
A Simple 1-Hop Broadcast Scheme That

Achieves The Optimal Deadline-Constrained

Throughput For Two Independent Sessions

With Over-Provisioned Bandwidth.

1 The Setting

In this work, we are interested in the achievable throughput of network coding
schemes for the setting of two unicast sessions under the sequential deadline
constraints of stored-video streaming.

We consider the downlink of a single cell in which the base station (BS)
broadcasts two video files to 2 users, d1 and d2, respectively. Each video file
contains N packets, and we use {X1,n}N

n=1, {X2,n}N
n=1 to represent them. We

use session 1 and session 2 to denote (the transmission of) the data packets
for d1 and d2, respectively.

We define the time when the BS begins transmitting the first packet as
the time origin, and assume that all packets are available at the source (the
video-file server) at the time origin. We also assume slotted transmission.
Each packet Xj,n (j = 1, 2) has a deadline τj,n such that after time slot τj,n

the packet Xj,n is no longer useful for user j. For ease of exposition, we
assume that the deadlines of Xj,n are the same for both sessions and they
have the following form:

∀j ∈ {1, 2}, τj,n = δ · n , where δ is a fixed positive integer.

We consider random and unreliable wireless channels. Both users can
overhear the transmission to the other user. That is, a transmitted packet
may be received by both users, by only one user, or by neither users. Consider
a packet is transmitted in the t-th time slot. For j = 1, 2, we use Cj(t) =
1 to denote the event that user j can receive the packet successfully, and
Cj(t) = 0, otherwise. The successful probability for each channel is p. In
this manuscript, we consider the models in which channels are independently
and identically distributed (i.i.d.) and both channels C1(t) and C2(t) are
independent with each other. We also assume that in the end of each time
slot, the BS has perfect feedback from both destinations regarding whether
the transmitted packet has been successfully received by each user. Such
information will be used to decide what to transmit in the next time slot.
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If coding is not allowed, the source can only transmit uncoded packets.
Suppose packet X1,n is transmitted at time t, and user 1 does not receive
it. After receiving the feedback at the end of time t, the BS may decide
to retransmit the same packet X1,n; or may decide to move to the next
packet X1,n+1 to enhance the chance that packet X1,n+1 can be received
before its deadline; or it may decide to send the packet X2,n′ for the other
session instead. If coding across different packets is allowed, then in one slot,
the BS can encode a set of unexpired packets together and broadcast it to
all users. Here we allow coding operation across different sessions. When
coding is used, we require an information packet to be “decoded” before the
corresponding deadline.

Our goal is to design a coding/scheduling policy that maximizes the num-
ber of successful (unexpired) packet receptions. Let Dj(n) = 1 if user j can
successfully decode/recover the n-th information packet for session j before
its deadline τj,n = δn; and Dj(n) = 0, otherwise. We define the total number

of successes Nsuccess by Nsuccess
∆
=

∑N
n=1

∑2
j=1 Dj(n). Our goal is to maximize

the normalized expected throughput E{Nsuccess}
2N

.

2 The Scheme

Next we present a simple network coding scheme for the above setting.
To begin with, we will introduce some definitions. The source s keeps

two registers n1 and n2. One can view the purpose of ni as to keep track
of the next uncoded packet to be sent for session i. Since both n1 and n2

evolve over time, we sometimes use ni(t) to denote the value of ni in the end

of time t. The source s also keeps two lists of packets: ṽ
[2]
X and ṽ

[1]
Y . ṽ

[2]
X is a

list that contains all unexpired packets of session 1 that have been received
by user 2 but not by user 1. Symmetrically, ṽ

[1]
Y is a list that contains all

unexpired packets for session 2 that have been received by user 1 but not by
user 2. We use s̃1 and s̃2 to denote the sets of packets to be transmitted or
sessions 1 and 2, respectively.

1: Set n1 ← 1, n2 ← 1, ṽ
[2]
X ← ∅, ṽ

[1]
Y ← ∅, s̃1 ← {X1,1, · · · , X1,N}, and

s̃2 ← {X2,1, · · · , X2,N}.
2: for t = 1 to δN do
3: In the beginning of the t-th time slot, do the following:
4: if n2 ≤ N then
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5: if both ṽ
[2]
X and ṽ

[1]
Y are non-empty then

6: Choose the oldest packet X1,j∗1 from ṽ
[2]
X and the oldest packet

X2,j∗2 from ṽ
[1]
Y . Broadcast the linear sum [X1,j∗1 + X2,j∗2 ].

