpers equally and can simply choose “any”

d helpers out of (n− 1− r) “available” surviving nodes. SHS

handles node unavailability in the following way. Each node is

associated to a helper set of size (d+r). If that node fails, then

the newcomer accesses “any” d helpers out of its associated

helper set. Since the helper set contains (d + r) nodes to

begin with, stationary repair can always find d helpers even

with r unavailable nodes. Such a helper selection is stationary

since the helper set of each node is fixed and does not change

over time. The helper selection policies of almost all existing

designs of ECs, RCs, LRCs, and LRRCs [3], [5], [7], [9]–[12]

are either BHS or SHS. For example, if r = 0 (all nodes being

available), then each node in LRCs [5], [10] has a fixed helper

set of d nodes. For r = 1, the LRC design [7], [9], [12] also

relies on fixed helper sets of size (d+ r) with the additional

concept of multiple-parity nodes per local group.

Contribution 1: We prove, for the first time in the literature,

that BHS and SHS can be strictly BW suboptimal. Specifically,

we provide an example with r = 1 showing that it is

necessary to use DHS, which is designed based on a com-

pletely different principle, to achieve optimal BW while the

performance of BHS/SHS is strictly suboptimal. Furthermore,

the DHS scheme in our example is simultaneously Minimum

Bandwidth Regenerating (MBR) and Minimum Storage Re-

generating (MSR). Such an example demonstrates the benefit

of DHS and calls for further research on DHS.

Contribution 2: BHS is the least powerful of the three

helper selection policies and can thus be used as a baseline.

We study the following fundamental question: Given any

(n, k, d, r) value, can we always design an SHS or DHS

scheme that strictly outperforms BHS? Surprisingly, for many

(n, k, d, r) values, the answer is no. I.e., for some (n, k, d, r),
even the best SHS or DHS scheme is no better than the simple

well-studied BHS [3]. We examine all possible (n, k, d, r)
values and prove that for a vast majority of (n, k, d, r) values,

we can answer whether SHS or DHS can strictly outperform

BHS. The small set of (n, k, d, r) values for which we cannot

answer the question is also listed explicitly in this work.

Summary: The contribution of this work is mostly

information-theoretic. The deceptively simple example in Con-

tribution 1 sheds new and surprising insights on the fundamen-

tal performance limits of different helper selection schemes.

The results in Contribution 2 provide valuable case-by-case

guidelines whether it is worth spending time to design new

SHS or DHS schemes or whether one should simply use the

basic BHS. The exact percentage of BW improvement over

existing solutions is not the main focus of our exploration.

II. DYNAMIC VS. STATIONARY HELPER SELECTION

We will prove that DHS is strictly better than BHS and any

SHS scheme by explicitly constructing an example. Consider

a network of n = 5 nodes. Each newcomer accesses d = 2
helpers out of (n − 1 − r) = 3 surviving nodes that are

currently available. That is, r = 1 node may be temporarily

unavailable during repair but which node is unavailable may

happen arbitrarily. Our goal is that any k = 3 nodes can

recover the original file. Using the notation in [3], this example

has (n, k, d, r) = (5, 3, 2, 1). We also define α as the amount

of data stored in each node, β as the amount of data sent by

each helper, and M as the size of the original file.

Let us now apply LRCs [7], [12], which use SHS. That is,

each node i is associated with a fixed helper set Di of size

(d+r) = 3. If r = 1 node of the Di is temporarily unavailable,

then node i can still access d helpers from2 Di. Unfortunately,

with the constraint of “full information-exchange” and “exact

repair” in LRCs, it can be proved (see Proposition 1) that

the smallest achievable noramlized BW of any LRCs is still
dβ
M

= 1 regardless how we design the helper sets {Di}
5
i=1 and

the underlying local repair group.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Normalized Storage α
M

N
o
rm

a
li
ze
d
R
ep

a
ir
B
W

d
β

M

LRRCs with DHS

LRRCs with SHS

RCs with BHS

Fig. 1. Storage-bandwidth tradeoff curves of LRRCs with DHS, LRRCs
with SHS, and RCs with BHS for (n, k, d, r) = (5, 3, 2, 1).

