

Self Checking Network Protocols: A Monitor Based Approach

Gunjan Khanna, Padma Varadharajan, Saurabh Bagchi
Dependable Computing Systems Lab

School of Electrical & Computer Engineering, Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907.
Email: {gkhanna, pvaradha, sbagchi }@purdue.edu

Abstract
The wide deployment of high-speed computer

networks has made distributed systems ubiquitous in
today’s connected world The machines on which the
distributed applications are hosted are heterogeneous
in nature, the applications often run legacy code
without the availability of their source code, the
systems are of very large scales, and often have soft
real-time guarantees. In this paper, we target the
problem of online detection of disruptions through a
generic external entity called Monitor that is able to
observe the exchanged messages between the protocol
participants and deduce any ongoing disruption by
matching against a rule base composed of
combinatorial and temporal rules. The Monitor
architecture is application neutral, with the rule base
making it specific to a protocol. To make the detection
infrastructure scalable and dependable, we extend it
to a hierarchical Monitor structure. The infrastructure
is applied to a streaming video application running on
a reliable multicast protocol called TRAM installed on
the campus wide network. The evaluation brings out
the scalability of the Monitor infrastructure and
detection coverage under different kinds of faults for
the single level and the hierarchical arrangements.

1. Introduction

The wide deployment of high-speed computer
networks has made distributed systems ubiquitous in
today’s connected world. Distributed middleware,
such as CORBA, DCOM, GLOBE, distributed file
systems, such as NFS, XFS and distributed
coordination based systems, such as publish-subscribe
systems, distributed network protocols, such as
reliable multicast, and above all, the distributed
infrastructure of the world wide web form the
backbone of much of the information technology
infrastructure of the world today. The infrastructure,
however, is increasingly facing the challenge of
dependability outages. The outages result both from

naturally occurring failures and malicious attacks,
collectively referred to as disruptions in this paper.
The potential causes of natural failures are hardware
failures, software defects, operator failures, and
misconfigurations, while the malicious attacks may be
launched by external or internal users. The
consequences of downtime of distributed systems are
catastrophic. An extent of the financial losses can be
gauged from a survey by Meta Group Inc. of 21
industrial sectors in 2000 [15], which found the mean
loss of revenue due to an hour of computer system
downtime to be $1.01M, with power companies at the
top ($2.8M). Compare this to the average cost of $205
per hour of employee downtime! Also, compare the
computer system downtime cost today to the average
of $82,500 in 1993 [16] and the trend becomes clear.
Little wonder that distributed systems are called upon
to provide always-available and trustworthy services.
Failures of distributed systems employed in safety
critical applications, such as, flight control, nuclear
plant monitoring, and railway signaling, can lead to
loss of human lives.

The challenges to building distributed systems
capable of tolerating disruptions are manifold. The
machines on which the applications are hosted are
heterogeneous in nature, the applications often run
legacy code without the availability of their source
code, the systems are of very large scales, of the order
of tens of thousands of protocol participants (such as,
a system with DNS clients and servers), and the
systems often have soft real-time guarantees. While it
may be possible to devise very optimized and targeted
solutions for individual distributed applications, such
approaches are not very interesting from a research
standpoint due to their limited applicability. In our
earlier work, we have demonstrated the ability to make
a reliable multicast protocol, TRAM, resilient to a
class of natural failure and a class of malicious attacks
through incremental protocol changes [17]. However,
the changes are intrusive to the protocol, require
thorough understanding and access to the source code
of the protocol, and are effective only against the
specific classes of disruptions.

