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Abstract

Linear coding schemes for the additive white Gaussian noise broadcast channel (AWGN-BC) with noiseless

feedback have been the main choice of coding for such channels in the literature. The achievable rate regions of

these schemes go well beyond the capacity region of the AWGN-BC without feedback. In this paper, a concatenated

coding design for the K-user AWGN-BC with noisy feedback is proposed that relies on linear feedback schemes to

achieve rate tuples outside the no-feedback capacity region. Specifically, a linear feedback code for the AWGN-BC

with noisy feedback is used as an inner code that creates an effective single-user channel from the transmitter to

each of the receivers, and then open-loop coding is used for coding over these single-user channels. An achievable

rate region of linear feedback schemes for noiseless feedback is shown to be achievable by the concatenated coding

scheme for sufficiently small feedback noise level. Then, a linear feedback coding scheme for the K-user symmetric

AWGN-BC with noisy feedback is presented and optimized for use in the concatenated coding scheme.

Index Terms

Broadcast channel, noisy feedback, linear feedback, concatenated coding, network information theory.

I. INTRODUCTION

The demand for higher data rates in wireless communication systems continues to increase. However,

there is concern that many of the popular approaches to physical layer design are only capable of minimal

further enhancements [1]. The use of feedback in wireless communication systems has been mainly focused
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on channel state feedback and automatic repeat request (ARQ) feedback [2]. Both of the aforementioned

feedback types can enhance the rate and reliability of a practical wireless communication system. However,

channel output feedback, where the channel output is fed back from the receiver to the transmitter, has

not been fully explored, especially for imperfect feedback.

The use of channel output feedback in Gaussian channels dates back to the seminal paper by Schakwijk

and Kailath (S-K) [3]. Assuming a noiseless feedback link available from the receiver to the transmitter,

the paper presented a simple linear scheme that achieves the capacity of the single-user additive white

Gaussian noise (AWGN) channel. More importantly, the scheme has a probability of error that decays

double exponentially with the blocklength as compared to at most linearly exponential decay for no

feedback techniques[4]. The scheme was then extended by Ozarow to the AWGN multiple-access channel

(AWGN-MAC) with noiseless feedback to achieve the feedback capacity region of the channel [5]. Ozarow

also extended the scheme to the AWGN broadcast channel (AWGN-BC) using noiseless feedback, which

is the focus of this paper, yielding an improvement on the no-feedback capacity region [6]. There has

been a revived interest in channel output feedback for the AWGN-BC. Assuming noiseless feedback, the

works in [7], [8], [9] show further improvements. In fact, the recent interest in channel output feedback

extends to other Gaussian channel models such as the Gaussian MAC channel [5], [7], [10], Guassian

interference channel [11], [12], [13], and the Guassian relay channel [14], [15], [16].

The AWGN-BC models an important setting in practical wireless systems, the downlink setting, where

the base station is transmitting information streams to different users. Hence, any improvement in rates

over the AWGN-BC model would have a significant impact on practical systems. However, except for a

few exceptions [17], [18], the literature on the AWGN-BC with feedback is limited to noiseless feedback,

which is an assumption that is far from practical. The schemes considered in the literature for noiseless

feedback are all linear schemes, which, as we show in this paper by extension from the single-user result,

fail to achieve any positive rates when feedback channel are subject to noise. The works in [17], [18]

present achievable rate regions for the broadcast channel with general (including noisy) feedback that are

larger than the no-feedback capacity region. Both these regions where derived using schemes inspired

by the example in [19]. In [18], it is shown for two types of discrete memoryless channels that noisy

feedback, specifically with sufficiently small feedback noise level, improves on the no-feedback capacity

region. In [17], the achievable rate region is evaluated for the symmetric two-user AWGN-BC with a

single feedback link from one of the receivers. In the high forward channel signal-to-noise ratio (SNR)
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regime, the scheme improves on the no-feedback sum-capacity for a feedback noise level as high as the

forward noise level. However, for low SNR (but still within practical values), the scheme’s improvement

over the no-feedback sum-capacity is negligible even for noiseless feedback.

In this paper, we consider the AWGN-BC with either noiseless or noisy feedback. Noiseless feedback

will mean the transmitter has perfect access to the channel outputs in a causal fashion. Noisy feedback will

mean the transmitter has causal access to the channel outputs corrupted by AWGN in the feedback link

from each receiver. Concatenated coding, using a linear feedback encoding scheme as the inner code, has

been previously considered for the AWGN-MAC with noisy feedback [10], Gaussian broadcast channel

with noiseless feedback [20], and point-to-point AWGN channel with noisy feedback [21]. However,

concatenated coding for the AWGN-BC with noisy feedback has not been explored previously. In this

work, we extend the concatenated coding scheme that was presented in [21] for the point-to-point AWGN

channel with noisy feedback to the K-user AWGN-BC with noisy feedback. Specifically, a linear feedback

code for the AWGN-BC with noisy feedback is used as an inner code that creates an effective single-user

channel from the transmitter to each of the receivers, and then open-loop (i.e., without feedback) coding

is used for coding over these single-user channels.

For the single-user case, the scheme in [21] improves upon the no-feedback error-exponents. For the

AWGN-BC with noisy feedback, we use the extended concatenated coding scheme to show improvements

on the no-feedback capacity region. The contributions and improvements on previous works will be

stated towards the end of this section. Before that, we would like to comment on the practicality of the

concatenated coding scheme presented in this paper. In fact, the concatenated coding scheme presented

in this paper has the following attractive properties for practical systems:

• Feedback information is utilized using simple linear processing.

• Open-loop coding is only used over single-user channels. Furthermore, when interference from the

message points of other users is canceled out by the linear feedback code (as in the scheme of Section

IV), the effective single-user channels are pure AWGN channels for which open-loop codes are well

developed in practice.

• No broadcast channel coding techniques, like dirty paper coding or superposition coding, are required.

The results of Theorem 1 and Theorem 2 are for sufficiently small feedback noise levels (compared

to forward noise levels). However, many broadcast communication systems can have high SNR. This is

especially true for systems where the receivers have a larger power available at their disposable than the
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transmitter. One example of such a system is found in satellite communications. In a satellite communi-

cation system, the transmitter which is at the satellite would be broadcasting (possibly independent) data

streams to different gateways present on earth. Satellites have much less power available than the gateways

on earth. Another important application that possesses the same distribution of power is communication

with implantable chips. In such an application, the chip implanted in the body of a human would like

to broadcast different measurements to different devices that are located outside the body. Since the

implantable chip powers itself from energy harvesting systems that convert ambient energy to electrical

energy, the transmitter would have a very small power available as compared to the receivers that are

located outside the body. Therefore, assuming a low feedback noise level as compared to the forward noise

level still captures many important applications that starve for improvement in rates or lower transmitter

power consumption.

The contributions of the paper can be summarized by the following:

• We show that if the feedback noise level for a receiver is strictly larger than zero, no matter how

low the level is, linear feedback schemes can only achieve the zero rate to that receiver. This is an

extension of the result derived in [22], [21] for the single-user case.

• We extend the concatenated coding scheme presented in [21] to the K-user AWGN-BC with noisy

feedback and show an achievable rate region for a sufficiently small feedback noise level. From this

result, it is deduced that any achievable rate tuple by Ozarow’s scheme [6] for noiseless feedback

can be achieved by the concatenated coding scheme for some, but non-zero, feedback noise level.