7: else if n1 = n2 then
8: Send uncoded packet X1,n1 directly.
9: else if n1 > n2 then

10: Send uncoded packet X2,n2 directly.
11: end if
12: else
13: Choose the oldest packet in ṽ

[2]
X ∪ṽ

[1]
Y and send that packet uncodedly.

14: end if
15: In the end of the t-th time slot,
16: if an uncoded packet X1,n1 was sent and received by at least one user

then
17: n1 ← n1 + 1.
18: Remove X1,n1 from s̃1. If X1,n1 was received only by d2, then add

X1,n1 to ṽ
[2]
X .

19: else if an uncoded packet X2,n2 was sent and received by at least one
user then

20: n2 ← n2 + 1.
21: Remove X2,n2 from s̃2. If X2,n2 was received only by d1, then add

X2,n2 to ṽ
[2]
X .

22: else
23: Depending on whether the coded transmission [X1,j∗1 + X2,j∗2 ] was

received by d1, remove X1,j∗1 from ṽ
[2]
X .

24: Depending on whether the coded transmission [X1,j∗1 + X2,j∗2 ] was

received by d2, remove X2,j∗2 from ṽ
[1]
Y .

25: end if
26: Remove all expired packets (those with index ≤ t

δ
) from ṽ

[2]
X , ṽ

[1]
Y , s̃1,

and s̃2.
27: end for

By noting that the above scheme actually schedules the non-coded trans-
mission in a round-robin fashion, we have the following self-explanatory
lemma.

Lemma 1. For any time slot t, we have 0 ≤ n1(t)− n2(t) ≤ 1.
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3 Performance Analysis

The performance of the proposed simple scheme is characterized as follows.

Proposition 2. The proposed scheme satisfies the following:

lim
N→∞

E{Nsuccess}
2N

= 1 (1)

for all p values satisfying p ≥ p?, where p? ∆
= 2δ+1−√4δ2−8δ+1

2δ
.

Proposition 3. For any p < p?, any scheme, coded or non-coded, must have

lim
N→∞

E{Nsuccess}
2N

= 1− ε (2)

for some ε that depends only on p.

The above two propositions show that the proposed scheme is asymptot-
ically throughput optimal in an over-provisioned environment (p > p?). We
first prove Proposition 3.

Proof. Let us temporarily relax the sequential deadline constraint and set

∀i ∈ {1, 2}, n ∈ {1, · · · , N}τi,n = δ ·N. (3)

Then the question becomes how many packets out of the overall 2N packets
(N for d1 and N for d2) can be sent to their desired destinations within δ ·N
time slots. Let Ñ1 and Ñ2 denote the number of packets that are successfully
received by each user, respectively. In [1], it was proven that Ñ1 and Ñ2 and
must satisfy

Ñ1

p
+

Ñ2

1− (1− p)2
≤ δN (4)

Ñ1

1− (1− p)2
+

Ñ2

p
≤ δN. (5)

With the objective function being max
(
Ñ1 + Ñ2

)
, we can solve the above

linear-programming problem and prove that

lim
N→∞

E{Ñ1 + Ñ2}
2N

≤ (2p− p2)δ

3− p
. (6)

The remaining step is to observe that for all p < p?, the left-hand side of (6)
is strictly bounded away from 1. The proof is complete.
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Before proving Proposition 2, we present the following key lemma, which
is critical to our proof.

Lemma 4. For any ε > 0, there exists a B > 0 such that for all fixed t1 and
t2 satisfying (t2 − t1) > B,

E
{

n2(t2)− n2(t1) |t2 < δn2(t1)
}
≤ (t2 − t1)

(
2p− p2

3− p

)
(1 + ε).

Proof. The following discussion is conditioned on the event that in the end

of time t1, we have At1
∆
= {t2 < δn2(t1)}. Define ∆n =

⌊
(t2 − t1)

2p−p2

3−p

⌋
.

