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Abstract—Most existing wireless networking solutions are best-
effort and do not provide any delay guarantee required by
important applications such as mobile multimedia conferencing
and real-time control of cyber-physical systems. Recently, Hou
and Kumar [2]–[6] provided a novel framework for analyzing
and designing delay-guaranteed wireless networking solutions.
While inspiring, their idle-time-based analysis applies only to
flows with a special traffic pattern called the frame-synchronized
setting. The problem remains largely open for general traffic
patterns. This paper addresses this challenge by proposing a
general framework that characterizes and achieves the complete
delay-constrained capacity region with general traffic patterns in
single-hop downlink access-point wireless networks. We first show
that the timely wireless flow problem is fundamentally an infinite-
horizon Markov Decision Process (MDP). Then we judiciously
combine different simplification methods to prove that the timely
capacity region can be characterized by a finite-size convex
polygon. This for the first time allows us to characterize the timely
capacity region of wireless flows with general traffic patterns. We
then design three scheduling policies to optimize network utility
and/or support feasible timely throughput vectors for general
traffic patterns. The first policy achieves the optimal network
utility and supports any feasible timely throughput vector but
suffers from the curse of dimensionality. The second and third
policies are inspired by our MDP framework and are of much
lower complexity. Simulation results show that both achieve near-
optimal performance and outperform other existing alternatives.

Index Terms—Delay-constrained wireless communications,
hard delay/deadline, general traffic pattern, timely capacity
region, network utility maximization, Markov decision process
(MDP).
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I. INTRODUCTION

A. Background

REAL-TIME wireless communication systems that require
delay guarantee have become prevalent. Typical systems

of this kind include multimedia communication systems such
as real-time streaming and video conferencing over cellular
networks, and cyber-physical systems (CPSs) such as real-
time surveillance and control over wireless sensor networks.
As a consequence, real-time wireless traffic has experienced
a phenomenal growth in recent years [7], and is predicted to
increase its volume by another 11-fold in 2015-2020 [8].

A common characteristic of these systems is that they have
a strict deadline for packet delivery. Packets traversing the
wireless network need to be delivered before their deadlines,
otherwise they expire and deem useless. For example, mobile
video conferencing may require bounded delay on video deliv-
ery [9]. Similarly, in CPSs, time-critical applications impose
latency constraints within which data or control messages
must reach their targeting entities [10]. Additionally, real-time
wireless communication systems often require performance on
the timely throughput, defined as the throughput of packets that
are delivered on time [2].

B. Challenges

Serving delay-constrained traffic over wireless networks is
uniquely challenging due to the inherent coupling of space,
time, and unreliable transmission.

Space: Wireless networks differ from wired networks in the
presence of spatial interference, wherein the transmission over
a link can upset other transmissions in its neighborhood. An
optimal scheduler needs to carefully decide which link/flow to
serve at a given time slot.

Time: To ensure timely packet delivery, one also has to
keep track of deadlines of individual packets and properly
account for delivery urgency in scheduling link transmissions.
Such unique feature in the time domain often introduces high-
dimensional system state.

Unreliable Transmission: Wireless transmissions are unre-
liable because of shadowing and fading. The channel quality
may also differ from link to link. This could result in signifi-
cant delay when a delay-oblivious scheduling scheme is used.

C. Fundamental Problems

In delay-constrained wireless communications, there are
three fundamental problems.
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TABLE I
OUR CONTRIBUTIONS AND COMPARISONS WITH EXISTING WORKS. ALL OF THEM CONSIDER A SINGLE-HOP DOWNLINK AP SCENARIO.

Traffic Pattern Capacity Region Scheduling Policy for
Network Utility Maximization

Feasibility-Optimal
Scheduling Policy Design

Frame-Synchronized ( [2], [3]) [2] [3] [2]

General (this work)

A convex polygon RAC, optimal, high complexity RAC, optimal, high complexity
(Sec. V) (Sec. V) (Sec. V)

A fast outer bound RAC-Approx, heuri., low compl. RAC-Approx, heuri., low compl. (Sec. VI)
(Sec. VI) (Sec.VI) L-LDF, heuristic, low complexity (Sec. VI)

Capacity Region Problem: How to characterize the ca-
pacity region in terms of timely throughput? This problem is
important because: (i) it provides the fundamental benchmark
to evaluate any scheduling policy, and (ii) it lays down the
necessary foundation for network utility maximization in terms
of timely throughput.

Network Utility Maximization (NUM) Problem: How
to design scheduling policies to maximize network utility in
terms of timely throughput? This is the delay-constrained
counterpart of the celebrated NUM framework for delay-
unconstrained wireless flows, which has been widely used as
both a modeling language and solution tools [11]–[13].

Feasibility-Optimal Policy Design Problem: A common
by-product of solving the capacity region problem is that
one can obtain a scheduling policy to support one feasible
throughput vector in the region, by solving an optimization
problem (a linear one if the capacity region is a polyhedron).
This approach, however, may result in using (many) different
policies to support different feasible rate vectors, one policy
for each or multiple rate vectors. In practice, it is more
desirable to implement only one policy that can support any
feasible rate vectors.

For the delay-unconstrained scenario, the celebrated back-
pressure algorithm [14] can support any feasible rate vec-
tor within the delay-unconstrained capacity region, and it is
termed throughput-optimal. For the delay-constrained scenario
studied in this paper, following the terminology coined in [2],
we call a policy feasibility-optimal if it can support any
feasible throughput vector within the timely capacity region.
A central problem of scheduling delay-constrained traffic is to
design a feasibility-optimal policy.1

Systematically solving these three fundamental problems
calls for a framework that both captures the challenges in
Sec. I-B of delay-constrained wireless communications and
offers tractable solutions.

D. Our Contributions

Recently, researchers devoted much effort to studying real-
time wireless communications [2]–[6], [15]–[19]. Among
them, Hou and Kumar [2]–[6] developed an elegant idle-time-
based framework to solve all the three fundamental problems
in Sec. I-C for a special frame-synchronized traffic pattern,
over single-hop downlink access-point (AP) wireless networks.
Inspiring as it is, their idle-time-based framework apparently

1Note that the Largest Debt First (LDF) policy proposed by Hou, Borkar,
and Kumar in [2] is feasibility-optimal, for a special traffic (arrival and
expiration) pattern. In this paper, we design a feasibility-optimal policy for
general traffic patterns.

only applies to flows with the special traffic pattern, which can
only capture a limited number of practical scenarios. Overall,
the three fundamental problems in Sec. I-C remain largely
open for general traffic patterns.

In this paper, we take a first step towards solving these
three fundamental problems for general traffic patterns by
establishing a framework based on Markov Decision Process
(MDP). The structure of the timely wireless flow problem
makes MDP a natural candidate for establishing such frame-
work. We summarize our contributions about how we solve
these problems and compare them with existing works in
Tab. I. Specifically, we make the following contributions:

B In Sec. III, we model general traffic patterns. Then in
Sec. IV, we show that the timely wireless flow problem with
general traffic patterns is fundamentally an MDP problem.
This new observation allows us to systematically explore the
full design space, beyond those in previous studies [2]–[6].

B The MDP formulation is challenging to solve. In par-
ticular, it is of infinite-horizon, infinite state space, and time-
heterogeneous. In Sec. V, by leveraging the underlying struc-
ture of the MDP formulation, we apply two simplification
methods to show that the timely capacity region is a finite-size
convex polygon. Our results build upon the rich literature of
MDP to judiciously formulate the problem and adapt several
existing techniques of MDP in a coherent way so as to fully
answer the fundamental problem: “What is the capacity region
for timely flows with general traffic patterns?” As a by-
product of the capacity region analysis, we obtain a provably
optimal scheduling policy, called RAC, for network utility
maximization. We also show that RAC is feasibility-optimal.

B Our capacity region characterization and the optimal RAC
scheduler suffer from the curse of dimensionality rooted in
the MDP approach. To address this issue, in Sec. VI, we
first propose a relaxed but computationally-efficient convex
polygon characterization, serving as a fast outer bound of
the capacity region. Based on the outer bound analysis, we
propose a low-complexity heuristic scheduling policy, called
RAC-Approx, for optimizing network utility and supporting
feasible timely throughput vectors. Motivated by our model for
system state, we also propose another low-complexity heuristic
scheduling policy, called L-LDF, for supporting feasible timely
throughput vectors.