The same result can be extended to the two-user AWGN with single feedback channel from one of

the receivers by using the scheme in [23], with some modifications, as an inner code. The region

achieved by the scheme in [23] for noiseless feedback can be achieved by concatenated coding

but with sufficiently small feedback noise level which shows achievable rate tuples outside what is

presented in [17], especially for low forward channel SNR.

• We present a linear feedback scheme for the symmetric K-user AWGN-BC channel with noisy

feedback that is optimized and used as an inner code in the concatenated coding scheme. For noiseless

feedback, it is shown that the scheme achieves the same sum-rate as in [9] but over the real channel,

unlike the scheme presented in [9] requiring a complex channel. We show that the latter sum-rate

is also achievable for sufficiently small feedback noise level. We also present achievable sum-rates

versus feedback noise level obtained using the same linear scheme in the design of the concatenated
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coding scheme.

The paper is organized as follows: In Section II, we describe the channel setup and give a general

framework for linear feedback coding. In Section III, we present the concatenated coding scheme and

its achievable rate region. In Section IV, we present a linear feedback coding scheme for the symmetric

AWGN-BC with noisy feedback that is utilized in the concatenated coding scheme in Section V for the

same channel. The paper is concluded in Section VI.

II. GENERAL FRAMEWORK FOR LINEAR FEEDBACK CODING

In this section, we formulate a general framework for linear feedback coding schemes for the K-user

AWGN-BC with noisy feedback.

A. Channel Setup

We start by describing the channel setup that is depicted in Fig. 1. The channel at hand has one

transmitter and K receivers. Before every block of transmission, the transmitter will have K independent

messages W1, W2, . . . , WK , each to be conveyed reliably to the respective receiver.

After channel use `, the channel output at receiver k, for k ∈ K = {1, 2, . . . , K}, is given by

yk[`] = x[`] + zk[`], (1)

where x[`] ∈ R is the transmitted symbol at time l and {zk[`]} are i.i.d. and such that zk[l] ∼ N (0, σ2
zk

).

zk[`] is assumed independent of x[`] for k ∈ K. An average transmit power constraint, P , is imposed so

that

E

[
L∑

`=1

x2[`]

]
≤ LP, (2)

where L is the length of the transmission block.

Through the presence of feedback links from each receiver to the transmitter, the transmitter will have

access to noisy versions of the channel outputs of all receivers in a causal fashion. In particular, to form x[`],

the transmitter can use {y1[1]+n1[1], . . . , yK [1]+nK [1], . . . , y1[`−1]+n1[`−1], . . . , yK [`−1]+nK [`−1]},

where {nk[`]} are i.i.d. and nk[`] ∼ N (0, σ2
nk

). Since the transmitter knows what it had transmitted in the

previous transmissions, it can subtract it and equivalently use {z1[1] +n1[1], . . . , zK [1] +nK [1], . . . , z1[`−

1] + n1[`− 1], . . . , zK [`− 1] + nK [`− 1]} for encoding. It is assumed that nk[`] is independent of a x[`]

for k ∈ K, and ni[t] is independent of zj[s] for any t, s ∈ N and i, j ∈ K.
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ŴK
Receiver K

W1,W2,. . .,WK

y1[`]

yK [`]
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zK [`]

nK [`]

Fig. 1. AWGN-BC with feedback.

At the end of the transmission block, receiver k will have an estimate of its message denoted by Ŵk

for k ∈ K.

B. Linear Feedback Coding Framework

A general linear coding framework for the channel setup just described is presented next. Before each

block of transmission, the transmitter maps each of the K messages to a point in R, which is termed

a message point. Specifically the message for the k-th receiver is mapped to θk ∈ Θk ⊆ R such that

|Θk| = d2LRke and E[θk] = 0, where L is the length of the transmission block and Rk is the rate of

transmission for receiver k.

Let x = [x[1], x[2], . . . , x[L]]T , zk = [zk[1], zk[2], . . . , zk[L]]T , nk = [nk[1], nk[2], . . . , nk[L]]T , and

yk = [yk[1], yk[2], . . . , yk[L]]T , where the superscript T denotes matrix transposition. Then we can write

x =
K∑

k=1

[gkθk + Fk(zk + nk)] ,

where gk ∈ RL×1 and Fk ∈ RL×L such that {Fk} are lower triangular matrices with zeros on the main

diagonal so that casuality is ensured. In this work, we focus exclusively on linear encoding schemes and

focus mainly on optimizing Fk.

The average transmit power constraint (2) can be written as

E[xTx] =
K∑

k=1

gTk gkE[θ2k] +
K∑

k=1

(σ2
zk

+ σ2
nk

)‖Fk‖2F ≤ LP, (3)

where ‖Fk‖F is the Frobenius norm of Fk.
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The received sequence at the k-th receiver can be written as

yk = x + zk. (4)

Each receiver will form an estimate of its message as a linear combination of its observed channel output

sequence. Specifically, receiver k will form an estimate θ̂k of θk as

θ̂k = qTk yk, (5)

where qk ∈ RL×1.

C. An Achievable Rate Region For Linear Feedback Coding

Breaking down θ̂k we have

θ̂k = qTk gkθk +
K∑

i=1
i 6=k

qTk giθi +
K∑

j=1

qTkFj(zj + nj) + qTk zk. (6)

A rate tuple (R1, . . . , RK) is achievable by a linear feedback scheme if the probability of error Pr{θ̂k 6=

θk} goes to zero as L→∞ for all k ∈ K while the power constraint in (3) is satisfied for L→∞. The

third term plus the fourth term in the right-hand side of (6) is a zero mean additive Gaussian noise. Now,

if the second term, whose power is constrained, is dealt with as additive noise, the probability distributions

of θ1, . . . , θk−1, θk+1, . . . , θK that minimizes the mutual information between θk and θ̂k is the Gaussian

distribution [24].

Hence, any rate tuple (R1, . . . , RK) that satisfies for all k ∈ K

Rk < lim
L→∞

1

2L
log (1 + SNRk(L)) , (7)

where

SNRk(L) =
(qTk gk)

2E[θ2k]
K∑
i=1
i 6=k

qTk giE[θ2i ] +
K∑
j=1
j 6=k

(σ2
zj

+ σ2
nj

)‖qTkFj‖2 + σ2
zk
‖qTk (I + Fk)‖2 + σ2

nk
‖qTkFk‖2

, (8)

and I is the identity matrix, is achievable by the linear feedback scheme given that the power constraint

in (3) is satisfied for L→∞.

Before closing this section, we show that for any linear feedback scheme, if the feedback noise variance
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of receiver k is strictly greater than zero, i.e., if σ2
nk
> 0, then the only achievable rate for receiver k is

zero. This result is a direct extension of that of the single-user case shown in [22],[21].

Lemma 1. For any linear feedback scheme for the AWGN-BC with noisy feedback, if the feedback noise

of receiver k is strictly larger than zero, i.e., σ2
nk
> 0, then the only achievable rate Rk for receiver k is

zero.

Proof: The proof is a direct extension from the single-user case in [22],[21]. Assume a positive rate

to receiver k. Remove interference from other users. Then, the rate to receiver k will the stay the same

or become larger. But, the channel from the transmitter to receiver k is a single-user AWGN channel.

Hence, a contradiction with single-user result in [22],[21].

III. CONCATENATED CODING SCHEME

From Lemma 1, we see that linear processing alone can only achieve zero rate with noisy feedback.