From the beginning of time t1 +1, let us temporarily suspend the “expiration
mechanism” and use our proposed scheme to transmit packets while allowing
the supposedly expired packets to remain in the system. We first examine
how long it takes before the register n2(t) evolves from its current value
n2(t1) to a different value n1(t1)+ ∆n. More specifically, we use t3 to denote
the (random) time slot for which in the end of time t3, n2(t) changes to
n1(t1) + ∆n for the first time.

We define UT1[n1(t1), n1(t1)+∆n−1] (which stands for “Uncoded Trans-
mission”) as the number of time slots in [t1+1, t3] when the proposed scheme
schedules an uncoded packet transmission for Session 1. Note that by our def-
initions, all those uncoded transmissions must be used to transmit X1,n for
some n ∈ [n1(t1), n1(t1) + ∆n − 1]. This is why we append [n1(t1), n1(t1) +
∆n − 1] to UT1. Similarly, we also define UT2[n2(t1), n1(t1) + ∆n − 1] as
the number of time slots in [t1 + 1, t3] when the proposed scheme schedules
an uncoded packet transmission for Session 2 packets X2,n with the indices
being n ∈ [n2(t1), n1(t1)+∆n−1]. We use UT1 and UT2 as shorthand in the
subsequent discussion.

Define

H1,n = |{t > t1 : in the beginning of time t, the scheme schedules

an uncoded transmission of X1,n}| . (7)

Since we stop an uncoded transmission if any one of the destinations suc-
cessfully receives it, we have

E{H1,n|At1} =
1

2p− p2
(8)
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for all n ≥ n1(t1). As a result, the total number of time slots to transmit the
uncoded session-1 packets is

UT1 =

n1(t1)+∆n−1∑

i=n1(t1)

H1,i.

Similarly, the total number of time slots to transmit the uncoded session 2
packets in time [t1 + 1, t3] is at least

UT2 =

n1(t1)+∆n−1∑

i=n2(t1)

H2,i ≥
n1(t1)+∆n−1∑

i=n1(t1)

H2,i.

Since each H1,i and H2,j are i.i.d. (conditional) geometric distribution with
expectation (8), for any ε1, δ1 > 0, we can choose a sufficiently large B1 such
that if ∆n > B1, then

P

(
UT1 + UT2 > (1− ε1)

2∆n

2p− p2

∣∣∣∣At1

)

≥ P




n1(t1)+∆n−1∑

i=n1(t1)

(H1,i + H2,i) > (1− ε1)
2∆n

2p− p2

∣∣∣∣∣∣
At1




= P

(
2∆n∑
i=1

Hi > (1− ε1)
2∆n

2p− p2

)
> 1− δ1, (9)

where {Hi} are i.i.d. geometric random variables with expectation 1
2p−p2 and

(9) follows from the weak law of large numbers.
Let O1,n denote a Bernoulli random variable that is 1 if when sending

X1,n uncodedly, it was d2 that received X1,n first. Symmetrically, we define
the Bernoulli random variable O2,n such that O2,i is 1 if when sending X2,i

uncodedly, it was d1 that received X2,i first.
We now define CT1,n as follows:

CT1,n
∆
= |{t > t1 : in time t, packet X1,n is mixed (coded) with

some other X2,n′ packets.}| , (10)

where CT1,n stands for the coded transmission for packet X1,n. Define TCT
as the total number of coded transmission in time [t1 +1, t3]. We then notice
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the following facts: (i) In the beginning of time t3, the scheme must transmit
an uncoded packet X2,n1(t1)+∆n−1 and it is received by one of the destinations
(that is why n2(t) changes to n1(t1)+∆n). (ii) Therefore, in the end of time

t3 − 1, there must have min
(
ṽ

[2]
X , ṽ

[1]
Y

)
= 0. That are no packets to be coded

in the end of time t3− 1. (iii) Therefore, in the end of time t3− 1, either (a)

there is no {X1,n : n ∈ [n1(t1), n1(t1) + ∆n − 1]} in ṽ
[2]
X , or (b) there is no

{X2,n : n ∈ [n2(t1), n1(t1) + ∆n− 2]} in ṽ
[1]
Y . From the above three facts, we

have

TCT = min




n1(t1)+∆n−1∑
i=1

CT1,i,

n1(t1)+∆n−2∑
i=1

CT2,i


 . (11)

For the following, we will prove that for any ε2, δ2 > 0, we can choose a
sufficiently large B2 such that if ∆n > B2, we have

P

(
TCT > ∆n

(
1− p

2p− p2

)
(1− ε2)