In this paper, we propose a generic Monitor
architecture for detection of disruptions in distributed
applications, which pose all the challenges mentioned
above. The solution approach employs a Monitor that
snoops on the communication between the protocol
participants and performs matching of the observed
communication against a rule base that characterizes
acceptable protocol behavior. The protocol
participants are treated as black boxes and their
internal state transitions are invisible to the Monitor.
The Monitor architecture is generic and applicable to a
large class of message passing based distributed
applications, and it is the specification of the rule base
that makes the Monitor specialized for an application.
We provide a specification syntax for the rules, in
which a rule may be combinatorial (valid for all points
in time in the lifetime of the application) or temporal
(which have an associated time component). We
provide fast rule matching algorithms that match the
incoming messages against the rules. In order to make
the infrastructure scalable, efficient, and accurate, we
propose a hierarchical Monitor structure where the
Local Monitors directly gather communication
between the protocol participants that are
geographically localized and the higher level Monitors
get processed and filtered messages from the lower
level Monitors. This allows a higher level Monitor to
perform detection using observed behavior that may
not be local. Further, in the Monitor approach, the
combination of the output from the Monitor and the
monitored protocol satisfies the definition of a self-
checking system. This definition states that when
subjected to the tolerated class of faults, the system
either masks the fault, produces no output at all, or an
output that falls outside the set of permissible outputs
and can therefore be easily detected.

The Monitor based approach is demonstrated by
applying it to a streaming video application running on
top of a tree-based reliable multicast protocol called
TRAM. Three different kinds of errors are injected
into the application and the performance and the
accuracy of the Monitor structure evaluated. The
overall detection coverage is 84.4% and 91.0% for the
single level and the two-level Monitor system,
respectively. The false alarm rate is 4% and is the
same in the single level and the two-level hierarchical
cases since all the false alarms are generated by the
Local Monitors.

The rest of the paper is organized as follows.
Section 2 presents the design of the Monitor. Section 3
provides details about the workload, the deployed
system, and the instantiated rule base. Section 4 gives
the experiments and the results. Section 5 surveys

related work. Section 6 concludes the paper with
mention of future work.

2. Design

In this discussion, we will use the term Monitor to
refer to the detection infrastructure and observed
entities to refer to the protocol participants that are
being monitored. The Monitor is said to verify the
observed entities. Since the application is considered
to be a black box, there is no access to the source code
of the protocol participants or to their execution hosts.
The specification of the protocol is, however, available
to the Monitor. The Monitor has access to the
messages exchanged between the monitored entities,
and hence is able to examine the communication
header and payload. The Monitor approach employs a
stateful model for rule matching, preserving state
across messages. The Monitor would typically not run
on the host of the observed entity but in its network
vicinity and should be able to observe the messages in
and out of the observed entity.

2.1. Monitor Architecture

The Monitor architecture shown in Figure 1 consists
of several components classified according to their
functional roles.

Figure 1. Monitor architecture with process flow

and information flow among multiple components

2.1.1 Data Capturer. The Data Capturer snoops
on the communication channel and captures messages
exchanged by the protocol participants. The capture
can be in either active or passive mode. In the active
mode, the protocol participant itself sends a copy of
the message to the Monitor. In the passive mode, there

is no direct cooperation from the participant and the
Data Capturer snoops over packets exchanged in the
communication medium.

This may be achieved either by having the
Monitor placed in the same broadcast LAN as the
monitored entities in a promiscuous mode, or with
router support with the router mirroring packets to the
port to which the Monitor is connected. In switched
environments, port mirroring enables data capture, by
sending to the port a copy of all messages received by
the switch. This feature can be configured in many of
the popular switches available today, including the
CISCO Catalyst family, 3COM SuperStack, and Intel
Express. Since the Monitor is considered a trusted
entity in the system, we assume that cryptographic
keys, if any, will be made available to it. Thus it can
perform its processing after decrypting the message.
The Data Capturer passes the message to the State
Maintainer.

2.1.2 State Maintainer. During the setup phase of
the Monitor, the State Maintainer is loaded with a set
of event definitions and a reduced state transition
diagram of each monitored entity. The event definition
maps the values of header fields in a message to an
event. A reduced state transition diagram is input to
the Maintainer, in which the transitions are due to
messages sent and received by a monitored entity, and
not due to any internal state transitions. The state
objects are maintained in a global hash table, indexed
by the state name. Each state object contains the state
variables in the particular state, and the expected
incoming events and the corresponding next state. The
combination of current state and incoming event
determines the set of rules to be matched. The rule
base is linked to the State Maintainer, but is not a part
of it. At runtime, the State Maintainer gets an
incoming message from the Data Capturer, maps it to
an event, checks if the event is an expected event in
the current state, and if so, triggers the appropriate
state transition and invokes the Rule Matching Engine
with the appropriate rule(s).