One may wonder how much we can improve by applying

the two important concepts: (i) partial information exchange

and (ii) functional repair in [3]. With (i) and (ii), [3] proves

that the storage-BW tradeoff curve for RCs with BHS satisfies

min(2β, α) + min(β, α) ≥ M, (1)

where M is the file size. A normalized storage-BW tradeoff

curve is plotted in Fig. 1. Namely, by using a larger normalized

storage size α
M

= 2
3 rather than 1

2 , we can reduce the

normalized BW to dβ
M

from 1 to 2
3 . Since BHS is used, RCs

can access any d = 2 out of 3 = n − r − 1 available nodes

and thus naturally handle node unavailability.

In this work, we first generalize the r = 0 LRRCs in [1] for

the case of r = 1, which combines (i) and (ii) while removing

the limitation of k ≤ d in RCs. Proposition 1 will later prove

that the best tradeoff with (i) and (ii) is still identical to

the BHS tradeoff (1). It is thus natural to ask whether we

have already reached the fundamental barrier of this problem

(n, k, d, r) = (5, 3, 2, 1) or it is because concepts (i) and (ii)

2If the unavailable node is not in Di, then node i chooses “any” d out of
(d+ r) nodes in Di and we analyze the worst-case performance in the same
way as analyzing BHS. Without loss of generality, we can assume that the
unavailable node is always within Di since the worst-case is used otherwise.

850

alone are not sufficient. It turns out that it is the latter. To

devise a scheme that strictly outperforms the BHS tradeoff

curve, it is essential to add the third ingredient: (iii) DHS.

The proposed LRRCs with DHS has a new tradeoff curve, see

Fig. 1, that is guaranteed to be optimal, i.e., no scheme can

do better, and strictly outperforms BHS and any SHS.

Note that by combining (i)–(iii), our scheme achieves the

corner point (0.5, 0.5) in Fig. 1, which simultaneously mini-

mizes both storage and BW. It is thus the first known scheme

that is provably both MSR and MBR with r = 1.

We discuss our findings more rigorously in the following.

A. Stationary Helper Selection Schemes Performance

Proposition 1: Consider (n, k, d, r) = (5, 3, 2, 1) and any

arbitrarily given SHS scheme with fixed helper sets D1 to

D5, each having |Di| = d+r = 3 nodes. Even when allowing

(i) partial information exchange and (ii) functional repair, the

storage-BW tradeoff is again characterized by (1). Namely,

LRRCs with SHS is no better than RC with BHS.

Proof: Suppose D1 = {2, 3, 4}, which can be done by

relabeling the nodes. Now consider D2 which, by definition,

is a subset of {1, 3, 4, 5}. Since |D2| = 3, we must have |D2∩
D1| ≥ 1. The intersection set D2∩D1 can either have node 3,

node 4, or both. Without loss of generality, say D1 ∩D2 ∋ 3.

Fail node 3 first and repair it by accessing 2 nodes in D3.

Then, fail node 2 and suppose one node a ∈ D2\{3} is

unavailable. Hence, node 2 will access node 3 and another

node b ∈ D2\{a, 3} for repair. Next, fail node 1 and assume

node 4 is unavailable. Since D1 = {2, 3, 4}, node 1 will access

nodes 2 and 3 for repair. Now consider a data collector that

accesses nodes {1, 2, 3} for reconstruction. We now consider

the min-cut in the information flow graph [3] that separates

the source (root) from {1, 2, 3}. We observe that node 3

will contribute min(2β, α) to the min-cut and node 2 will

contribute min(β, α), since node 3 was the helper of node 2.

The min-cut value is thus (1). The proof is hence complete.

B. Dynamic Schemes Outperform Stationary Schemes

We now present a DHS scheme for (n, k, d, r) = (5, 3, 2, 1)
which has the following strictly better tradeoff curve:

2min(2β, α) ≥ M. (2)

We describe in the following a code with β = 1, α = 2,

and M = 4 that achieves the corner point of (2), also see

Fig. 1. The optimality of the proposed code is established in

Proposition 3. The scheme consists of two parts. Part I: How

to choose the helper nodes? Part II: What is the coded data

sent by each helper after the helpers are decided?