B In Sec. VII, we carry out extensive simulations to verify
the optimality of our RAC scheduler and show that our
proposed heuristic scheduler are near-optimal and outperform
other conceivable alternatives.
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II. RELATED WORK

Supporting delay-constrained traffic over wireless networks
has been a very active research area and we review the most
relevant works in the following by categorizing them according
to the three fundamental problems in Sec. I-C.

Capacity Region Problem: For the special frame-
synchronized traffic pattern, Hou et al. in the seminal paper
[2] proposed an idle-time based approach to characterize the
capacity region of timely flows over a single-hop downlink AP
scenario. The approach has been further extended to variable-
bit-rate applications in [4] and time-varying channels in [6].
However, to the best of our knowledge, there are no results
to characterize the capacity region for general traffic patterns
beyond the special frame-synchronized traffic pattern. In this
work, we fill this gap and give a complete characterization of
the capacity region for general traffic patterns.

NUM Problem: Still for the special frame-synchronized
traffic pattern, Hou et al. in [3] solved the NUM problem
efficiently for the single-hop downlink AP scenario where
each user has a general and valid utility function in terms
of the achieved timely throughput. Later in [15] Lashgari et
al. generalized the single-AP scenario to a multi-AP scenario,
but still focused on the frame-synchronized traffic pattern and
only considered a linear utility function for each user. They
proposed a relaxed bin-packing problem with elegant insights
for the original complicated network utility maximization
problem, and provided some theoretical guarantees for such
relaxation. However, there is little result on network utility
maximization beyond the special frame-synchronized traffic
pattern. Our work addresses this open issue.

Feasibility-Optimal Scheduling Policy Design Problem:
For the special frame-synchronized traffic pattern, Hou et
al. in [2] proposed the celebrated largest-deficit-first (LDF)
scheduling policy and proved that it is feasibility-optimal in
the sense that it can support any feasible timely throughput
vectors. However, it turns out LDF is not feasibility-optimal
for general traffic patterns [16], [19]. There have been two
lines of efforts to study the feasibility-optimal policy design
problem for general traffic patterns. One is to study the
performance of LDF. Kang et al. in [19] proposed a theoretical
lower bound for the quality of service (QoS) efficiency ratio,
i.e., the fraction of capacity region that can be achieved
by LDF. Further, in [20], Kang et al. derived theoretical
upper and lower bounds for the capacity efficiency ratio, i.e.,
the minimum link capacity required by LDF to achieve the
capacity region in the same network with unit-capacity links.
Both [19] and [20] considered an “i.i.d.” traffic pattern. The
other line is to propose new scheduling algorithms to support
feasible timely throughput vectors. In [16], Hou et al. proposed
the Earliest-Positive-deficit-Deadline-First (EPDF) scheduling
policy, which is shown to outperform LDF numerically for the
frame-based heterogenous-delay traffic pattern. However, cur-
rently there is not yet feasibility-optimal scheduling policy for
general traffic patterns. This work fills in this gap and proposes
a feasibility-optimal policy for general traffic patterns.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Communication Model

Network Topology and Scheduling Model: We consider a
single-hop downlink access-point (AP) scenario where the AP
aims to transmit K independent timely traffic to K users,2

one for each user. The traffic (resp. channel) between the
AP and user k ∈ [1,K] is denoted as flow (resp. link) k.
Assume slotted transmission. In each slot, only one link can
be scheduled and can only send one packet. At the beginning
of slot t, the action of the AP, denoted by At, thus decides
which flow/link to schedule.3 At the beginning of slot (t+ 1),
the AP can choose a different At+1 and the process starts over.
For easier reference, we use “at time (slot) t” to refer to “at
the beginning of slot t” and use “in time (slot) t” to refer to
“in the time span of slot t.”

Propagation Delay and Random Erasure: To model
propagation delay, we assume that if link k is scheduled at
time t, then the transmitted packet can be received by user k at
the end of time t. To model unreliable transmission of wireless
channels, we assume that along any link k successful delivery
happens with some probability pk ∈ (0, 1], the random deliv-
ery events are independently and identically distributed (i.i.d.)
over time, and the events for different links are independent.

We also assume that at the end of time t, the scheduled user
will inform the AP through a separate control channel whether
it has received the transmitted packet or not (ACK/NACK).
The information will then be used for scheduling at time (t+1)
and onward.

The above model captures the practical Wi-Fi networks and
is also widely adopted in the real-time wireless communica-
tions literature, e.g., [2], [3], [5], [6], [15]. We also remark
that although we consider an ON-OFF channel model in this
paper, our results can be extended to the general multi-state
channel model [21].

B. Traffic Pattern

We assume periodic-i.i.d. packet arrivals with hard delay
constraints for each flow k, which can be best described by the
following concept of “arrival and expiration (A&E) profile.”
For any flow k, its A&E profile can be described by a 4-dim.
vector

(offsetk, prdk,Dk,Bk),

where offsetk denotes the time offset for the start of the arrival
process of flow k; prdk is the inter-arrival period of flow k; Dk

is the deadline for each flow-k packet; and Bk ∈ (0, 1] is the

2In this work, each user represents one delay-constrained application,
e.g., video streaming, video conferencing, etc. A physical user/device can
simultaneously run multiple delay-constrained applications and thus host
multiple users.

3After scheduling which flow to transmit, one also needs to choose which
packet of the selected flow to transmit if there are multiple packets in the
current queue. However, as one can show by a realization-based argument,
it is optimal to always transmit the packet of the selected flow that is of the
earliest deadline. If there is no packet of the selected flow in the AP’s data
queue, the AP just remains idle (or equivalently transmits nothing), which
will not contribute to the timely throughput. In this work, we assume that the
AP always chooses one flow to transmit while implicitly allowing the AP to
remain idle when the queue of the chosen flow is empty.
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(b) (offset2, prd2,D2,B2) = (1, 3, 4, 0.7)

Fig. 1. The illustration of two arrival and expiration (A&E) profiles.

arrival probability of each flow-k packet. For flow k with an
A&E profile (offsetk, prdk,Dk,Bk), we denote the arrival time
of the m-th4 flow-k packet as t[k]arr (m), which can be computed
as

t[k]arr (m) = offsetk + (m− 1)prdk + 1. (1)

The m-th packet arrives with probability Bk. If it indeed
arrives, it expires after Dk slots, and the expiration time is
denoted as t[k]exp(m), which can be computed as

t[k]exp(m) = t[k]arr (m) + Dk. (2)

The expired packets are removed from the system as they are
no longer useful to the application.

An illustration of two A&E profiles is provided in Fig. 1.
For example, the first flow-1 packet will always arrive at time
1 since offset1 = 0 and B1 = 1 and will expire at time 4. The
second flow-2 packet will arrive at time 5 with probability 0.7
and expire at time 9.

We then define the traffic pattern as the collection of A&E
profiles of all K flows. We remark that our traffic model is
quite general because it captures not only the special frame-
synchronized traffic pattern, but also other practical traffic
patterns, as shown in the following.

The frame-synchronized traffic pattern can be captured by
our traffic model as

(offsetk, prdk,Dk,Bk) = (0, T, T, 1),∀k ∈ [1,K]

where T is called the frame length. As we can see, all K
flows start at slot 1 and have the same arrival period T , and
the same deadline T . Thus, every T slots, all flows have a
packet arrival simultaneously, and all these packets will expire
simultaneously after T slots. All three fundamental problems
in Sec. I-C have been solved by [2], [3] for this special traffic
pattern.

However, the frame-synchronized traffic pattern cannot
model many important practical scenarios. For example, con-
sider a typical mobile video conferencing scenario. Suppose

4We slightly abuse the notation and still call the packet arriving at t[k]arr (m)
the m-th packet, even though on average only (m − 1)Bk out of the first
m− 1 packets have actually “arrived.”

that packets arrive every 20ms with a hard delay of 200ms.5

Since the delay is larger than the period, such flow cannot be
modeled by the frame-synchornized traffic pattern. However,
our traffic model can capture such traffic profile: if we assume
that each slot spans 20ms and the first packet arrives at time
1, the A&E profile would be (offset, prd,D,B) = (0, 1, 10, 1).

Note that our traffic pattern also suggests that we do not
need an infinite-size data queue in the AP. Since all expired
flow-k packets will be removed from the system, there exist at
most

⌈
Dk

prdk

⌉
flow-k packets in the data queue of the AP. The

total number of packets in the queue (from all K flows) is thus
at most

∑K
k=1

⌈
Dk

prdk

⌉
. To avoid overflow, we therefore require

that the data queue of the AP can at least hold
∑K
k=1

⌈
Dk

prdk

⌉
packets. Again consider a video-conferencing scenario with
ten flows where each flow’s packets arrive every 20ms with
a hard delay of 200ms. If every packet has a size of 1000
bytes (1kB), then the minimal data queue size requirement is
1kB× 10×

⌈
200ms
20ms

⌉
= 100kB.