2.1.3 Rule Matching Engine. The Rule Matching
Engine, which is triggered by the State Maintainer on
the receipt of an appropriate event in an appropriate
state, is the most resource intensive workhorse of the
Monitor. In order to constrain the detection latency, it
is crucial that the matching algorithms be optimized
for speed. Due to the different nature of temporal and
combinatorial rules (See Section 2.2), we provide
separate matching algorithms for them.

Each combinatorial rule is translated into an
expression tree which has Boolean operators in the

intermediate nodes, and operands (state, state variable,
or event) in the leaf nodes. Combinatorial rule
matching is performed by traversing the expression
tree. We use two optimizations in the combinatorial
rule matching. The first is based on the observation
that the same rule may be matched multiple times and
not all the operands would change between successive
rule matches. Hence, the algorithm should be
incremental in its Boolean value computation. This is
achieved by storing the previously computed value in
each node of the expression tree and for a non-leaf
node, the list of operands in the sub-tree underneath it.
The algorithm is passed the set of operands that have
changed and it re-evaluates only that part of the
expression tree which may have changed. The second
optimization is to have the nodes arranged in order of
the frequency of change with the more frequently
changing operands towards the left. The algorithm
visits nodes left to right, and if a rule has no repeated
operand and a single operand has changed, as is often
the case, then once a match occurs, the algorithm does
not need to explore the remainder of the expression
tree.

Temporal rule matching handles appropriate
alarm generation and rule matching according to
temporal rule specifications. There are two time scales
in the context of temporal rules, one is the time instant
when the state variable is captured for matching, and
the second is the time when the captured value is used.
Since the two time points may be arbitrarily spread
apart in time, two separate timers ― Variable Copier
and Rule Matcher ― are used. After expiration of the
Variable Copier timer, the Monitor copies the state
variables to be examined in the rule into the rule
object. After the expiration of the Rule Matcher timer,
the rule is matched. The matching of temporal rules is
thereby optimized for speed by having these two
timers. Moreover, the variable copier ensures
authenticity of the state variables captured for
matching. Even if the rule matching itself is delayed,
the state variables are captured at the precise moments
they were meant to by the Variable Copier. The
classification of the rules into four categories also adds
efficiency in matching. This is because the rules are
matched in the tightest category applicable, incurring
the least possible overhead. The implementation
involves creation of a thread pool so that matching
multiple rules for a single or multiple monitored
entities that are applicable in a particular state can
occur concurrently.

2.2. Structure of Rule Base

Rules are specified in terms of current state,

incoming event, and corresponding state variables.
The formal rule syntax is important because it
determines the expressibility of the system and by
extension, its ability to detect different classes of
disruptions. The syntax also determines the speed with
which rule matching can be performed. The rules
defined in the system could be derived from the
specifications of the protocol or from the QoS
requirements on the application. The rules are
currently created manually by the administrator and
fed in during the set up phase. Further, the rules
defined are anomaly based (i.e., specify acceptable
state transitions), and not misuse based. A primary
reason for the choice is that the space of misuse based
rules could be very large for real-world large scale
distributed systems vulnerable to different kinds of
disruptions. When choosing the rule base syntax,
several existing approaches were evaluated. We use a
formalism based on temporal logic actions [5],[6].

2.2.1 Combinatorial Rules. These are the rules
expected to be valid for the entire period of execution
of the system, except transients. A combinatorial rule
has the operators ‘!’ for logical NOT, ‘V’ for logical
OR, and ‘Λ’ for logical AND. Each expression
representing a rule finally yields a Boolean true or
false. Although the combinatorial rules must be valid
for the entire length of time, there could be transients,
which cause temporary deviations. The rule matching
algorithm, given an input length of transients in the
system, has the intelligence not to flag the temporary
deviations as errors.

2.2.2 Temporal Rules. We studied the properties
of the rules for two applications – TRAM and SIP
(Session Initiation Protocol), a signaling protocol used
for exchanging control messages used to manage
interactive multimedia sessions. After the study, we
came up with following classification for the
Temporal rules. While it is clearly impossible to claim
that rules for detecting all kinds of disruptions in all
networking protocols can be folded into these
categories, a pragmatic design choice was made to
come up with a classification that seem adequate for a
large class of anticipated disruptions and protocols.