Therefore, we need to do more than linear processing of noisy feedback in order to achieve positive

rates and possibly achieve rate tuples that are outside the no-feedback capacity region. We describe such

a scheme in this section that uses open-loop coding on top of linear processing to achieve rate tuples

outside the no-feedback capacity region.

For any linear feedback code, we observe from (6) that for receiver k, the stochastic relation between

θk and θ̂k can be modeled as a single-user channel without feedback, as in Fig. 2. This channel will be

termed the k-th user superchannel. Since we can perform open-loop coding over the superchannel for each

user, we have converted the problem to single-user coding without feedback. This will be the main idea

behind the concatenated coding scheme to be described in this section. We call the scheme a concatenated

coding scheme because of the use of open-loop codes in concatenation with a linear feedback code that

creates the superchannels, which shares many similarities to the definition in [25] but here for a multi-user

channel. Note that the time index m in Fig. 2 is shown to indicate that the superchannel will be used

more than once for open-loop coding. The time index m will be defined later as we describe open-loop

coding over the superchannels.

Fig. 3 shows the overall concatenated coding scheme that will be described next. The transmitter will

use an open-loop code to encode each of the messages (i.e., will use K open-loop encoders). All open-loop

encoders use codebooks of equal blocklength M . Let the chosen codeword of the k-th open-loop encoder
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1
qT
k
gk

K∑
i=1,i6=k

qT
k giθi[m] 1

qT
k
gk

[
K∑
j=1

qT
kFj(zj + nj) + qT

k zk

]Interference AWGN

θk[m] θ̂k[m]

Fig. 2. Superchannel model.

be [θk[1], θk[2], . . . , θk[M ]]. Similar to [25] but for the AWGN-BC, we will term the block consisting of

the K open-loop encoders, which takes the K messages as input and gives as an output K codewords

each of length M , the outer code encoder. At each time m ∈ {1, 2, . . . ,M}, the outer code encoder will

have as an output, θ1[m], θ2[m], . . . , θK [m].

θ1[m]Open-Loop
Encoder 1

W1

θK [m]Open-Loop
Encoder K

WK

Linear
Encoder

Linear
Decoder 1

Linear
Decoder K

θ̂1[m]

θ̂K [m]

Open-Loop
Decoder 1

Open-Loop
Decoder K

Ŵ1

ŴK

Unit Delay

Receiver 1

Receiver K

n1[`]

Unit Delay

Transmitter z1[`]

zK [`]

nK [`]

Fig. 3. Concatenated coding scheme.

At each time m, the output of the outer code encoder, particularly θ1[m], θ2[m], . . . , θK [m], will be

fed to a linear feedback encoder at the transmitter. The linear feedback encoder will use the channel for

L times, after which each receiver will form an estimate, by linear processing of its intended symbol.

Specifically, receiver k will form θ̂k[m] as the estimate of θk[m]. The linear feedback code, formed of the

linear encoder at the transmitter and a linear decoder at each receiver will be called the innercode.

Receiver k will use an open-loop decoder, termed the k-th outer code decoder, that corresponds to its

open-loop encoder, to decode its message by observing the sequence θ̂k[1], θ̂k[2], . . . , θ̂k[M ].

The overall code for the AWGN-BC with feedback is of blocklength ML. Since for each m, the inner

code encoder transmits with at most LP of power, then the overall code uses a transmit power of at

most MLP , and hence satisfies the codeword average power constraint. At receiver k, the SNR is the

same for all θ̂k[1], θ̂k[2], . . . , θ̂k[M ] and is given by (8). Note the time index is dropped (i.e., if θk[m] is
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simply written as θk for all m). Thus, if a linear code has blocklength L, the concatenated coding scheme

described above can be designed to achieve any rate tuple (R1, R2, . . . , Rk) that satisfies

Rk <
1

2L
log (1 + SNRk(L)) (9)

for all k ∈ K. It is important to note that in (9), the interference term from the message points of

other users is dealt with as additive noise with bounded power. Since, the “worst” noise distribution for

an additive noise with bounded power is the Gaussian distribution [24], the use of the AWGN channel

capacity formula in the right-hand side of (9) is justified.

Theorem 1. Given a linear feedback scheme over an AWGN-BC with noiseless feedback, i.e., σnk
= 0,

for any rate tuple (R1, R2, . . . , RK) that satisfies (7) for k ∈ K, there exist ε1 > 0, . . . , εK > 0 such that

the same rate tuple (R1, R2, . . . , RK) can be achieved by the concatenated coding scheme (scheme of

Fig. 3) over the same AWGN-BC but with σ2
nk

as large as εk for k ∈ K.

Proof: For the given linear feedback coding scheme the SNR at receiver k for blocklength L is given

by SNRk(L) of (8). In this proof, we will make the dependence of the SNR on the blocklength and the

feedback noise variances explicit, e.g., for a linear feedback code with blocklength L that works according

to the given linear feedback coding scheme over AWGN-BC with feedback noise variance for receiver k

of σ2
nk

will be written as SNRk(L, σ
2
n1
, . . . , σ2

nK
). Note here the dependence on σ2

n1
, . . . , σ2

nK
is just for

the explicit values (i.e., if g1,. . . ,gK , F1,. . . ,FK , or q1,. . . ,qK depend on σ2
n1
, . . . , σ2

nK
, it is not captured

by the arguments of SNRk).

For the given rate tuple (R1, R2, . . . , RK), assume Rk > 0 for k ∈ K; for the case of Rk = 0 for some

k, the proof below works the same but with trivially achieving the zero rates. Then,

Rk < lim
L→∞

1

2L
log (1 + SNRk(L, 0, . . . , 0)) ,

for k ∈ K. Hence, there exists L0 such that

Rk <
1

2L0

log (1 + SNRk(L0, 0, . . . , 0))

for all k ∈ K. Let the matrices of the given linear scheme for blocklength L0 be g1, . . . ,gK , F1, . . . ,FK ,
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and q1, . . . ,qK with the power constraint

K∑

k=1

gTk gkE[θ2k] +
K∑

k=1

σ2
zk
‖Fk‖2F ≤ L0P.

Let gk1 be the first entry of gk for k ∈ K. Since Rk > 0, then at least one entry of gk is non-zero.

Assume without loss of generality that gk1 is non-zero. Also, assume that gk1 > 0 (the proof still works

in a similar way if gk1 is assumed negative). For k ∈ K, let g′k be such that

g′k = gk − ε′k




1

0

...

0



, (10)

where gk1 − ε′k > 0 and ε′1 > 0, ε′2 > 0, . . . , ε′K > 0 are to be chosen next.

Choose ε′1 > 0,ε′2 > 0,. . . ,ε′K > 0 such that

Rk <
1

2L0

log (1 + SNR′k(L0, 0, . . . , 0))

for all k ∈ K, where SNR′k is the same function as SNRk but uses g′1, . . . ,g
′
K in place of g1,. . . ,gK .

This is possible by the continuity of SNRk at g1, g2, . . . , gK .

Now, choose ε′′1 > 0, ε′′2 > 0,. . . , ε′′K > 0 such that

ε′′k ≤
(gTk gk − g′k

Tg′k)E[θ2k]

‖Fk‖2F

for k ∈ K. Also, choose ε′′′1 > 0, ε′′′2 > 0, . . . , ε′′′K > 0 such that

Rk <
1

2L0

log (1 + SNR′k(L0, ε
′′′
1 , . . . , ε

′′′
K))

for k ∈ K.

