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Abstract 
Voice over IP (VoIP) systems are gaining in popularity as the technology for transmitting voice traffic over 

IP networks. As the popularity of VoIP systems increases, they are being subjected to different kinds of 

intrusions some of which are specific to such systems and some follow a general pattern. VoIP systems pose 

several new challenges to Intrusion Detection System (IDS) designers. First, these systems employ multiple 

protocols for call management (e.g., SIP) and data delivery (e.g., RTP). Second, the systems are distributed in 

nature and employ distributed clients, servers and proxies. Third, the attacks to such systems span a large 

class, from denial of service to billing fraud attacks. Finally, the systems are heterogeneous and typically under 

several different administrative domains.  

In this paper, we propose the design of an intrusion detection system targeted to VoIP systems, called 

SCIDIVE (pronounced “Skydive”). SCIDIVE is structured to detect different classes of intrusions, including, 

masquerading, denial of service, and media stream-based attacks. It can be installed at multiple points – 

clients, servers, or proxies, and can operate with both classes of protocols that compose VoIP systems – call 

management protocols (CMP), e.g., the Session Initiation Protocol (SIP), and media delivery protocols (MDP), 

e.g., the Real Time Transport Protocol (RTP). SCIDIVE proposes two abstractions for VoIP IDS – Stateful 

detection and Cross-protocol detection. Stateful detection denotes the functionality of assembling state from 

multiple packets and using the aggregated state in the rule matching engine. Cross protocol detection denotes 

the functionality of matching rules that span multiple protocols, e.g., detecting a pattern in a SIP packet 

followed by one in a succeeding RTP packet followed by one in a H.323 packet. SCIDIVE is demonstrated on a 
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sample VoIP system that comprises SIP clients and SIP proxy servers. Four attack scenarios are created and 

the accuracy and the efficiency of the system evaluated with rules meant to catch these attacks. 

Keywords: Intrusion detection, Voice over IP system, Cross-protocol detection, Stateful detection, SIP, RTP. 

1 Introduction 

Voice over IP (VoIP) systems are gaining in popularity as the technology for transmitting voice traffic over 

IP networks. While VoIP technology is set to revolutionize communications, and is already being used by a 

number of traditional telephone companies to connect their regional offices, on a smaller scale it can also be a 

useful solution for businesses looking to trim their telephone expenses. As the popularity of VoIP systems 

increases, they are being subjected to different kinds of intrusions, some of which are specific to such systems, 

and some of which follow a general pattern. There have been enormous strides made in the field of intrusion 

detection systems (IDS) for different components of the information technology infrastructure. Some of the 

IDSs are generic in nature and can be customized with detection rules specific to the environment in which 

they are deployed (e.g., Snort [13] and Prelude [17]), and some are tools specifically targeted to an 

environment or to specific classes of intrusions, such as IBM Tivoli Intrusion Manager for MQSeries products 

[18]. VoIP systems pose several new challenges to IDS designers. First, these systems employ multiple 

protocols for call management and data delivery. Second, the systems are distributed in nature and employ 

distributed clients, servers, and proxies. Third, the attacks against such systems span a large class, from denial 

of service to billing fraud. Finally, the systems are heterogeneous and typically under several different 

administrative domains, e.g., the proxy server may be provided by the service provider and the client managed 

by the home organization.  

In this paper, we propose the design of an intrusion detection system targeted to VoIP systems, called 

SCIDIVE (pronounced “Skydive”). SCIDIVE is structured to detect different classes of intrusions, including, 

masquerading, denial of service, and media stream-based attacks. It can be installed at multiple points – 

clients, servers, or proxies, and can, without substantial system customization, be extended for detecting new 

classes of attacks. The IDS can handle client mobility, an important design goal of VoIP protocols such as SIP, 

and does not flag false alarms for such situations. SCIDIVE can operate with both classes of protocols that 
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compose VoIP systems – call management protocols (CMP), e.g., the Session Initiation Protocol (SIP), and 

media delivery protocols (MDP), e.g., the Real Time Transport Protocol (RTP). 