Remark: Although our work is described only for the
periodic-i.i.d. traffic patterns, the same principle can be readily
extended to the much more general cyclostationary Markovian
arrivals with observable states. Moreover, although we assume
that any flow has at most one packet arrival in each period,
our work can be generalized to the case that a flow may
have multiple packet arrivals in a batch [23]. Our analysis can
also be generalized to the case that different flows could have
different packet lengths by treating a large packet as multiple
sub-packets of the same length.

C. The Objective

The timely throughput Rk of flow k is defined as

Rk , lim inf
T→∞

E{# of flow-k pkts delivered before expiration in [1,T]}
T

,

(3)

which computes the long-term average number of flow-k
packets delivered before expiration per slot. Obviously, Rk
depends on how to schedule the links/flows for t = 1 to ∞.

As we introduced in Sec. I-C, our objective is to solve the
following three fundamental problems.

Capacity Region Problem: Characterize the capacity re-
gion,

R , {~R = (R1, R2, · · · , RK)| there exists a scheduling
policy achieving timely throughput Rk,∀k ∈ [1,K]} (4)

NUM Problem: Design scheduling policies such that the
resulting timely throughput vector solves the NUM problem,

(P1) max
~R∈R

K∑
k=1

Uk(Rk)

where Uk(·) is the utility function for flow k, which is assumed
to be increasing, concave, and continuously differentiable.

5If we assume that every packet has 1000 bytes (1kB), such arriving process
means a sending rate of 400kbps. All settings, including packet size, sending
rate and delay, are in line with practical video conferencing systems [22].
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Feasibility-Optimal Scheduling Policy Design Problem:
Design one scheduling policy, so that for any feasible timely
throughput vector ~R = (R1, R2, · · · , RK) ∈ R, the achieved
flow-k timely throughput under this policy is at least Rk for
any k ∈ [1,K].

D. Complexity Hardness

It is valuable to first examine the computational complexity
of our problems. Since only the NUM problem (P1) is a
well-defined optimization problem, we show its hardness.

Theorem 1: (P1) is co-NP-hard in the strong sense.
Proof: Please see Appendix A in the supplementary

materials.
This shows that it is computationally prohibitive to get the
exact solution unless P=co-NP. Note that it only shows the
hardness but does not suggest any exact solution to solve (P1).

In next two sections (Sec. IV and Sec. V), we will propose
an exact solution based on MDP to (P1) (and also to capac-
ity region problem and feasibility-optimal scheduling policy
design problem) with exponential complexity, meaning that
all these three problems are in principle solvable. Theorem 1
shows that this could be the best that we can achieve if we
desire an exact solution. To address the complexity issue, we
must sacrifice the optimality. In Sec. VI, we therefore propose
some heuristic solutions with much lower complexity.

IV. AN INFINITE-DIM. INFINITE-HORIZON MDP

This section explains how to cast our timely wireless flow
problem as an infinite-dimension infinite-horizon multi-reward
MDP problem. In Sec. V, we will further simplify the infinite-
size MDP and characterize the complete timely capacity region
and propose a scheduling policy that is feasibility-optimal and
maximizes network utility.

An MDP problem [24], [25] can be described in many
different forms. The MDP used in this work is described by a
tuple (S, {As : s ∈ S}, {Pt}, {rk}) where S is the state space,
As is the set of possible actions when the state is s ∈ S, and
Pt is the transition probabilities in time t:

Pt(St+1 = s′|St = s,At = a),∀t, ∀s, s′ ∈ S,∀a ∈ As, (5)

and rk is the flow-k reward function, i.e., rk(s, a) denotes the
per-slot (additive) flow-k reward of taking the action At =
a when the system state is St = s. In our problem, since
we should characterize the capacity region in terms of all K
flows’ timely throughput, we thus define K reward functions.
This is called an MDP with multiple rewards [25]. We now
describe how the timely wireless flow problem can be cast
as an MDP by describing the corresponding (S, {As : s ∈
S}, {Pt}, {rk}).

Definition of the State: We define the (network) state St
of the MDP as the snap-shot of all the network queues at time
t. More specifically, define

St , (S1
t , S

2
t , · · · , SKt ),

where Skt , the state of flow k at time t, is the collection of all
non-expired flow-k packets in the AP’s queue.

AP

1

2

1p

2p

3X

2Y3Y

(a) S8 = ({X3}, {Y2, Y3})

AP

1

2

1p

2p3Y

(b) S9 = (∅, {Y3})

Fig. 2. Two examples for network states in slots 8 and 9, respectively.

For example, suppose that there are only K = 2 flows
with the corresponding A&E profiles depicted in Figs. 1(a)
and 1(b), respectively. Then a possible network state at slot
8 is illustrated in Fig. 2(a). Specifically, for flow 1, at slot 8,
packets m = 1 and m = 2 have expired and packet m = 3 has
arrived at the AP. If the packet m = 3 has not been delivered
successfully, it will remain in the queue and the state of flow
1 is S1

8 = {X3}. For flow 2, at slot 8, packet m = 1 has
expired (no matter whether it showed up at the AP or not),
and thus it does not appear in the queue. Packets m = 2
and m = 3 could have arrived at the AP. Suppose that these
two packets have not been delivered successfully. The state of
flow 2 is thus S2

8 = {Y2, Y3}. The network state at slot 8 is
S8 = (S1

8 , S
2
8) = ({X3}, {Y2, Y3}). Clearly, this is just one of

many possibilities. Fig. 2(b) depicts another possible network
state S9 = (S1

9 , S
2
9) = (∅, {Y3}) at slot 9.

By enumerating all possible network states, we can explic-
itly construct the state space S.

Definition of the Action: As mentioned in Sec. III-A, an
action At represents the selection of which flow to transmit
in time t. After selecting the flow, say flow k, the AP will
transmit the oldest flow-k packet if there exist packet(s) in
the data queue or remain idle otherwise. For example, if the
network state at slot 8 is as Fig. 2(a), then there are 2 possible
actions:

• Action 1: schedule link 1 (and then transmit the oldest
packet of flow 1, which is X3);

• Action 2: schedule link 2 (and then transmit the oldest
packet of flow 2, which is Y2).

One can quickly see that there are at most K actions for any
state s. Even though not all K actions will contribute to timely
throughput, for ease of exposition, in this paper we denote the
action set for any state s as As = {1, 2, · · · ,K} and then
simply write A = {1, 2, · · · ,K} by omitting the subscript s.
Thus we get the action space A = {1, 2, · · · ,K}.

Definition of the Transition Probabilities: We observe that
the transition probability Pt from St = s to St+1 = s′ if
taking action At = a in slot t depends on (i) the channel
success probabilities {pk : k = 1, · · · ,K}, and (ii) the arrival
and expiration events at the end of time t (or equivalently at
the beginning of time (t + 1)). For example, at slot (t + 1),
some packet may be successfully delivered in time t, some
old packets may expire and no longer remain in the queue,
and some new packets may arrive, all of which will affect
the network state St+1. By carefully examining (i) and (ii),
we can explicitly construct the transition probability Pt in (5)



6

for all t, s, s′ and a. For example, considering the scenario in
Fig. 2, we have

P8(S9 = (∅, {Y3})|S8 = ({X3}, {Y2, Y3}), A8 = Action 1) = p1.

The reason is as follows. When the AP takes “Action 1:
schedule link 1 (and transmit packet X3)” in slot 8, if the
transmission is successful, then X3 will arrive at user 1 and
will thus be removed from the queue. At the same time,
since Y2 will always expire at slot 9, it will also be removed
from the queue. The network state at slot 9 thus becomes
S9 = (∅, {Y3}). The probability of this transition is thus p1.

Note that since the packet arrival/expiration event depends
on the time index t, the transition probabilities are time-
inhomogeneous.

Definition of the Reward: In our problem, we care about
the timely throughput of all K flows. Thus, we associate K
reward functions for each state s ∈ S and action a ∈ A [25].
More specifically, for any flow k ∈ [1,K], we define a reward
function

rk(s, a) ,pk · 1{a flow-k pkt is transmitted under state s & action a}. (6)

The indicator function 1{·} returns value 1 if the action
a schedules a flow-k packet and the corresponding queue,
specified in s, is not empty, and returns 0 otherwise. Notation
pk is the probability that the scheduled packet is successfully
delivered. Eq. (6) calculates the expected value of the flow-k
contribution for a given (s, a). Note that since our definition
of state s only keeps those unexpired packets, any success-
ful transmission is always unexpired and will contribute to
rk(s, a).