Let εk = min{ε′′k, ε′′′k } for k ∈ K. Then, we have

K∑

k=1

g′k
T
g′kE[θ2k] +

K∑

k=1

(σ2
zk

+ εk)‖Fk‖2F ≤ L0P,

and

Rk <
1

2L0

log (1 + SNR′k(L0, ε1, . . . , εK))
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for k ∈ K. Hence, for the same foward AWGN-BC but with feedback noise variances ε1 > 0, . . . , εK > 0,

we have found a linear feedback code of blocklength L0 defined by the matrices g′1, . . . ,g
′
K ,F1, . . . ,FK ,

and q1, . . . ,qK , that satisfies the power constraint, and that attains an SNR at receiver k of SNR′k(L0, ε1, . . . , εK)

that is such that

Rk <
1

2L0

log (1 + SNR′k(L0, ε1, . . . , εK)) .

Using this linear code as an inner code, and by (9), the concatenated coding scheme achieves the rate

tuple (R1, . . . , RK).

Remark 1. The result of Theorem 1 can be directly extended to the complex AWGN-BC with complex

AWGN feedback channels.

Remark 2. In [6], the scheme is linear, and hence for any fixed block length can be described using

vectors as in the framework described in Section II-B. Using the vector construction, the achievable rate

region presented in [6] can be similarly described by the set of rate tuples that satisfy (7) for k ∈ K.

Hence, the achievable rate region for noiseless feedback in [6] can be achieved by the concatenated coding

scheme of Fig. 3 for sufficiently small feedback noise level. The only difference in [6] is the addition of

an auxiliary Gaussian random variable w to the first two transmissions, and only minor steps are needed

to accommodate that in the proof of Theorem 1.

Remark 3.

A similar result to Theorem 1 can be shown for the scheme in [23] for the two-user AWGN-BC with a

single feedback channel from one of the receivers. Specifically, the scheme in [23] can be used, with some

modifications, as the inner code to show that any rate tuple that is achievable by the scheme in [23] for

noiseless feedback can be achieved by concatenated coding for sufficiently small feedback noise level.

Hence, by concatenated coding we can achieve rate tuples outside what is presented in [17], especially

for low forward channel SNR.

IV. A LINEAR CODING SCHEME FOR THE SYMMETRIC AWGN-BC WITH FEEDBACK

For designing the inner code of the concatenated coding scheme presented in Section III, we would

ultimately like to find a linear coding scheme that maximizes the SNR at all receivers. However, to make

the problem more tractable, we focus our attention on the symmetric case and impose some constraints

on the scheme.
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Using these constraints and the same channel setup of Section II, we present a linear coding scheme

for the symmetric K-user AWGN-BC with feedback. Symmetric here means that all forward noises are of

equal variance and all feedback noises are of equal variance. Denote by σ2
z the forward noise variance and

by σ2
n the feedback noise variance. We will set σ2

z := 1 so that σ2
n will represent the ratio σ2

n

σ2
z

and P will

represent the channel SNR P
σ2
z

. The scheme we develop will rely on techniques similar to code division

multiple access (CDMA) for nulling cross user interference [7]. In this section, the total blocklength will

be L = L̃ + K − 1, where L̃ ∈ N. The reason behind introducing a new parameter L̃ will be clearer as

we describe the scheme. We assume that K is an integer power of 2, specifically K ∈ {2, 4, 8, 16, . . . }.

Similar to the general formulation of Section II, the transmitter will map each of the independent K

messages to a message point in R. Specifically, the transmitter maps the message intended to receiver k

to a point θk ∈ Θk where Θk ⊆ R, |Θk| = d2LRke and E[θk] = 0. Rk denotes the rate for receiver k.

Similar to Ozarow’s scheme [6], the first K transmissions are used to send the message points in an

orthogonal fashion. We will assume that time division is used for achieving that and let x[k] = θk for

k ∈ K (note that the traditional CDMA could be used too). The remaining L−K transmissions will be

used for sending feedback information in a CDMA-like manner where interference nulling is imposed

similar to the techniques used in [7].

Receiver k will ignore the channel uses where other users send their message points, i.e., channels

uses 1, . . . , k − 1, k + 1, . . . , K. Now, if we let z̃k = [zk[k], zk[K + 1], . . . , zk[L]]T , ñk = [nk[k], nk[K +

1], . . . , nk[L]]T , and ỹk = [yk[k], yk[K + 1], . . . , yk[L]]T , then the observed sequence at receiver k could

be written as

ỹk = e1θk +
K∑

k=1

F̃k(z̃k + ñk) + z̃k, (11)

where F̃k ∈ RL̃×L̃ is a lower triangular matrix with zeros on the main diagonal to ensure causality and

e1 is the first column of the L̃× L̃ identity matrix.

With x defined as in Section II, the average transmit power is bounded by

E[xTx] ≤ LP = (L̃+K − 1)P. (12)

From (3), we have

E[xTx] =
K∑

k=1

[
E[θ2k] + (1 + σ2

n)‖F̃k‖2F
]
. (13)

The first quantity on the right hand side,
∑K

k=1E[θ2k], can be seen as the power used for transmitting the
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messages while the second term,
∑K

k=1(1+σ2
n)‖F̃k‖2F , is interpreted as the power utilized for transmitting

feedback information. Due to this trade-off, a new parameter γ ∈ [0, 1] is introduced such that

K∑

k=1

E[θ2k] = (1− γ)(L̃+K − 1)P, (14)

and
K∑

k=1

(1 + σ2
n)‖F̃k‖2F ≤ γ(L̃+K − 1)P. (15)

Thus, γ can be thought of as the normalized ratio of power spent on encoding feedback information.

Since the channel is symmetric, we will assume that

E[θ2k] =
1

K
(1− γ)(L̃+K − 1)P

for all users.

The receiver creates its estimate, θ̂k as

θ̂k = q̃Tk ỹk, (16)

where q̃k ∈ RL̃.

Then the received SNR for the k-th receiver is given by (17).

SNRk =
(q̃k[1])2 1

K
(1− γ)(L̃+K − 1)ρ

‖q̃Tk (I + F̃k)‖2 + σ2
n‖q̃Tk F̃k‖2 + (1 + σ2

n)
K∑

i=1
i 6=k

‖q̃TkCkCiF̃k‖2
. (17)

Definition 1. A sum-rate R is said to be achievable if there exists a rate tuple (R1, R2, . . . , Rk) that is

achievable and satisfying

R =
K∑

i=1

Rk. (18)

Hence, any sum-rate R that satisfies

R < lim
L̃→∞

K∑

i=1

1

2(L̃+K − 1)
log
(

1 + SNRk(L̃)
)
, (19)

is achievable where SNRk(L̃) is written to show the dependence of the received SNR on the blocklength.
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A. Linear Scheme Construction Summary for the Symmetric Case

In this section, we summarize the construction of our linear scheme for the symmetric AWGN-BC

channel with noisy feedback in six simple steps. The underlying design logic behind the construction

will be described in the following two sections. What we are really after are the vectors F̃1, . . . , F̃k and

q̃1, . . . , q̃k, which fully describe the scheme.

Assume a channel with a fixed number of users K, a fixed P , and a fixed σ2
n. Let L be the blocklength

of interest.

1) Fix γ, β ∈ (0, 1)

2) Construct C1, . . . ,Ck as in (21).