SCIDIVE proposes two abstractions for VoIP IDS – stateful detection and cross-protocol detection. Stateful 

detection denotes the functionality of assembling state from multiple packets and using the aggregated state in 

the rule-matching engine. The reassembly functionality is applicable to packets of both CMP and MDP and 

can be configured to handle packets spread out arbitrarily far apart in time. Some existing IDSs provide 

support for reassembly, but they are restrictive and applicable only to specific protocols. For example, Snort’s 

stream4 module can reassemble TCP packets that belong to the same session. Cross protocol detection denotes 

the functionality of matching rules that span multiple protocols, e.g., detecting a pattern in a SIP packet 

followed by one in a succeeding RTP packet followed by one in an RTCP packet. The aggregation across 

protocols can be chained in an arbitrarily long manner and spread out in time. This abstraction is powerful for 

VoIP systems because they involve multiple protocols and several attacks are based on sequences that cross 

protocol boundaries. There are very few systems today that support cross-protocol detection. One of the 

notable ones is WebSTAT [1] for detecting attacks against web servers by correlating protocols in a vertical 

stack, e.g., application level (web server) and operating system log. Since VoIP systems use multiple 

application layer protocols, horizontal cross-protocol correlation is required. 

The architecture of SCIDIVE uses a Distiller, through which all incoming network traffic passes and which 

translates packets into protocol dependent information units called Footprints. The Footprints that belong to 

the same session are grouped into Trails. The Event Generator maps Footprints into Events which are matched 

by the Rule Matching Engine against a Ruleset. According to the stateful and cross-protocol philosophies, the 

Events can potentially have state information and encapsulate information from multiple packets.  

SCIDIVE is demonstrated on a sample VoIP system that comprises SIP clients and SIP proxy servers. The 

system uses SIP Express Router for the proxy and three different kinds of clients – KDE’s KPhone [2], 

Microsoft Windows Messenger [3], and XTen’s X-Lite IP Telephony client [4]. The protocols used are SIP for 

call management and RTP for real-time audio data transfer. In our experiments, an instance of SCIDIVE is 
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associated with each client. Four different types of attacks are simulated on the system and the effectiveness 

and efficiency of SCIDIVE analyzed.  

The rest of the paper is organized as follows. Section 2 gives an overview of VoIP systems and attacks in 

such systems. Section 3 presents the architecture of SCIDIVE and motivates the stateful and cross-protocol 

detection through two running examples. Section 4 presents the implementation of SCIDIVE, the kinds of 

attacks simulated in the system, and analysis of the efficiency of the system. Section 5 reviews related work. 

Section 6 concludes the paper. 

2 System Description: VoIP Systems and Attack Classification 

2.1 VoIP Overview 

Voice over IP (VoIP) systems provide facilities for setting up and managing voice communications based 

on one of two main protocols:  H.323 [5] and SIP [6].  H.323 is the most widely deployed standard in VoIP 

communications, but SIP is increasing in popularity due to its simplicity and corresponding ease of 

implementation.  With both types of system, endpoints or terminals, which may be physical phones 

(hardphones) or software programs executing on a general-purpose computer (softphones), send and receive 

RTP [7] packets that contain encoded voice conversations.  Since voice calls may be made between IP phones 

and phones on the Public-Switched Telephone Network (PSTN), gateways often perform transparent 

translation between IP and non-IP based networks.  Such gateways may implement protocols for media 

gateway management such as MGCP [7] and MEGACO/H.248 [9]. 

Within an H.323 network, an optional gatekeeper may be present.  The gatekeeper performs several 

functions including authorizing network access, assisting in managing quality of service, and providing 

address-translation services.  Also, multipoint controllers may be present to manage multipoint conferences 

between three or more terminals or gateways. 

SIP networks also include additional types of servers.  A proxy server forwards requests, possibly after 

performing some processing or translation.  A redirect server is used to support mobile clients and performs 

address translation for an accepted request and returns the new address to the originator of the request.  Both 

proxy and redirect servers may be used to implement call forwarding and other similar services.  User agent 
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clients send requests to user agent servers to initiate calls.  The user notifies a registrar of his current location 

to allow others to contact him.  The registrar is often combined with a proxy or redirect server. 

Both H.323 and SIP provide protocols for call setup, management, and media delivery.  Voice is encoded 

using a negotiated codec and delivered using RTP over UDP/IP for both protocols.  However, call setup and 

management are handled quite differently.  H.323 relies on the H.225.0 [10] and H.245 protocols [11], 

whereas SIP uses a much simpler set of request messages:  INVITE, ACK, OPTIONS, BYE, CANCEL, and 

REGISTER.  SIP provides a globally reachable address to which callees bind using SIP REGISTER method. 

The INVITE message is used by a user client agent wishing to initiate a session, which can be responded to 

with an OK, followed by an ACK. To tear down a connection, a BYE message is sent. CANCEL cancels a 

pending invite. OPTIONS is used to query or change optional parameters of the session, such as encryption. 

