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Abstract—This work generalizes the Age-of-Information (AoI)
minimization problem of update-through-queue systems such that
in addition to deciding the waiting time, the sender also chooses
over which “channel” each update packet will be served. Different
channels have different costs, delays, and quality characteristics
that reflect the scheduler’s selections of routing, communications,
and update modes. Instead of considering only two channels with
restricted parameters as in the existing works, this work studies
the general K-channel problem with arbitrary parameters. The
results show that both the optimal waiting time and the optimal
channel-selection policies admit an elegant water-filling structure,
and can be efficiently computed by the proposed low-complexity
fixed-point-based numerical method.

I. INTRODUCTION

Modern networks have ushered in numerous practical appli-
cations that require up-to-date data. To reduce data staleness, a
source may transmit information to a destination as frequently
as possible. At the same time, sending too many packets could
congest the network and lead to outdated data. The need to
holistically consider data staleness and network dynamics has
led to a new performance metric, Age-of-Information (AoI),
that directly measures data freshness at the destination [1]–
[5]. One canonical model of AoI minimization problems is
the update-through-queue system [6]–[12], where a source
sends update packets to a destination through a queue (see our
discussion in Sec. II.) With instantaneous delivery acknowl-
edgment, the scheduler varies the waiting time to minimize the
average AoI. Important variants of this setting include remote
sampling [5], [10], distribution oblivious optimal adaptive
solutions [13]–[16], delayed feedback [1], [9]–[11], [17], [18],
and energy/cost reduction [11], [19].

This work generalizes the update-through-queue model in
the following way. In addition to deciding the waiting time,
the sender also chooses over which “channel” each update
packet will be served. Different channels have different costs,
delays, and quality characteristics that reflect the scheduler’s
routing, communications, and update modes selections. For
example, in Fig. 1 a scheduler has four possible options to
send updates: fetching the update from a cloud server through
multi-hop Wi-Fi/5G, or from an edge server through single-
hop Wi-Fi/5G. Updates from the edge server may be less fresh
but are faster and cheaper, whereas updates from the cloud
are the freshest but incur longer delays and higher costs. For
example, a scheduler in Fig. 1 has four possible choices for
sending each update packet. It can fetch the update from a
cloud server through multi-hop Wi-Fi or 5G connections. Or
it can send the update from an edge server through single-hop

Wi-Fi or 5G. An update from the edge server may be slightly
outdated (lower quality) but enjoy shorter delay (being closer
to the User Equipment (UE)) and cost less, while an update
directly from the cloud server will be the freshest (the most
accurate) but has a longer delay and higher computational cost.
These four choices can be modeled as an abstract “channel”
to transmit the update packets. The question to answer is: in
terms of data freshness (minimizing AoI), how to dynamically
schedule the four “channels” in this system.

Figure 1. Cloud vs Edge, and Wi-Fi vs 5G

Let’s consider an analogy involving package delivery to
simplify the understanding of our K-channel AoI minimiza-
tion system. Picture an online vendor operating both its web
shop and an Amazon storefront. This vendor regularly ships
products from its factory to Amazon. Now, imagine a customer
who always desires the freshest product from this vendor. The
vendor faces four main shipping options: 1) Directly sending
the package through a courier service like FedEx or UPS;
2) Mailing the package via a postal service such as USPS;
3) Shipping the product through Amazon using its express
delivery service; 4) Sending the product via Amazon without
opting for express delivery (where Amazon might use a courier
service). The customer places a new order immediately upon
receiving a package. The vendor aims to determine the optimal
shipping time to ensure product freshness while considering
the associated costs. Shipping through Amazon introduces
some staleness to the product but is faster, albeit at a price.
Direct shipping preserves freshness and is more cost-effective
but incurs a longer delivery time. While immediate shipping
might appear ideal, we know the value of strategic waiting, as
discussed in Sun et al. (2017) [8]. Therefore, the vendor must
make two critical decisions: choosing the shipping channel and
determining the optimal waiting period. This paper explores
the vendor’s strategy (optimal policy) to maintain the product’s
highest possible freshness (or information currency).

Existing works in this important multichannel setting are



still nascent.1 For example, [23] discovered a threshold-like
aging control policy when one can choose between Wi-Fi
and 5G. Similarly, [24] minimized the AoI while considering
sub-6GHz and mmWave channels jointly. In both works,
there are exactly two channels. Both are of straightforward
channel models: [23] modeled Wi-Fi as a low-cost, random-
on/off channel, and 5G as a high-cost, always-on channel;
[24] modeled mmWave as a Gilbert-Elliot channel and sub-
6GHz as a deterministic-delay channel. Motivated by modern
networks generally supporting many transmission options with
diverse delay and cost characteristics, e.g., Wi-Fi, 5G, Zigbee,
Bluetooth, this work considers general K-channel systems
with arbitrary delay distributions, cost and quality character-
istics. Our main contributions are:

(i) We prove that in a multichannel system, the optimal
waiting time follows the same water-filling structure [3], [8]
as in the single-channel case.