3) Construct q, f , and vi for i = 1, . . . , L̃−K as in (25), (26), and (30), respectively.

4) Let µi be constructed as in (31) for i = 1, . . . , L̃−K, where λ is chosen such that (32) is satisfied.

5) Construct F as such:

The ith column of the F matrix is built by b L̃−i
K
c scaled copies of f below the main diagonal and

the remaining entries are set to zero. The scaling coefficient for the ith column and the jth copy of

f will be µi[j], the jth entry of µi. Specifically, the ith column of the F matrix is given by

[0 . . . 0︸ ︷︷ ︸
i

µi[1]fT µi[2]fT . . . µi[b
L̃− i
K
c]fT 0 . . . 0︸ ︷︷ ︸

L̃−i−Kb L̃−i
K
c

]T . (20)

6) Finally, F̃k = CkF and q̃k = Ckq for k ∈ {1, 2, . . . , K}.

Example 1. Assume a channel with parameters K = 2, P = 10 and σ2
n = 0.01. Also, assume the block

length of interest is L = 9. Then L̃ = L− 1 = 8. Now, we follow the steps presented above:

1) Fix γ = 1
3

and β = 1
4
.

2) C1 = diag([1,−1, 1,−1, 1,−1, 1,−1]), where diag(x) is a diagonal matrix with the vector x as its

main diagonal. For receiver 2, C2 = −C1.

3)

q = [ 1 1
16

1
256

1
4096

1
65536

1
1048576

1
16777210

1
268435456

]T , f = [ 1 16 ]T ,

v1 = 2[ 1 1
16

1
256

]T , v2 =
1

2
[ 1 1

16
1

256
]T ,

v3 =
1

8
[ 1 1

16
]T , v4 =

1

32
[ 1 1

16
]T , v5 =

1

128
, v6 =

1

512
.
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4) Using numerical tools to solve for λ in (32), we find λ = 3.7589. Using this value of λ we have

µ1 = [ −0.2095 −0.0131 −0.0008 ]T , µ2 = 10−2[ −0.7788 −0.0487 −0.0030 ]T ,

µ3 = 10−3[ −0.1294 −0.0081 ]T , µ4 = 10−5[ −0.2029 −0.0127 ]T ,

µ5 = −3.1714× 10−8, µ6 = −4.9552× 10−10.

5) Using µ1, . . . ,µL̃−K and f , following step 4 we can construct F,

F = 10−2 ×




0 0 0 0 0 0 0 0

−20.9500 0 0 0 0 0 0 0

−335.2000 −0.7788 0 0 0 0 0 0

−1.3100 −12.4608 −0.0129 0 0 0 0 0

−20.9600 −0.0487 −0.2070 −0.0002 0 0 0 0

−0.0800 −0.7792 −0.0008 −0.0032 −0.0000 0 0 0

−1.2800 −0.0030 −0.0130 −0.0000 −0.0001 −0.0000 0 0

0 −0.0480 0 −0.0002 0 −0.0000 0 0




.

6) Finally, F̃1 = C1F and q̃1 = C1q. For receiver 2, F̃2 = −F̃1 and q̃2 = −q̃1.

B. Design Logic Behind Steps 2, 3, and 5: Interference Nulling

In this section, we describe the reasoning behind steps 2, 3 and 5 of the construction summary presented

in the previous section. The main idea is based on interference nulling between users that will be described

mathematically later in this section. Specifically, receiver k, we will introduce a diagonal matrix Ck ∈

RL̃×L̃ that is such that

[Ck]ij =




ck[i mod K], i = j,

0, i 6= j,

(21)

where for k = 1, 2 . . . , K, ck ∈ R1×K is of entries in {−1, 1} and is such that

cTi cj =




K, i = j,

0, i 6= j.
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Remark 4. The vectors c1, . . . , cK can be chosen as the columns of a K × K Hadamard matrix. For

this reason, we have constrained K to be an integer power of 2. Note, however, that if the channel at

hand was complex, this constraint on K can be alleviated by using complex Hadamard matrices, and all

sum-rates derived for the real channel can be similarly achieved per real dimension over the complex

channel for any K ≥ 2.

We will restrict F̃k to be such that

F̃k = CkF, (22)

where F ∈ RL̃×L̃ is a lower triangular matrix with zeros on the main diagonal to ensure causality and

whose construction will be described later. We chose F to be the same for all users because of the

symmetry of the channel.

The receiver creates its estimate, θ̂k as

θ̂k = qTCkỹk, (23)

where q ∈ RL̃. Again, we chose q to be the same for all users because of the symmetry of the channel.

We will constrain our scheme to satisfy

K∑

i=1
i 6=k

‖qTCkCiF‖2 = 0, (24)

so that cross-user interference is nulled to zero.

In the following lemma, constraints on the transmission scheme are given to satisfy requirement (24).

Lemma 2. Let Ck be defined as in (21) for k = 1, 2, . . . , K. Then, the following forms of q and F satisfy

(24):

• For a real number β ∈ (0, 1)

q =
[
1, β2, β4, . . . , β2(L̃−1)

]T
. (25)

• Let

f =
[
1, β−2, β−4, . . . , β−2(K̃−1)

]T
. (26)

The ith column of the F matrix is built by b L̃−i
K
c scaled copies of f below the main diagonal and

the remaining entries are set to zero. The scaling coefficient for the ith column and the jth copy of
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f will be called µi,j ∈ R. Specifically, the ith column of the F matrix is given by

[0 . . . 0︸ ︷︷ ︸
i

µi,1f
T µi,2f

T . . . µ
i,b L̃−i

K
cf
T 0 . . . 0︸ ︷︷ ︸

L̃−i−Kb L̃−i
K
c

]T . (27)

Proof: The form of F stems from the following observation. For v1 ∈ RL̃ and v2 ∈ RL̃ to satisfy

vT1 CiCjv2 =




vT1 v2, i = j

0, i 6= j

the vectors v1 and v2 can be constructed as v2[i] = 1
v1[i]

for all i = 1, 2, . . . , L̃. Using this fact and the

condition that it must hold between q and K shifts of f , the lemma is constructed. The further choice

that β ∈ (0, 1) is to keep the norm of q bounded as L̃→∞. Note that F is all zeros for L̃ ≤ K.

Define

µµµi =

[
µi,1, µi,2, . . . , µi,

⌊
L̃−i
K

⌋]T , (28)

With q and F having forms as in Lemma 2, the SNR at any of the receivers can be written as

SNR(σ2
n, L̃, γ, β,µ1, . . . ,µL̃−K) =

1
K

(1− γ)(L̃+K − 1)P

‖qT (I + F)‖2 + σ2
n‖qTF‖2

. (29)

C. Design Logic Behind Step 4: SNR Optimization

In the following lemma, given γ and β, we optimize SNR in (29) over µ1, . . . ,µL̃−K .