Figure 1 illustrates a typical set of SIP messages leading to a session. 

 

INVITE

OK

ACK

BYE

OK

Ringing 

Conversation over RTP

Calling party Called party 

 

Figure 1: Sample SIP message exchange in a SIP call setup and teardown 

2.2 VoIP Attacks 

One of the main advantages of a VoIP system is the convergence of voice and data networks with voice 

being conveyed over a data network. While this offers advantages in cost and ease of management, the use of 

the data network in a converged system makes the voice network vulnerable to the same vulnerabilities 

suffered by the data network.  This includes well-known attacks such as denial of service attacks as well as 

authentication attacks.  In addition, a voice network introduces potential vulnerabilities related to toll fraud, 

privacy, and denial of service attacks based on degrading the quality of service of the voice conversation. 



 

6 

A major source of vulnerabilities lies in the protocols used to set up and manage calls. Both H.323 and SIP 

transmit packet headers and payload in clear text, which allows an attacker to forge packets that manipulate 

device and call states.  For example, such forged packets can prematurely terminate calls, redirect calls, or 

facilitate toll fraud.  Some efforts are currently underway to develop encrypted signaling, but no solution has 

found widespread adoption. 

In addition to vulnerabilities present in the signaling protocols, the RTP protocol for media delivery also 

introduces several vulnerabilities due to the absence of authentication and encryption.  Each RTP packet 

header contains a sequence number that allows the recipient to play back voice packets in the proper order.  

However, an attacker can easily inject artificial packets with higher sequence numbers that will cause the 

injected packets to be played in place of the real packets.  An attack can also fake the SSRC field to 

impersonate another participant in a call. 

3 SCIDIVE Architecture 

3.1 SCIDIVE Components: Footprints, Trails, Events, Rules 

 

Figure 2: Overview of SCIDIVE Components 

Figure 2 presents an overview of the SCIDIVE architecture. In SCIDIVE, incoming network flows first pass 

through the Distiller, which translates packets into protocol dependent information units called Footprints. 

The Distiller is responsible for doing IP fragmentation, reassembly, decoding protocols, and finally generating 

the corresponding Footprints. A Footprint is a protocol dependent information unit, which, for example, could 

Distiller Network flows

Footprint

SIP Trail 1

SIP Trail 2

RTP Trail 3

Time

Event 
Generator Rule Matching Engine

RulesetEvents
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be composed of a SIP message or an RTP packet. Footprints that belong to the same session are grouped into 

Trails. In Figure 2 we have three Trails that correspond to two SIP sessions and one RTP session. 

The Event Generator maps footprints into a single event. For example, we can map two out of order RTP 

Footprints into an event called RtpJitter. Event Generator is hard-coded and seamlessly coupled with internal 

structures for best possible performance. In general, it is just a layer of abstraction, which correlates the 

information in footprints and concentrates the information into a single event. It helps performance by hiding 

some computationally expensive matching, e.g., by triggering the ruleset at the moment of interest instead of 

triggering it upon each incoming RTP Footprint.  

Ruleset is triggered by a sequence of Events, e.g., we can define a rule for detecting RTP flow [event 1] 

after a session is torn down [event 2]. The matching in the Ruleset is based on Events that can potentially 

encapsulate information from multiple packets and can bear state information. Besides the information that 

Events provide, the Ruleset can also perform the matching based on crude information directly from the Trails 

in case no suitable Event is available. For example, we might be interested in knowing who prematurely tears 

down the session. To achieve this, we probably need to have a look at the corresponding SIP Footprint to 

identify the ID and IP address of the originator. This direct access however will cause some degree of 

inefficiency. 

3.2 Cross-protocol Methodology for Detection 

We propose a powerful abstraction for intrusion detection systems in general, and VoIP IDSs in 

particular, namely, cross-protocol detection. An IDS that uses cross-protocol detection accesses packets from 

multiple protocols in a system to perform its detection. This methodology is suitable to systems that use 

multiple protocols and where attacks spanning these multiple protocols are possible. There is the important 

design consideration that such access to information across protocols must be made efficiently.  

