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Abstract—This paper studies an optimal channel assignment problem for passive monitoring in multi-channel wireless networks, where
a set of sniffers capture and analyze the network traffic to monitor the wireless network. The objective of this problem is to maximize the
total amount of traffic captured by sniffers by judiciously assigning the radios of sniffers to a set of channels. This problem is NP-hard,
with the computational complexity growing exponentially with the number of sniffers. We develop distributed online solutions for large-
scale and dynamic networks. The dynamism in the network may arise from mobility of the nodes being monitored. Our algorithm is
guaranteed to achieve at least 1− 1

e
times the optimum, regardless of the network topology and the channel assignment of nodes to be

monitored, while providing a distributed solution amenable to online implementation. Further, our algorithm is cost-effective, in terms of
communication and computational overheads, due to the use of purely local communication and the incremental adaptation to network
changes. We present two operational modes of our algorithm for two types of networks that change at different rates; one is a proactive
mode for fast-varying networks, while the other is a reactive mode for slowly-varying networks. Simulation results demonstrate the
effectiveness of the two modes of our algorithm and compare it to the theoretically optimal algorithm.

Index Terms—Wireless networks, multi-channel, monitoring, distributed algorithm, approximation algorithm.
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1 INTRODUCTION
Thanks to the explosive growth of wireless communica-
tions and networking technologies in the last decade,
these technologies not only have become essential to
people’s daily lives, but also are being deeply embedded
into physical infrastructure systems. Such a tight inte-
gration of advanced wireless technologies into physical
systems can potentially benefit a variety of applications
and areas, including energy, healthcare, transportation
and defense systems. Nevertheless, the key to success
lies in the reliability and security of these systems. An
essential ingredient for achieving high reliability and
security is the high-quality monitoring of the underlying
wireless communications.

Passive monitoring is a widely-used and effective
technique to monitor wireless networks. In this, a set
of sniffers (i.e., software or hardware devices that inter-
cept and log packets) are used to capture and analyze
network traffic between other nodes, in order to estimate
network conditions and performance. Such estimates are
utilized for efficient network operation, such as network
resource management, network configuration, fault de-
tection/diagnosis and network intrusion detection.

Over the past few years, the use of multiple chan-
nels in wireless networks, especially in Wireless Mesh
Networks (WMNs), have been extensively studied (e.g.,
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[1]–[3]). It is known that equipping nodes with multiple
radios, each tuned to one of multiple orthogonal bands
(or channels), can significantly increase the capacity
of the network. On the other hand, utilizing multiple
channels in wireless networks brings up a challenging
issue with passive monitoring: how to assign a set of
channels to sniffers’ radios in order to accomplish the
given monitoring objective, e.g., capturing as large an
amount of traffic, or covering as large a number of
nodes, as possible. This problem arises because mon-
itoring resources, i.e., the number of sniffers and the
number of radios that each sniffer has, are limited and
thus it may not be feasible to monitor traffic on all
channels continuously. Therefore, the channel selections
for sniffers’ radios should be judiciously coordinated in
order to accomplish the given monitoring objective.

The sniffer-channel assignment problem for passive
monitoring in multi-channel wireless networks has re-
ceived increasing attention in recent years. The existing
works [4]–[20] have studied the problem, with different
formulations and different perspectives. The focus of this
paper is on distributed solutions that are amenable to
online implementation. There are a number of important
reasons for the need of such distributed solutions.

• The solution has to be distributed because networks
can be large and centralized solutions are not scal-
able.

• The solution should not rely on a single pow-
erful entity—which has a high computational
power, a large memory and no significant energy
constraint—for its entire operation. This is because
not only such solutions relying on a single entity are
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vulnerable to a single-point failure, but also there
are often cases where deploying such a powerful
entity is infeasible, e.g., in ad hoc wireless networks.

• The solution has to restrict the information exchange
among nodes in their neighboring regions, in order
to lower the communication overhead.

In this paper, we develop distributed and online so-
lutions for large-scale and dynamic networks. Specifi-
cally, we formulate an Optimal Sniffer-Channel Assignment
(OSCA) problem, where the objective is to maximize the
monitoring coverage, which is defined as the total weight
of the nodes monitored by the sniffers. Since OSCA is
NP-hard, we focus on approximate solutions that can be
computed in polynomial time and design a distributed
algorithm for OSCA, termed DA-OSCA. It is a Linear
Program (LP) rounding algorithm—which first solves an
LP relaxation of OSCA and then converts the fractional
solution to an integer feasible solution to OSCA. We
show that DA-OSCA achieves at least 1− 1

e of the optimal
monitoring coverage, regardless of the network topology
and the channel assignment of nodes to be monitored.
Further, DA-OSCA attains this performance guarantee
while requiring only local communication among neigh-
boring sniffers and adapting incrementally to network
changes. In addition, we devise two operational modes
of DA-OSCA, thereby allowing it to adapt more effi-
ciently to network changes at two different rates. One is
a proactive mode, which is applicable to networks that
change at a fast rate. The other is a reactive mode, which
allows DA-OSCA to reassign the channels to sniffers
only if the monitoring coverage is not high enough. This
mode is more suitable for networks that vary at a slow
rate. Our simulation results demonstrate the efficacy of
these two modes of DA-OSCA.

The main technical contributions of this paper are
summarized as follows:

1) We design a fully distributed algorithm to solve the
LP relaxation of OSCA, termed DA-LPOSCA. It is based
on the Proximal Optimization Algorithm (POA) [21]
combined with a dual approach. DA-LPOSCA is a cost-
effective distributed algorithm, compared to the standard
POA [21]. Specifically, the standard POA requires a two-
level convergence structure, which is not suitable for
distributed algorithms due to high computational and
communication overhead. On the other hand, without
such an inefficient convergence structure, DA-LPOSCA
can still converge to the optimal solution.

2) We design a fully distributed rounding algorithm, Op-
portunistic Channel Assignment Algorithm (OCAA), which
achieves at least 1 − 1

e (≈ 0.632) of the maximum
monitoring coverage. To this end, we first develop a
centralized rounding algorithm for OSCA based on the
pipage rounding technique in [22]. We then design
OCAA by using a metric called coverage improvement,
derived from the centralized rounding algorithm, which
guides sniffers to make good decisions on their channel
selection.

3) We develop a duality-based information aggrega-
tion procedure, used in the reactive mode of DA-OSCA,
to efficiently estimate the monitoring coverage of a given
sniffer-channel assignment. Such an estimation of mon-
itoring quality is needed to determine the followings:
i) whether DA-OSCA needs to be invoked in order to
improve the degraded monitoring coverage due to the
changes in network condition; ii) when to terminate DA-
LPOSCA and round the fractional solution, i.e., whether
the fractional solution at an iteration of DA-LPOSCA is
sufficiently close to the optimal (fractional) solution.

The rest of the paper is organized as follows. Section 2
reviews existing works related to this paper. Section 3 de-
scribes the problem formulation, discusses the hardness
of OSCA, and presents a summary of the proposed dis-
tributed algorithm. Sections 4 and 5 present and analyze
the distributed algorithm for the LP relaxation of OSCA
and the distributed rounding algorithm, respectively.
Section 7 presents the two operational modes of DA-
OSCA. Section 8 shows the simulation results. Finally,
Section 9 gives concluding remarks. Due to space limita-
tions, the proofs are provided in a separate supplemental
file available on the TMC website.

2 RELATED WORK

The optimal placement of monitoring nodes for moni-
toring coverage maximization, in single-channel wireless
networks, has been studied by Subhadrabandhu et al.
[23]–[25]. The work [23] studies the problem of how to
select an optimal subset of monitoring nodes to execute
Intrusion Detection Modules (IDSs), given a budget on
the number of monitoring nodes to be used. The goal
is to maximize the number of nodes covered (i.e., mon-
itored) by the selected monitoring nodes. The work [24]
allows for IDSs that may periodically stop functioning
due to operational failure or compromise by intruders.
It develops a framework to counter the failure of IDSs,
and studies the problem of how to find a minimum set
of monitoring nodes to execute IDSs, while covering all
nodes in the network. The work [25] allows for IDSs that
may periodically fail to detect attacks and generate false
alarms, and develops a similar framework to that of [24].
In all of these works [23]–[25], nodes are assumed to use
a single common channel, and thus there is no issue of
channel assignment for monitoring nodes.

The sniffer-channel assignment problem in multi-
channel wireless networks has been studied by the works
[4]–[20], with different problem formulations and dif-
ferent perspectives. The works [4]–[11] have studied
OSCA, its variant, or a generalized problem. Our prior
works [4], [5] have studied a more generalized problem
than OSCA, i.e., how to optimally place sniffers and
assign their channels to monitor multi-channel WMNs,
assuming stationary networks. Chhetri et al. [6], [7] have
studied OSCA (i.e., the MEC problem in [6], [7]) for
two models of sniffers, assuming different capabilities
of sniffers in capturing traffic. Our previous work [8]
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has studied a generalized version of OSCA allowing for
imperfect sniffers, where each node must be monitored
by a required number of sniffers to ensure an acceptable
quality of monitoring. Chen et al. [9] have studied the
sniffer-channel selection problem for monitoring Wire-
less Local Area Networks (WLANs), formulating the two
optimization problems: how to minimize the maximum
number of channels that a sniffer listens to; how to
minimize the total number of channels that the sniffers
listen to. The recent works [10], [11] have studied the
sniffer-channel selection problem, with the goal to max-
imize the quality of monitoring. Du et al. [10] presented
a Monte Carlo enhanced Particle Swarm Optimization
(MC-PSO) algorithm, while Xia et al. [11] proposed a
Multiple Quantum Immune Clone Algorithm (MQICA).