For example, at slot 8, if S8 = ({X3}, {Y2, Y3}) (see
Fig. 2(a)) and A8 is “Action 1: schedule link 1 (and transmit
packet X3)”, then the respective flow-1/flow-2 rewards are

r1(S8, A8) = p1, r2(S8, A8) = 0,

MDP-based Equivalence: From our MDP formulation, we
can see that the timely throughput of any flow k is exactly the
flow-k (long-term) average reward, i.e.,

Rk = lim inf
T→∞

∑T
t=1 E{rk(St, At)}

T
. (7)

The capacity region R defined in (4) can then be rewritten as
the following reward region of our MDP formulation, i.e.,

R = {~R = (R1, R2, · · · , RK)| there exists a scheduling
policy of the MDP achieving average reward Rk,∀k}

It is straightforward to verify that the NUM problem and
the feasibility-optimal scheduling policy design problem can
also be rewritten as an MDP-based formulation in a similar
manner.

Remark: Note that the essence/difficulty of the timely
throughput problem is that when we schedule a particular flow
k at time t, the remaining packets in the queues are getting
“older” and some may even expire. Therefore, the decision of
sending which flow not only affects the instantaneous “reward”
in time t, but it will also change the subsequent network state
at time (t + 1). The effect of a decision at time t can even

propagate over multiple time slots, which makes it difficult
to find the optimal solution. Such a phenomenon is captured
naturally by our new MDP formulation where the action At
not only affects rk(St, At)(∀k ∈ [1,K]) but also affects the
next network state St+1 through the transition probability (5).

V. SIMPLIFICATION AND OPTIMAL SOLUTIONS

The first contribution of this work is to observe that the
the timely wireless flow problem is fundamentally an MDP
problem. However, our MDP formulation in Sec. IV is difficult
to handle, because it has an infinite number of states, and it is
time-inhomogeneous with infinite horizon. In this section, we
demonstrate two simplification methods to reduce the state
space S, and address the time-inhomogeneity by observing
that our MDP is actually almost cyclostationary. We then
prove that the timely capacity region is a convex polygon
which is characterized by a finite set of linear constraints. Our
analytical results also allow us to design a scheduling policy,
by solving a convex program, which is feasibility-optimal and
maximizes network utility.

A. Reduce The State Space

Define the lead time (see [26] for further discussion) of the
m-th flow-k packet at slot τ ∈ [t

[k]
arr (m), t

[k]
exp(m)− 1] as

t
[k]
lead(m) = t[k]exp(m)− τ. (8)

Clearly, we have t[k]lead(m) ∈ [1,Dk], which can be interpreted
as the remaining time before expiration. Moreover, at any slot
t, there exists at most one flow-k packet in the queue whose
lead time is τ , for any τ ∈ [1,Dk]. Therefore, the state of flow
k, which was originally defined as the set of unexpired flow-k
packets in the queue, can be rewritten as an equivalent binary
string, Skt , lk1 l

k
2 , · · · lkDk

where

lki =

{
1, if ∃ a flow-k packet with lead time i at t;
0, otherwise.

For example, for flow 2 in Fig. 2(a), the state at slot 8 is
S2
8 = 1001. The reason is that both Y2 and Y3 are in the queue.

The lead time of Y2 is t[2]lead(2) = t
[2]
exp(2)− 8 = 1 and the lead

time of Y3 is t[2]lead(3) = t
[2]
exp(3) − 8 = 4. At slot 9, the state

becomes S2
9 = 0010 since only Y3 remains and its lead time is

now changed to t[2]lead(3) = t
[2]
exp(3)− 9 = 3. For Fig. 2, similar

reasoning can be used to show S1
8 = 010 and S1

9 = 000. The
network state thus becomes S8 = (S1

8 , S
2
8) = (010, 1001) and

S9 = (S1
9 , S

2
9) = (000, 0010).

The new binary-string-based representation is equivalent to
the original set-based representation since for any time t, we
can use (2) and (8) to infer whether the m-th flow-k packet
is in the queue or not.

Since each state sk is a binary string of length Dk, if we
denote Sk as the set of all possible sk, then we have |Sk| ≤
2Dk . The total number of network states is thus

|S| = |S1| · |S2| · · · · · |SK | ≤ 2D1+D2+···+DK <∞. (9)

The new lead-time-based state space S is therefore bounded.
Note that even with the lead-time-based S, the MDP is still
of infinite horizon.
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The reason that (9) is only an upper bound is that for any
given traffic pattern, some binary strings do not represent any
state. This fact can be used to further reduce the state space
for some special traffic patterns. For example, for the frame-
synchronized traffic pattern in Sec. III-B, at each time t, the
flow-k state Skt = lk1 l

k
2 , · · · lkT , where{

lki = 0,∀i ∈ [1, T ], if no flow-k packet;
lkg(t) = 1, lki = 0,∀i 6= g(t), if ∃ a flow-k packet.

(10)

and g(t) = T − ((t − 1) mod T ). Since there are only two
possible states for each flow-k at any slot, we can perform
a “lossless compression” and use Skt = 0 to represent the
first case, and use Skt = 1 for the second case in (10).
In this way, the state space is further reduced and we have
|Sk| = 2. The number of network states is then equal to
|S| = 2K , much smaller than the upper bound (9). A similar
compression method can be used to reduce the bound to
|S| ≤ 2

∑K
k=1dDk/prdke when the traffic pattern is not frame-

synchronized.

B. Reduce the Horizon

With the simplification in Sec. V-A, the new MDP is of finite
dimension now. However, it is still time inhomogeneous with
infinite horizon, which makes it difficult to apply the exist-
ing techniques that solve time-homogeneous infinite-horizon
average-reward MDP [24]. To circumvent this difficulty, we
make another critical observation:

Lemma 1: Using the new network state representation, the
transition probabilities Pt are almost cyclostationary. Namely,
define

Prd , Least.Common.Multiple(prd1, prd2, · · · , prdK),

i.e., Prd is is the smallest positive integer that is divisible by
all prdk, and choose L as a constant positive integer such that

L · Prd ≥ max
k∈[1,K]

(offsetk + Dk).

Then, for any τ ∈ [1,Prd], l ≥ L, the transition probability
Pl·Prd+τ for slot t = l · Prd + τ is identical to the transition
probability P(l+1)Prd+τ for slot t′ = (l + 1) · Prd + τ .

Proof: Please see Appendix B in the supplementary
materials.

The reason behind is that when l ≥ L, then at time t =
(l · Prd + τ), the first packet of flow k has expired for all k.
Therefore, all K flows have left their transient “initialization
phase” and entered their “steady state”. Also, since Prd is the
least common multiple of all prdk, then after every Prd time
slots the arrival and expiration patterns of all K flows will
repeat themselves. Since the inhomogeneity of the transition
probability Pt is only caused by different arrival and expiration
events for each time t, the transition probability Pt will also
repeat itself after every Prd time slots since the traffic pattern
are periodic. For future reference, we define τtrans = L · Prd
and call the time interval [1, τtrans] the transient duration.

The fact that the transition probability Pt is almost periodic
prompts the following intuition. If we can focus on the
those time slots after the transient duration, then the network

controller faces a periodic environment. As a result, in terms
of finding the asymptotic average reward, we can consider
a single period instead of the infinite horizon from 1 to
∞, as long as the period of interest is beyond the transient
duration. For example, one such period could be the interval
[L ·Prd + 1, (L+ 1)Prd]. We will make this intuition rigorous
in the next subsection.

C. Optimal Solutions

In this subsection, we make use of the two simplification
methods in Sec. V-A and Sec. V-B to characterize the capacity
region, based on which we further propose a scheduling policy
that is feasibility-optimal and maximizes network utility.

Towards that end, we first define the randomized almost
cyclostationary (RAC) policy as follows.

Definition 1: A scheduling policy π is randomized if for
every time t under state St = s, the action At is chosen
randomly according to a probability mass function

ProbAt|St
(a|s) = Prob(At = a|St = s),∀a ∈ A

For our given MDP, a randomized policy π is almost cyclo-
stationary if the following two conditions hold: (i)

ProbAt|St
(a|s) = ProbAt+Prd|St+Prd

(a|s),

for all s ∈ S, a ∈ A, t > τtrans, that is, for all t > τtrans,
the conditional probabilities repeat themselves after Prd slots,
and (ii) the random process6 of the MDP state after time τtrans,
{Sτtrans+t : ∀t ≥ 1}, is cyclostationary with period Prd.