A VoIP system incorporates multiple protocols. A typical example is the use of SIP to establish a 

connection, followed by use of RTP to transfer voice data. Also, RTCP and ICMP are used to monitor the 

health of the connection. VoIP systems typically have application level software for billing purposes and 

therefore may have accounting software and a database. 
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To motivate the need for cross-protocol detection, we introduce a synthetic example of a billing fraud 

attack. Since VoIP systems have been gaining in popularity only of late, there are very few instances of actual 

attacks in databases such as CERT [15] and Bugtraq [16]. In our synthetic scenario, the attack is launched by 

the attacker exploiting a vulnerability in the SIP proxy. She sends a carefully crafted SIP message to fool the 

proxy into believing the call is initiated by someone else. The proxy initiates the accounting software with the 

information about the incorrect source for the call. This allows the attacker to make calls without being 

charged. 

Using the cross-protocol methodology for detection, one can create a cross-protocol rule to look at the 

SIP messages, the transaction messages between the accounting software and the database, and the RTP flows 

later on. Specifically, each of the following three conditions must hold. 

1. The SIP message should follow the correct format.  

2. When the accounting software sends out a transaction to denote a call from user A to user B, check if user 

A has sent a SIP Call Initialization message to user B. If user A has not set up the call with a legitimate 

SIP Call Initialization message, then this condition will be violated. 

3. Check the source/destination IP addresses of the subsequent RTP flows. Together with information from 

DNS and SIP Location Servers, we can reconfirm that each RTP flow has a corresponding legitimate call 

setup.  

In SCIDIVE, cross-protocol detection is achieved through keeping multiple trails for different sessions. In 

our example, we can have (i) a ‘SIP trail’ which tracks all the SIP messages in the session between user A and 

user B; (ii) an ‘RTP trail’ which tracks all the RTP packets in the session between A and B; and (iii) an 

‘Accounting trail’ which tracks relevant accounting transactions in this session between A and B. Then, we 

can define three events based on the three trails corresponding to the three conditions above. The first event is 

“an incorrectly formatted SIP message in the SIP trail”, which could be an indication of an attempt to exploit 

the vulnerability in the SIP proxy. The second event is “a transaction in the Accounting trail that has no 

matching call initialization message in the SIP trail”. The third event is “either the source or destination IP 

addresses of the RTP packet without a matching address in the SIP packet”. The third event is specialized to 
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take mobility into account, which will be indicated by a SIP REINVITE message with an update of state at the 

SIP Registrar that maintains location information. In the Ruleset, we can put a rule called Billing Fraud, which 

is triggered by a combination of these three events. An advantage of creating a rule based on a sequence of 

three events is improving the accuracy of the alarm because the rule is based on three facets of the attack. It is 

perceivable that relying solely on Event 1 or Event 3 to signal ‘Billing Fraud’ alarm will result in false alarms. 

Also, bugs or temporary system failures might cause Event 2. Therefore, relying solely on Event 2 will 

possibly give us false alarms. 

3.3 Stateful Methodology for Detection 

A second abstraction useful for VoIP systems in particular is stateful detection. Stateful detection implies 

building up relevant state within a session and across sessions and using the state in matching for possible 

attacks. It is important that the state aggregation be done efficiently so that the technique is applicable in high 

throughput systems, such as VoIP systems.  

A VoIP system maintains considerable amount of system state. The client side maintains state about all 

the active connections – when the connection was initiated, when it can be torn down, and what the properties 

of the connection are. The server side also maintains state relevant to billing, such as the duration of the call. 

To motivate the need for stateful detection, we introduce a synthetic example of a DoS attack and a 

password guessing attack. An unauthorized user client keeps sending unauthenticated REGISTER requests to 

bombard the SIP proxy and ignores the 401 UNAUTHORIZED reply error message from the SIP proxy. If the 

user client keeps sending the same request to the server, it can be seen as a type of DoS attack on the SIP 

proxy. Along with the UNAUTHORIZED reply message, the proxy sends a challenge phrase to the client. If the 

client keeps sending requests with different values in the challenge response field, this could be seen as a type 

of attack that is trying to break the authentication key by brute force. In either case, it would be helpful for 

detection if the system can look at the series of user client requests and the subsequent server responses. Since 

4XX responses are not uncommon in a normal session, a traditional IDS like Snort with a rule to detect 

multiple 4XX responses may flag a large number of false alarms. For example, most user clients send an 

unauthenticated REGISTER request to the server, presuming that the SIP Proxy does not require authentication. 
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Later, the server sends a 401 response along with a challenge phrase to the client to indicate that authentication 

is required. The client should then send a new REGISTER request to the server along with the correct response 

phrase to continue the registration process. If the IDS does not isolate 4XX error messages from different 

sessions and doesn’t correlate 4XX error messages with requests, it is likely it will make false verdicts based 

on unrelated 4XX error messages. 