To describe Part I, we need the following notation. We say

node i is the parent of node j if (i) node i was the helper of

node j, and (ii) node i has not been repaired since the failure

of node j. For example, say node 1 fails and accesses nodes

2 and 3 as helpers. Then node 2 fails and accesses nodes 3

and 4. After the above two repairs, node 3 is a parent of node

1 but node 2 is not since node 2 has been repaired. On the

other hand, both nodes 3 and 4 are parents of node 2.

The main idea of the proposed DHS scheme is to choose

helpers such that no 3 nodes ever form a “triangle”, i.e., we

avoid the forming 3 nodes {a, b, c} such that a is the parent

of both b and c; and b is the parent of c. We term this DHS

scheme a Clique-Avoiding (CA) scheme.

We now prove by induction that CA is always possible. In

the beginning, all nodes are intact and there is no triangle.

Suppose there is no triangle after (t0 − 1) repairs. Suppose

also that node a fails at t = t0. Since there was no triangle in

time (t0 − 1), we only need that a does not participate in any

triangle after the repair. Denote the helper choice for t = t0
by {b, c}. Therefore, we only need to choose {b, c} such that

nodes {a, b, c} do not form a triangle after repair.

To that end, we observe that out of n − 1 = 4 surviving

nodes r = 1 node is unavailable, and a has 3 nodes to choose

d = 2 helpers from. Call these nodes {i, j, k}. Since there

is no triangle at (t0 − 1), among {(i, j), (j, k), (i, k)} one of

them, say (j, k), is not “connected”. I.e., neither j is the parent

of k, nor k is the parent of j. We then choose nodes j and k

to be nodes b and c. As a result, nodes {a, b, c} do not form

a triangle after repair. By induction CA is always possible.

Note that the CA scheme needs to know the repair history

before deciding which 2 of the 3 available nodes {i, j, k} to

be the helpers, a significant departure from the principle of

associating each node a with a fixed helper set Da. Because

the CA scheme has to dynamically select the helpers based

on repair history, we call CA a Dynamic Helper Selection

(DHS) policy. Although the most general form of DHS policies

may be complicated (since it can use all history information),

the CA scheme herein is quite simple and only requires the

controller to keep track of the latest parent-child relationship

among all nodes. This can be easily done by updating a

table and the optimal CA does not need to track the entire

information-flow graph of the past.

We now describe Part II, which only uses the binary field

rather than high-order GF(q). Initialization: Recall that α =
2, β = 1. and M = 4. Consider a file of 4 packets X1 to X4.

Initially, we let nodes 1 and 2 store {X1, X2} and {X3, X4},

respectively. We then let nodes 3 and 4 store packets {X1, X3}
and {X2, X4}, respectively. Finally, let node 5 store coded

packets {[X1 +X2], [X3 +X4]}. Artificially, we say nodes 1

and 2 are parents of node 3 since we can view node 3 as being

failed first and then repaired from nodes 1 and 2. Similarly, we

also artificially say that nodes 1 and 2 are the parents of node

4 (resp. node 5). The initialization phase is now complete.

One can see that even with the artificially defined parent-child

relationship, there is no triangle after initialization. We can

thus use the same induction proof to show that CA is always

possible after initialization.

The regular repair operations: Suppose node a fails and

one other node is temporarily unavailable. We run the CA

scheme to find the helpers b and c. Denote the two non-helper

nodes by d and e. Each of b and c will send 1 packet to a since

β = 1. The packets are constructed as follows. Step 1: Denote

the two packets stored in b by Y
(b)
1 and Y

(b)
2 . Among three

candidate packets Y
(b)
1 , Y

(b)
2 , and the binary sum [Y

(b)
1 +Y

(b)
2],

choose one, call it Z∗
b , that satisfies simultaneously: (i) if nodes

c and d jointly contain 4 linearly independent packets, then we

851

require that Z∗
b cannot be expressed as a linear combination

of the two packets stored in d. Otherwise, we require that Z∗
b

cannot be expressed as a linear combination of the packets

stored in c and d; and (ii) is identical to (i) except that we

replace d by the remaining node e.

Step 2: Denote the two packets stored in c by Y
(c)
1

and Y
(c)
2 . Among three candidate packets Y

(c)
1 , Y

(c)
2 , and

the binary sum [Y
(c)
1 + Y

(c)
2], choose one, call it Z∗

c , that

satisfies simultaneously: (i) Z∗
c cannot be expressed as a linear

combination of Z∗
b and the two packets stored in d; and (ii)

Z∗
c cannot be expressed as a linear combination of Z∗

b and the

two packets stored in e. Node c then sends packet Z∗
c to a.