(ii) We prove that the optimal channel selection policy is in
the reverse order of the expected delays. That is, the optimal
scheduler would choose a channel with longer expected delay
if the current AoI is small and switch to a channel with shorter
expected delay if the current AoI is large. “When to switch”
depends on the cost differences between competing channels,
formally characterized in Sec. III.

(iii) We further strengthen (ii) by proving that the optimal
channel selection policy also admits a water-filling structure.

(iv) Leveraging on the findings in (i) and in (iii), we design a
low-complexity fixed-point-based method that efficiently com-
putes the optimal scheduler for arbitrary K-channel systems.

II. PROBLEM FORMULATION

Figure 2. The K-channel Update-Through-Queue System

We model the multi-choice information update scenario in
Sec. I as a single-source/single-destination update system with
different channel choices. Each (abstract) channel represents
one combination of the origin of the update packet, e.g., cloud
vs. edge, and the communication mode, e.g., 5G vs. Wi-Fi.
It is single-source since the “source” represents the central
scheduler, not the different possible origins of the packets.
It is single-destination since it represents a (single) user that
consumes all the updated information. The detailed analytical
model is formally defined below.

Consider the system in Fig. 2 and assume continuous
time axis. At any time t ∈ R+, the source can inject an

1This paper focuses exclusively on the single-source system. For the
multiple-source systems [20]–[22], the goal is to balance the AoI across
coexisting source-destination pairs, which is very different from our goal of
minimizing AoI of a single (and only) source-destination pair.

information update packet Pi to a First-In-First-Out (FIFO)
queue. In addition to deciding when to inject an update
packet, i.e., deciding the waiting time, the scheduler must
also specify which server will be used to service the packet.
To avoid confusion with the terms “cloud and edge servers”
in our motivating scenario, we change the term “server” to
“channel” when discussing our model. That is, all packets
share a common FIFO queue, and each packet has embedded
channel-index k in its header and will be served by CHk when
it is its turn. The choice of channels is made separately for
each packet Pi.

When the service of an update packet is complete (i.e., upon
delivery), the destination will feedback an instantaneous ACK.
We aim to characterize the jointly optimal waiting time and
channel selection policy that minimizes the AoI.

To provide further details, we assume there are K channels.
Each channel CHk, k ∈ C ≜ {1, 2, · · · ,K} is characterized by
the following three attributes that are known globally:
• Delay distribution: The service time (delay) of each

CHk is i.i.d. with bounded support. We denote the (marginal)
distribution by P (Y [k]).

We assume the channels are indexed by the ascending order
of the expected delays. Namely,

E(Y [1]) ≤ E(Y [2]) ≤ . . . ≤ E(Y [K])<∞. (1)

• Update quality degradation: Recall that each “channel”
represents a combination of (a) the origin of the update packets
and (b) the medium of communications, see Fig. 1. For each
CHk, we use Lagk ≥ 0 to represent the quality degradation
of the update packets due to (a). The larger the Lagk, the
more outdated the update packet is, the worse the quality. For
example, a channel that represents fetching the update packet
from a cloud server may have Lag = 0 while a channel that
represents fetching the update from an edge server may have
Lag = 5. The latter signifies that the data quality at the edge
server is roughly 5-temporal-units-more-outdated than the data
at the cloud server. We assume such a conversion from the
update quality to the equivalent time-lag Lagk is possible and
known to the scheduler.

We assume the values of Lagk are given and known. Also,
see the discussion around Eq. (2) for the intuition of Lagk.
• Transmission cost: Since our “channels” also represent

(b) the medium of communications, we use Cstk to denote the
(monetary or energy) cost of sending one packet over CHk.

Define the send time and arrival time of the i-th packet Pi

by Si and Ai, respectively. At any time t, define i∗(t) =
argmax{i : Ai ≤ t} as the index of the most recently
delivered packet. The AoI ∆(t) is then defined by

∆(t) ≜ t− Si∗(t) + Lagk(i∗(t)) (2)

where k(i∗(t)) is the channel that delivered packet Pi∗(t).
The best way to interpret (2) is to first assume Lagk = 0,∀k.

Eq. (2) is then equivalent to the traditional definition of AoI
in [25], [26]. Recall that if we fetch the update from an edge
server, its quality would be worse than if fetching it directly
from a cloud server. As a result, if the latest packet Pi∗(t) is



from CHk(i∗(t)), we “penalize” the effective AoI ∆(t) by the
quality degradation term Lagk(i∗(t)).