Complementary to the works above, there have been
studies [12]–[14] on trade-offs between assigning the
radios of sniffers to channels known to be busiest based
on the current knowledge, versus exploring channels
that are under observed. Arora et al. [12] proposed two
policies that sequentially learn the user activities while
making decisions on the sniffer-channel assignment. A
drawback of the two sequential learning policies in [12]
is high computational costs due to the NP-hardness
of the decision problem. Hence, Zheng et al. [13], [14]
presented two approximate online learning algorithms
that are computationally efficient. In the works [15], [16],
Hassanzadeh et al. proposed a taxonomy to categorize
existing solutions for intrusion detection in WMNs. In
[15], they investigated the attack-and-fault tolerance of
IDS. In [16], they studied two classes of monitoring
techniques for intrusion detection in WMN, namely,
traffic agnostic and resourceful, and traffic aware and
resourceful. Zeng et al. [17] proposed a measurement
architecture using distributed sniffers for delay monitor-
ing in wireless sensor networks, and studied a sniffer
placement problem for efficient delay measurement.

The aforementioned works [4]–[11], which studied
OSCA, its variant, or a generalized problem, focus on
centralized algorithms. In contrast, the works [18], [19]
and our earlier work [20], upon which this paper builds,
presented distributed algorithms to solve OSCA. While
the work [14] also presents a distributed algorithm, it is
under a different setting, i.e., for online learning. A major
difference between the works [18], [19] and this paper is
the very different approaches to solve the problem, in
terms of the trade-off between the optimality of the so-
lution and the time complexity of algorithm. Specifically,
our proposed distributed algorithm, DA-OSCA, which
is based on the LP rounding approach, is a polynomial-
time algorithm that guarantees an approximation ratio of
1 − 1

e . On the other hand, the distributed algorithms in
[18], [19], based on a Gibbs sampler approach, guaran-
tees the optimality of the solution but may not converge
in polynomial time. We would like to point out that
our approach, which sacrifices the optimality for time
efficiency, is more suitable for distributed algorithms that
need to be agile to the changes of network. Besides, this

paper addresses the practical issue of how to efficiently
adjust the sniffer-channel assignment as the network
changes, which is not handled in [18], [19], by presenting
the two operational modes of DA-OSCA.

3 PROBLEM FORMULATION

Consider a wireless network with a set N of nodes to
be monitored. Each node’s radio is tuned to a wire-
less channel chosen from a set C of available wireless
channels with |C| ≥ 2. Each node n ∈ N is assigned
a non-negative weight wn. These weights of nodes can
be used to capture various application-specific objectives
of monitoring. For example, one can use the weights
to capture data rates of nodes. In this scenario, we
would assign higher weights to the nodes transmitting
larger volumes of data, thereby biasing our algorithm to
monitor such nodes more. Or, for security monitoring,
one can assign the weights by taking into account the
nodes’ trustworthiness computed based on the previous
monitoring results. Here, a node that has been found to
be compromised before (and repaired thereafter) will be
assigned a higher weight.

We are given a set S of sniffers, each of which has to
determine a wireless channel from C to tune its radio
to. We say that a sniffer and a node are neighbors if the
sniffer can overhear the node, and also that two sniffers
are neighbors if both of the sniffers can overhear a node
(by tuning their radios to the same channel as the node).
We denote the set of the neighboring sniffers of sniffer s
by N(s), and the set of the neighboring nodes of sniffer
s by L(s). We say that a node is covered if the node
is overheard by at least one sniffer being tuned to the
same channel as the node. We are given a collection of
coverage-sets, K := {Ks,c ⊆ N : s ∈ S, c ∈ C}, where a
coverage-set Ks,c includes the nodes that can be covered
by sniffer s being tuned to channel c. We define a group
Ks := {Ks,c : c ∈ C} to denote the collection of all
coverage-sets of sniffer s over all channels. We define
monitoring coverage to be the total weight of the covered
nodes. Our objective is to maximize the monitoring
coverage by judiciously choosing one coverage-set from
each group1. Here, the group budget constraint, i.e., only
one coverage-set can be chosen from each group, arises
since each sniffer has only one radio and the radio can
be tuned to only one channel at a time. We refer to the
optimization problem described above as the Optimal
Sniffer-Channel Assignment (OSCA) problem.

In OSCA, for ease of exposition, we assumed that all
nodes and all sniffers have only one radio. However, the
multi-radio case, i.e., the case when nodes and sniffers
are equipped with multiple radios, can be easily cast into
OSCA by regarding each radio of a node (or sniffer) as
a different node (or sniffer) with a single radio. In the
multi-radio case, one might think that OSCA requires an

1. In cases where a node is covered by two or more adjacent sniffers
tuned on the same channel, the sniffers can communicate with each
other and pick the one to monitor the node for efficiency.
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Fig. 1. Distributed Algorithm for OSCA (DA-OSCA).

additional constraint to ensure that each sniffer tune its
radios to a set of distinct channels in C, for the efficient
use of its radio resources. However, note that tuning two
radios of a sniffer to the same channel means choosing
the same coverage-sets, say Ks,c, twice, which results in
a lower coverage than that achieved by choosing two
distinct coverage-sets including Ks,c. Therefore, in the
multi-radio case, any efficient algorithm would always
choose a set of distinct channels in C for the multiple
radios of each sniffer, without any additional constraint.

3.1 Hardness of OSCA
The following two theorems on the hardness of OSCA
have been proved in [6].

Theorem 1: OSCA is NP-hard.

This means that the computational complexity to solve
OSCA grows exponentially with the number of sniffers,
unless P = NP . Many target applications of OSCA
have more than a handful of sniffers. Also, the problem
has to be solved repeatedly (e.g., whenever the channel
assignment of nodes changes) at runtime. Therefore, this
theorem points us toward finding approximate solutions
that will be applicable to practical networks.

Theorem 2: For any ε > 0, it is NP-hard to approximate
OSCA within a factor of 7

8 + ε of the optimum.

In other words, the best achievable approximation ratio
for OSCA is at most 7

8 .

3.2 Summary of Proposed Distributed Algorithm
We design a distributed approximation algorithm to
solve OSCA, referred to as DA-OSCA, which guarantees
to achieve at least 1− 1

e (≈ 0.632) of the maximum mon-
itoring coverage. DA-OSCA solves the following Integer
Linear Program (ILP) of OSCA, denoted by ILPOSCA:

maximize
∑
n∈N

wnxn (1)

subject to xn ≤
∑

(s,c):n∈Ks,c

ys,c ∀n ∈ N, (2)

∑
c∈C

ys,c ≤ 1 ∀s ∈ S, (3)

0 ≤ xn, ys,c ≤ 1 ∀n ∈ N, s ∈ S, c ∈ C, (4)
xn, ys,c ∈ {0, 1} ∀n ∈ N, s ∈ S, c ∈ C. (5)

Here, each node n ∈ N is associated with an indicator
variable xn ∈ {0, 1}: xn = 1 indicates that node n is
covered by the given solution. Each coverage-set Ks,c ∈

TABLE 1
Summary of Notations

Notation Definition
n / N Index/Set of nodes
s / S Index/Set of sniffers
c / C Index/Set of wireless channels

N(s) / L(s) Set of the neighboring sniffers/nodes of sniffer s
Ks,c Coverage-set: Set of nodes covered by sniffer s

operating on channel c
wn Weight assigned to node n

xn / ys,c 0/1 variable to indicate if node n is covered (or
coverage-set Ks,c is chosen) by a solution

d A parameter of DA-LPOSCA, defined in Eq. (6)
pn Dual variable assigned to node n, defined in Eq. (7)
β A parameter of DA-LPOSCA, defined in Eq. (9)
I Number of inner-level iterations in DA-LPOSCA
B1 Maximum number of nodes covered by any sniffer

operating on any channel
B2 Maximum number of neighboring sniffers to any

node

K is associated with an indicator variable ys,c ∈ {0, 1}:
ys,c = 1 indicates that the radio of sniffer s is tuned
to channel c. The objective function (1), together with
the constraints (2) and (5), makes xn = 1 if at least one
coverage-set containing node n is chosen for a solution.

DA-OSCA is a Linear Program (LP) rounding based
algorithm. It consists of two components (see Fig. 1): 1)
distributed algorithm (DA-LPOSCA) to solve the LP relax-
ation of OSCA (i.e., Eqs. (1)–(4)), denoted by LPOSCA; 2)
Opportunistic Channel Assignment Algorithm (OCAA)
to round the fractional solution yielded by DA-LPOSCA in
a distributed fashion. Intuitively, DA-OSCA first obtains
a global knowledge of the optimal solution to OSCA
through DA-LPOSCA, and then uses this knowledge to
determine the channels for sniffers through OCAA.

For convenience, we summarize in Table 1 the nota-
tions frequently used in this paper (some of which are
defined later).