In SCIDIVE, Footprints that belong to a session are structured and kept in a single trail. Therefore, the 

history of all the state transitions of each session can be easily tracked. To handle the two attack scenarios 

above, we can set up the following two events – (i) an event “DoS via repeated SIP requests”, which 

represents continuous, alternating SIP requests and 4XX error messages in a particular session; (ii) an event 

“Password guessing” which represents continuous, alternating SIP requests with different challenge responses 

and 401 Unauthorized reply error messages in a particular session. Flagging of the two events indicates two 

different kinds of attacks that may have different responses. In the first case, the response may be to identify 

the source of the attacker and block her IP address while in the second case, it may be important to take more 

stringent measures to ensure the security of the system, such as changing the authentication password to a 

longer one. 

3.4 Placement of SCIDIVE Components 

The SCIDIVE architecture has a great deal of flexibility in terms of the placement of its components. For 

example, it is possible to deploy the SCIDIVE IDS only on the SIP client side for detecting anomalies in the 

VoIP traffic in and out of the client. Also, we have shown in previous work [12] that doing correlation on 

alerts from multiple detectors could increase the detection accuracy. We can use a similar idea by deploying 

SCIDIVE-enabled IDS on both end-points of the VoIP system, i.e., both clients. In such an installation, the two 

IDSs could exchange event objects and portions of trails to enhance the overall detection accuracy and 

efficiency. A typical example of the benefits of using IDS collaboratively in VoIP system is verifying the 

integrity of the exchanged messages, so that spoofed traffic from an attacker can be detected. Yet, a more 

aggressive approach would be to deploy the SCIDIVE IDS on all the components – Clients, SIP Proxy, and 

Registrar server – in a VoIP system. For example, in the Billing attack scenario outlined in Section 3.2, we 
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need to deploy the IDS on the SIP Proxy and the Accounting Server to detect Event 1 and Event 2. Also we 

need to deploy the IDS close to both clients to monitor RTP flows to detect Event 3. While it is pretty obvious 

that using multiple SCIDIVE IDS and an alert correlation engine will give better detection accuracy, the actual 

gains, impacts on the system performance, and costs for doing so remain an interesting research subject that 

we will investigate in the future.  

4 Prototype and Experiments 

An IDS prototype is built to instantiate the SCIDIVE architecture for VoIP systems. We implement four 

attacks against the VoIP system, instantiate rules in SCIDIVE for detecting the attacks, and perform analysis of 

the detection efficiency. For simplicity, the IDS is placed at the client end for the experiments in this paper. 

This configuration is shown in Figure 3 and is referred to as an End-point based IDS architecture. In this 

architecture, an IDS instance is associated with each client.   

Internet

IDS

IDS Protected Area

SIP 
Proxy

Hub Internet

IDS

IDS Protected Area

SIP 
Proxy

Hub

 
 

Figure 3: IDS Engine sits on or close to the end-point 

4.1 Testbed 

Our testbed comprises the following: 

• Proxy : SIP Express Router from www.iptel.org 

• Clients :  Kphone from www.wirlab.net; Windows Messenger from Microsoft; X-Lite from 

www.xten.com 
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Figure 4 depicts the topology of our testbed. The IDS is connected to a hub through which the traffic of 

Client A can be seen. Although the prototype IDS can also see the traffic of Client B and the SIP Proxy, it does 

not look into those traffic for any purpose, thus mimicking an end-point based IDS.  
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Figure 4: SCIDIVE testbed with client phones, proxy servers, network elements, attacker host and the 
IDS

4.2 Attacks and Demonstration of the IDS 

We implement four attacks to demonstrate the functionality of the IDS. Three of the four attacks are based on 

the vulnerabilities in the signaling protocol, i.e., SIP. They are BYE attack, Fake Instant Messaging, and Call 

Hijacking. The fourth is based on the vulnerabilities in the media transport protocol, which is the RTP attack. A 

summary of the attacks is presented in Table 1.  

Name of attack Protocols involved Cross-protocol or 
not ? If yes, how ? 

Stateful or not? If 
yes, how ? 

Rule snippet 

Bye attack SIP, RTP Yes. Detect no RTP 
traffic once SIP 
BYE has been seen. 

Yes. Monitor the 
session to determine 
when a session has 
been torn down. 

No RTP traffic 
should be seen after 
a SIP BYE from a 
particular user agent. 