The scheduler at the source must decide the send time Si

of each update, and over which channel k(i) it will be served,
with the goal of solving the following minimization problem:

β∗ ≜ inf
all policies

lim sup
T→∞

E


∫ T

0

∆(t) dt+

i∗(T )∑
i=1

Cstk(i)


T

(3)
Limitations of our model: While our single-queue, multi-

channel model is unambiguously defined, it does not fully
capture the motivating scenario in Sec. I. For example, as
will be shown later, the optimal policy under our model
will never send a new packet before the older packet is
delivered. (Existing works [23], [24] do not allow for parallel
transmission either.) However, in the scenario of Fig. 1, the
UE may request parallel updates simultaneously to improve
the timeliness further. Further generalization of our model is
needed to fully reflect the motivating scenario of Fig. 1.

III. MAIN RESULTS

A. Conversion to an ACPS-Semi-MDP Problem

We first show that (3) is a semi-Markov Decision Process
(semi-MDP) with continuous state s ∈ R+, where s represents
the AoI ∆(t) when deciding at time t.

Since we use generate-at-will model [8], and because it is
AoI-suboptimal [8] to let any update packet wait in the queue,
an optimal scheduler only needs to make the decision of the
send time Si at time t = Ai−1, i.e., at the instant when the
previous packet was delivered.

The action space A for any state s is defined by

A ≜ { (k,w) : k ∈ C, w ∈ R+ } (4)

where w is the waiting time, i.e., the send time being Si =
Ai−1 + w; and k is the channel that serves packet Pi.

If action (k,w) is chosen for state s at time t = Ai−1, then
the state transition probability becomes2

p
(k,w)
ss̃ ≜ P

(
Y [k] + Lagk = s̃

)
(5)

Namely, at the delivery time t = Ai = Si+Y
[k]
i , we have the

new state s̃ = ∆(Ai) = Y
[k]
i + Lagk by (2).

Our problem is a semi-MDP instead of a regular MDP
because the sojourn time from state s to the new state s̃ under
action (k,w) is a random variable characterized by [27]

τ(k,w) ≜ Ai −Ai−1 = w + Y
[k]
i . (6)

For convenience, we define the expectation of τ(k,w) by

τ(k,w) ≜ E{τ(k,w)} = w + E(Y [k]) (7)

2Because we consider continuous time axis, a more accurate but more
burdensome description should be p

(k,w)
s→ds̃ = P

(
Y [k] + Lagk ∈ ds̃

)
. For

notational simplicity, we deliberately avoid using ds̃ in our formulation.

We now quantify the AoI+cost per action. Specifically, the
cost of action (k,w) at state s is

c(s, k, w) ≜ 0.5

((
s+ w + Y [k]

)2

− s2
)
+ Cstk (8)

where the first term is the AoI area due to sending Pi, see
Fig. 3, and the last term Cstk is the cost of using CHk. Taking
the expectation of c(s, k, w) in (8) and simplifying it, we have

c(s, k, w) ≜ s·
(
E(Y [k]) + w

)
+ 0.5·E

{
(Y [k] + w)2

}
+ Cstk

(9)

Figure 3. Evolution of The AoI

Using the above semi-MDP definitions, a scheduling policy
π : R+ 7→ C × R+, which maps the state value s to the
corresponding channel and waiting-time choices (k,w), will
have its average total cost per unit time being3

Jπ = lim
I→∞

E

{
I−1∑
i=0

c (∆(Ai), π(∆(Ai)))

}

E

{
I−1∑
i=0

τ (π(∆(Ai)))

} (10)

The optimal π∗ that minimizes Jπ satisfies the following
Bellman equation for all s ∈ R+ [27]):

h(s) = min
k∈C

w∈R+

{
c(s, k, w)− τ(k,w)·β∗ +

∫ ∞

s̃=0

p
(k,w)
ss̃ h(s̃)ds̃

}
(11)

where τ(k,w) ·β∗ is the adjustment term when computing the
average cost per unit time.

Proposition 1. The optimal value β∗, defined in (3), can be
found by solving the β∗ satisfying the Bellman equation (11).

B. Waiting Time versus Channel Selection
In this subsection, we further simplify (11). Define the

expression in (11) without the min operation by

Qk(s, w, β
∗) ≜ c(s, k, w)− τ(k,w)β∗ +

∫ ∞

s̃=0

p
(k,w)
ss̃ h(s̃)ds̃

By plugging in the expressions of c(s, k, w), τ(k,w) and
p
(k,w)
ss̃ in (9), (7), and (5), respectively, we can easily simplify

Qk(s, w, β
∗) as follows:

Qk(s, w, β
∗) = Q◦

k(s, w, β
∗)− (s− β∗)2

2
(12)

3Without loss of generality, we assume the initial state s0 = ∆(0) = 0.



where

Q◦
k(s, w, β

∗) ≜

(
(s+ w)−

(
β∗ − E(Y [k])

))2
2

+Hk (13)

and we use the variance of Y [k] to define

Hk≜
var(Y [k])

2
+ E{h(Lagk + Y [k])}+ Cstk. (14)

We then notice that the term (s−β∗)2

2 in (12) does not
depend on the policy choice (k,w). Therefore, from the
perspective of characterizing the optimal policy, we can focus
on minimizing Q◦

k(s, w, β
∗) instead of Qk(s, w, β

∗). Note that
we can temporarily ignore the (s−β∗)2

2 term in (12), since it
does not depend on the policy choice w.