4 DISTRIBUTED ALGORITHM FOR LPOSCA

4.1 Proximal Optimization Algorithm for LPOSCA

The basic idea to solve LPOSCA is based on the Proximal
Optimization Algorithm (POA) [21, Ch. 3.4.3] combined
with a dual approach. We introduce a set of auxiliary
variables, {xaux

n , yaux
s,c : n ∈ N, s ∈ S, c ∈ C}, and trans-

form LPOSCA into the following equivalent quadratic
program, denoted by QPOSCA:

maximize
∑
n∈N

wnxn −
1

2d

( ∑
n∈N

(xn − xaux
n )

2

+
∑
∀(s,c)

(
ys,c − yaux

s,c

)2 ) (6)

subject to Eqs. (2)–(4).

Here, d is a positive constant. The rationale behind this
transformation is to resolve an issue that arises when we
solve the dual problem of LPOSCA, due to the linearity
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of the objective function of LPOSCA
2. By observing that it

must follow that xaux
n = xn and yaux

s,c = ys,c to maximize
the objective function (6), it is easy to verify that QPOSCA
is equivalent to LPOSCA.

The POA to solve QPOSCA, referred to as POA-QPOSCA,
proceeds as follows. At the t-th iteration, t = 1, 2, 3, . . . ,
POA-QPOSCA executes the following two steps:

S1: Fixing ~xaux = ~xaux(t) and ~yaux = ~yaux(t), where
~xaux(t) and ~yaux(t) are given from the previous it-
eration, solve QPOSCA with respect to ~x and ~y. Let
the solution be ~x(t) and ~y(t).

S2: Let ~xaux(t+ 1) = ~x(t) and ~yaux(t+ 1) = ~y(t).

As the number of iterations, t, tends to infinity, the
sequence of vectors generated by POA-QPOSCA with any
initial values (i.e., ~xaux(1) and ~yaux(1)) converges to the
optimal solution of QPOSCA [21, Ch. 3.4.3].

4.2 Duality Approach to Step S1 of QPOSCA

Note that, in each iteration of POA-QPOSCA, we have to
solve a global optimization problem at Step S1. We will
use a dual approach to solve the problem at Step S1.
The rationale behind this is that the dual problem has a
simple form of constraints and is easily decomposable,
thus allowing us to design a distributed algorithm to
solve the problem at Step S1.

We derive the dual problem of the optimization prob-
lem at Step S1. For notational simplicity, we define
~z := (~x, ~y) and ~zaux := (~xaux, ~yaux), and denote by Z the
constraint set of ~z satisfying Eqs. (3) and (4). We define
a set of Lagrange Multipliers for the |N | constraints of
Eq. (2) as ~p := (pn : n ∈ N) and the Lagrangian function
of QPOSCA with the fixed ~xaux and ~yaux as the following:

L(~z, ~p;~zaux) :=
∑
n∈N

wnxn +
∑
n∈N

pn

( ∑
(s,c):n∈Ks,c

ys,c − xn
)

− 1

2d

( ∑
n∈N

(xn − xaux
n )

2
+
∑
∀(s,c)

(
ys,c − yaux

s,c

)2 )
. (7)

The dual problem is then given by

minimize D(~p;~zaux) := max
~z∈Z

L(~z, ~p;~zaux)

subject to ~p ≥ 0. (8)

Since the dual objective function D is differentiable due
to the quadratic terms in Eq. (7), we can now employ
the Gradient Projection Algorithm (GPA) [21, Ch. 3.3.2]
to solve the dual problem.

2. Specifically, since the objective function (1) of LPOSCA is linear, it
is not strictly concave. As a result, the dual problem of LPOSCA may
not be differentiable at every point. This leads to a difficulty when we
use the Gradient Projection Algorithm [21, Ch. 3.3.2] to solve the dual
problem. However, such a difficulty will be resolved with QPOSCA,
since the objective function of QPOSCA is strictly concave due to the
added quadratic terms and thus is differentiable.

Fig. 2. An illustration of projection [·]+Yi
for |C| = 3.

The GPA to solve the dual problem has the following
iterations: for i = 0, 1, 2, . . . ,

pn(i+ 1) = [pn(i) + βgn(i)]
+
[0,+∞) , (9)

where gn(i) :=
∂D

∂pn

∣∣∣∣
pn=pn(i)

= x∗n(i)−
∑

(s,c):n∈Ks,c

y∗s,c(i).

Here, β > 0 is the step size, [~p]+A denotes the projection
to a set A, which maps ~p to the point in A that is closest
to ~p, and (~x∗(i), ~y∗(i)) ∈ Z is the optimal solution to the
following maximization problem: for given ~p(i),

maximize L(~z, ~p(i);~zaux)

subject to ~z ∈ Z. (10)

To solve this problem, we rewrite Eq. (7) as

L(~z, ~p;~zaux) =
∑
n∈N

(
− 1

2d
(xn − xaux

n )
2
+ (wn − pn)xn

)
+
∑
∀(s,c)

(
− 1

2d

(
ys,c − yaux

s,c

)2
+ ys,c

∑
n∈Ks,c

pn

)
. (11)

Using Eq. (11), we can decompose the problem in Eq. (10)
into the following independent subproblems:
1) for each n ∈ N ,

maximize − 1

2d
(xn − xaux

n )
2
+ (wn − pn(i))xn

subject to 0 ≤ xn ≤ 1

2) for each s ∈ S,

maximize
∑
c∈C

(
− 1

2d

(
ys,c − yaux

s,c

)2
+ ys,c

∑
n∈Ks,c

pn(i)
)

subject to ~ys ∈ Ys :=
{
~ys :

∑
c∈C

ys,c ≤ 1, ys,c ≥ 0 ∀c
}
.

Note that each subproblem can be solved independently
at each node and at each sniffer using purely local com-
munication. By solving each subproblem, we can obtain
the following solution:

x∗n(i) = [xaux
n + d(wn − pn(i))]+[0,1] , (12)

~y∗s (i) =
[(
yaux
s,c + d

∑
n∈Ks,c

pn(i) : c ∈ C
)]+
Ys

. (13)

In Eq. (13), the projection [·]+Ys
, illustrated in Fig. 2,

can be performed by using Alg. 1. The proof of its
correctness can be found in Appendix A in the separate
supplemental file.
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Algorithm 1 Projection Algorithm
1: // The following procedure projects a vector ~v onto
V := {~v′ : v′c ≥ 0 for all c ∈ C and

∑
c∈C v

′
c ≤ 1}

2: C ′ ← C
3: while |C ′| > 0 and

∑
c∈C′ vc > 1 do

4: a← 1
|C′|

(
1−

∑
c′∈C′ vc′

)
// a < 0

5: for each c ∈ C ′ do
6: vc ← vc + a
7: if vc ≤ 0 then
8: vc ← 0
9: C ′ ← C ′ \ {c} // vc > 0 for c ∈ C ′

10: end if// this makes
∑
c∈C vc = 1, since∑

∀c/∈C′ vc = 0
11: end for
12: end while
13: return ~v

In summary, we can obtain the solution to the dual
problem in Eq. (8) by alternately updating Eq. (9) and
Eqs. (12)–(13). As i → ∞, the sequence of vectors given
by Eq. (9) converges to the optimal solution of the dual
problem [21, Proposition 3.4]. Once the optimal solution
of the dual problem is obtained, the optimal solution of
the primal problem, i.e., Step S1 of POA-QPOSCA, can be
computed with Eqs. (12)–(13) [26, Ch. 5.5.3].

4.3 Distributed Algorithm for LPOSCA

We present in Alg. 2 a formal description of the Dis-
tributed Algorithm for LPOSCA (DA-LPOSCA). Note that
DA-LPOSCA requires only local communications among
neighboring nodes. In many monitoring applications, it
would be desirable that DA-LPOSCA be run by only snif-
fers, since DA-LPOSCA is needed for sniffers to determine
their channels. In such cases, one can let one of the
neighboring sniffers to node n act as a proxy and update
the variables associated with node n (i.e., xn, xaux

n , pn)
on behalf of node n.

The standard POA [21, Ch. 3.4.3] requires a two-
level convergence structure. Specifically, the inner-level
iterations (i.e., the for loop in Lines 3–8) must converge
before the next outer-level iteration (i.e., the while loop
in Lines 1–11) begins. However, such a two-level conver-
gence structure is not suitable for distributed algorithms,
since it requires a mechanism to determine when to stop
inner-level iterations. Such a mechanism would not only
decrease the convergence speed of DA-LPOSCA but also
incur substantial communication overheads. The ratio-
nale behind this intuition is as follows. As the number
of inner-level iterations, I , increases, the improvement of
the solution quality at each inner-level iteration would
decrease. However, such later inner-level iterations that
achieve a small improvement would be wasteful, since
solving Step S1 of POA-QPOSCA is only an intermediate
step to solve the ultimate problem, i.e., QPOSCA. This
intuition is verified by simulation results (Fig. 5).

Algorithm 2 DA-LPOSCA

1: while TRUE do
2: // Step 1 of POA-QPOSCA
3: for i = 0 to I do
4: Each node n and each sniffer s compute xn(i)

and ~ys(i) according to Eqs. (12) and (13), respec-
tively. Then, each sniffer s sends the updated
values ~ys(i) to its neighboring nodes.

5: if i 6= I then
6: Each node n computes pn(i+ 1) according to

Eq. (9), then sends pn(i+1) to its neighboring
nodes and sniffers.

7: end if
8: end for
9: // Step 2 of POA-QPOSCA

10: Each node n and each sniffer s set initial values
of their variables for the next iteration as the
following:

xaux
n ← xn(I) and pn(0)← pn(I) (node n)

~yaux
s ← ~ys(I) (sniffer s).