Proposition 2: Using the CA scheme, we can always find

(Z∗
b , Z

∗
c) that satisfies the desired conditions. Moreover, under

such construction, any k = 3 nodes can always reconstruct the

original 4 packets X1 to X4. Such a binary code construction

(α, β,M) = (2, 1, 4) is thus legitimate.

Let us use an example to illustrate our construction. Suppose

after initialization, node 3 fails and node 2 is unavailable.

Newcomer 3 thus has to access {1, 4, 5} for repair. Since node

1 is the parent of both nodes 4 and 5, the CA scheme will avoid

choosing {1, 4} and {1, 5} and select helpers {4, 5} instead.

I.e., a = 3, b = 4, and c = 5; and d = 1 and e = 2.

Since node b stores {X2, X4}, the three candidates are X2,

X4, and [X2 +X4]. Since node c stores {[X1 + X2], [X3 +
X4]}, the three candidates are [X1 + X2], [X3 + X4], and

[X1 + X2 + X3 + X4]. Recall that node d stores {X1, X2}
and node e stores {X3, X4}. Out of the 32 = 9 combinations,

only the combination (Z∗
b , Z

∗
c) = ([X2 + X4], [X1 + X2 +

X3 +X4]) can simultaneously satisfy [Cond.1] and [Cond.2].

Z∗
b = [X2 +X4] will then be sent to node a from node b and

Z∗
c = [X1+X2+X3+X4] will be sent to node a from node

c. Newcomer a will then store both packets in its storage. The

same repair process can then be repeated and applied to any

arbitrary next newcomer.

Since node b stores {X2, X4}, the three candidates are X2,

X4, and [X2 +X4]. Since node c stores {[X1 + X2], [X3 +
X4]}, the three candidates are [X1 + X2], [X3 + X4], and

[X1 + X2 + X3 + X4]. Recall that node d stores {X1, X2}
and node e stores {X3, X4}. Out of the 32 = 9 combinations,

only the combination (Z∗
b , Z

∗
c) = ([X2 + X4], [X1 + X2 +

X3 +X4]) can simultaneously satisfy [Cond.1] and [Cond.2].

Z∗
b = [X2 +X4] will then be sent to node a from node b and

Z∗
c = [X1+X2+X3+X4] will be sent to node a from node

c. Newcomer a will then store both packets in its storage. The

same repair process can then be repeated and applied to any

arbitrary next newcomer.

We close our discussion by the following proposition.

Proposition 3: There exists no distributed storage code for

(n, k, d, r) = (5, 3, 2, 1) if (2) does not hold. Namely, the

proposed scheme, which achieves (2), is absolutely optimal.

The proof is by a min-cut analysis that applies to any

possible helper selection policy and even non-linear codes.

III. THE MIN-CUT-BASED ANALYSIS AND THE PROPOSED

MODIFIED FAMILY REPAIR SCHEME

For (n, k, d, r) = (5, 3, 2, 1), we have proved that even the

best SHS is no better than BHS, see Proposition 1, while DHS

is strictly better, i.e., DHS≻SHS=BHS. In this section, we

study the following fundamental question: Can we characterize

the order of the performance of BHS, SHS, and DHS in a

similar way for other (n, k, d, r) combinations?

A. When can LRRCs do better than Blindly-Repaired RCs

under node unavailability?

Due the nature of the distributed storage problem, we only

consider (n, k, d, r) values that satisfy

2 ≤ n; 1 ≤ k ≤ n− 1; 1 ≤ d; and d+ r ≤ n− 1. (3)

We now recall that for general (n, k, d, r) the tradeoff curve

of any LRRC (and RC) with BHS is characterized in [3]:

k−1
∑

i=0

min((d − i)+β, α) ≥ M, (4)

where (x)+ = max(x, 0). We then have the following new

propositions.

Proposition 4: If k ≤
⌈

n−r
n−d−r

⌉

, then BHS is absolutely

optimal. Namely, even the most intelligent helper selection

will have the same tradeoff curve (4) as BHS.