Proposition 2. Given any fixed k, the waiting time w∗ that
minimizes Q◦

k(s, w, β
∗) follows a water-filling structure:

w∗ = max(β∗ − E(Y [k])− s, 0) (15)

= max{w ≥ 0 : w + s+ E(Y [k]) ≥ β∗}. (16)

Furthermore, if we plot minw≥0 Q
◦
k(s, w, β

∗) as a function
of s, see Fig. 4, it consists of two halves: the left-hand side of
the vertex (s = β∗−E(Y [k])) is a flat line while the right-hand
side being identical to the quadratic curve Q◦

k(s, 0, β
∗).

Namely, the optimization over w ≥ 0 essentially “bends”
the left-hand side of the quadratic curve Q◦

k(s, 0, β
∗) down-

wards to a flat line. See [28] for additional details.

Figure 4. Q◦
k(s, 0, β

∗) versus min
w≥0

Q◦
k(s, w, β∗)

Because the optimal waiting time in (15)–(16) for our
multichannel setting is of an identical form as the single-
channel case [3], [29], [30], it implies that an overall optimal
policy can be done sequentially: Firstly, we choose the
optimal CHk, and then we choose the optimal waiting time
of Pi using (16) as if we are in a single-channel scenario.

We now describe the optimal channel selection for the K =
2 case. Specifically, Fig. 5 plots two curves defined as follows:

Q⋆
k(s, β

∗) ≜ min
w≥0

Q◦
k(s, w, β

∗), ∀k ∈ {1, 2} (17)

Following the discussion right after Eq. (14), the optimal
policy will solve min(k,w) Q

◦
k(s, w, β

∗) = mink Q
⋆
k(s, β

∗),
which can be solved by analyzing the relative positions
between Q⋆

1(s, β
∗) and Q⋆

2(s, β
∗). Specifically, there is a

threshold θ∗, see Fig. 5, such that we choose k = 2 if s < θ∗

and choose k = 1 if s ≥ θ∗. The θ∗ is the intersecting
point of the two curves Q⋆

1(s, β
∗) and Q⋆

2(s, β
∗), assuming

Figure 5. Optimal channel selection for the K = 2 channel system

we know the values of β∗,E(Y [k]), and Hk. The θ∗ value
can be easily found by calculating the intersecting point of
two curves Q⋆

1(s, β
∗) and Q⋆

2(s, β
∗), assuming we know the

values of β∗,E(Y [k]), and Hk.
We now generalize the above discussion for arbitrary K:

Proposition 3. The optimal channel selection policy is of the
following water-filling structure. Each CHk has a water-level
value γk where γ1 ≤ γ2 ≤ · · · ≤ γK =∞ and each value can
be positive or negative. The corresponding channel selection
rule under a given state s is described by

k∗(s) = min{k ∈ {1, · · · ,K} : γk + s ≥ β∗}. (18)

The proof is derived by jointly comparing the relative
positions of all K curves Q⋆

k(s, β
∗). We thus omit the details.

A few remarks are in order. Firstly, (18) has the same
water-filling structure as in (16). Secondly, the selection rule
(18) is monotonic, i.e., when s is small, we would select the
channel with a larger k (since γk is non-decreasing), and
vice versa Finally, Proposition 3 implies implicitly that if
γk = γk+1, then, by definition, the selection rule (18) will
never select CHk+1. It means that CHk+1 is “dominated” by
other channels, a phenomenon frequently encountered in our
simulations.

Note that given β∗ and E(Y [k]), the optimal w∗(s) is fully
described by (16), but k∗(s) in (18) still depends on the values
of γk. We now describe how to compute γk assuming we
know the values of β∗ and Hk, the latter of which can easily
be computed via (14) if we know the function h(s) and the
distribution of Y [k]. The optimal channel selection policy is
complete once we have computed γk, the optimal channel
selection policy is complete.

Lemma 1. Consider any given two channels CHi and CHj .
We then have two cases.

Case 1: E(Y [i]) = E(Y [j]). If Hi = Hj , then the two
curves Q⋆

i (s, β
∗) and Q⋆

j (s, β
∗) are identical, see (13). IfHi ̸=

Hj , then Q⋆
i (s, β

∗) and Q⋆
j (s, β

∗) are parallel, and do not
intersect.