11: end while

Based on this intuition, we fix the number of inner-
level iterations of DA-LPOSCA to 2 (i.e., I = 1), and
find a good approximate solution to Step S1 of POA-
QPOSCA. In the following theorem, we show that, even
with I = 1, DA-LPOSCA still converges to the optimal
solution, provided that the step size β (in Eq. (9)) is
sufficiently small3. The proof is given in Appendix B in
the separate supplemental file.

Theorem 3: Let ~zaux,t = ~zaux(1) and ~p t = ~p(1) at the
t-th outer-level iteration in DA-LPOSCA. As t→∞, ~zaux,t

and ~p t converge to the optimal primal solution and the
optimal dual solution of QPOSCA, respectively, if

β <
1

2d(B1 + 1) ·max{|C|, B2 + 1}
,

where B1 := maxs∈S,c∈C |Ks,c| represents the maximum
number of nodes covered by a sniffer operating on a
channel, and B2 := maxn∈N |{Ks,c : n ∈ Ks,c}| represents
the maximum number of neighboring sniffers of a node.

Theorem 3 suggests that the value of d (in Eq. (6))
should be set to a smaller value, so that β can be chosen
to a larger value, thereby achieving a larger improve-
ment at each inner-level iteration. On the other hand, a
smaller value of d will make the objective function of
QPOSCA (Eq. (6)) more deviated from that of the original
problem (Eq. (1)). Hence, this would increase the number

3. Our result in Theorem 3 can be viewed as a parallel version of
the improved POA in [27]. This work has previously used the idea of
fixing the number of inner-level iterations. However, the results in [27]
are based on the assumption that the coefficients in the constraints of
the underlying LP problem must be non-negative. Hence, the results
in [27] cannot be applied to our problem, LPOSCA, since LPOSCA has
negative coefficients as well in the constraints.
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of outer-level iterations, leading to slow convergence of
DA-LPOSCA. Our simulation results (Fig. 4) reveal that
a smaller value of d leads to slower convergence up
to a near-optimal solution (i.e., 95% of the maximum
coverage) but a faster convergence to the exact optimal
solution.

Note that, in practice, we need a condition to terminate
the outer-level iterations and thus Alg. 2. We address this
issue in Section 7 by devising two operational modes
of DA-LPOSCA for two types of networks that change at
different rates.

5 DISTRIBUTED ROUNDING ALGORITHM

Recall that the solution yielded by DA-LPOSCA may
contain non-integer values, since the integer constraint
(Eq. (5)) are relaxed in LPOSCA. Hence, to obtain a
feasible solution to ILPOSCA, we have to convert the
fractional solution yielded DA-LPOSCA to an integer
solution. Note that given the values of {ys,c}, ILPOSCA
immediately determines the values of {xn} as xn =

min
{
1,
∑

(s,c):n∈Ks,c
ys,c

}
. Hence, we first round the

non-integer values of {ys,c}, and then determine the
integer values of {xn} as described above.

We first develop a centralized rounding algorithm for
OSCA, called PIPAGE-OSCA, by employing the pipage
rounding technique in [22]. We then design a distributed
rounding algorithm for OSCA based on PIPAGE-OSCA.

5.1 Pipage Based Centralized Rounding Algorithm

We describe below how PIPAGE-OSCA operates.

PIPAGE-OSCA. It rounds the fractional values of ~y,
yielded by DA-LPOSCA, in an iterative fashion. At each
iteration, it adjusts two non-integer values of a sniffer s,
say ys,c1 and ys,c2 , as follows. For the given fractional
solution ~y, it creates two new (fractional) solution, de-
noted by ~y(1) and ~y(2). They have the same value as ~y in
all entries, except the two entries of indices (s, c1) and
(s, c2): for ~y(1), y(1)s,c1 = 0 and y

(1)
s,c2 = ys,c1 + ys,c2 ; for

~y(2), y(2)s,c1 = ys,c1 + ys,c2 and y
(2)
s,c2 = 0. Note that ~y(1) and

~y(2) both include at least one more integer value than ~y.
Between ~y(1) and ~y(2), it chooses as the new solution,
used for the input in the next iteration, the one that
achieves a higher value of function F (~y), defined as:

F (~y) :=
∑
n∈N

wn

(
1−

∏
(s,c):n∈Ks,c

(1− ys,c)
)
.

It repeats this process until it obtains an integer solution.

PIPAGE-OSCA has the following guarantee. The proof
is given in Appendix C in the separate supplemental file.

Lemma 1: Given a (fractional) solution to LPOSCA that
attains a constant factor α of the optimum of LPOSCA,
PIPAGE-OSCA yields an integer solution to OSCA that
achieves at least α(1− 1

e ) times the optimum of OSCA.

5.2 Distributed Rounding Algorithm: OCAA

We design a distributed rounding algorithm based on
PIPAGE-OSCA. We first define a metric, called coverage
improvement, which allows sniffers to evaluate the de-
cision criterion for the new solution at each iteration
of PIPAGE-OSCA, i.e., whether F (~y(1)) ≥ F (~y(2)), in
a distributed manner. Given a set of values ~yN(s) :=
{ys′,c : s′ ∈ N(s), c ∈ C}, where N(s) denotes the set of
neighboring sniffers to sniffer s, we define the coverage
improvement of coverage-set Ks,c as

I
(
Ks,c; ~yN(s)

)
:=

∑
n∈Ks,c

wn

( ∏
s′ 6=s : n∈Ks′,c

(1− ys′,c)
)
.

Intuitively, I(Ks,c; ~yN(s)) means the expected monitoring
coverage gain achieved by sniffer s tuning its radio to
channel c, when the (fractional) value of ys′,c is viewed
as the probability that sniffer s′ ∈ N(s) tunes its radio to
channel c. Note that each sniffer can compute the cover-
age improvements over all channels by communicating
with only its neighbors.

We have the following lemma. The proof is given in
Appendix D in the separate supplemental file.

Lemma 2: F (~y(1)) ≥ F (~y(2)) if I(Ks,c1 , ~yN(s)) ≤
I(Ks,c2 , ~yN(s)).

Observe that when PIPAGE-OSCA rounds the frac-
tional values of ~ys, the values of ~ys′ for all s′ 6= s
remain the same. Hence, in the consecutive iterations of
PIPAGE-OSCA to round all fractional values of ~ys, the
coverage improvements of sniffer s, i.e., I(Ks,c, ~yN(s))
for all c ∈ C, would not change. This observation
and Lemma 2 imply that the consecutive iterations of
PIPAGE-OSCA will result in sniffer s being assigned to
the channel whose coverage-set achieves the maximum
coverage improvement. With this finding, we design a
distributed rounding algorithm for OSCA, called the
Opportunistic Channel Assignment Algorithm (OCAA), de-
scribed in Alg. 3.

In OCAA, sniffers determine their channel in a se-
quential manner specified by P . The partition P can
be determined a priori, or through an ad hoc coordi-
nation among sniffers, e.g., using one of the existing
scheduling algorithms at the Medium Access Control
(MAC) layer. In each iteration, the sniffers in Pi ∈ P
can determine their channel in parallel. Each sniffer
s selects the channel c∗ that maximizes the coverage
improvement, I(Ks,c; ~yN(s)), based on the given values
of ~yN(s) (Line 3). Thereafter, each sniffer s in Pi informs
its neighboring sniffers of its decision on the channel
(Line 4), so that they can update the values of ~ys and
compute the coverage improvements in later iterations.

To make this clear, we give an illustrative example.
Here, we let S = {s1, s2, s3, s4}, C = {c1, c2, c3}, and
P = {P1, P2}, where P1 = {s1, s2} and P2 = {s3, s4}.
Suppose that DA-LPOSCA yielded the following fractional
solution: ~ys1 = (0.2, 0.3, 0.5), ~ys2 = (0.4, 0.3, 0.3), ~ys3 =
(0.8, 0.2, 0) and ~ys4 = (0.1, 0.6, 0.3). In the first round of
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Algorithm 3 Opportunistic Channel Assignment Algo-
rithm (OCAA)

1: // P := {Pi} is a partition of S such that no two
sniffers in any Pi are neighbors.

2: for i = 1 to |P| do
3: Each sniffer s ∈ Pi tunes its radio to a channel

c∗ ∈ C such that:

I(Ks,c∗ ; ~yN(s)) = max
c∈C

I(Ks,c; ~yN(s)).

Here, ~yN(s) initially takes the values yielded by
DA-LPOSCA, and then is updated according to the
channel selection of sniffer s’ neighboring sniffers.

4: Each sniffer s sends its determination on channel
selection to its neighboring sniffers.

5: end for

OCAA, sniffers s1 and s2 round ~ys1 and ~ys2 to an integer
solution, say (0, 0, 1) and (0, 1, 0), based on the values of
I(Ks,c, ~yN(s)) for s1, s2, and c ∈ C. In the second round,
upon receiving the decisions made by s1 and s2, sniffers
s3 and s4 update the values of I(Ks,c, ~yN(s)) for s3, s4,
and c ∈ C, and use them to round ~ys3 and ~ys4 to an
integer solution, say (1, 0, 0) and (0, 1, 0).

Since OCAA is an distributed implementation of
PIPAGE-OSCA, OCAA maintains the same performance
as PIPAGE-OSCA. We thus have the following theorem.