Type I:
true for (,) true for (,)

p N N q I I
S T t t k S T t t b= ∈ + ⇒ = ∈ +
The above rule represents the fact that if for some time
k starting at tN, a state Sp is true, then it will cause the
state Sq to be true for some time b starting at tI. The
time tN represents a time when some defined event E1
takes place.

Type II: St ≠ St+∆, where St is the state of an object at
time t and if a defined event Ei takes place at t.
The state St will not remain constant for more than ∆
time units if an event Ei takes place.
Type III: L ≤ |Vt| ≤ U, for t ∈ (ti,ti+k)
The state variable Vt in a particular state SI will be
bounded by L and U in some time k starting at time ti
when the defined event corresponding to the rule first
occurs.
Type IV: L ≤ |Vt| ≤ U, for tœ(ti,ti +k) ⇒ L′ ≤ |Bq| ≤
U′, for qœ(tn,tn+b).
A state variable Vt being bounded by upper and lower
bounds in time k will cause another state variable Bq to
be within some lower and upper bounds and will hold
true for some time interval b. This rule is in fact the
master rule and the three previous rule types are
special cases. But we still need the first three rule
types because matching this class of rule entails
matching more variables, which incurs higher latency
than the first three classes.

2.3. Hierarchical Monitor

2.3.1 Mutli-level Monitor Architecture. A single
Monitor constitutes a single point of failure, a large
number of protocol participants might overwhelm the
Monitor increasing the latency of detection, it is not
scalable, and an effort to make it scalable by observing
partial views of the system by monitoring only select
entities may lead to reduced coverage. Therefore, in
our system, we incorporate the idea of using a
hierarchy of Monitors working interacting with one
another to detect disruptions. The entire structure is
divided into Local, Intermediate, and Global Monitors
as shown in Figure 2. The functionality of the Local
Monitor has been described earlier in the section on
“Monitor Architecture” (Section 2.1). The
Intermediate Monitor gathers information from several
Local Monitors, each locally monitoring a set of
entities. In addition, the Intermediate Monitor may
also be monitoring entities directly. The Local and
Intermediate Monitors perform filtering of messages
which are not required for rule matching at the higher
level, and processing, such as aggregation through
counts of events. The Global Monitor has a global
view of the protocol and is unique in the system. Its
functionality does not involve matching many rules, as
filtering is done at the local and the intermediate
levels. In well designed protocols, most interaction
among protocol participants is local, thus most
messages are seen only at the Local Monitor. The
Global Monitor enhances coverage and accuracy,
performing detection across multiple hosts monitored

by different lower level Monitors. Each Monitor has
the same architecture as described in Section 2.1 with
the same rule base.

The hierarchical approach increases the accuracy
and the coverage of detection. Redundancy exists
through having a protocol entity being monitored by
multiple monitors on the path from the Local Monitor
to which the entity is bound, to the Global Monitor.
The Interaction Component in Figure 1 acts as the
gateway for communication between monitors placed
at the same level or at different levels.

Figure 2. Example topology of Local (LM),

Intermediate (IM), and Global (GM) Monitors.
[C denotes a cluster]

2.3.2 Rule Classifier. Owing to the hierarchical
architecture of the Monitor, there are situations where
all rules are not relevant to a given Monitor. The Rule
Classifier is responsible for deciding whether a rule is
to be matched at this Monitor. The Rule Classifier
partitions the rule base automatically into three classes
– one which is not relevant to the Monitor (Bypass
Rule), the second which is relevant to the Monitor
alone (Local Rule) and does not need to be observed
by any other Monitor, and the third which is relevant
to the Monitor plus some higher level Monitors
(Global Rule). A rule does not enjoy a universal
classification in the system. Rather, each rule
classification is with respect to an individual Monitor.
A global rule is further categorized as non-processable
rule (message corresponding to the rule is simply
forwarded), match-and-pass rule (message
corresponding to the rule is matched and forwarded),
and match-process-and-pass rule (message is
matched, processed, and then forwarded). The
algorithm for automatic rule classification can be
found in another submission [18].