Case 2: E(Y [i]) < E(Y [j]). We have three subcases. Case
2.1: If Hi < Hj , then Q⋆

i (s, β
∗) and Q⋆

j (s, β
∗) have no

intersecting point; Case 2.2: If Hi = Hj , then the two curves
fully overlap for the range of s ≤ β∗ − E(Y [j]); Case 2.3: If
Hi > Hj , then the two curves have exactly one intersecting



point at s = θi,j regardless of the β∗ value. The intersecting
s = θi,j value can be expressed by

θi,j = β∗ − fγ

(
E(Y [i]),E(Y [j]),Hi −Hj

)
(19)

and the description of fγ(·, ·, ·) is provided in Appendix C.

Using Lemma 1, Algorithm 1 computes the values of
γk,∀k ∈ C. We omit the proof due to space constraints.

Algorithm 1 Computing the water-level values γk

Require: E(Y [k]),Hk, ∀k ∈ C, and the fγ(·, ·, ·) in (19).
1: P is a set of ordered pairs; initialize P ← ∅.
2: for all i, j ∈ C and i < j do
3: Consider the two curves Q⋆

i (s, β
∗) and Q⋆

j (s, β
∗).

4: if they have exactly one intersecting point then

γ̃i,j←fγ

(
E(Y [i]),E(Y [j]),Hi −Hj

)
; P←P∪{(i, j)}

5: end if
6: end for
7: j0 ← argmink∈CHk.
8: γk ← −∞,∀k ∈ (0, j0); and γk ←∞,∀k ∈ [j0,K].
9: while j0 ≥ 2 do

10: i0 ← argmax(i,j0)∈P γ̃i,j0
11: if i0 ≥ 1 then
12: γk ← γ̃i0,j0 ,∀k ∈ [i0, j0).
13: end if
14: j0 ← i0.
15: end while
Note 1: If there is a tie in Line 7, choose the smallest such
j0. If there is a tie in Line 10, choose the smallest such i0.
Note 2: In Line 10, if no (i, j0) ∈ P , then i0 ← −∞.

C. Numerical Computation via Fixed-Point Iteration

This subsection discusses how to compute the optimal β∗

and the value function h(s), which can then be used to
compute w∗(s) using (15), compute Hk using (14), compute
γk using Algorithm 1, and compute k∗(s) using (18). Our
method is very efficient since it utilizes the optimal water-
filling structures during the fixed-point iteration computation.

Lemma 2. When solving the Bellman equation (11), we only
need to consider a bounded range of s ∈ [0, ymax+maxk Lagk]
instead of the unbounded range of s ∈ R+.

The proof is provided in [28]. By Lemma 2, we quantize
the interval [0, ymax +maxk Lagk] with N grid points

SN ≜

{
n· ymax +maxk Lagk

N
: n ∈ {0, 1, · · ·N − 1}

}
(20)

for some sufficiently large N . Namely, we only solve the β∗

and the h(s) values for a finite number of s ∈ SN . The func-
tions c(s, k, w) and τ(k,w) do not change during quantization.
They are still specified by (9) and (7), respectively. However,
p
(k,w)
ss̃ in (5) will change slightly since the next state s̃ is

also quantized to grid points in SN . We thus need to reassign

the probability from the continuous pdf P (Y [k] ∈ dy) to
their discrete pmf counterpart. Such a reassignment is standard
when quantizing any continuous random variable.

We then solve the quantized Bellman equation (11) over
s ∈ SN in an iterative fashion: We initialize β(0) = 0 and
h(0)(s) = 0,∀s ∈ SN . Then, for l ≥ 1, we do the following.

Step 1: Use h(l−1)(s) to compute H(l−1)
k using (14) and

the (quantized) distribution of P (Y [k]).
Step 2: Use β(l−1) and H(l−1)

k to compute the optimal
channel selection rule k(l)(s) using (18) and Algorithm 1.
Use β(l−1) and E(Y [k]) to compute the optimal waiting time
w

(l)
k (s) for each CHk. Collectively, k(l)(s) and w

(l)
k (s) form

a scheduling policy, which we denote as π(l).
Step 3: Replace the min(k,w) operator in (11) by the policy

π(l). Namely, we have a simple linear equation: ∀s ∈ SN .

h(s)= c(s, k(s), w(s))−τ(k(s), w(s))β+
∑
s̃∈SN

p
(k(s),w(s))
ss̃ h(s̃)

(21)
where k(s) and w(s) are the action choices under policy π(l).
We then solve the β and h(s) values that satisfy (21) for all
s ∈ SN while hardwiring h(0) = 0 when finding the solution.
We denote the end results by β(l) and h(l)(s), respectively. 4

Step 4: Repeat Steps 1 to 3 until β(l) and h(l)(s) converge.

Lemma 3. Assume a sufficiently large N such that the
quantized computation mimics the original continuous-time
counterpart. In the above 4-step process, the resulting β(l) is
a non-increasing function when l ≥ 1 (excluding l = 0), and
lim
l→∞

β(l) = β∗.