We now present our main result.
Theorem 2: (i) Any feasible timely throughput vector ~R ∈

R can be achieved by an RAC policy.
(ii) The capacity region R can be characterized by the

following convex polygon,

R = {~R = (R1, R2, · · · , RK)| there exits an ~x
such that the following conditions (11a)− (11e) hold}

where the conditions are∑
a∈A

xt+1(s′, a) =
∑
s∈S

∑
a∈A

Pt(s
′|s, a)xt(s, a),

∀s′ ∈ S, t ∈ [T1, T2 − 1] (11a)∑
a∈A

xT1
(s′, a) =

∑
s∈S

∑
a∈A

PT2
(s′|s, a)xT2

(s, a),

∀s′ ∈ S (11b)

Rk ≤
T2∑
t=T1

∑
s∈S

∑
a∈A

rk(s, a)xt(s, a)

Prd
,∀k ∈ [1,K] (11c)∑

s∈S

∑
a∈A

xt(s, a) = 1,∀t ∈ [T1, T2] (11d)

~x ≥ 0, ~R ≥ 0 (11e)

with [T1, T2] , [L · Prd + 1, (L+ 1)Prd].

6Condition (i) requires that the way we make the decision is periodic and
condition (ii) requires that the resulting state distribution is periodic. Although
condition (i) generally means that condition (ii) is satisfied asymptotically
when t→∞, here we require condition (ii) to be satisfied for small finite t.
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(iii) For any ~x and ~R = (R1, R2, · · · , RK) that satisfy
(11a)− (11e), the RAC policy7 with conditional probability,{

ProbAt|St
(a|s) = xt(s,a)∑

a′∈A xt(s,a′)
, ∀t ∈ [T1, T2];

ProbAt|St
(a|s) = ProbAt−Prd|St−Prd

(a|s), ∀t > T2,
(12)

and state distribution,

ProbSt(s) =
∑
a∈A

xt(s, a), ∀t ∈ [T1, T2]. (13)

achieves the timely throughput Rk, for any k ∈ [1,K].
Proof: Please see Appendix C in the supplementary

materials.
Note that here [T1, T2] = [L · Prd + 1, (L + 1)Prd] is the

period that we mentioned in Sec. V-B.
Part (i) of Theorem 2 shows that RAC polices achieve

any feasible timely throughput vector. This greatly reduces
the policy space since, if we ignore the transient phase, an
RAC scheme can be specified by the conditional probability
ProbAt|St

(a|s) and the resulting state distribution ProbSt
(s)

for one period of Prd slots. The design space is now bounded
and the resulting RAC policy can fully solve an infinite-
horizon MDP problem. This justifies our intuition in Sec. V-B.

Part (ii) of Theorem 2 shows that the complete timely
capacity region can be characterized by a finite-size convex
polygon in (11). The intuition of (11) is as follows. The
variable xt(s, a) = ProbSt,At

(s, a) is the probability that
the system state is s and the action is a at slot t under an
RAC policy, which is why the total sum of xt(s, a) is 1 (see
(11d)). The right-hand side of (11c) computes the average
reward of flow k under such an RAC policy. Eq. (11a) is the
consistency condition for time [T1, T2−1]. The left-hand side
of (11a) is the marginal probability ProbSt+1

(s′). The right-
hand side of (11a) starts from the joint distribution ProbSt,At

and uses the transition probability Pt(St+1|St, At) to compute
ProbSt+1

(s′). Similarly, (11b) is the consistency condition
from time T2 back to T1 since we require the periodicity
condition ProbST2+1

(s′) = ProbST1
(s′).

Part (iii) of Theorem 2 gives the corresponding RAC policy
to achieve any feasible timely throughput vector based on the
solution of (11).

Theorem 2 solves the first fundamental problem in Sec. I-C,
i.e., characterizing the capacity region. To the best of our
knowledge, this is the first timely capacity characterization
for general traffic patterns.

Based on the capacity region in (11), we can optimally solve
the other two fundamental problems proposed in Sec. I-C.
More specifically, the NUM problem (P1) is equivalent to
the following convex one:

(P2) max

K∑
k=1

Uk(Rk)

s.t. (11a)− (11e)

var. ~x, ~R

7For ease of exposition, we omit the design of the transient state t ≤
τtrans = T1 − 1. The complete RAC design can be found in the proof, i.e.,
Appendix C in the supplementary materials.

Similarly, to design a feasibility-optimal scheduling policy,
we can solve the following linear programming (LP),8

(P3) max 1

s.t. (11a)− (11e)
var. ~x

Note that in (P2), the achieved timely throughput Rk is an
optimization variable while in (P3), Rk is given as an input.

RAC (Optimal) Scheduling Policy: Once we solve (P2)
or (P3), we obtain the optimal state-action frequency ~x∗. We
then replace ~x in (12) and (13) by ~x∗. This gives the optimal
RAC policy that is feasibility-optimal and maximizes network
utility, as shown in part (iii) of Theorem 2.

Remark: The existing elegant framework in [2], [3] is based
on the frame-synchronized setting. In contrast, our frame-
work applies to general traffic patterns. Further, the existing
framework is based on first deriving an idle-time-based outer
bound. Then a largest-deficit-first (LDF) scheme is proposed
that attains any point within the outer bound. However, for
general settings, how to find a tight outer bound is highly
non-trivial and remains open as of today. Instead of finding
an outer bound and an achievability scheme separately as in
[2], our approach is fundamentally different. By proposing a
new MDP framework, we first establish that any optimal point
can always be achieved by an RAC policy. Then we search for
the optimal RAC by solving a finite-size convex program. The
solution is thus simultaneously an outer bound (no scheme
can do better) and an inner bound (as it explicitly leads to
an optimal design). In the broadest sense, our approach can
be viewed as directly finding the maximum flow instead of
indirectly finding the minimum cut.

VI. LOW-COMPLEXITY HEURISTIC SOLUTIONS

Thus far we have characterized the timely capacity region
and designed the corresponding optimal scheduling policy that
is feasibility-optimal and maximizes network utility. However,
our capacity region characterization (11) suffers from high
complexity, which involves O(Prd · K · 2

∑K
k=1 Dk) variables

and constraints. This makes it less appealing for practical
implementation.9

In this section, we address the complexity issue by propos-
ing two low-complexity heuristics, both of which are inspired
by our MDP-based formulation. In the first one in Sec. VI-A,
we derive a computationally-efficient outer bound for the
capacity region in (11), based on which we further propose
a heuristic scheduling policy to optimize network utility or
support feasible timely throughput vectors. In the second one
in Sec. VI-B, we improve the LDF scheduling policy [2] to

8We write (P3) as a maximization problem for consistence, but we should
note that in (P3), we only need to find a solution ~x such that (11a)− (11e)
hold.

9The main complexity is due to the computation of the optimal x∗t (s, a) in
(P2) or (P3). Once x∗t (s, a) is known, the actual RAC scheduler is simple
and involves generating random variables with probability distribution in (12).
Therefore, for a relatively stable system, the optimal RAC policy can still
be implemented by computing the optimal x∗t (s, a) offline. For references,
using off-the-shelf solvers, (P2) or (P3) can be solved in a few seconds
with K = 7 flows and moderate Dk values for linear utility functions.
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support feasible timely throughput vectors by combining both
deficit information and urgency information. Both heuristics
are based on the insights derived in Theorem 2 and achieve
good performance in the numerical evaluation, as shown later
in Sec. VII.

A. RAC Approximation

In our original system, the AP schedules one and only one
flow at each slot. We can equivalently convert this 1-to-many
system to K parallel 1-to-1 systems (srck, dstk) for each k in
the following way. We allow each srck to make their own
decision Akt ∈ {1, · · · ,K} and srck transmits only when
Akt = k and remains idle whenever Akt 6= k. We further
impose that Ak1t = Ak2t for any two flows k1 and k2. This
ensures that even though we have K parallel 1-to-1 systems,
their decisions are strictly synchronized, and only one of them
can be active in any time t. Therefore, the K parallel 1-to-1
systems are equivalent to the original 1-to-many AP network.