2.4. Design Requirements

It is essential that the Monitor does not become a
performance bottleneck for the monitored application.
The Monitor should be capable of scaling to thousands

of protocol participants. The Monitor should be
applicable to a large class of applications with
minimal effort in moving from one application to
another. Finally, the Monitor should have a low
latency of detection so that propagation of the
disruption is limited. Let us see how these design
requirements are met.

First, the Monitor is not a performance bottleneck
since it functions asynchronously to the application
protocol and runs on independent hosts, not those of
the participants. Second, the hierarchical Monitor
structure addresses the issue of scalability. The Local
Monitors oversee the local communication among the
participants, while the higher level Monitors are
invoked if the behavior to be monitored spans multiple
local clusters. Since for a well-designed protocol, the
local communication should be the common
communication pattern, the proposed architecture can
scale with the number of participants. Third, the
Monitor is generic in its architecture and therefore,
widely applicable to message passing based
distributed protocols. The rule base which is specific
to the application is also specified in an easily
understandable temporal and combinatorial logic
format. There are automated rule classification
algorithms to take a unified rule base and partition it
into local and global rules. Fourth, the challenge of
providing low latency detection is addressed by
partitioning the rules intelligently, thereby minimizing
the number of rules to be matched at any Monitor.
Also, highly speed optimized and distinct algorithms
for matching the temporal and combinatorial rules are
provided.

3. System Description

3.1. Workload

The Monitor architecture described in Section 2.1
is implemented in Java for portability reasons. We
demonstrate the use of the Monitor on the running
example protocol ― a reliable multicast protocol
called TRAM [19],[20] to make it self checking.

TRAM is a hierarchical tree based reliable
multicast protocol for multicasting data from a single
sender to multiple receivers. The receivers and the
data source of a multicast session in TRAM interact
with each other to dynamically form repair groups.
Figure 3 shows a typical TRAM repair tree. The nodes
participating in TRAM play three roles, some nodes
playing multiple roles – sender, receiver and repair
head (RH).

Control- Data

Repair G roup Sender Repair
Head

Receiver S table
storage

-

Message Connection
Control- Data

Repair G roup Sender Repair
Head

Receiver S table
storage

-

Message Connection
Figure 3. Hierarchical tree structure in TRAM

Within a repair group, recovery happens locally
through the RH, which stores the data in stable store
till all receivers in the group have acknowledged
receipt. These repair groups are linked together in a
hierarchical manner to form a tree with the sender at
the root of the tree. The group members report lost and
successfully received messages to the RH using a
selective acknowledgement mechanism. A nack
message is sent implicitly through the ack by setting a
bit vector accompanying the ack message
appropriately to indicate the missing packets. An ack
message is sent after every ack window worth of
packets has been received, or an ack interval timer
goes off. The RHs aggregate acks from all its
members and send an aggregate ack up to the higher
level to avoid the problem of ack implosion.

The different kind of messages exchanged in
TRAM and their interpretations are given in Table 1.
The values in two header fields Message Type and
Sub-message Type together determine the control
message type.

3.2. Monitor State

In our implementation, the recipient of a packet
does active forwarding of the packet to the Local
Monitor. The Monitor reads the header fields, maps
the packet to an event, performs the appropriate state
transitions and finally, performs the relevant rule
matching. The Monitor follows a reduced STD which
is input by the system administrator. Forming the
reduced STD is somewhat of an art that the
administrator deploying the Monitor needs to master.
We are currently exploring some methods for
automating the reduced STD creation given some
formal specification of the protocol, such as UML
state diagram. Minimally, the states in the reduced
STD must cover all the states mentioned in the rules in

the rule base. Henceforth, in the description of the
reduced STD and the rule base, we use the event IDs
instead of the packet types. The mapping is given in
Table 1.