IV. NUMERICAL EVALUATIONS

Consider a 4-ch system described in Table I, for which the
channel index is sorted in the ascending order of E(Y [k]) as
required in Sec. II. The example scenario is related to our
discussion of Fig. 1, i.e., an update from the edge server
will experience an AoI degradation Lag = 5. We assume
5G and single-hop have shorter delays than Wi-Fi and multi-
hop communications. We assign Cstk in the reverse order of
E(Y [k]) to avoid the less interesting cases that one channel
is dominated by other channels. Otherwise, the problem will
collapse to a simple 1-channel or 2-channel case, making the
setting less enjoyable.

Fig. 6(a) tracks the convergence of β(l) in our proposed
method. In Fig. 6(b), we use a generic Q-function value
iteration [31] to solve the semi-MDP in (11). While con-
vergence is guaranteed for both methods, both outputting
the same β∗ = 18.93, the Q-value iteration took hundreds
of iterations to converge. In contrast, our low-complexity
algorithm converged in just a few iterations (l ≈ 4).

We also compare with some other non-trivial solutions.
Specifically, we designed separately a policy that hardwires

4Solving the linear equations does not necessarily involve matrix inversion.
In our setting, the linear equations contain some contraction mappings, and
the solution can be found by simple fixed-point iterations that first find the
steady-state distribution, then find β(l), and finally find h(l)(s).



Table I
SIMULATION CHANNEL PARAMETERS

Example Distribution P (Y [k]) Lagi Csti

CH1 Edge+5G
uniform over {1, 2, 4, 5}

E(Y [1]) = 3
5 150

CH2 Cloud+5G
uniform over {1, 4, 8, 11}

E(Y [2]) = 6
0 100

CH3 Edge+Wi-Fi
uniform over {1, 7, 9, 15}

E(Y [3]) = 8
5 50

CH4 Cloud+Wi-Fi
uniform over {1, 11, 13, 23}

E(Y [4]) = 12
0 0

1 2 3 4
Iteration( )

19.0
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(a) Proposed Iterative Algorithm
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(b) Q Value Iteration [31]

Figure 6. Convergence behavior of β(l)

w = 0, i.e., zero-wait, but optimally switches between differ-
ent CHk depending on the state s = ∆(t). We also designed
“dumb” deterministic channel selection policies (say always
choose CHk), but with optimal waiting time w∗, [8], [9]. We
call them “single-chk policies”. In Figs. 7(a) and 7(b), we
multiply the cost Cstk in Table I of each channel by a common
factor α ∈ [1, 2]. We then plot the optimal β∗ versus different
α. Fig. 7(a) reaffirms that varying the waiting time is crucial
to achieve β∗ since our scheme significantly outperforms ZW-
opt, which optimizes only channel selection but not waiting
time. The same setup is repeated in Fig. 7(b), but we focus
on single-chk policies this time. By dynamically utilizing
the best of the 4 channels for different state s, our optimal
scheme consistently outperforms any single-chk policy. Note
that when α ≥ 1.7, single-ch4 becomes optimal as all other
channels become too costly with the new cost αCstk. In sum,
our algorithm takes full advantage of the heterogeneity of K
channels. It employs only the best channel and best waiting
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20.0
20.2
20.4
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Proposed

(b) Versus Single-Channel Policy

Figure 7. Achievable AoI compared to other non-trivial solutions.

time at any given state s, the key to optimal performance.

V. CONCLUSION

We have studied AoI minimization for heterogeneous K-
channel systems and fully characterized the optimal scheduler.
New water-filling structures of optimal policies and efficient
computation methods have been discovered. One potential
application is the AoI-optimal scheduling over multiple cloud
vs edge transmission choices and 5G vs Wi-Fi, respectively.
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APPENDIX A
PROOF OF PROPOSITION 2

If the state s = ∆(t) satisfies s < β∗ − E(Y [k]), i.e., s
is on the left-hand side of the vertex of the quadratic curve
Q◦

k(s, 0, β
∗), see Fig. 4, then increase s value by a small w > 0

will lead to Q◦
k(s+ w, 0, β∗) = Q◦

k(s, w, β
∗) < Q◦

k(s, 0, β
∗),

where the equality is by (13). By the same reasoning but going
one step deeper, the best strategy under the starting state s is
to set the waiting time w∗ = β∗ − E(Y [k]) − s so that after
waiting for w∗ time the new s′ = s+w∗ will “hit” the vertex,
the lowest point of the quadratic curve Q◦

k(s, 0, β
∗).

On the other hand, if s ≥ β∗−E(Y [k]), i.e., s is on the right-
hand side of the vertex, we then set the waiting time w∗ = 0
since we have already passed the vertex and any additional
waiting time w > 0 will increase the cost: Q◦

k(s+w, 0, β∗) =
Q◦

k(s, w, β
∗) > Q◦

k(s, 0, β
∗).