Proposition 5: If min(d + 1, k) >
⌈

n
n−d−r

⌉

, then there

exists an SHS scheme A such that the tradeoff curve of A

is strictly better3 than that of (4).

One can verify that some (n, k, d, r) values satisfy neither

Propositions 4 nor 5. Namely, for those (n, k, d, r), we do not

know whether a carefully designed SHS can be strictly better

than BHS. There is a gap between Propositions 4 and 5

B. The Case r = 1

For the most interesting case of r = 1, we can close the

gap between Propositions 4 and 5 when d ∈ {1, 2}.

Proposition 6: Consider any fixed (n, k, d, r) vector with

d = 1 and r = 1. If the vector satisfies neither Propositions 4

nor 5, then one of the following four cases must be true: (i)

k = 3; (ii) k = 4 and (n mod 3) 6= 0; (iii) k = 4 and

(n mod 3) = 0; and (iv) k ≥ 5. Furthermore, in cases (i) and

(ii) BHS is absolutely optimal. In cases (iii) and (iv), there

exists an SHS that is strictly better than BHS.

Proposition 7: Consider any fixed (n, k, d, r) vector with

d = 2 and r = 1. If the vector satisfies neither Propositions 4

nor 5, then the following condition must hold: (i) (n, k) =
(5, 4) or (5, 3). Furthermore, in (i), no SHS can do better than

BHS but a carefully designed DHS is strictly better than BHS.

Some simple calculation can show that the gap for d = 3
and r = 1 contains only the point (n, k, d, r) = (7, 3, 3, 1); and

for d = 4 and r = 1 it contains only the two points (9, 3, 4, 1)
and (7, 4, 4, 1). In general, the gap between Propositions 4

and 5 is quite small for d ≥ 3 and r = 1.

Remark: [1] proves that for r = 0 and arbitrary d, if the

optimal SHS is no better than BHS, then no scheme can

ever do better than BHS. Namely, the surprising phenomenon

3Namely, when we plot the tradeoff curves as in Fig. 1, some portion of
the curve of A is strictly below that of BHS while no portion of the curve of
A is strictly above that of BHS.

852

of DHS≻SHS=BHS in Section II cannot be observed when

r = 0. Propositions 6 and 7 show that when r = 1 and d ≤ 2
there are exactly 2 scenarios exhibiting “DHS≻SHS=BHS,”

one being the example in Section II and the other being

(n, k, d, r) = (5, 4, 2, 1). Since “DHS≻SHS=BHS” does not

happen when r = 0 and happens rarely when r = 1 and d ≤ 2,

the example in Section II was obtained by carefully searching

through a wide range of (n, k, d, r).

C. The Modified Family Repair (MFR) Schemes

When proving that BHS is absolutely optimal in Proposi-

tion 4 and cases (i) and (ii) of Proposition 6, we use a min-cut

analysis similar to [1]. When proving that a carefully designed

SHS is strictly better than BHS in Proposition 5 and cases

(iii) and (iv) of Proposition 6, we explicitly construct an SHS

scheme, find its tradeoff curve, and prove that it is strictly

better than BHS. Herein, we omit the min-cut analysis of the

former and outline the SHS construction for the latter.

The main ingredient of our SHS construction is a new

scheme, called the modified family repair (MFR) scheme. The

MFR scheme divides the nodes into complete families, each

having (n−d−r) nodes. If n
n−d−r

is not integer, we have one

incomplete family with size n mod (n−d− r) nodes. If node

i is in a complete family, then we choose Di to contain all

the nodes not in the family of node i. If i is in the incomplete

family, then we choose Di to contain node 1 to node (d+ r).
For example, suppose that (n, d, r) = (8, 4, 1). Each

complete family has n − d − r = 3 nodes. There are 2
complete families, {1, 2, 3} and {4, 5, 6}, and 1 incomplete

family, {7, 8}. Since node 4 is in complete family {4, 5, 6},

we have D4 = {1, 2, 3, 7, 8} being the nodes outside its family.

Since node 7 is in the incomplete family {7, 8}, we have

D7 = {1, 2, 3, 4, 5}. All the other Di can be found similarly.