Fake Instant 
Messaging 

SIP, IP Yes. Check the 
source IP addresses 
of incoming IM 
messages (SIP 
Message). 

No. Check the IP 
addresses of all the 
incoming messages. 
The IP address 
should stay the same 
within a time period. 

Call Hijacking SIP, RTP Yes. Detect no RTP Yes. Monitor the No RTP traffic 
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traffic once SIP 
REINVITE has been 
seen. 

session to determine 
when a session has 
been redirected. 

should be seen after 
a SIP BYE from a 
particular user agent. 

RTP Attack RTP, IP Yes. Check the 
source IP address of 
the RTP packets. 

Yes. Check if the 
sequence numbers in 
consecutive packets 
increase expectedly. 

Check if RTP 
packets come from 
legitimate IP address 
and if the sequence 
number increases 
appropriately. 

Table 1: Summary of Attacks 

Details of the attacks are presented in the following sections. 

4.2.1 BYE Attack 

 

Figure 5: Schematic of BYE 
Attack 

In this attack scenario, we have 

three SIP User Agents {A, B, and 

Attacker}. We also have a SIP Proxy 

for setting up the connections. The goal 

of the BYE attack is to prematurely tear 

down an existing dialog session, which 

can be viewed as a kind of Denial-of-

Service attack. In the above figure, the gold and green lines going respectively from SIP UA B to SIP UA A, and 

vice-versa, represent an ongoing dialog session between A and B. Later, Attacker sends a faked BYE message to 

A. After that, A will believe that it is B who wants to tear down the connection by sending the BYE message. A 

will stop its outward RTP flow  immediately, while B will continue to send RTP packets to A, since B has no 

notion that the connection should be terminated. 

In order to detect this attack, we create a rule that detects orphan RTP flow. Specifically, if it is indeed B who 

wants to stop the connection, then A should not see the RTP flow from B after getting the BYE message. Thus, in 

the IDS, we create a rule which signals an alarm when seeing new RTP Footprints in the RTP Trail that 

corresponds to the flow from B after seeing a BYE SIP Footprint. Although the attack itself occurs only within 
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the signaling protocol (SIP), our detection rule spans SIP and RTP and provides an illustration of the importance 

of cross-protocol detection. 

4.2.2 Fake Instant Messaging 

In addition to IP Phone Call setup, SIP also supports Instant Messaging. By faking the header of an instant 

message appropriately, the attacker can forge a message to A and mislead it into believing the message is from B. 

Figure 6: Schematic of Fake 
Instant Messaging Attack 

Our rule for detecting this attack 

looks at the IP addresses of the 

messages. Under most circumstances, 

within a period, messages from B 

should bear the same source IP 

address. Therefore, once we find a 

message from B which carries a 

different IP address, it would be an 

indication that this message is a fake one. The rule takes rate of user mobility into account and allows for changes 

in the IP address according to the maximum rate of user motion. Indeed, this rule is not perfect. If the attacker is 

able to spoof its IP address, then this rule will not work. However, based on the Host-based architecture, this is 

probably the best we can do. This leads to interests in research on a more ambitious architecture like deploying 

IDS on both client ends.  

4.2.3 Call Hijacking 

Call Hijacking is also a signaling based attack. In this attack, by sending a REINVITE message to B, the 

attacker can redirect the RTP flow that is supposed to go to B to another location, most likely the IP address of the 

machine where the attacker is. Normally, a REINVITE message is used for call migrating. For example, B wants 

to go outdoors, so it moves the phone call from the landline phone to its cell phone. In this attack, the attacker 

abuses this feature by sending a fake REINVITE message to fool A into believing that B is going to change its IP 

address to a new address. 
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should bear the same source IP 
address.)
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Figure 7: Schematic of Call Hijacking 
Attack 

A direct impact of this attack is that B 

will experience a continued silence since A 

is no longer sending its voice data to B. For 

this part, the Call Hijacking attack can be 

seen as a kind of Denial-of-Service attack. 

A more subtle impact is that if the attacker 

were able to emulate the voice data of B, then after successfully redirecting the call, A would not be able to 

distinguish between B and the attacker. This could lead to issues of confidentiality and breach of privacy since the 

attacker will be able to listen to what A is saying. 

To detect this attack, we use a similar approach as for the BYE attack. Intuitively, if the REINVITE message is 

indeed from B, then A should not see any RTP flow from B after that. By detecting orphan flows, we are able to 

determine whether it’s a legitimate REINVITE message or a malicious one. 