Now we relax this synchronized action constraint Ak1t =
Ak2t to a common scheduling frequency constraint Prob(Ak1t =
a) = Prob(Ak2t = a) , zt(a). Namely, for each parallel
system k, we use zkt (sk, a) to denote the probability that flow
k is in state sk and the action is a at slot t. The common
scheduling frequency constraint imposes that the K parallel
systems must share a common scheduling frequency, i.e.,∑

sk∈Sk

zkt (sk, a) = zt(a),∀k ∈ [1,K], t, a ∈ A. (14)

Clearly, the sample-path-based synchronized action constraint
Ak1t = Ak2t implies the distribution-based common scheduling
frequency constraint (14). This motives us to define the
following outer bound Router of the capacity region R in (11).

Router , {~R = (R1, R2, · · · , RK)| there exits an ~z
such that the following conditions (15a)− (15f) hold}

where the conditions are∑
a∈A

zkt+1(s̃k, a) =
∑
sk∈Sk

∑
a∈A

P kt (s̃k|sk, a)zkt (sk, a),

∀k ∈ [1,K], s̃k ∈ Sk, t ∈ [T1, T2 − 1] (15a)∑
a∈A

zkT1
(s̃k, a) =

∑
sk∈Sk

∑
a∈A

P kT2
(s̃k|sk, a)zkT2

(sk, a),

∀k ∈ [1,K], s̃k ∈ Sk (15b)

Rk ≤
T2∑
t=T1

∑
sk∈Sk

∑
a∈A

rk(sk, a)zkt (sk, a)

Prd
,

∀k ∈ [1,K] (15c)∑
sk∈Sk

zkt (sk, a) = zt(a),∀k ∈ [1,K], t ∈ [T1, T2] (15d)∑
sk∈Sk

∑
a∈A

zkt (sk, a) = 1,∀k ∈ [1,K], t ∈ [T1, T2] (15e)

~z ≥ 0, ~R ≥ 0 (15f)

In (15), P kt (s̃k|sk, a) is the transition probability from state
sk to state s̃k for flow k if taking action Akt = a at slot

t, rk(sk, a) is the flow-k per-slot reward under state sk and
action a (defined similarly as (6)), and T1 and T2 are defined
as the same in (11). One can see that the form of (15) is
very close to that of (11) except that (15) deals with each 1-
to-1 system separately and links them through the common
scheduling frequency constraint (15d).

We can regard (15) as a relaxed version of (11). In return for
the relaxation, we can handle it more efficiently since the state
of each flow k is considered separately (rather than considered
as a joint network state). The new complexity (in terms of
number of variables and constraints) thus becomes,

O
(
(2D1 + 2D2 + · · ·+ 2DK ) ·K · Prd

)
.

This allows us to handle significantly large K, Prd and very
reasonable practical Dk values. If we further use the lossless
simplification method in (10), then the complexity can be
further reduced to

O

((
2

⌈
D1

prd1

⌉
+ 2

⌈
D2

prd2

⌉
+ · · ·+ 2

⌈
DK

prdK

⌉)
·K · Prd

)
, (16)

which is quite manageable for almost all practical system
parameters. If we aim to solve (15)10 approximately rather
than exactly, we can further unwind the arrival of packets from
K flows and find an approximation solution of (15) with a
complexity of O((

∑K
k=1dDk/prdke) ·K ·Prd). Please see the

details in Appendix E in the supplementary materials. We
thus call Router a fast outer bound of the capacity region R.

Next we use the outer bound Router to design a heuristic
scheduling policy, called RAC-Approx, to either maximize
the network utility or support feasible timely throughput
vectors. More concretely, for the NUM problem, we solve the
following convex program,

(P4) max

K∑
k=1

Uk(Rk)

s.t. (15a)− (15f)

var. ~z, ~R

and for designing low-complexity scheduling policy for sup-
porting feasible throughput vectors, we solve the following
size-reduced LP with the timely throughput vector ~R as an
input:

(P5) max 1

s.t. (15a)− (15f)
var. ~z

We can regard (P4) (resp. (P5)) as the relaxed problem of
(P2) (resp. ((P3)) with much lower complexity. We then use
the optimal solution of (P4) or (P5), denoted by z̃kt (sk, a),
to design the control probability of an RAC policy, i.e., we
will replace (12) by a new formula.

RAC-Approx Scheduling Policy: At slot t, suppose that
the system state is St = (S1

t , S
2
t , · · ·SKt ) = (s1, s2, · · · sK),

10Precisely, we mean solving (P4) or (P5) with constraints (15) which
will be mentioned soon.
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first compute the following conditional probability for each
action a ∈ A and each flow k ∈ [1,K],{

ProbAt|Sk
t
(a|sk) =

z̃kt (s
k,a)∑

a′∈A z̃
k
t (s

k,a′)
, ∀t ∈ [T1, T2];

ProbAt|Sk
t
(a|sk) = ProbAt−Prd|Sk

t−Prd
(ak|s), ∀t > T2.

(17)
and then select action a with probability∏K

k=1 ProbAt|Sk
t
(a|sk)∑

a′∈A
∏K
k=1 ProbAt|Sk

t
(a′|sk)

. (18)

The intuition of (18) is as follows. Eq. (17) is the probability
that the k-th parallel system will choose a specific action a.
Since all parallel systems choose their actions independently,
the numerator of (18) is the probability that all flows of the
auxiliary K parallel systems choose the same action a. When
all flows choose the same action a, we let the AP of our
actual system take such action a. Note that it is possible that
all flows choose a different action a′. By normalizing over the
probability of all possible a′ in the denominator of (18), it is
as if we directly let the AP randomly choose an action a with
probability (18).

Our RAC-Approx policy, using (P4)/(P5), (17), and (18),
is very efficient since all the computation can be performed on
a per-flow base, as opposed to the network-wide computation
in (P2)/(P3) and (12). We further show the convergence
result of our RAC-Approx policy under a mild condition.

Lemma 2: Suppose that the arrival probability is strictly
less than 1, i.e., Bk < 1, for any flow k ∈ [1,K]. Then the
timely throughput of the RAC-Approx policy converges and
the lim inf in (3) can be replaced by lim.

Proof: Please see Appendix D in the supplementary
materials.

B. Deficit-based Scheduling Algorithm

In this subsection, we propose a low-complexity heuristic
deficit-based scheduling policy to support feasible timely
throughput vectors. Our MDP formulation shows that the lead-
time-based state representation is critical to finding the optimal
solution. In the following, we show that by incorporating the
concept of lead time, we can further improve the performance
of the existing deficit-based policies.

In general, the flow-k deficit at slot t is the difference
between the desired number of delivered flow-k packets11 and
the actual number of delivered flow-k packets up to slot t [2].
Intuitively, the AP should schedule the flow with largest deficit,
which is the celebrated Largest-Deficit-First (LDF) scheduler.
The authors in [2] proved that LDF is feasibility-optimal for
the frame-synchronized traffic pattern. The reason why LDF
is optimal in the frame-synchronized traffic pattern is that all
non-expired packets are equally urgent because they have the
same deadline. However, when different packets have different
deadlines, they have different levels of urgency. Since the
deficit does not contain any urgency information, the LDF
policy is no longer optimal for general traffic patterns [16],
[19].

11More specifically, the desired number of delivered flow-k packets up to
t is qkt, where qk is the flow-k timely throughput requirement.

To handle heterogeneous deadlines, [16] proposed the
Earliest-Positive-deficit-Deadline-First (EPDF) scheduler. In
EPDF, at any slot, the AP focuses on those flows with strictly
positive deficit and among them selects the flow which has the
earliest deadline. Unfortunately, when evaluated numerically,
EPDF is strictly sub-optimal, see Sec. VII-C for more detailed
discussion of the sub-optimality of EPDF.

Inspired by our lead-time-based MDP study, we propose
the following Lead-time-normalized-Largest-Deficit-First (L-
LDF) scheduler, which combines both deficit and urgency
information.

L-LDF Scheduling Policy: Suppose flow-k timely through-
put requirement is qk ∈ (0, 1]. At each slot t, among all flows
that currently have packets to send, the AP computes the lead-
time-normalized deficit d̄k(t) for each flow k:

d̄k(t) ,
dk(t) · pk

smallest-lead-time(k, t)
,

where dk(t) is the flow-k deficit at slot t defined as,

dk(t) , [dk(t− 1)− 1{a flow-k packet is delivered at slot t}]
+ + qk,

with dk(0) , 0, [x]+ , max{x, 0}, and
smallest-lead-time(k, t) is the smallest lead time among
all flow-k packets at slot t. Note that smallest-lead-time(k, t)
is no smaller than 1 according to the definition of lead time
in (8) and the remark right below the equation. Then, the
AP selects the flow with the largest d̄k(t).