If we plot minw≥0 Q
◦
k(s, w, β

∗) versus s, see Fig. 4, the
new curve is a flat line on the left-hand side of the vertex but
a quadratic curve on the right-hand side of vertex.

APPENDIX B
PROOF OF PROPOSITION 2 (CONVEX OPTIMIZATION VER.)

The optimization problem of Proposition 2 is as follows.

min
w

Q◦
k(s, w, β

∗)

s.t. w ≥ 0
(22)

Since Q◦
k(s, w, β

∗) is convex over s and the constraint w is
a linear function, the optimization problem is a convex opti-
mization problem. A Lagrangian of the optimization problem
can be defined as

L(w, λ) = Q◦
k(s, w, β

∗)− λw (23)

A dual function is defined by

g(λ) ≜ inf
w
L(w, λ) (24)

where dual problem is formulated as

max
λ

g(λ)

s.t. λ ≥ 0
(25)

Given that
∂

∂w
L(w, λ) =

(
(s+ w)−

(
β∗ − E(Y [k])

))
− λ (26)

It follows that

w∗ = max
((

β∗ − E(Y [k])
)
− s+ λ, 0

)
(27)

Thus, we have

g(λ) = L(w∗, λ) (28)

=

(
(s+ w∗)−

(
β∗ − E(Y [k])

))2
2

+Hk (29)

=

{
− 1

2λ
2 + (s− θk)λ+Hk λ > s− θk

1
2 (s− θk)

2
+Hk λ ≤ s− θk

(30)



where θk = β∗ − E(Y [k]). The solution λ∗ such that satisfies
∂g
∂λ (λ

∗) = 0 is

λ∗ = (s− θk)
+ (31)

Thus, the solution to the dual problem is

g(λ∗) =

{
1
2 (s− θk)

2
+Hk s > θk

Hk s ≤ θk
(32)

Since the Karush-Kuhn-Tucker (KKT) conditions are satisfied,
strong duality holds. Therefore,

Q⋆
k(s, β

∗) = min
w≥0

Q◦
k(s, w, β

∗) (33)

= g(λ∗) (34)

=

{
1
2 (s− θk)

2
+Hk s > θk

Hk s ≤ θk
(35)

Therefore, due to the complementary slackness, the optimal
waiting time w∗ is given as

w∗ = max(β∗ − E(Y [k])− s, 0) (36)

= max{w ≥ 0 : w + s+ E(Y [k]) ≥ β∗}. (37)

APPENDIX C
PROOF SKETH OF LEMMA 1

We get a closed form of fγ(E(Y [i]),E(Y [j]),Hi −Hj) as
below.

(38)
fγ(E(Y [i]),E(Y [j]),Hi −Hj)

=

{
γA

(E(Y [j])−E(Y [i]))2

2 < Hi −Hj

γB
(E(Y [i])−E(Y [j]))2

2 ≥ Hi −Hj

where

γA =
Hi −Hj

E(Y [i])− E(Y [j])
+ 0.5(E(Y [i]) + E(Y [j])) (39)

γB = E(Y [j])−
√

2(Hi −Hj) (40)

Proof. When Hi > Hj , we exactly have one intersection of
Q⋆

i (s, β
∗) and Q⋆

j (s, β
∗). Let the intersection of two functions

be (s∗, Q∗). Then , there are two cases: (i) Q∗ > Hi, which
is equivalent to (E(Y [j])−E(Y [i]))2

2 < Hi − Hj . In this case,
the intersection lies on the right-hand side of both Q⋆

i (s, β
∗)

and Q⋆
j (s, β

∗). Thus, by solving an equation of two quadratic
functions, one can easily get s∗ = β∗ − γA. (ii) Q∗ = Hi,
which is equivalent to (E(Y [j])−E(Y [i]))2

2 ≥ Hi − Hj . In this
case, the intersection lies on the left-hand side of Q⋆

i (s, β
∗)

and the right-hand side of Q⋆
i (s, β

∗). We can get s∗ = β∗−γB
by calculating an equation of one quadratic function and one
constant function.

APPENDIX D
PROOF SEKTCH OF LEMMA 2

By the transition probability discussion in (11), the (ran-
dom) state s̃ that can be reached by any arbitrary action
choice (k,w) and any arbitrary starting state s is less than
ymax +maxk Lagk with probability one. Therefore, the right-
hand side of the Bellman equation only uses h(s̃) for those
s̃ ∈ [0, ymax + max

k
Lagk]. As a result, any h(s) with

s > ymax + max
k

Lagk only appears in the left-hand-side of
(11), which does not impose any “constraint” when solving the
Bellman equation and can thus be ignored during numerical
computation.