4.2.4 RTP Attack 

Figure 8: Schematic of RTP 
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Since these garbage packets will corrupt the jitter buffer in the IP Phone client, depending on different 

implementations, this attack could result in intermittent voice conversation or in crashing the client. For example, 

in our experiment, X-Lite will crash after this attack while the effect on Microsoft Messenger is intermittent voice 

conversation. This attack also leads to degradation in QoS (jitter) and in the voice quality. 

The rule we use for detecting this attack is that the sequence number in succeeding RTP packets should 

increase regularly. Specifically, if we see two consecutive packets whose sequence numbers have a difference 

greater than 100, the IDS will signal an alarm.  

4.3 Performance Evaluation 

In this section, we comment on the performance of the IDS system with respect to three metrics: (1) the 

detection delay, D , which is defined as the time from when an attack/intrusion is made to the time it is detected, 

(2) the probability of false alarm, Pf, which is defined as the probability that the IDS flags an intrusion when none 

has occurred, and (3) the probability of missed alarm, Pm, which is defined as the probability that the IDS system 

does not flag an intrusion when one occurs. The goal is to make the reader aware of the variables that affect these 

metrics and give an idea of practical values. Detailed performance evaluation with numerical computation is the 

subject of ongoing work. 

4.3.1 BYE and Call Hijacking attack 

In both these attacks, the IDS rule looks at the SIP signaling event (BYE or REINVITE) and monitors the 

media stream following this event to detect an intrusion. Specifically, the arrival of an RTP packet at the original 

RTP port from the original sender flags an intrusion.  

 Detection Delay: Measuring from the time the SIP message is received, it includes the time up to the 

arrival of the RTP packet from the original sender. Obviously, the time depends on the frequency of RTP 

packets. A typical period employed is 20 milliseconds. However, the RTP packet arrival depends also on 

the network conditions. Specifically, the delay distribution of packets from the sender to the receiver 

would cause this quantity to change.  The above 

figure outlines the various timing variables 

involved. Let the time of the last RTP packet 

arrival be T1 (before the fake BYE/REINVITE 

message arrival). Also, without loss of generality, 
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let this message originate from the sender at time 0. Then T1 is the transport delay of this RTP packet. 

Further, let Tsip be the time of arrival of the SIP message. Let T2 be the time of arrival of the RTP packet, 

which originated 20 ms after the previous RTP packet. We assume that the fake SIP message was 

generated after the 1st RTP packet but before the 2nd RTP packet. When the SIP message is received, the 

IDS system starts looking for RTP packets for a total duration of “m” milliseconds. Obviously, T1, T2 and 

Tsip are random variables and m is a fixed value. The detection delay D  is a function of these four 

parameters as sipTTD −= 2  , where rtpNT += 202 and sipsipsip NGT += . rtpN and sipN are the random 

variables associated with the network delay for each packet. While the second RTP packet is generated 20 

milliseconds after the origin, the fake SIP message is generated between the two RTP packets with a 

distribution given by sipG . Therefore, )(20 sipsiprtp NGND −−+= . Given the distributions of these 

random variables, it is possible to compute the detection delay distribution. Under the simplest of 

assumptions, where the fake SIP message is generated with a uniform distribution in (0,20), and the 

network delay is assumed to be independent and identical for all packets, the expected detection delay is 

10 milliseconds, which is half of the RTP packet generation period.   

 Probability of Missed Alarm: Since the detection depends on monitoring after a SIP message arrival and 

since this monitoring interval is necessary finite (m), there is a probability that the IDS system may not 

detect the intrusion. For instance, if the subsequent RTP packet(s) from the original sender are lost 

(somewhere in the network) and no RTP packet arrives within the monitoring interval, then no alarm will 

be raised. Referring to the above figure, the probability is given by 

}20Pr{}Pr{ 2 −>−−=+>= mNGNmTTP sipsiprtpsipf . 