∣∣∣∣At1

)
> 1− δ2. (12)

To that end, we use the following union-bound arguments and focus on the
sub-series of the summations:

P

(
TCT > ∆n

(
1− p

2p− p2

)
(1− ε2)

∣∣∣∣At1

)

= P

(
Eq. (11) > ∆n

(
1− p

2p− p2

)
(1− ε2)

∣∣∣∣At1

)

≥ 1− P




n1(t1)+∆n−1∑

i=n1(t1)

CT1,i ≤ ∆n

(
1− p

2p− p2

)
(1− ε2)

∣∣∣∣∣∣
At1




− P




n1(t1)+∆n−2∑

i=n2(t1)

CT2,i ≤ ∆n

(
1− p

2p− p2

)
(1− ε2)

∣∣∣∣∣∣
At1


 . (13)

Note that for any i ≥ n1(t1), CT1,i = 0 if O1,i = 0, and conditioning on
O1,i = 1, the random variable CT1,i is geometrically distributed with success

probability p. Moreover, CT1,i is i.i.d. with epectation
(

1−p
2−p

· 1
p

)
for any i ≥

n1(t1) (recall that we have temporarily suspended “expiration”). The weak
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law of large numbers thus implies that for any δ3 > 0, there exists a B3 such
that if ∆n > B3, we have

P




n1(t1)+∆n−1∑

i=n1(t1)

CT1,i ≤ ∆n

(
1− p

2− p
· 1

p

)
(1− ε2)

∣∣∣∣∣∣
At1


 ≤ δ3. (14)

Similarly by the weak law of large numbers, we also have for any δ4 > 0,
there exists a B4 such that if ∆n > B4, we have

P




n1(t1)+∆n−2∑

i=n2(t1)

CT2,i ≤ (∆n− 1)

(
1− p

2− p
· 1

p

)
(1− ε2)

∣∣∣∣∣∣
At1


 ≤ δ4. (15)

Jointly (14) and (15) imply that (13) can be made arbitrarily close to one by
choosing a sufficiently large B3 and B4 and setting B2 = max(B3, B4). Eq.
(12) is thus proven.

Since for any time slot in [t1 +1, t3] we either send an uncoded or a coded
transmission, we must have t3 − t1 = UT1 + UT2 + TCT. By (9) and (12),
we have thus proven that for any ε5, δ5 > 0, there exists a B5 > 0 such that
if δn > B5, we have

P

(
(t3 − t1) > ∆n

(
2

2p− p2
+

1− p

2p− p2

)
(1− ε5)

∣∣∣∣At1

)
> 1− δ5. (16)

By the definition of ∆n =
⌊
(t2 − t1)

2p−p2

3−p

⌋
, we thus also have

P ((t3 − t1) > (t2 − t1)(1− ε5)| At1) > 1− δ5. (17)

Namely, with close to one probability, the random time t3, in the end of
which n2(t) changes to n1(t1)+∆n for the first time, is no less than t1 +(t2−
t1)(1− ε5). Therefore, in the end of time t1 + (t2− t1)(1− ε5), n2(t) must be
no larger than n1(t1) + ∆n with close-to-one probability since we have not
reached t3 yet. (17) thus implies

P (n2(t1 + (t2 − t1)(1− ε5)) ≤ n1(t1) + ∆n| At1) > 1− δ5. (18)

We then notice the following two facts: (i) the difference between t2 and
(t1+(t2−t1)(1−ε5)) is (t2−t1)ε5; and (ii) for any t′1 < t′2 the difference n2(t

′
2)−
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n2(t
′
1) is no larger than t′2− t′1 since the register n2(t) at most increments by

one in every time slots. As a result, (18) implies

P (n2(t2)− n1(t1) ≤ ∆n + (t2 − t1)ε5| At1) > 1− δ5. (19)

We can then reuse the above fact (ii) to upper bound the expectation of
n2(t2)− n1(t1):

E
{

n2(t2)− n1(t1)|At1

}
≤ (∆n + (t2 − t1)ε5) (1− δ5) + δ5(t2 − t1). (20)

By Lemma 1, the difference between n1(t1) and n2(t1) is no larger than 1.
Also by noticing that ∆n is linearly proportional to (t2 − t1) while all other
terms are sub-linear (with either a ε or a δ coefficient), (20) thus implies that
for any ε > 0, there exists a sufficiently large B such that if t2− t1 > B, then