Theorem 4: Given a (fractional) solution to LPOSCA that
attains a constant factor α of the optimum of LPOSCA,
OCAA yields an integer solution to OSCA that achieves
at least α(1− 1

e ) times the optimum of OSCA.

Here, the factor α comes from an approximate solution
yielded by LPOSCA. Note that we can make α arbitrar-
ily close to 1 by sufficiently increasing the number of
outer-level iterations of DA-LPOSCA. We thus have the
following corollary.

Corollary 1: DA-OSCA always achieves at least 1− 1
e

times the maximum coverage of OSCA, regardless of the
network topology and the channel assignment of nodes.

6 SCALABILITY AND ASYNCHRONOUS OPER-
ATION OF DA-OSCA
In this section, we first examine the scalability of DA-
OSCA, and then discuss how to operate DA-OSCA in
an asynchronous fashion.

6.1 Scalability

To examine the scalability of DA-OSCA, we analyze the
computational complexity of DA-OSCA per each sniffer.
First, in DA-LPOSCA with I = 1, each sniffer iteratively
computes Eqs. (9), (12) (on behalf of some of its neigh-
boring nodes) and (13), which involve simple arithmetic
operations except [·]+Ys

in Eq. (13). To compute Eq. (13),
each sniffer invokes Alg. 1, which has complexity of

O(|C|2). Hence, in DA-LPOSCA with I = 1, the compu-
tational complexity on each sniffer is O(|C|2k), where
k is the number of the outer-level iterations that DA-
LPOSCA takes to converge. Next, in OCAA, each sniffer s
computes the coverage improvement (i.e., I(Ks,c; ~yN(s)))
|C| times. Since the complexity of computing the cover-
age improvement is O(B1B2) (refer to Theorem 3 for the
definition of B1 and B2), the computational complexity
on each sniffer in OCAA is O(|C|B1B2). Thus, the overall
computational complexity on each sniffer in DA-OSCA
is O (|C|(B1B2 + k|C|)). Typically, B1 and B2, which are
determined by the network topology, would increase
at a much lower rate than that at which the network
size grows. Also, our simulation results (Figs. 4 and 6)
empirically show that k does not grow as the network
size increases. Rather, k depends on the difficulty of
each instance of OSCA, determined by the setting of
several input parameters (see the discussion for Fig. 6
in Section 8.1). These observations point out that DA-
OSCA is scalable. Further, we devise two operational
modes of DA-OSCA in the next section, which enable
DA-OSCA to incrementally adapt to network changes.
This significantly reduces k as demonstrated through
simulations (see Figs. 11 and 12).

6.2 Asynchronous Operation
We discuss how to operate DA-OSCA in an asyn-
chronous fashion, so as to facilitate its operation in a
realistic environment where all sniffers may not be per-
fectly synchronized. Recall that DA-LPOSCA converges to
the optimal solution with any initial values. This means
that even if some sniffers may not update their variables
at a few iterations, e.g., due to unreliable links with
their neighboring sniffers, DA-LPOSCA would eventually
converge to the optimal solution, albeit through some
fluctuations. Hence, DA-LPOSCA can be executed in an
asynchronous manner: if a sniffer receives no update
from some of its neighboring sniffers, it proceeds to
update its variables without waiting for the update. In
this way, DA-LPOSCA can facilitate its operation coping
with large communication delays and temporary link
failures. In OCAA, while sniffers determine their channel
in a sequential manner, specified by P (see Line 1 of
Alg. 3), each sniffer in Pi ∈ P can determine its channel,
independent of the other sniffers’ decisions in Pi. In
this way, we can facilitate the deployment of DA-OSCA
while still maintaining its performance.

7 ONLINE IMPLEMENTATION OF DA-OSCA
In this section, we describe how to implement DA-OSCA
in an online fashion, so that DA-OSCA is agile and
adapts incrementally to network changes, such as the
changes of channels/weights assigned to nodes and the
changes of network topology due to nodes’ mobility
and sniffers’ arrivals/departures. Note that failures and
recoveries of nodes and sniffers can also be regarded as
departures and arrivals of them, respectively. We first
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describe the procedure that sniffers need to perform
when they find arrivals/departures of their neighboring
nodes/sniffers. We then present two operational modes
of DA-OSCA, which allow DA-OSCA to adapt more
efficiently to network changes at the two different rates.

7.1 Basic Information Update
When sniffer s finds the arrivals or departures of its
neighboring nodes, it first updates its coverage-sets (i.e.,
{Ks,c : c ∈ C}). If a node n arrives, sniffer s, which acts
as the proxy for node n (for updating the values of the
node n’s variables), introduces a set of variables for node
n, and then sets their initial values as follows: xn = 1 if
node n is covered, and xn = 0 otherwise; xaux

n = xn;
pn = 0. If node n leaves, sniffer s removes the node n’s
variables.

When a new sniffer s arrives, it first creates its
coverage-sets and its variables, and then sets their initial
values as follows: ys,c∗ = 1 for c∗ ∈ C such that Ks,c∗

achieves the maximum coverage improvement (i.e., c∗ =
argmaxc∈C I(Ks,c; ~yN(s))) and ys,c = 0 for all c ∈ C / {c∗};
~yaux
s = ~ys. When sniffer s leaves, one of its neighboring

sniffers takes over the proxy duty of sniffer s.

7.2 Mode-I: DA-OSCA for Fast Varying Networks
We present in Alg. 4 the operation of DA-OSCA in
Mode-I, where DA-OSCA operates proactively to adapt
to rapid changes in network condition. The rationale
behind this proactive mode is that, when the network
changes rapidly, it is cost-effective to run DA-OSCA
continuously, rather than running it in a reactive man-
ner. This is because reactive operation of DA-OSCA
requires an additional mechanism (like the one in Mode-
II) to estimate how good monitoring coverage a sniffer-
channel assignment achieves, in order to determine
when to start and when to terminate DA-OSCA. Such
a coverage-estimation mechanism, however, would re-
quire network-wide communication to aggregate the in-
formation needed for the coverage estimation. Therefore,
a reactive operation of DA-OSCA would require frequent
network-wide communication, which is costly, when the
network condition changes rapidly.

In Alg. 4, DA-OSCA executes one outer-level iteration
of DA-LPOSCA every T1 time units (Line 2), and invokes
OCAA every lT1 time units, i.e., every l outer-level
iterations of DA-LPOSCA (Line 4). That is, DA-OSCA
keeps updating the knowledge of the optimal solution
through DA-LPOSCA, based on which it periodically
changes sniffers’ channel assignment through OCAA.

7.3 Mode-II: DA-OSCA for Slow Varying Networks
In this mode, DA-OSCA operates on demand, i.e., only
when the channel assignment of sniffers needs to be
changed, thus improving the monitoring coverage de-
graded due to the changes in network condition. For this
reactive operation, DA-OSCA requires a mechanism to

Algorithm 4 DA-OSCA in Mode-I
1: if t = t′T1, t′ = 1, 2, · · · then
2: Perform one outer-level iteration of DA-LPOSCA

(i.e., Lines 3–11 of Alg. 2)
3: if t = t′′(lT1), t′′ = 1, 2, · · · then
4: Invoke OCAA
5: end if
6: end if

estimate the monitoring coverage in order to determine:
i) whether the invocation of DA-OSCA is needed; ii)
whether the number of iterations of DA-LPOSCA executed
is sufficiently large to yield a good approximation so-
lution to LPOSCA. Hence, we first develop a procedure
to estimate the monitoring coverage. We then describe
how DA-OSCA makes use of the coverage-estimation
procedure in the reactive mode.

7.3.1 Efficient information aggregation procedure to es-
timate the quality of monitoring coverage
We present in Alg. 5 an efficient information aggregation
procedure to estimate the monitoring coverage. It deter-
mines whether the gap between the current monitoring
coverage and the maximum monitoring coverage, which
is defined as the ratio of the former to the latter, is above
a desired level specified by a pre-determined value γ.
To estimate the gap, it computes the current monitoring
coverage (CR), and the dual objective function value
(DR). The rationale behind this is that, by the duality
theory [26, Ch. 5.1.3], any dual objective function value
is an upper bound on the primal optimal value, i.e.,
the maximum monitoring coverage. To compute CR and
DR, it aggregates the values of Cs and Ds through the
spanning tree of sniffers (Line 2). Then, it verifies that the
current monitoring coverage is above the desired level,
by checking if CR ≥ γDR (Line 3). Finally, the evaluation
result is sent to all the sniffers through the spanning tree
(Line 4). An illustration of the information flow in Alg. 5
is given in Fig. 3.

Alg. 5 has the following performance guarantee. The
proof is given in Appendix E in the separate supplemen-
tal file.

Theorem 5: If CR ≥ γDR, then CR ≥ γF ∗LP, where F ∗LP
denotes the optimum of LPOSCA.

7.3.2 Description of Mode-II
We present in Alg. 6 the operation of DA-OSCA in
Mode-II. In this mode, DA-OSCA evaluates the moni-
toring coverage every T2 time units, by invoking Alg. 5
(Line 2). If the estimate (rMC) of the gap between the cur-
rent monitoring coverage and the maximum monitoring
coverage is above the desired level, specified by γ1, DA-
OSCA immediately terminates. Otherwise, DA-OSCA
starts to solve the new instance of OSCA resulting from
the change in network condition (Lines 3–6). To this end,
DA-OSCA runs No outer-level iterations of DA-LPOSCA,
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Algorithm 5 An efficient information aggregation proce-
dure to estimate the quality of monitoring coverage

1: // A pre-constructed spanning tree of sniffers is
assumed.