Lemma 3. Assume L̃ > K. Given γ, β ∈ (0, 1) and following the forms of q and F as in Lemma 2, the

µi,j values of F that maximize the received SNR (29) given the power constraint (12) can be obtained as

follows:

1) For i = 1, 2, ..., L̃−K, define

vi = Kβi−1
[
1, βK , . . . , β

K(
⌊
L̃−i
K

⌋
−1)
]T
, (30)

2) Then, the µµµi that maximize the received SNR are constructed as

µµµi = − qi
(1 + σ2

n)‖vi‖2 + λ
vi, (31)
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where λ ≥ 0 is chosen to satisfy

L̃−K∑

i=1

‖µµµi‖2 =
γ(L̃+K − 1)P

K(1 + σ2
n)‖f‖2

. (32)

Proof: With the definitions in Lemma 3, the denominator of the received SNR in (29) can be rewritten

as
L̃∑

i=L̃−K+1

q2i +
L̃−K∑

i=1

(
qi + vTi µµµi

)2
+ σ2

n

L̃−K∑

i=1

(
vTi µµµi

)2
. (33)

Then, it can be shown that to minimize (33), one should let µµµi = −bi vi

‖vi‖ for some scalars bi for

i = 1, 2, . . . , L̃−K. The sum of the second and third terms of (33) can now be rewritten as

‖Ab− q‖2 + σ2
n‖Ab‖2, (34)

where A ∈ RL̃×L̃−K is

A =




‖v1‖ 0 0 · · · 0

0 ‖v2‖ 0 · · · 0

... . . . ...

0 0 · · · 0 ‖vL̃−K‖

0 0 · · · 0

...
...

...

0 0 · · · 0




and b = [b1, b2, . . . , bL̃−K ]T . To minimize (34) and abide by the average power constraint, we use Lagrange

multipliers to obtain the b that minimizes (34) is

bmin =
[
(1 + σ2

n)ATA + λI
]−1

ATq, (35)

where λ is chosen to satisfy the power constraint. Thus, using bmin to build µµµi, we produce the lemma.

Using the optimal values of µ1, . . . ,µL̃−K , call them µ∗1, . . . ,µ
∗
L̃−K , the optimal received SNR will be

SNRoptimal(σ
2
n, L̃, γ, β) = SNR(σ2

n, L̃, γ, β,µ
∗
1, . . . ,µ

∗
L̃−K). (36)

Note, however, that the optimal form of µµµi in Lemma 3 depends on λ for which a closed form is
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generally hard to obtain.

1) Special case at L =∞: Notice that λ→ 0 as L→∞ in which case it can be shown that

µi,j = − 1− β2K

(1 + σ2
n)K

βK(j−1). (37)

Furthermore, as σ2
n → 0, we have

µi,j = −1− β2K

K
βK(j−1). (38)

D. Suboptimal SNR

The form in (38) can be used as a suboptimal solution instead of the optimal solution in Lemma 3

that does not have a closed form. With q and F following the form in Lemma 2, and using (38) as a

suboptimal solution, the SNR for L̃ > K at any of the receivers can be written as

SNRsuboptimal(σ
2
n, L̃, γ, β) =

1
K

(1− γ)(L̃+K − 1)P

g(L̃, β) + σ2
nh(L̃, β)

, (39)

where

g(L̃, β) =
L̃∑

i=Ñ−K+1

β2(i−1) +
L̃−K∑

i=1

β

[
2(i−1)+4K

⌊
L̃−i
K

⌋]

and

h(L̃, β) =
L̃−K∑

i=1

β2(i−1)
(

1− β2K
⌊
L̃−i
K

⌋)2

,

The power constraint (15) can be written as

e(L̃, β) ≤ γ(L̃+K − 1)P

K(1 + σ2
n)

, (40)

where

e(L̃, β) =
(1− β2K)2

K2(1− β2)β2K


L̃−K −

L̃−K∑

i=1

β
2K

⌊
L̃−i
K

⌋
 .

Note that suboptimal solution coincides with the optimal solution for L = ∞ and σ2
n = 0, i.e.,

SNRoptimal(σ
2
n = 0, L̃ =∞, γ, β) = SNRsuboptimal(σ

2
n = 0, L̃ =∞, γ, β).

1) Upper and Lower Bounds on SNRsuboptimal: In the next lemma, we find upper and lower bounds

on SNRsuboptimal(σ
2
n = 0, L̃, γ, β).
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Lemma 4. SNRsuboptimal(σ
2
n = 0, L̃, γ, β) can be bounded as

SNRsuboptimal,lb(L̃, γ, β) ≤ SNRsuboptimal(σ
2
n = 0, L̃, γ, β) ≤ SNRsuboptimal,ub(L̃, γ, β),

where

SNRsuboptimal,lb(L̃, γ, β) =
alb(1− γ)(L̃+K − 1) P

K

β2L̃
,

SNRsuboptimal,ub(L̃, γ, β) =
(1− β2)(1− γ)(L̃+K − 1) P

K

β2(L̃−K) − β2L̃ + β2(L̃−K−1)(1− β2(L̃−K))
,

and

alb =
(1− β2)

β−2K(1 + β2)− 1
.

Proof: The second term of g(L̃, β) can be upper bounded as

L̃−K∑

i=1

β

[
2(i−1)+4K

⌊
L̃−i
K

⌋]
≤

L̃−K∑

i=1

β[2(i−1)+4(L̃−i−K+1)]

= β2(L̃−K+1)1− β2(L̃−K)

1− β2

≤ β2L̃β
−2(K−1)

1− β2
,

where the first inequality is due to the fact that
⌊
L̃−i
K

⌋
≥ L̃−i−K+1

K
. Using this bound, SNRsuboptimal,lb(L̃, γ, β)

can be reached.

On the other hand, the second term of g(L̃, β) can be lower bounded as

L̃−K∑

i=1

β

[
2(i−1)+4K

⌊
L̃−i
K

⌋]
≥

L̃−K∑

i=1

β[2(i−1)+4(L̃−i+K)]

= β2(L̃−K−1)
L̃−K∑

i=1

β2(L̃−K−i)

= β2(L̃−K−1)1− β2(L̃−K)

1− β2

where the first inequality is due to the fact that
⌊
L̃−i
K

⌋
≤ L̃−i

K
+1. Using this bound, SNRsuboptimal,ub(L̃, γ, β)

can be reached.
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E. Achievable Sum-Rate For Noiseless Feedback

For the noiseless feedback case (i.e., for σ2
n = 0), from Lemma 4, we see that

lim
L̃→∞

K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal,lb(L̃, γ, β)
)

=

lim
L̃→∞

K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal,ub(L̃, γ, β)
)

= −K log(β),

and hence

lim
L̃→∞

K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal(σ
2
n = 0, L̃, γ, β)

)
= −K log(β).

Thus, any sum-rate R is achievable if

R < −K log(β). (41)

In the following lemma, we show that β and γ can in fact be chosen so that the right-hand side of (41)

is equal to the linear-feedback sum-rate bound derived in [9].

Lemma 5. Let φ ∈ [1, K] be the solution of

(1 + Pφ)K−1 −
[
1 +

P

K
φ(K − φ)

]K
= 0. (42)

The power constraint allows β to be chosen to statisfy β−2K = 1 + Pφ so that the scheme achieves any

sum-rate R satisfying

R <
1

2
log (1 + Pφ) . (43)

Proof: Choose γ = L−1
L

. We choose β such that all available power is consumed. Specifically, we

choose β such that

lim
L̃→∞

e(L̃, β)

γ(L̃+K − 1)
=
P

K
.

The left-hand side of the above equation is equal to (1−β2K)2

K2(1−β2)β2K . Let β−2K = 1 + Pφ and solve for φ

instead of β. The resulting equation in φ can be reduced to (42). By (41), the proof is complete.