Note that L-LDF collapses to the existing LDF in the
frame-synchronized traffic pattern, since in that setting all
non-expired packets at time t will have the same smallest
lead time. However, the additional normalization according to
the smallest lead time will better reflect the urgency of each
individual flow for general traffic patterns.

VII. SIMULATION

In this section, we demonstrate numerical performances
of our solutions on characterizing timely capacity region,
maximizing network utility, and supporting feasible timely
throughput vectors.

A. Characterizing Capacity Region

Since the existing idle-time-based analysis [2] can only
characterize the capacity region for the frame-synchronized
traffic pattern, we also apply our MDP-based computation R
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Fig. 3. Capacity regions of two examples in Sec. VII-A.
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(a) Case 1: (offsetk, prdk,Dk,Bk, pk)=
(0, 2, 2, 0.5, 0.8) for all k.
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(b) Case 2: (offsetk, prdk,Dk,Bk, pk)=
(0, 3, 3, 1, pk) for all k where pk = 0.8 (resp. 0.6)
for odd (resp. even) k.
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(c) Case 3: (offsetk, prdk,Dk,Bk, pk)=
(offsetk, 3, 3, 0.5, 0.8) for all k where offsetk = 0
(resp. 1) for odd (resp. even) k.

Fig. 4. Ratio of the outer bound to the capacity region, defined as r∗ , max
~w=(w1,w2,··· ,wK)∈RK

+

u∗4(~w)

u∗2(~w)
, where u∗2(~w) (resp. u∗3(~w)) is the optimal value/utility

of (P2) (resp. (P4)) if taking utility function Uk(Rk) = wkRk for all k.

in (11) to such a simple setting. Specifically, we consider the
following frame-synchronized traffic pattern:

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (0, 3, 3, 1, 0.6).

Fig. 3(a) shows the capacity region of this traffic pattern. As
expected, both [2] and our MDP-based computation R in (11)
successfully characterize the same capacity region.

Next we offset flow-2 by 2 slots. Namely, the two flows are
non-synchronized now:

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (2, 3, 3, 1, 0.6).

The idle-time-based analysis does not hold anymore. However,
our MDP-based computation R in (11) can still characterize
the capacity region, see Fig. 3(b), which contains three corner
points, as opposed to only two corner points in Fig. 3(a). Such
a phenomenon is observed for the first time in the literature.

In both Figs. 3(a) and 3(b), we also evaluate our fast
outer bound Router in (15). We can see that empirically it
is a reasonably tight outer bound of the capacity region.
We further show the gap between our outer bound and the
capacity region as follows. We consider the linear utility
function Uk(Rk) = wkRk. For any particular weight vector
~w = (w1, w2, · · · , wK), we solve the RAC problem (P2)
and the RAC-Approx problem (P3), respectively. We denote
the optimal value/utility of (P2) (resp. (P4)) as u∗2(~w)

(resp. u∗4(~w)). We then define r(~w) , u∗4(~w)
u∗2(~w) , which measures

the gap between the outer bound and the capacity region in the
direction ~w. Now we define the ratio of the outer bound to the
capacity region as r∗ , max

~w∈RK
+

r(~w) where RK+ is the set of all

nonnegative directions, i.e., RK+ , {~w = (w1, w2, · · · , wK) :
wk ≥ 0,∀k ∈ [1,K]}. If r∗ = 1, then the outer bound is
exactly the capacity region, and smaller r∗ means tighter outer
bound. We thus use r∗ to measure the gap between our outer
bound and the actual capacity region.

We measure r∗ by using Monte Carlo method, i.e., ran-
domly generating 1000 different direction ~w’s. We show ratio

v.s. number of flows results in Fig. 4 for three different traffic
patterns. As we can see, the ratio r∗ does not monotonically
change when the number of flows increases. When we com-
pare the ratios for different cases with different flows, the
traffic patterns may not change in a “monotonic” way though
all flows in those different cases share similar A&E profile.
Thus, we may not be able to observe the monotonicity. But
we can observe the decreasing trend of r∗ when the number of
flows becomes larger. Note that due to the high complexity, it
requires more significant computing resources than those we
can access to solve the RAC problem (P2) for more than 10
flows, and thus we only show the results up to 10 flows.

B. Maximizing Network Utility

In this subsection we evaluate the two proposed scheduling
policies to maximize the network utility: one is the prov-
ably optimal RAC scheduling policy; the other is the low-
complexity heuristic RAC-Approx scheduling policy. We show
their performances by considering the following 3-flow traffic
pattern:

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5),

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5),

(offset3, prd3,D3,B3, p3) = (0, 1, 3, 0.9, 0.7).

We first set the utility functions as Uk(Rk) = logRk,∀k ∈
[1, 3]. Note that here flow 3 is simply the tradition-
al i.i.d. arrival since prd3 = 1. By solving (P2), we
get the optimal timely throughput vector (R∗1, R

∗
2, R

∗
3) =

(0.1667, 0.1667, 0.2333), which maximizes the network util-
ity. To see concretely how our optimal RAC policy works,
in Appendix F in the supplementary materials, we also show
the conditional probability ProbAt|Sk

t
(a|sk) of the optimal

RAC policy (see (12)). Fig. 5 shows that both RAC and
RAC-Approx converge to the optimal solution. This verifies
the optimality of RAC scheduling policy and demonstrates
the good empirical performance of RAC-Approx scheduling
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Fig. 5. Comparison of different scheduling policies for maximizing network utility for three flows in Sec. VII-B with utility functions, U1(R1) = log(R1),
U2(R2) = log(R2), and U3(R3) = log(R3). Both RAC and RAC-Approx scheduling policies converge to the optimal solution.

0 2000 4000 6000
0

0.2

0.4

Slot

R
u

n
n

in
g

 T
im

e
ly

 T
h

ro
u

.

 

 

RAC−Approx
RAC
Optimal

(a) Flow 1

0 2000 4000 6000
0

0.2

0.4

Slot

R
u

n
n

in
g

 T
im

e
ly

 T
h

ro
u

.

 

 

RAC−Approx
RAC
Optimal

(b) Flow 2

0 2000 4000 6000
0

0.2

0.4

0.6

Slot

R
u

n
n

in
g

 T
im

e
ly

 T
h

ro
u

.

 

 

RAC−Approx
RAC
Optimal

(c) Flow 3

Fig. 6. Comparison of different scheduling policies for maximizing network utility for three flows in Sec. VII-B with utility functions, U1(R1) = 2
√
R1,

U2(R2) =
√
R2, and U3(R3) =

√
R3. RAC scheduling policy converges to the optimal solution and RAC-Approx scheduling policy converges to a

near-optimal solution which achieves 99.81% of the optimal utility.

policy. Note that in Fig. 5 and later figures in this section, we
define the flow-k running timely throughput at slot t as

1

t
· {# of flow-k pkts delivered before expiration in [1, t]}.

We also evaluate RAC and RAC-Approx policies with
different utility functions. Specifically, we set U1(R1) =
2
√
R1, U2(R2) =

√
R2, and U3(R3) =

√
R3. The re-

sults are shown in Fig. 6. As we can see, our provably
optimal RAC policy again converges to the optimal timely
throughput vector (R∗1, R

∗
2, R

∗
3) = (0.2344, 0.1107, 0.2169)

with optimal utility u∗ = 2
√
R∗1 +

√
R∗2 +

√
R∗3 = 1.7667.

Our proposed low-complexity RAC-Approx policy converges
to a sub-optimal timely throughput vector (R̄1, R̄2, R̄3) =

(0.2328, 0.0848, 0.2573) with utility ū = 2
√
R̄1 +

√
R̄2 +√

R̄3 = 1.7634. Though RAC-Approx does not achieve the
optimal utility, it has quite good performance with a utility
ratio ū/u∗ = 99.81%.

C. Supporting Feasible Timely Throughput Vectors

In this subsection we evaluate the three proposed scheduling
polices to support feasible throughput vectors: the first is
the provably optimal RAC scheduling policy; the second is
the low-complexity heuristic RAC-Approx scheduling policy;
the last is the low-complexity deficit-based L-LDF scheduling
policy. We will compare them to existing LDF [2] and EPDF
[16] scheduling policies.

Since all these scheduling policies require a feasible timely
throughput vector as an input, we will also set a utility function
Uk(Rk) for each flow k and solve (P2) to get a timely
throughput vector on the boundary of the capacity region. We
then use it as the input to the scheduling policies. In the
following, we use two simple scenarios to show that both LDF
and EPDF can be strictly suboptimal while our proposed RAC
policy is guaranteed to achieve optimality in all scenarios. Our
heuristic solutions RAC-Approx and L-LDF also outperform
LDF and EPDF in these two examples.

LDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = R1,

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5), U2(R2) = R2.

By solving (P2), the optimal timely throughput vector is
(R∗1, R

∗
2) = (0.2187, 0.2187). We use (R∗1, R

∗
2) as the timely

throughput requirements for the scheduling policies to be
evaluated. Fig. 7 shows their performances. As we can see,
RAC converges to (R∗1, R

∗
2) as proven in Theorem 2. Our

proposed heuristics, RAC-Approx and L-LDF, also converge
to (R∗1, R

∗
2). Meanwhile, the LDF algorithm cannot support

this particular timely throughput vector; indeed, the achieved
rates for both flows are strictly smaller than (R∗1, R

∗
2).

EPDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5),

(offset2, prd2,D2,B2, p2) = (0, 4, 3, 1, 0.5).



13

0 2000 4000 6000
0.05

0.1

0.15

0.2

0.25

Slot

R
u
n
n
in

g
 T

im
e
ly

 T
h
ro

u
.

 

 

LDF
L−LDF
RAC−Approx
RAC
Optimal

(a) Flow 1

0 2000 4000 6000
0.05

0.1

0.15

0.2

0.25

Slot

R
u
n
n
in

g
 T

im
e
ly

 T
h
ro

u
.

 

 

LDF
L−LDF
RAC−Approx
RAC
Optimal

(b) Flow 2

Fig. 7. An example showing that LDF is strictly sub-optimal.
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(d) Flow 2 under EPDF

Fig. 8. An example showing that EPDF is strictly sub-optimal.

We set the utility function as Uk(Rk) = wkRk with weights
(w1, w2) = (1, 10−5). Choosing w2 = 10−5 means that
we give absolute priority to flow 1. The optimal rate is
(R∗1, R

∗
2) = (0.2344, 0.1250), which we input to all scheduling

policies. Fig. 8(a) and Fig. 8(b) show that the achieved timely
throughputs of our proposed RAC, RAC-Approx, and L-LDF
scheduling policies all converge to (R∗1, R

∗
2); hence, they can

all support this timely throughput vector. On the contrary,
EPDF cannot support this particular timely throughput vector,
and thus is strictly sub-optimal. The observation holds for
a wide range of different M values as shown in Fig. 8(c)
and Fig. 8(d) where M is a tuning parameter of EPDF [16].
The reason is as follows. The choice of U1(R1) and U2(R2)
implies that to achieve the optimal (R∗1, R

∗
2), we must always

give priority to flow 1. However, in EPDF, the periodic virtual
injection of every M time slots ensures that for a constant
fraction of time slots, the deficit of flow 2 will be strictly
positive. Since flow 2 has an earlier deadline, EPDF will favor
flow 2 for a constant fraction of time slots. This is strictly sub-
optimal since an optimal policy must always give precedence
to flow 1.

In both Fig. 7 and Fig. 8, we verify that our RAC schedul-
ing policy is feasibility-optimal. We also show that, for the
instances considered in this set of simulations, our proposed
low-complexity heuristic RAC-Approx and L-LDF scheduling

TABLE II
PERFORMANCE COMPARISON OF TWO SCHEDULING POLICES FOR

MAXIMIZING NETWORK UTILITY, IN TERMS OF THE AVERAGE UTILITY
GAP δ1(u, u∗) OVER 1000 PROBLEM INSTANCES.

PPPPPPPolicy
K 2 4 6 8 10

RAC 0.00% 0.00% 0.01% 0.01% 0.02%
RAC-Approx 0.82% 1.36% 1.76% 2.82% 3.31%

polices support the given timely throughput vector and thus
outperform existing alternatives.

D. Average Performance Comparison of Scheduling Policies
Over A Large Number of Problem Instances

In this subsection, we compare the performance of the
two scheduling policies for maximizing network utility, RAC
and RAC-Approx, and five scheduling policies for supporting
feasible timely throughput vectors, RAC, RAC-Approx, LLDF,
LDF and EPDF, over a large number of randomly generated
problem instances with up to 10 flows.

Our experiments consider K flows where K ∈
{2, 4, 6, 8, 10} and we randomly generate the A&E profile and
the successful delivery probability for any flow k ∈ [1,K], i.e.,
(offsetk, prdk,Dk,Bk, pk), where offsetk and prdk are integers
uniformly drawn from [1, 5], Dk is an integer uniformly drawn
from [1, prdk], and Bk and pk are real numbers uniformly
drawn from [0.5, 1]. For each flow k, we choose the utility
function Uk(Rk) = logRk.

For the utility-maximization problem, we first solve the
utility-maximization problem (P2) and get the optimal net-
work utility u∗. We then evalute the empirical network utility
u for RAC and RAC-Approx scheduling polices. We measure
the utility gap by

δ1(u, u∗) ,
u∗ − u
|u∗|

.

To evaluate whether a scheduling policy is feasibility-
optimal, i.e., capable of supporting any feasible throughput
vector in the timely capacity region, we first solve the utility-
maximization problem (P2) and get the optimal rate vec-
tor ~R∗ = (R∗1, R

∗
2, · · · , R∗K). We input ~R∗ as the timely

throughput requirements for RAC-Approx (see (P3)), LDF,
EPDF, and LLDF scheduling policies. We then evaluate the
empirical timely throughput vector ~R for RAC, RAC-Approx,
LDF, EPDF, and LLDF scheduling policies. We measure the
throughput gap by

δ2(~R, ~R∗) ,

∑K
k=1[R∗k −Rk]+∑K

k=1R
∗
k

,

where [x]+ , max{x, 0}.
For each K ∈ {2, 4, 6, 8, 10}, the empirical performance of

each instance is measured over 1000000 time slots and we
repeat the experiment for 1000 problem instances. We run all
evaluations in MATLAB in a cluster of 40 Linux servers, each
of which has an 8-core Intel Core-i7 3770 3.4Ghz CPU and
up to 61GB memory, running CentOS 6.4. We compute the
average utility gap δ1(u, u∗) for the two scheduling policies
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TABLE III
PERFORMANCE COMPARISON OF FIVE SCHEDULING POLICES FOR

SUPPORTING FEASIBLE TIMELY THROUGHPUT VECTOR, IN TERMS OF THE
AVERAGE THROUGHPUT GAP δ2(~R, ~R∗) OVER 1000 PROBLEM INSTANCES.

PPPPPPPolicy
K 2 4 6 8 10

RAC 0.04% 0.06% 0.09% 0.14% 0.16%
LLDF 0.85% 1.31% 0.80% 1.13% 1.20%
LDF 1.91% 3.34% 1.95% 1.76% 1.76%

RAC-Approx 1.77% 3.94% 5.25% 6.24% 6.43%
EPDF 1.81% 6.02% 6.27% 9.38% 8.99%

for maximizing network utility, RAC and RAC-Approx, as
shown in Tab. II. We compute the average rate gap δ2(~R, ~R∗)
for the five scheduling policies for supporting feasible timely
throughput vectors, RAC, RAC-Approx, LDF, EPDF, and
LLDF, as shown in Tab. III.

For maximizing network utility, Tab. II verifies that our pro-
posed high-complexity RAC policy achieves the optimal net-
work utility, and also shows that our proposed low-complexity
RAC-Approx policy achieves near-optimal performance. For
supporting feasible timely throughput vector, Tab. III verifies
that our proposed high-complexity RAC policy is feasibility-
optimal. Our proposed L-LDF policy achieves the smallest
throughput gap among the remaining four low-complexity
scheduling policies.

VIII. CONCLUSION & FUTURE WORK

In this paper, we study three fundamental problems of
timely wireless flows under general traffic patterns: capacity
region problem, network utility maximization problem and
feasibility-optimal policy design problem. All of them re-
mained largely open. We propose a new MDP-based frame-
work to formulate the timely wireless flow problem with gen-
eral traffic patterns, which allows us to systematically explore
the full design space beyond the existing synchronized-frame-
based studies. By applying two problem-structure-inspired
simplification methods, for the first time we show that all these
three fundamental problems can be solved in principle though
suffering the curse of dimensionality. Therefore, this paper
serves as the ultimate benchmark to evaluate any scheduling
policies for timely wireless flows under general traffic patterns.
We also take a first step toward addressing the curse of
dimensionality by proposing two low-complexity heuristic
solutions. Simulation results show that they achieve near-
optimal performance and outperform existing alternatives. An
interesting and important future direction is to design efficient
scheduling algorithms with performance guarantee for general
traffic patterns.
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