2: Aggregation of information. This step is initiated
by leaf sniffers, and is executed sequentially along
the levels of the spanning tree upwards to the child
nodes of the root sniffer. At a level of the spanning
tree, sniffer s computes:

Cs :=
∑

s′∈CS(s)

Cs′ +
∑

n∈L(s)

wnmin
{
1,

∑
(s,c):n∈Ks,c

ys,c

}
,

Ds :=
∑

s′∈CS(s)

Ds′ +
∑

n∈Ks,c∗

pn +
∑

n∈L(s)

[wn − pn]+,

where c∗ ∈ argmaxc∈C
∑
n∈Ks,c

pn, [x]+ = max{x, 0},
and CS(s) and L(s) denote the set of the child sniffers
of sniffer s and the set of the neighboring nodes of
sniffer s, respectively. Then, sniffer s sends Cs and
Ds to its parent sniffer.

3: Determination of solution quality. The root sniffer,
denoted by R, computes CR and DR as described
above, and determines that the current channel as-
signment achieves the desired monitoring coverage
if CR ≥ γDR. Then, the root sniffer R sends its child
sniffers a message to inform this determination.

4: Distribution of determination. The determination
made by the root sniffer is delivered to all sniffers
along the spanning tree.

SR	  

S1	  

S2	  

S3	  

S4	  

S5	  
S6	  

S7	  

S8	  

S9	  Cs4, Ds4 
Cs1, Ds1 

Cs2, Ds2 

Cs5, Ds5 

Cs6, Ds6 

Cs7, Ds7 

Cs8, Ds8 

Cs3, Ds3 Cs9, Ds9 

Decision 

Decision 

Decision 

Fig. 3. An illustration of the information flow in Alg. 5.

and repeats it unless the quality of the solution of DA-
LPOSCA, denoted by rLP, is sufficiently close to that of the
optimal solution of LPOSCA (Lines 3–5). Evaluating the
quality of the solution of DA-LPOSCA is done by invoking
Alg. 5 with a pre-specified precision γ2. It should be
noted that the value of No gives a trade-off between the
cost of checking the stopping criterion and the cost of
running more outer-level iterations of DA-LPOSCA than
required to reach the solution quality. Therefore, the
value of No needs to be carefully chosen taking into
account the convergence speed of DA-LPOSCA. Once a
near-optimal solution to LPOSCA is obtained, DA-OSCA
terminates DA-LPOSCA and then converts the fractional
solution to an integer solution to OSCA, through OCAA
(Line 6).

Algorithm 6 DA-OSCA in Mode-II
1: if t = t′T2, t′ = 1, 2, · · · then
2: if rMC ≤ γ1 (checked by invoking Alg. 5) then
3: while rLP ≤ γ2 (checked by invoking Alg. 5) do
4: Perform No outer-level iterations of DA-

LPOSCA (i.e., Lines 3–11 of Alg. 2)
5: end while
6: Invoke OCAA
7: end if
8: end if

8 SIMULATION

We evaluate the performance of DA-OSCA through
simulations. We perform simulations in two kinds of
networks: random networks and scale-free networks. In
random networks, nodes and sniffers are randomly de-
ployed in a 1×1 square area with a uniform distribution.
In scale-free networks, nodes are deployed such that
the probability f(δ) of a node with degree δ follows a
power law of the form of δ−r, i.e., the number of nodes
with high degree decreases exponentially. In scale-free
networks, the nodes with highest degrees are chosen as
sniffers, thereby achieving higher coverage. The rationale
behind choosing these two kinds of networks is that
the performance of DA-OSCA will largely depend on
the distribution of the degrees of nodes, which differs
significantly in the two kinds of networks.

The basic settings of the network and the parameters
of DA-OSCA are as follows, unless specified otherwise.
We set |N |, |S| and |C| to 500, 50 and 3, respectively. All
nodes have an identical weight of one. Each node’s radio
is tuned randomly to one of the channels in C. In random
networks, the receiving range of sniffers is set to 0.15. In
scale-free networks, the parameter r of the distribution
f(δ) = O(δ−r) is chosen as 2 < r < 3. The parameters of
DA-OSCA are set as the following: I = 1, d = 0.5, and
β is set according to Theorem 3. In all simulations, the
results are the averages over a number of iterations.

8.1 Evaluation of DA-OSCA
Figure 4 shows how the monitoring coverage achieved
by DA-LPOSCA evolves in random networks, for different
values of d and |N |, as the number of outer-level itera-
tions of DA-LPOSCA increases. We present only the results
for random networks since similar results are observed
in scale-free networks. We discover a trend that a smaller
value of d leads to a slower convergence in initial itera-
tions but a faster convergence in later iterations. That is,
the value of d gives a trade-off between the initial and
the overall convergence rates. We also observe that the
overall convergence rate becomes slower as the number
of nodes increases.

Figure 5 shows the number of inner-level iterations
that DA-LPOSCA takes to attain at least θ times the
optimum of LPOSCA, as I increases. We observe that,
for all values of θ, the number of inner-level iterations
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Fig. 4. Evolution of monitoring coverage achieved by DA-LPOSCA in random networks.
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Fig. 5. Number of inner-level iterations that DA-LPOSCA
takes to achieve at least a factor θ of the LPOSCA optimum.

40 60 80 100 120 140 160 180 200
5

6

7

8

9

10

Number of sniffers

N
u

m
b

e
r 

o
f 

o
u

te
r−

le
v
e

l 
it
e

ra
ti
o

n
s

 

 

θ = 0.95

θ = 0.9

θ = 0.85

(a) Random network

40 60 80 100 120 140 160 180 200
6

8

10

12

14

16

Number of sniffers

N
u

m
b

e
r 

o
f 

o
u

te
r−

le
v
e

l 
it
e

ra
ti
o

n
s

 

 

θ = 0.95

θ = 0.9

θ = 0.85

(b) Scale-free network

Fig. 6. Number of outer-level iterations that DA-LPOSCA
takes to achieve at least a factor θ of the LPOSCA optimum.

increases as I grows. This agrees with our intuition that
a smaller value of I leads to a faster convergence rate of
DA-LPOSCA, as discussed in Section 4.3.

Figure 6 shows the number of outer-level iterations
that DA-LPOSCA takes to attain at least θ times the
optimum of LPOSCA, as the number of sniffer increases.
We observe that the number of outer-level iterations does
not grow with the number of sniffers (and neither with
number of nodes, up to θ = 0.95, as observed in Fig. 4).
We note that DA-LPOSCA takes more number of outer-
level iterations in scale-free networks than in random
networks, for all values of θ, which implies that random
networks generate more favorable inputs to DA-OSCA
than scale-free networks (which can also be observed in
Fig. 9). From this, we see that the convergence of DA-
LPOSCA to a near-optimal solution mainly depends on
the difficulty of the instance of OSCA.
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Fig. 7. Monitoring coverage achieved by DA-OSCA for
|C| = 3, 5, 7, 9. LP-OPT denotes the optimum of LPOSCA.
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Fig. 8. Monitoring coverage achieved by DA-OSCA for |C|
= 9: the number of channels used by sniffers increases
from 3 to 9.

Figure 7 shows the monitoring coverage of DA-OSCA
for different values of |C|. We compare the results with
the optimal value of LPOSCA, which is used as an upper
bound on the maximum monitoring coverage. We see
that the monitoring coverage achieved by DA-OSCA is
comparable to the maximum coverage for all the values
of C and for the both kinds of networks. We also observe
that the monitoring coverage decreases as the number
of channels grows. This is because as the number of
channels increases, each sniffer would cover a smaller
number of nodes on each channel.

Figure 8 shows the monitoring coverage of DA-OSCA
for |C| = 9. In this simulation, we restrict the number
of channels used by sniffers, which increases from 3
to 9. We see that the monitoring coverage achieved by
DA-OSCA is comparable to the maximum coverage. We



12

20 40 60 80 100 120
200

250

300

350

400

450

500

Number of sniffers

T
o
ta

l 
w

e
ig

h
t

 

 

DA−OSCA, Random Network

LP−OPT, Random Network

DA−OSCA, Scale−free Network 

LP−OPT, Scale−free Network

(a) Identical assignment
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(b) Different assignment

Fig. 9. Monitoring coverage achieved by DA-OSCA for
two different weight assignments: (a) all weights have
an identical value of 1; (b) the weight of each node is
assigned randomly to one of the integers {1, 2, 3, 4, 5}.
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Fig. 10. Comparison of monitoring coverage achieved by
DA-OSCA, the centralized algorithm in [5], and a naive
greedy algorithm.

also observe that the monitoring coverage increases as
the number of channels used by sniffers grows. This
is expected since a larger number of channels available
for sniffers allows them to choose from more channels,
thereby improving the monitoring coverage.

Figure 9 shows the coverage of DA-OSCA for two
different weight assignments. We observe similar trends
for both the weight assignments and for the both kinds
of networks. It is noticeable that DA-OSCA achieves a
higher coverage in random networks than in scale-free
networks. This is, possibly, because in random networks
sniffers are uniformly deployed and thus sniffers have a
better topological coverage than in scale-free networks.
Also, we observe that the gap between the coverage of
DA-OSCA and LP-OPT is smaller in random networks.
This again implies that random networks generate more
favorable inputs to DA-OSCA than scale-free networks.