E
{

n2(t2)− n1(t1)|At1

}
≤ ∆n(1 + ε). (21)

In the above analysis, we have not considered the impact of when allowing
expiration. In the following, we will include expiration back to our analysis.
To that end, we first notice that we can still define H1,n, H2,n, CT1,n, CT2,n

as in (7) and (10), respectively. Note that now these four random variables
are no longer independently distributed as the results of one, say H1,n, may
affect the other, say CT2,n′ , due to expiration. Define a set of shadow random
variables H̃1,n, H̃2,n, C̃T1,n, C̃T2,n that characterize the behaviors when there
is no expriation involved. More specifically, we choose H̃1,n = H1,n if H1,n

stops “growing” due to the X1,n packet being received by one of the two
destinations. If H1,n stops growing due to the expiration of X1,n, then we
let H̃1,n continue to grow as an independent geometric random variable with
success probability (2p − p2). In this way, H̃1,n mimics the behavior of a
system with no expiration and H̃1,n is independent from all other random
variables. Similarly, we choose C̃T1,n = CT1,n if CT1,n stops growing due
to the mixed coded transmission involving X1,n being received d1. If CT1,n

stops growing due to the expiration of X1,n, then we let C̃T1,n continue to
grow as an independent geometric random variable with success probability
p. In this way, C̃T1,n mimics the behavior of a system with no expiration and
C̃T1,n is independent from all other random variables.

Then we need to prove the following version of (17): For any ε5, δ5 > 0,
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there exists a sufficiently large B5 such that for any t2 − t1 > B5, we have

δ5 ≥ P (UT1 + UT2 + TCT ≤ (t2 − t1)(1− ε5)|At1)

= P




n1(t1)+∆n−1∑

i=n1(t1)

H1,i +

n1(t1)+∆n−1∑

j=n2(t1)

H2,j+

min




n1(t1)+∆n−1∑

k=1

CT1,k,

n1(t1)+∆n−2∑

l=1

CT2,l


 ≤ (t2 − t1)(1− ε5)

∣∣∣∣∣∣
At1




(22)

Note that conditioning on At1 = {t2 < δn2(t1)}, during time [t1, t1 + (t2 −
t1)(1 − ε5)], no packets with indices ≥ n2(t1) will expire. Therefore, condi-
tioning on At1 any realization of H1,i, H2,j, and CT1,k, and CT2,l in (22) must
not result in any expiration for packets with indices ≥ n2(t1). As a result,
we have

P




n1(t1)+∆n−1∑

i=n1(t1)

H1,i +

n1(t1)+∆n−1∑

j=n2(t1)

H2,j+

min




n1(t1)+∆n−1∑

k=1

CT1,k,

n1(t1)+∆n−2∑

l=1

CT2,l


 ≤ (t2 − t1)(1− ε5)

∣∣∣∣∣∣
At1




≤ P




n1(t1)+∆n−1∑

i=n1(t1)

H̃1,i +

n1(t1)+∆n−1∑

j=n2(t1)

H̃2,j+

min




n1(t1)+∆n−1∑

k=n1(t1)

C̃T1,k,

n1(t1)+∆n−2∑

l=n2(t1)

C̃T2,l


 ≤ (t2 − t1)(1− ε5)

∣∣∣∣∣∣
At1


 (23)

since for those realizations, the shadow random variables and the actual
random variables for packets with indices ≥ n2(t1) have the same probability.
Since (17) holds for the case without expiration, (23) can thus be made
smaller than δ5 with sufficiently large B5. (22) is thus proven. We can then
follow the same analysis as in (17) to (21). The proof of Lemma 4 is complete.