The sum-rate achieved here is the same as in [9]. However, in [9] the scheme requires a complex

channel in order to achieve, per real dimension, the same sum-rate of Lemma 5. This is especially true

for K > 2. Note, however, that the number of users K is constrained to be an integer power of 2 for the

real channel case.
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V. CONCATENATED CODING FOR THE SYMMETRIC AWGN-BC WITH NOISY FEEDBACK

In this section, we consider the same concatenated scheme that was described in Section III, but that

relies on the linear scheme of Section IV for coding over the symmetric AWGN-BC with noisy feedback.

From Section III and by the symmetry of the channel and scheme, if we fix a linear code of blocklength

L designed according to the scheme described in Section IV, any sum rate, R, can be achieved by the

concatenated scheme just described if

R <
K

2(L̃+K − 1)
log
(

1 + SNRoptimal(σ
2
n, L̃, γ, β)

)
. (44)

A. Achievable Sum-Rates For Small Enough Feedback Noise Level

In this section, we discuss the achievable sum-rates for small enough feedback noise variance. From

Theorem 1, we know that what is achieved for the noiseless feedback case in Lemma 5 can be achieved

for small enough feedback noise level by the concatenated coding scheme. However, for sum-rates close

to the bound in Lemma 5, the required inner code blocklength will be larger with small σ2
n, this makes

the choice of µi,j in (38) approximately optimal. For such case, and given a value for γ, Lemma 6 and

Lemma 7 will be useful for choosing the value of β. We will also use those lemmas to rederive the result

of Theorem 1 but using the specifics of the scheme of this section.

In the next lemma, we find a stricter power constraint than the power constraint (40) that does not

depend on L̃.

Lemma 6. For a fixed γ, if β satisfies

(1− β2K)2

K(1− β2)β2K
≤ γP

1 + σ2
n

, (45)

the the power constraint (40) is satisfied for any L̃.

Proof: e(L̃, β) of (40) can be upper bounded as follows

e(L̃, β) ≤ (1− β2K)2

K2(1− β2)β2K
(L̃+K − 1).

Hence, β that satisfies
(1− β2K)2

K2(1− β2)β2K
(L̃+K − 1) ≤ γ(L̃+K − 1)P

K(1 + σ2
n)

satisfies (40).
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Note that for large L̃, the power lost by assuming the power constraint (45) instead of (40) becomes

negligible. In the next lemma, we show that the left-hand side of (45), as a function of β, is positive and

decreasing, and bijective from (0, 1) to (0,∞).

Lemma 7. Let f(β) = (1−β2K)2

K(1−β2)β2K . Then

• f is a decreasing positive function on (0, 1). Specifically, if β1, β2 ∈ (0, 1) are such that β1 < β2,

then 0 < f(β2) < f(β1).

• f is a bijective function from (0, 1) to (0,∞).

Proof: Let f ′ denote the first derivative of f with respect to β. It can be shown that f ′(β) < 0 for

β ∈ (0, 1) if and only if p(x) > 0 for x ∈ (0, 1), where p(x) = (1−K)xK+1 + KxK − (K + 1)x + K.

Now, let p′ and p′′ denote the first and the second derivatives of p with respect to x, respectively. To show

that p(x) > 0 for x ∈ (0, 1), we will use the fact that p(1) = 0 and show that p(x) is strictly decreasing

on (0, 1]. We have

p′(x) = (1−K)(K + 1)xK +K2xK−1 − (K + 1)

and

p′′(x) = xK−2K(K − 1) [K − (K + 1)x] .

From p′′(x), we notice that p′(x) is strictly increasing for x ∈ (0, K
K+1

) and is strictly decreasing for

x ∈ ( K
K+1

, 1], and hence its maximum value on (0, 1] is at x = K
K+1

. For x ∈ (0, 1],

p′(x) ≤ p′
(

K

K + 1

)

= K

(
K

K + 1

)K−1
− (K + 1) < 0.

Therefore, p(x) is a strictly decreasing function on (0, 1]. But since p(1) = 0, then p(x) > 0 for x ∈ (0, 1).

So far, we have shown that f is a strictly deceasing function on (0, 1). Now, since f is a continous function

on (0, 1) and since limβ→0 f(β) =∞ and limβ→1 f(β) = 0, then f((0, 1)) = (0,∞). This completes the

proof.

Theorem 2. For any sum-rate R < 1
2

log (1 + Pφ), where φ is as defined in Lemma 5, there exists ε > 0

such that the same sum-rate R can be achieved by the concatenated coding with σ2
n ≤ ε.

Proof: For R = 0, the proof is trivial. For R > 0, choose γ large enough such that 1
2

log (1 + Pγφ) >
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R, where φ ∈ [1, K] is the solution of

(1 + Pγφ)K−1 −
[
1 +

Pγ

K
φ(K − φ)

]K
= 0.

Call this γ value γ0.This allows us to choose β ∈ [0, 1] such that −K log(β) > R and f(β) ≤ Pγ.

Choose, β0 ∈ [0, 1] > β such that −K log(β) > −K log(β0) > R. By Lemma 7, there exists ε1 > 0 such

that

f(β0) ≤
Pγ

1 + ε1
.

Define

R̃(σ2
n, L̃) =

K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal(σ
2
n, L̃, γ0, β0)

)
.

Since limL̃→∞ R̃(0, L̃) = −k log(β0) > R, there exists L̃0 such that R̃(0, L̃0) > R. There also exists

ε2 > 0 such that R̃(ε2, L̃0) > R.

Let ε = min{ε1, ε2}. Since R̃(ε, L̃0) ≥ max{R̃(ε1, L̃0), R̃(ε2, L̃0)} and since f(β0) ≤ Pγ
1+ε

, by (44) and

by Lemma 6, we have found γ0, β0, and L̃0 such that the concatenated coding scheme achieves any

sum-rate below R̃(L̃0, ε) > R for feedback noise variance as large as ε. Hence, R is achieved.

B. Inner Code Blocklength

In this section, we find an upper bound on the inner code blocklength required for the concatenated

coding scheme to achieve a certain sum-rate above the no-feedback sum-capacity. To do that, we assume

noiseless feedback and make use of the SNR lower bound in Lemma 4 and Lemma 6. For sum-rates

closer to the bound in Lemma 5, the inner code block length is larger. For larger inner code block length,

µi,j in (38) becomes approximately optimal, the power lost in Lemma 6 becomes negligible, and the SNR

lower bound, SNRsuboptimal,lb(L̃, γ, β) in Lemma 4, becomes closer to SNRsuboptimal(σ
2
n = 0, L̃, γ, β).

As a result, the upper bound becomes tighter for sum-rates closer to the bound in Lemma 5.

Lemma 8. Fix γ, β ∈ (0, 1) such that −K log(β) > 1
2

log(1 +P ). Let alb be defined as in Lemma 4, and

assume noiseless feedback, i.e., σ2
n = 0. For any sum-rate R such that

1

2
log(1 + P ) < R < −K log β,
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let L0 be the smallest integer L̃ such that

K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal,lb(L̃, γ, β)
)
≥ R,

where SNRsuboptimal,lb(L̃, γ, β) is defined as in Lemma 4. Then

L0 ≤

⌈
−W (−a ln 2

b
2−

ac
b )

a ln 2
− a

b

⌉
, (46)

where a = 2
(
R
K

+ log β
)
, b = alb(1 − γ)2−2

R
K
(K−1), c = [alb(1− γ)(K − 1) + 1] 2−2

R
K
(K−1), and W is

the Lambert W function, i.e., W (x) is the solution to x = W (x)eW (x).