Figure 10 shows the comparison of monitoring cov-
erage achieved by DA-OSCA, the centralized algorithm
in [5] applied for OSCA, and a naive greedy algorithm
that assigns each sniffer to the busiest channel it senses.
We observe that DA-OSCA achieves almost the same
monitoring coverage as the centralized algorithm in [5].
We also see that DA-OSCA achieves significantly higher
monitoring coverage than the naive greedy algorithm,
especially in random networks. It is noticeable that the
naive greedy algorithm achieves better performance in
scale-free networks. This is expected since a significant
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Fig. 11. Evolution of coverage as DA-OSCA in Mode-I
operates proactively in fast-varying networks.
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Fig. 12. Evolution of coverage as DA-OSCA in Mode-II
operates on demand in slowly-varying networks.

portion of nodes is assigned to a single channel in scale-
free networks.

8.2 Evaluation of Two Modes of DA-OSCA
We now demonstrate the efficacy of the two operational
modes of DA-OSCA by evaluating how monitoring cov-
erage evolves as DA-OSCA adapts to the changes of
channels assigned to nodes. The channel of each node is
assigned randomly to channel 1, 2, or 3 with probabilities
0.2, 0.3, and 0.5, respectively. The channel assignment
of a fraction of nodes (randomly chosen between 10%
and 40%) changes every 5 time units and every 100
time units in the fast-varying and the slowly-varying
networks, respectively. Here, one time unit is defined as
the time that it takes to invoke one outer-level iteration
of DA-LPOSCA. We set T1 = 1 and l = 3 in Mode-I, and
T2 = 30, γ1 = 0.8, γ2 = 0.8, and No = 1 in Mode-II.

Figure 11 demonstrates Mode-I of DA-OSCA. Here,
the monitoring coverage is normalized by the optimal
value of LPOSCA. In this simulation, we let DA-OSCA ad-
just the channel assignment of sniffers 10 time units after
the simulation begins. For the both kinds of networks,
we observe that the (fractional) coverage achieved by
DA-LPOSCA converges rapidly (within 10 time units)
until it reaches about 90% of the maximum coverage, and
it flattens out after it goes above 90% of the maximum
coverage. We also observe that DA-LPOSCA quickly re-
covers the degraded monitoring coverage resulted from
the changes of channels assigned to nodes. Within only a
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few time units, the new channel assignment of sniffers by
OCAA attains a high monitoring coverage (above 95%
of the maximum coverage).

Figure 12 demonstrates Mode-II of DA-OSCA. We
observe large intervals of time where the coverage is
flat. This means that, through Alg. 5, DA-OSCA deter-
mined that the coverage meets the desired level, and
thus terminated without any processing, thereby saving
unnecessary cost. We notice that as the network changes,
the monitoring coverage is degraded (note the dips)
but is quickly recovered (always within 20 time units),
due to the on-demand invocation of OCAA. Also, we
observe higher improvement of monitoring coverage
than required (recall that γ2 = 0.8) after the execution of
DA-OSCA. We can explain this result by the following
two facts: first, OCAA often improves the fractional
solution, as observed in Fig. 11; second, DA-LPOSCA may
take more number of outer-level iterations than required
as Alg. 5 underestimates the monitoring coverage.

9 CONCLUSION

In this paper, we developed a distributed online algo-
rithm for the optimal sniffer-channel assignment for pas-
sive monitoring in multi-channel wireless networks. Our
distributed algorithm guarantees to achieve an approxi-
mation ratio of 1− 1

e , regardless of the network topology
and the channel assignment of nodes to be monitored.
We also devised two operational modes of the proposed
algorithm, for cost-effective operation in two types of
networks that have different rates of network changes.
One is a proactive mode for fast-varying networks, while
the other is a reactive mode for slowly-varying networks.
Simulation results show that the proposed algorithm
achieves comparable performance to that of the optimal
solution, and also demonstrate the effectiveness of the
two operational modes.
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APPENDIX

A. Correctness of Algorithm 1
Let ~v+V be the projection of ~v to V . With definition

of projection, i.e., ~v+V = argmin~x∈V d(~v, ~x) where d(~v, ~x)
denotes the Euclidean distance between ~v and ~x, it is
easy to verify that if vj ≤ 0, then v+V

j = 0. In order to
obtain v+V

j for vj > 0, we redefine ~v by removing the
negative and zero components from ~v. We assume that
the dimension of the redefined vector ~v is d ≤ c. We
also redefine V = {~x = (x1, . . . , xd) : xj ≥ 0 for all j ∈
{1, . . . , d} and

∑d
j=1 xj ≤ 1}. The problem then becomes

to find the projection of the redefined vector ~v > 0 to V .
Obviously, if ~v ∈ V , ~v+V = ~v. Hence, we only need

to consider the case when ~v /∈ V . In this case, ~v must
be included in the set U = {~x :

∑d
j=1 xj > 1 and xj >

0 for all j ∈ {1, . . . , d}}. We define a bounded hyper-
plane F = {~x :

∑d
j=1 xj = 1 and xj ≥ 0 for all j ∈

{1, . . . , d}}, and define H = {~x :
∑d
j=1 xj = 1} to be

the hyperplane that includes F . Due to the following
lemma, we only need to find [~v⊥H ]+F in order to obtain
~v+V .

Lemma 3: For any ~v ∈ U , ~v+V = [~v⊥H ]+F , where ~v⊥H

denotes the perpendicular foot of ~v onto the hyperplane
H .

Proof: To prove the lemma, we first show that ~v+V

is a point on the bounded hyperplane F . To show this
claim, we only need to show that the line segment that
connects any ~v ∈ U and any ~x ∈ V , denoted by vx,
intersects with F . It is because if there exists a point at
which vx intersects with F , denoted by ~y, the distance
between ~v and ~y would be smaller than or equal to the
distance between ~v and ~x, which implies that ~v+V ∈ F .
In order to show the claim, we consider the line that
passes through the points ~v and ~x, denoted by ←→vx. The
line←→vx is a set of points {~x+t(~v−~x) : t is a real number}.
This line intersects with the hyperplane H at the point

~p = ~x + t(~v − ~x), where t =
1−

∑d
j=1 xj∑d

j=1 vj−
∑d

j=1 xj
. Since

~v ∈ U and ~x ∈ V , it is true that 0 ≤ t < 1. This
implies that ~p ∈ vx and also that ~p > 0. Also, due
to the facts that ~p ∈ H and that ~p > 0, it follows
that ~p ∈ F . Hence, vx intersects with F at the point
~p, and thus the claim is true, i.e., ~v+V ∈ F . Then,
~v+V = argmin~x∈F d(~v, ~x). By Pythagorean theorem, it
follows that d(~v, ~x)2 = d(~v,~v⊥H )2 + d(~v⊥H , ~x)2 for any
~x ∈ F . Here, d(~v,~v⊥H ) is a constant. Hence, ~v+V =
argmin~x∈F d(~v

⊥H , ~x), i.e., ~v+V = [~v⊥H ]+F .

We find [~v⊥H ]+F in a recursive manner. Let ~v+,(0) =
[~v⊥H ]+F . A simple calculation gives ~v⊥H = (v1+t, . . . , vd+

t) where t = 1
d (1 −

∑d
j=1 vj). If ~v⊥H ∈ F , ~v+,(0) =

~v⊥H . Otherwise, i.e., if ~v⊥H /∈ F , at least one compo-
nent of ~v⊥H must have a negative value since ~v⊥H ∈
H . It is easy to verify that the components of ~v+,(0)

corresponding to those of ~v⊥H that have a negative
value or zero must be zero. Without loss of generality,
we assume that the positive components of ~v⊥H are
v⊥H
1 , . . . , v⊥H

e where e ≤ d − 1. Since
∑d
j=1 v

⊥H
j = 1

and ~v⊥H has at least one negative component, it fol-
lows that

∑e
j=1 v

⊥H
j > 1. Let ~v(1) = (v⊥H

1 , . . . , v⊥H
e )

and U (1) = {(x1, . . . , xe) :
∑e
j=1 xj > 1 and xj >

0 for all j ∈ {1, . . . , e}}, then ~v(1) ∈ U (1). Define F (1) =
{(x1, . . . , xe) :

∑e
j=1 xj = 1 and xj > 0 for all j ∈

{1, . . . , e}} and H(1) = {(x1, . . . , xe) :
∑e
j=1 xj =

1}. We then have (v
+,(0)
1 , . . . , v

+,(0)
e ) = [~v(1)]+

F (1) since
v
+,(0)
e+1 , . . . , v

+,(0)
d are all zeros. Using Pythagorean theo-

rem, we get (v
+,(0)
1 , . . . , v

+,(0)
e ) = [~v(1)⊥H(1) ]+

F (1) , where
~v(1)⊥H(1) denotes the perpendicular foot of ~v(1) onto
the hyperplane H(1). The problem of finding [~v⊥H ]+F
then becomes to find [~v(1)⊥H(1) ]+

F (1) . Note that both the
problems differ only in the dimension of the vector.
Also, the dimension of the vector in the former problem
is at least one less than that in the latter problem.
Hence, in order to find [~v(1)⊥H(1) ]+

F (1) , we can repeat the
process that we have done to find [~v⊥H ]+F . At the n-
th iteration of this process, we would be able to obtain
[~v(n−1)⊥H(n−1) ]+

F (n−1) , equivalently [~v⊥H ]+F , or reduce the
dimension of the vector by at least one. Since we start
with the dimension d ≤ c, the number of these iterations
to obtain [~v⊥H ]+F is at most c.