APPENDIX E
PROOF SKETCH OF THE CORRECTNESS OF ALGORITHM 1
By the definition of j0, for all i > j0, we have Q⋆

i (s, β
∗) ≥

Q⋆
j0
(s, β∗). Thus, line 8 γk ←∞ for k ∈ [j0,K] is justifiable.

Also by the definition of j0, for all i < j0, Q⋆
i (s, β

∗) ≥
Q⋆

j0
(s, β∗) during the range of s ≤ β∗ − E(Y [j0]). For any

(i, j) such that γ̃i,j is uniquely defined by Line 4, define θi,j =
β∗− γ̃i,j . We now run the for a loop until and including Line
10 for the very first time and thus finished computing the ˜γi0,j0
value for the very first time. For i0 such that i0 = −∞, then
we must have Q⋆

i0
(s, β∗) ≥ Q⋆

j0
(s, β∗) for all i0 < j0 during

the range of s > β∗−E(Y [j0]). Thus, if i0 = −∞, Q⋆
j0
(s, β∗)

is the lower envelope of Q⋆
i0
(s, β∗) for all i0 ∈ C. Since the

while loop stops in this case. Our algorithm is correct.
If i0 ≥ 1, then we must have Q⋆

i0
(s, β∗) ≥ Q⋆

j0
(s, β∗)

during the range of s ∈ (β∗−E(Y [j0]), θ+i0,j0 ]. Here θ+i0,j0 in-
dicates a value θi0,j0+δ for some sufficiently small but strictly
positive δ > 0. Furthermore, Q⋆

i0
(s, β∗) is the lower envelope

during the range s ∈ [θi0,j0 , θ
+
i0,j0

]. The above discussion
shows that for the very first (i0, j0), we have characterized the
lower-envelop for the range of s ≤ θ+i0,j0 after finishing Line
12 of the while loop. We now use mathematical induction.

Hypothesis: Suppose we have successfully characterized
the lower envelop for the range of s ≤ θ+i0,j0 for some
pair of (i0, j0), not necessarily the first one. Also, assume
that Q⋆

i0
(s, β∗) is the lower5 envelope during the range s ∈

[θi0,j0 , θ
+
i0,j0

] for that particular (i0, j0), not necessarily the
first pair. We now like to prove that after one iteration of the
while loop, the induction hypothesis still holds with the new
(̃i0, j̃0).

Induction: If i0 = 1, the while loop stops in the next
iteration since j̃0 = i0 = 1. Because no further γk is assigned,
our algorithm assumes the lower envelope will extend from
θ+i0,j0 to ∞. This assumption turns out to be correct since
Q⋆

1(s, β
∗) is the lower envelop during [θ1,j0 , θ

+
1,j0

] implies that
it is also the envelope during [θ1,j0 ,∞)

If i0 ≥ 2, then we have j̃0 = i0 ≥ 2. Consider two cases:
Case 1: If ĩ0 = −∞ and θj̃0,i exists for some i > j̃0 = i0,
then θj̃0,i ≤ θi0,j0 . Suppose there exists an i′ > i0 such that
θi0,i′ > θi0,j0 . This contradicts that Q⋆

i0
(s, β∗) is the lower

5If two curves overlap, the lower envelope is defined as the unique one
with the smallest channel index. Therefore, there is no tie in our definition.



envelope in the range of s ∈ [θi0,j0 , θ
+
i0,j0

]. Thus, in the case
of ĩ0 = −∞, the curve Q⋆

i0
(s, β∗) is also the lower envelope

in the range of s ∈ [θi0,j0 ,∞). Since Algorithm 1 stops in this
case, it correctly characterizes the entire lower envelope again.
Case 2: ĩ0 ≥ 1. If ĩ0 ≥ 1, then θĩ0,j̃0 > θi0,j0 . Suppose there
exists an i′ < i0 such that θi′,i0 ≤ θi0,j0 . This contradicts
that Q⋆

i0
(s, β∗) is the lower envelope in the range of s ∈

[θi0,j0 , θ
+
i0,j0

]. Also, I claim if ĩ0 ≥ 1 and θj̃0,i exists for some
i > j̃0 = i0, then θj̃0,i ≤ θi0,j0 . Suppose there exists an i′ > i0
such that θi0,i′ > θi0,j0 . This contradicts that Q⋆

i0
(s, β∗) is the

lower envelope in the range of s ∈ [θi0,j0 , θ
+
i0,j0

]. Therefore,
we have that if ĩ0 ≥ 1, then Q⋆

i0
(s, β∗) is the lower envelope

in the range of s ∈ [θi0,j0 , θĩ0,j̃0 ] and Q⋆
ĩ0
(s, β∗) is the lower

envelope in the range of s ∈ [θĩ0,j̃0 , θ
+

ĩ0,j̃0
]. By induction, the

proof is complete.