Proof: Define

Rlb(L̃, γ, β) =
K

2(L̃+K − 1)
log
(

1 + SNRsuboptimal,lb(L̃, γ, β)
)
,

where SNRsuboptimal,lb(L̃, γ, β) is defined as in Lemma 4. To derive the upper bound on L0, we solve for

L̃ that satisfies Rlb(L̃, γ, β) = R. After some manipulations, the preceding equation in L̃ reduces to

2aL̃ = bL̃+ c, (47)

which is known to have, by substitution, the term inside the ceil operator in (46) as a solution in L̃.

It can be easily shown that Rlb(1, γ, β) ≤ 1
2

log(1 + P ) and that limL̃→∞Rlb(L̃, γ, β) = −K log(β).

Hence, there exists at least one L̃ such that Rlb(L̃, γ, β) = R. Now, let us analyze (47). The left-hand

side of the equation is a decreasing exponential function in L̃ because a is negative. The right-hand side

is a straight line in L̃ with a positive slope. Hence, (47) can have one real valued solution only, call it L̂.

Then, Rlb(L̃, γ, β) ≥ R for all L̃ ≥ L̂. This validates the use of the ceil operater in (46).

For a fixed L̃, let γ∗ and β∗ be the γ ∈ (0, 1) and β ∈ (0, 1) values, respectively, that maximize

K

2(L̃+K − 1)
log
(

(1 + SNRoptimal(σ
2
n = 0, L̃, γ, β

)
.

For a sum-rate R ∈ (1
2

log(1 + P ), 1
2

log(1 + Pφ)), define L̃s(R) as the smallest L̃ > K such that

K

2(L̃+K − 1)
log
(

1 + SNRoptimal(σ
2
n = 0, L̃, γ∗, β∗)

)
≥ R. (48)

In the following corollary, we find an upper bound on L̃s(R).
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Corollary 1. Let f be defined as in Lemma 7 and φ defined as in Lemma 5.

1) Fix a sum-rate R such that 1
2

log(1 + P ) < R < 1
2

log(1 + Pφ).

2) Choose γ ∈ (0, 1) such that

γ > γlb =
1

P
f(2−

R
K ). (49)

3) Choose β such that

β = f−1(γP ), (50)

where f−1 is the inverse of f .

4) Then L̃s(R) can be upper bounded as follows

L̃s(R) ≤ L̃ub(R) = max{K + 1,

⌈
−W (−a ln 2

b
2−

ac
b )

a ln 2
− a

b

⌉
}, (51)

where the parameters a, b, and c are as defined in Lemma 8.

Proof: First, we choose γ such that the linear coding scheme for the noiseless feedback case can

achieve a sum-rate larger than R. To do so, we need −K log β > R. This implies β < 2−
R
K which also

implies that f(β) > f(2−
R
K ). But for L̃ → ∞, the power constraint of the linear scheme reduces to

f(β) = γP . Then γ > 1
P
f(2−

R
K ), where the right-hand side is exactly γlb.

Now, for any γ > γlb, choosing β = f−1(γP ) satisfies the power constraint for any L̃ > K (Lemma

6). The proof then follows by Lemma 8. Note that the use of the max function in (51) is to ensure

that the upper bound on L0 is no smaller than K + 1. This is because of the way the linear scheme is

constructed that requires L̃ > K for R > 1
2

log(1 + P ). By the discussion in the proof of Lemma 8, a

larger blocklength is still a valid upper bound on L̃s(R).

Following the steps in Corollary 1, we plot L̃ub(R) in Fig. 4 for sum-rates R between Cnf + 0.01∆

and Cnf + 0.9∆, where Cnf = 1
2

log(1 +P ) and ∆ = 1
2

log(1 +φP )− 1
2

log(1 +P ). We consider P = 10

and K = 2. For each sum-rate point R, the γ chosen in step 2 was γ = γlb + 0.2(1− γlb).
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Fig. 4. Upper bound on the L̃ needed for the concatenated coding scheme to start to outperform a certain sum-rate for noiseless feedback.
The values of the channel parameters are: P = 10 and K = 2.

C. Sum-Rate Versus Feedback Noise Level

In this section, we present, using computer experiments for numerical optimization, the achievable

sum-rates given a certain feedback noise level. Specifically, we calculated the following

R∗(K,P, σ2
n) = sup

L̃∈N
β∈(0,1)
γ∈[0,1]

K

2(L̃+K − 1)
log
(

1 + SNRoptimal(σ
2
n, L̃, γ, β)

)
. (52)

In Fig. 5, we compare the sum-rates achievable by the proposed concatenated coding scheme with

the no-feedback sum-capacity for P = 10 and K = 2. The solid line is the plot of R∗(2, 10, σ2
n) as a

function of σ2
n. The dashed line is the plot of the no-feedback sum-capacity. The chosen points for σ2

n

are 0.01 × 10−4, 0.015 × 10−4, 0.02 × 10−4, 0.025 × 10−4, . . . , 0.995 × 10−4, 1 × 10−4. The sharp edges

of R∗(2, 10, σ2
n) curve occur with the change of the optimal value of L̃. The optimal L̃ is shown on the

curve between any two of these edges. Although not exactly a piecewise linear curve, we can observe

from the the plot of R∗(2, 10, σ2
n) that R∗(., ., σ2

n) is close to a piecewise linear curve and hence could be

estimated, with small error, by a piecewise linear function. However, in this paper, we do not perform such

an analysis. From the plot, we can see that for σ2
n values close to 1×10−4, the optimal L̃ is 1, i.e., feedback
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Fig. 5. Comparison between the sum-rates achievable by the proposed concatenated coding scheme with the no-feedback sum-capacity
for P = 10 and K = 2. Specifically, R∗(2, 10, σ2

n) (solid line) and the no-feedback sum-capacity (dashed line) are plotted for σ2
n values

0.01× 10−4, 0.015× 10−4, 0.02× 10−4, 0.025× 10−4, . . . , 0.995× 10−4, 1× 10−4.

is not utilized. (It is important to note that for the symmetric AWGN-BC orthogonal signaling is optimal

for open-loop coding, which is encompassed by our scheme by having L̃ = 1 and γ = 0). However, as σ2
n

becomes smaller, the concatenated coding scheme outperforms the no-feedback sum-capacity. As σ2
n → 0,

R∗(., ., σ2
n) should approach the bound in Lemma 5 with the optimal L̃ → ∞. On the other hand, for

all values of σ2
n greater than 1 × 10−4, the optimal L̃ should remain equal to 1 (with γ = 0), at which

open-loop coding outperforms the use of feedback information.

VI. CONCLUSION

In this paper, we proposed a concatenated coding design that uses a linear feedback scheme as an

inner code to achieve rate tuples for the K-user AWGN-BC with noisy feedback outside the no-feedback

capacity region. We have shown an achievable rate region of linear feedback schemes for the noiseless

feedback case to be achievable by the concatenated coding scheme for sufficiently small feedback noise

level. We also presented a linear feedback scheme for the symmetric K-user AWGN-BC with noisy

feedback that was used as an inner code in the concatenated coding scheme that was itself optimized

to achieve sum-rates above the no-feedback sum-capacity. The concatenated coding design can also be

applied to the two-user AWGN-BC with a single noisy feedback link from one of the receivers.
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