Alg. 1 implements this procedure to obtain the
projection [~v]+V .

B. Proof of Theorem 3
To begin with, we represent the constraints (2)–(4) of

QP-MC into a matrix form of A~z ≤ ~0 such that

A :=

(
I|N | Asub1

O|S|,|N | Asub2

)
∈ R(|N |+|S|)×(|N |+|S||C|), (14)

where I|N | is |N | × |N | identity matrix, O|S|,|N | is |S| ×
|N | zero matrix, and Asub1 ∈ R|N |×(|S||C|) and Asub2 ∈
R|N |×(|S||C|) are defined as the following:

Asub1 :=


−1KS1,C1

(N1) . . . −1KS|S|,C|C|
(N1)

...
. . .

...
−1KS1,C1

(N|N |) . . . −1KS|S|,C|C|
(N|N |)

 ,

Asub2 :=

 1 . . . 1 . . . 0 . . . 0
...

. . .
...

0 . . . 0 . . . 1 . . . 1

 ∈ R|S|×(|S|·|C|).

Here, Si denotes the i-th element of a set S, and 1S(s) is
an indicator function defined as the following: 1S(s) = 1
if s ∈ S; otherwise, 1S(s) = 0.

One can show that a sufficient condition for DA-
LPOSCA with I = 1 to converge is that the matrix
1
β I|N |+|S| − 2dAAT must be positive definite, along sim-
ilar lines of analysis in [27]. This holds if and only if
for any non-zero vector ~s, ~sT

(
1
β I|N |+|S| − 2dAAT

)
~s > 0,

which is equivalent to the following:

1

β

|N |+|S|∑
i=1

s2i > 2d
(
AT~s

)2
. (15)
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We define M1 := max∀j

{∑|N |+|S|
i=1 |Ai,j |

}
and M2 :=

max∀i

{∑|N |+|S||C|
j=1 |Ai,j |

}
. It follows that:

(
AT~s

)2
=

|N |+|S||C|∑
j=1

( |N |+|S|∑
i=1

Ai,jsi

)2
≤
|N |+|S||C|∑

j=1

( |N |+|S|∑
i=1

|Ai,j |
)( |N |+|S|∑

i=1

|Ai,j |s2i
)

(by Cauchy-Schwartz inequality)

≤M1

|N |+|S|∑
i=1

s2i

|N |+|S||C|∑
j=1

|Ai,j | ≤M1M2

|N |+|S|∑
i=1

s2i .

(16)

Combining Eq. (15) with Eq. (16), it holds that:
1
β I|N |+|S| − 2dAAT is positive definite if β < 1

2dM1M2
.

Finally, using Eq. (14), we can simplify M1, M2 as

M1 = max {|Ks,c| : s ∈ S, c ∈ C}+ 1 = B1 + 1,

M2 = max
{
|C|, max

n∈N
|{Ks,c : n ∈ Ks,c}|+ 1

}
= max

{
|C|, B2 + 1

}
,

thus proving the theorem.

C. Proof of Lemma 1
Let (~̃x, ~̃y) be (fractional) solution yielded by DA-

LPOSCA, and (~x#, ~y#) be the integer solution yielded by
PIPAGE-OSCA. Recall that ~x# is determined by x#n =
min{1,

∑
(s,c):n∈Ks,c

y#s,c}. Note that, after every iteration
of PIPAGE-OSCA, the sum of the two non-integer values
to be adjusted remains the same. Hence, ~y# satisfies
the group budget constraint (Eq. (3)), and thus is a
feasible solution to OSCA. Now, to prove the lemma, we
only need to show that

∑
n∈N wnx

#
n ≥ α(1 − 1

e ) · OPT,
where OPT is the optimal value of ILPOSCA. Let ~y′′ be
the new (fractional) solution obtained after one iteration
of PIPAGE-OSCA invoked with any feasible solution ~y′

to LPOSCA. It holds that F (~y′′) ≥ F (~y′), due to the ε-
convexity [22] being satisfied (with ε1 = min{ys,c1 , 1 −
ys,c2} and ε2 = min{1−ys,c1 , ys,c2}). Also, it follows from
[22]: for 0 ≤ ys,c ≤ 1, all s ∈ S and c ∈ C,

1−
∏

(s,c):n∈Ks,c

(1−ys,c) ≥ (1− 1

e
) ·min

{
1,

∑
(s,c):n∈Ks,c

ys,c

}
.

Combining this with the fact that F (~y′′) ≥ F (~y′),
we obtain the following: F (~y#) ≥ (1 − 1

e )
∑
n∈N wn ·

min
{
1,
∑

(s,c):n∈Ks,c
ỹs,c

}
= (1 − 1

e )
∑
n∈N wnx̃n. Note

that
∑
n∈N wnx

#
n = F (~y#). Also, by assumption,∑

n∈N wnx̃n achieves at least α times the optimum
of LPOSCA. Hence, knowing that the optimum of
LPOSCA is an upper bound on OPT, we obtain∑
n∈N wnx

#
n ≥ α(1 − 1

e ) · OPT, thereby proving the
lemma.

D. Proof of Lemma 2

Note that Ks,c1 ∩Ks,c2 = ∅. This implies that∑
n∈N

wn

( ∏
(s,c):n∈Ks,c

(1− ys,c)
)

=
∑

n∈Ks,c1

wn

( ∏
s′ 6=s:n∈Ks′,c1

(1− ys′,c1)
)
(1− ys,c1)

+
∑

n∈Ks,c2

wn

( ∏
s′ 6=s:n∈Ks′,c2

(1− ys′,c2)
)
(1− ys,c2)

+
∑

n∈N :n/∈Ks,c1
∪Ks,c2

wn

( ∏
(s,c):n∈Ks,c

(1− ys,c)
)
.

Since y(1)s′,c = y
(2)
s′,c = ys′,c for all (s′, c) 6= (s, c1), (s, c2) and

(y
(1)
s,c1 − y

(2)
s,c1) = −(y

(1)
s,c2 − y

(2)
s,c2), we have the following:

F (~y(1))− F (~y(2))

=
∑

n∈Ks,c1

wn

( ∏
s′ 6=s:n∈Ks′,c1

(1− ys′,c1)
)
×
(
y(1)s,c1 − y

(2)
s,c1

)
+

∑
n∈Ks,c2

wn

( ∏
s′ 6=s:n∈Ks′,c2

(1− ys′,c2)
)
×
(
y(1)s,c2 − y

(2)
s,c2

)
=
(
I(Ks,c1 , ~yN(s))− I(Ks,c2 , ~yN(s))

)
×
(
y(1)s,c1 − y

(2)
s,c1

)
.

Since y
(1)
s,c1 < y

(2)
s,c1 , I(Ks,c1 , ~yN(s)) ≤ I(Ks,c2 , ~yN(s))

implies F (~y(1)) ≥ F (~y(2)), thus proving Lemma 2.

E. Proof of Theorem 5
The monitoring coverage achieved by a channel as-

signment of sniffers, ~yint, is given by
∑
n∈N wnx

int
n ,

where xint
n := min

{
1,
∑

(s,c):n∈Ks,c
yint
s,c

}
. Clearly, ~zint :=

(~xint, ~yint) is a feasible solution to LPOSCA. We now use
the duality theory to prove the theorem. Define the
Lagrangian function of LPOSCA as

LLP(~z, ~p) :=
∑
n∈N

wnxn +
∑
n∈N

pn

( ∑
(s,c):n∈Ks,c

ys,c − xn
)
.

The dual problem of LPOSCA is then derived as:

minimize DLP(~p) := max
~z∈Z

LLP(~z, ~p), (17)

where Z is the set of (~x, ~y) satisfying Eqs. (3), (4). Let
FLP(~z) =

∑
n∈N wnxn. By duality theory [26, Ch. 5.1.3],

it follows that: for 0 < γ < 1 and any feasible primal
and dual solutions, ~̃z and ~̃p,

FLP(~̃z) ≥ γDLP(~̃p) =⇒ FLP(~̃z) ≥ γF ∗LP. (18)

Due to Eq. (18) and CR =
∑
n∈N wnx

int
n = FLP(~z

int), we
prove the theorem only if we show that there exists ~̃p ≥ 0
such that DLP(~̃p) = DR. We rewrite Eq. (17) as

LLP(~z, ~̃p) =
∑
n∈N

(wn − p̃n)xn +
∑
s∈S

∑
c∈C

( ∑
n∈Ks,c

p̃n

)
ys,c.

(19)
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For a given ~̃p, we obtain ~z∗ ∈ argmax~z∈Z LLP(~z, ~p) as:

x∗n =

{
1 if wn ≥ p̃n,
0 otherwise,

y∗s,c =

{
1 for c∗ ∈ argmaxc∈C

{∑
n∈Ks,c

p̃n

}
,

0 for all c ∈ C / {c∗}.
(20)

Combining Eqs. (17), (19) and (20), we have

DLP(~̃p) =
∑
n∈N

[wn − p̃n]+ +
∑
s∈S

∑
n∈Ks,c∗

p̃n.

Since DLP(~̃p) is equal to the value of DR computed with
~̃p, the theorem follows.