For the following, we prove Proposition 2.
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Proof. We define q2(t) = n2(t) − t
δ
. By our definition of p?, for any ε1 > 0

we can choose a p < p? such that 1
δ
(1 − ε1) < 2p−p2

3−p
< 1

δ
. We fix that one

such p throughout this proof. By definition, we can now rewrite Lemma 4
by letting t2 = t1 + B0. More specifically, for any ε > 0, there exists a B > 0
such that for any B0 > B

E
{

q2(t1 + B0)− q2(t1)
∣∣∣q2(t1) >

B0

δ

}

= E
{

n2(t1 + B0)− n2(t1)
∣∣∣q2(t1) >

B0

δ

}
− B0

δ

≤ B0(2p− p2)

3− p
(1 + ε)− B0

δ
< 0,

where the negativeness is established by choosing a sufficiently small ε > 0.
As a result, q2(t) has a negative drift. Since q2(t) has a negative drift, it
implies that for any ε1, ε

′ > 0, there exists a t0 > 0 such that P (q2(t) < ε′t) >
1− ε1, for all t > t0. We can also define q1(t) = n1(t)− t

δ
. By Lemma 1, the

difference between q1(t) and q2(t) is no larger than 1. As a result, q1(t) also
has a negative drift.

Using the negative drift of q1(t), we have for any t > t0,

E{n1(t)} = E

{
t

δ
+ q1(t)

}
(24)

= E

{
t

δ
+ q1(t)

∣∣∣q1(t) < ε′t
}

P(q1(t) < ε′t)

+ E{n1(t)|q1(t) ≥ ε′t}P(q1(t) ≥ ε′t)

≤
( t

δ
+ ε′t

)
(1− ε1) +

( t

2
+ 1

)
ε1, (25)

where (25) is because, when q1(t) < ε′t, n1(t) < t
δ

+ ε′t; when q1(t) ≥ ε′t,
n1(t) is bounded by t

2
+ 1, since in t time slots, at most t

2
+ 1 packets in

{X1,n}N
n=1 have been transmitted uncodedly. Namely, when we let t → ∞,

the expectation E{n1(t)} is upper bounded by t
δ
(1+ε) for any arbitrary ε > 0.

By the same approach, we can also derive that for any ε > 0,

E{n2(t)} ≤ t

δ
(1 + ε) + o(t), (26)

where o(t) is a sublinear term.
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We define T1(t) as the number of time slots when the BS transmits an
uncoded packet for session 1 up to time t; T2(t) as the number of time slots
when the BS transmits an uncoded packet for session 2 up to time t. Since
the BS will transmit every uncoded packet until it has been received by at
least one user, we have

E{T1(t)} ≤ E{n1(t)} 1

2p− p2
, (27)

E{T2(t)} ≤ E{n2(t)} 1

2p− p2
, (28)

where the inequality is because some uncoded packets are expired before
they can be received by any user, so the expected transmission time for each
packet is shortened.

Note that when we transmit an uncoded packet, the expected “reward”
is p since only one destination can benefit from this transmission. When we
transmit a coded packet, the expected reward is 2p since both destinations
can benefit. As a result, for sufficiently large t, the expected total rewards is
lower bounded by

E{Nsuccess} (29)

= pE{T1(t)}+ pE{T2(t)}+ 2pE{t− T1(t)− T2(t)} (30)

= 2pt− pE{T1(t)} − pE{T2(t)} (31)

≥ 2pt− p
t

δ

2

2p− p2
+ o(t)

=
2t

δ

(
pδ − 1

2− p

)
+ o(t). (32)

The above result implies that at time t = δN (the end of transmission),

lim
N→∞

E{Nsuccess}
2N

≥ 2δN

δ

1

2N

(
pδ − 1

2− p

)
=

(
pδ − 1

2− p

)
. (33)

Recall that we can choose p such that 2p−p2

3−p
as close to 1

δ
as possible, which

implies that (33) can be made arbitrarily close to 1.
Now we have shown that when p approaches p? from the left, we have

limN→∞
E{Nsuccess}

2N
= 1. Next we are going to show that when 1 ≥ p > p?, we

also have limN→∞
E{Nsuccess}

2N
= 1.
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For any p > p?, we slighly modify the definition and let q′j(t) = nj(t)− t
δ′ ,

j = 1, 2, for some new δ′ < δ satisfying 1
δ′ (1 − ε1) < 2p−p2

3−p
< 1

δ′ for some

arbitrarily small ε1. Note that Lemma 4 implies that qj(t) has negative
drift. By the same arguments, Lemma 4 also implies that q′j(t) has nega-
tive drifts as well. We can then follow the same analysis as from (24) to
(33). Namely, when p > p?, the proposed scheme can achieve the capacity

limN→∞
E{Nsuccess}

2N
= 1 within δ′N < δN time slots. The proof is complete.
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