 Probability of False Alarm: Although rare, it is possible for a valid BYE message to arrive before the RTP 

packet if, for instance, they take a different route, as 

shown in the following figure. In this case, the IDS 

system will raise a false alarm. In order to compute this 

probability, we assume that the sender generated the 

valid SIP BYE/REINVITE immediately (with zero 

delay) after it has sent out the last RTP packet. In that 

case, the false alarm probability is given as 

}Pr{ rtpsipf NNP <= . If the density function and 

distribution function of rtpN  and sipN is assumed to be identical and independent denoted by )(tf N and 

)(tFN  respectively, then dttftF N

m

N )()(
0
∫ . 
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5 Related Work 
Currently, we are not aware of any IDS dedicated to VoIP systems. One possibility is to use a general purpose 

network IDS like Snort [13] for the purpose. Such a network based IDS would sniff the packets arriving at a host 

and attempt to find predefined patterns indicating an attack in the packets. For example, to detect the OpenSSL 

worm traffic, Snort searches each packet that flows through port 443 for the pattern ‘TERM=xterm’, which 

indicates the initialization of a UNIX terminal and is part of the behavior of the OpenSSL worm. One potential 

problem of this approach is that if the target pattern is fragmented across multiple packets, then the IDS will miss 

it. Seeing this problem, Snort has an IP fragmentation-reassembly module which assembles fragmented IP 

packets. Also, for TCP packets, it has a stream4 reassembly module that can aggregate TCP packets within the 

same TCP session (like a FTP session) into a conglomerate pseudo packet. After this, the same pattern-matching 

algorithm is employed on the pseudo packet. 

The matching infrastructure provided by Snort is versatile and has been proven to be very effective for dealing 

with most network based intrusions. However, for VoIP applications, there are two drawbacks to using Snort 

directly: 

1. No reassembly functionality is available for grouping UDP packets that belong to a VoIP session. This means 

malicious patterns that are spread across UDP packets would elude the matching rule in Snort. 

2. Snort’s detection is rather session unaware. It does provide stateful detection for some TCP applications like 

HTTP and FTP. However, there are currently no infrastructures that can help in processing stateful VoIP 

sessions. This could pose a problem for the detection accuracy and efficiency of detection. 

The WebSTAT system [1] provides stateful intrusion detection for web servers. It builds on STAT [14] which 

supports the modeling of multi-step, complex attacks in terms of states and transitions. WebSTAT operates on 

multiple event streams, and is able to correlate both network-level and operating system-level events with entries 

contained in server logs. WebSTAT uses some language extensions specific to web server attacks, and event 

generators that can read web server log, parse them and create events in a commonly understandable form. 

However, the work is essentially an alert correlation engine and does not show evidence of using considerable 

state across protocols. Also, the state is gathered from vertically layered elements in the protocol stack which 
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operate sequentially (e.g. a web server and the OS), while SCIDIVE performs state aggregation across concurrently 

executing application level protocols. 

6 Conclusions 
In this paper we have presented the design and implementation of an intrusion detection system called SCIDIVE 

for protecting VoIP systems. The protected system uses multiple application protocols for signaling and data 

transport, of which SIP and RTP are used respectively for the demonstration. SCIDIVE introduces two important 

abstractions for detection in VoIP systems – stateful detection and cross-protocol detection. In the former, state 

can be assembled from multiple packets and the aggregated state can be used in the rule-matching engine. Cross 

protocol detection denotes the functionality of matching rules that span multiple protocols. The implementation of 

SCIDIVE uses the two abstractions to detect different kinds of attacks. The capability of the system is demonstrated 

through four kinds of attacks – three of which are a mix of signaling and data transport attacks (Call hijacking, 

Fake instant messaging, and Bye attacks) and one is a data transport based attack (RTP attack). The performance 

of the IDS with respect to detection delay, probability of false alarm, and probability of missed alarm are 

analyzed.  

In the future, we plan to investigate cooperative detection between multiple SCIDIVE components. We plan to 

investigate where the components should be placed and what kinds of state needs to be exchanged between them. 

A challenge is to design the appropriate protocol that does not overwhelm the system with control messages from 

the detectors. This may necessitate a hierarchical decomposition of the system with different layers looking at 

different levels of abstraction for the system. For example, one can consider a SCIDIVE detector for SIP clients in 

each LAN, while a higher level detector is responsible for monitoring clients in an entire WAN comprising 

multiple LANs. We plan to evaluate the effectiveness and accuracy of SCIDIVE through simulated attacks. This is 

a difficult enough task for systems with widely known exploits. It is even more so for VoIP systems that do not 

have widely publicized attack scenarios. We are in the process of collecting sample attacks that have been seen by 

a VoIP system vendor and developing attack scripts to mimic them. We anticipate that the accuracy of the 

detection will be a function of the input rule base as well as the design of the SCIDIVE components. The efficiency 
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of the algorithm for creating events from footprints and matching events against the rule set will affect the 

detection latency in addition to the structure of the rules. 
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