If node 2 is unavailable when repairing node 4, then new-

comer 4 will access D4\2 = {1, 3, 7, 8} for repair. Similarly, if

node 3 is unavailable when repairing node 7, then newcomer

7 will access D7\3 = {1, 2, 4, 5} as helpers. Also see our

discussion in footnote 2. Note that in MFR, each newcomer

only requests help from outside its own family. The intuition

is that we would like each family to preserve as diverse

information as possible during repair.

Finally, we provide a formula that characterizes the storage-

BW tradeoff of the MFR scheme. Unfortunately, due to the

space limit, we directly use some notations in [2] with no

detailed definitions. The following tradeoff curve is also the

backbone of proving Propositions 5 and 6.

Proposition 8: Consider any (n, k, d, r) and the corre-

sponding MFR scheme, the storage-BW tradeoff is

min
∀πf

k
∑

i=1

min
(

(d− yi(πf))
+
β, α

)

≥ M, (5)

where the detailed definitions of πf and yi(πf) are the same

as the ones used in [2, Proposition 3].

It is worth mentioning that Proposition 8 is weaker than the

result in Section II-B in the following sense. The storage-BW

tradeoff curve in Proposition 8 is based on min-cut analysis as

in [3], which means that we do not know whether for general
(n, k, d, r) there exists a finite field code that can meet the

value in (5). Also see the discussion in [13]. In contrast, the

code existence result in Section II-B is in the strongest sense

since we first provide an explicit binary code construction and

then prove its optimality in Proposition 3. In [2], explicit LR-

RCs are provided for all (n, k, d, r = 0), termed generalized

fractional repetition codes, based on fractional repetition codes

[4], [8]. Fractional repetition codes can indeed be thought of as

LRRCs with α = dβ. For some (n, k, d, r > 0) combinations,

we have strengthened Proposition 8 by providing an explicit

code construction but we omit the details.

IV. CONCLUSION

For the first time in the literature, we have shown that sta-

tionary helper selection (SHS) is suboptimal by carefully con-

structing an optimal binary code for (n, k, d, r) = (5, 3, 2, 1)
based on dynamic helper selection (DHS), where r represents

how many nodes can be temporarily unavailable. For general

(n, k, d, r) values, we have answered the question whether

SHS/DHS can outperform blind helper selection (BHS) or

not, for a vast majority of (n, k, d, r) values. The results thus

provide valuable guidelines for each (n, k, d, r) whether it is

beneficial to spend time and design new SHS/DHS schemes

or whether one should simply use the basic BHS.

REFERENCES

[1] I. Ahmad and C.-C. Wang, “When and by how much can helper node
selection improve regenerating codes?” in Proc. 52nd Annu. Allerton

Conf. Communication, Control, and Computing.
[2] ——, “When and by how much can helper node selection improve

regenerating codes?” [Online]. Available: arXiv:1401.4509 [cs.IT].
[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-

chandran, “Network coding for distributed storage systems,” IEEE Trans.

Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.
[4] S. El Rouayheb and k. Ramchandran, “Fractional repetition codes for

repair in distributed storage systems,” in Proc. 48th Annual Allerton
Conf. on Comm., Contr., and Computing.

[5] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp.
6925–6934, 2012.

[6] H. D. L. Hollmann, “On the minimum storage overhead of distributed
storage codes with a given repair locality,” in Proc. IEEE Int. Symp.

Information Theory (ISIT), Honolulu, HI, Jun. 2014, pp. 1041–1045.
[7] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes

with local regeneration,” in IEEE Information Theory and Applications

Workshop (ITA), San Diego, CA, Feb. 2013, pp. 1–5.
[8] O. Olmez and A. Ramamoorthy, “Replication based storage systems with

local repair,” in International Symposium on Network Coding (NetCod),
June 2013, pp. 1–6.

[9] L. Pamies-Juarez, H. D. L. Hollmann, and F. Oggier, “Locally repairable
codes with multiple repair alternatives,” in Proc. IEEE Int. Symp.

Information Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 892–896.
[10] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in

Proc. IEEE Int. Symp. Information Theory (ISIT), Cambridge, MA, Jul.
2012, pp. 2771–2775.

[11] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear
codes with a local-error-correction property,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Cambridge, MA, Jul. 2012, pp. 2776–2780.

[12] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, 2012.

[13] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,” IEEE J. Select. Areas Commun., vol. 28, no. 2,
pp. 277–288, 2010.

853