The reduced STD of the receiver, which is stored
in the State Maintainer, is shown in Figure 4. In state
S2, the receiver checks the integrity of the data packet
using the sequence number of the packet. From state
S3, if an unexpected error event happens in the
interaction between the receiver and its RH, it starts a
counter and goes to state S4. If the counter value
exceeds a threshold, the receiver disassociates itself
with the current RH and re-affiliates with a different
RH. The CNF form of the syntax for representing the
STD is STDSpec⇒“:”CurStateID(IncomingEventID
NextStateID)+ (“!” “:”CurStateID (IncomingEventID
NextStateID)+)*

Functioning State
(S1)

Check
data/Wait to

Ack (S2)

E11

Waiting for
data (S3)

Counter
(S4)

Re-affiliation (S5)

E9

E11

E12

Timeout
E9

E11

Timeout
E10

Functioning State
(S1)

Check
data/Wait to

Ack (S2)

E11

Waiting for
data (S3)

Counter
(S4)

Re-affiliation (S5)

E9

E11

E12

Timeout
E9

E11

Timeout
E10

Figure 4. Reduced STD for the TRAM receiver

Table 1. Different control messages in TRAM
Message
Name

(Source,
Destination)

Interpretation Event
ID

Beacon Sender,
Anybody
within set TTL
distance

Initialization
message for sender
to query for
interested entities to
join in its multicast
stream

E1

Head Adv. Sender(RH),
Receivers

Repair Heads send
advertisement of the
channel

E3

Data Sender(RH),
Receivers(RH)

Multicast Data sent
from head to group
members

E11

Head Bind Receiver,
Repair
Head(Sender)

Receiver sends a
request to join group
in the form of Head
Bind

E10

Accept/Reject Repair
Head(Sender),
Receiver(RH)

Acceptance or
Rejection message
sent by the repair
head to the seeking
receiver.

E6,
E7

Ack Packet Receiver,
Repair
Head(Sender)

Aggregate
Acknowledgement
sent by the receiver
to the repair head.

E9

Member
Solicitation

Receiver,
RH(Sender)

Message sent by a
receiver seeking to
join a group when
group formation is
started by receiver.

E4

Hello
Messages
(Reply)

RH(Receiver),
Receiver(RH)

Indication of
Liveliness of the
members.

E2,
E8

Data
Retransmission

Sender(RH),
Receivers(RH)

Data is
retransmitted if a
nack is received

E12

3.3. Monitor Rule Base For TRAM

The rule base consists of anomaly-based rules
governing the execution of the protocol as seen from
the viewpoint of the TRAM receiver. In a rule
specification, the first letter (T/C) specifies whether
the rule is temporal or combinatorial in nature, while
(R1/R2/R3/R4) indicates the sub-type of the rule in the
temporal category as defined in Section 3. Here we
give examples of rules for the TRAM receiver used in
the experiments.
1. T R3 S2 E11 30 500 5000. The number of data
packets observed during a time period of 5000 ms can
be any number between 30 and 500. The thresholds
are calculated using the maximum and minimum data
rate specified by the user.
2. T R4 S2 E11 30 500 5000 S2 E9 1 8 500 7000. If
there are between 30 and 500 data packets in 5000 ms
in given state, then the number of ACK packets should
be between 1 and 8 from 500ms to 7000ms in the
same state. Again the numbers are based on the
propagation delay of the packets and the fact that
receiver acks at intervals of every 32 packets, the
default ack window.
3. T R3 S4 E12 0 5 5000. We restrict the number of
nacks to be a max of 5 within 5000 ms. This number is
calculated based on the minimum acceptable data rate
and the sliding window protocol followed by TRAM
for data transmission. A subtle, yet important,
technique is used to specify any rule that involves
nacks. In TRAM, a nack is sent implicitly in the form
of an ack by sending a bit vector and setting the
corresponding bit in the vector to be 1. The Monitor

only examines the packet header and therefore cannot
observe the bit vector sent as payload. In order to
observe a nack, the Monitor uses a resultant effect ―
the data retransmission which usually follows a nack.
4. T R3 S1 E15 0 16 5000. This is a global rule
which restricts the total number of nacks seen
globally. The Local Monitors, on receipt of a nack
packet, process the rule, and pass the computed results
of the number of nacks seen locally as a new event
(E15) to the Global Monitor. In the deployment used
in the experiments, the Global Monitor verifies two
Local Monitors, each of which verifies two nodes. The
aggregate number of nacks is restricted to 16, within 5
seconds. Note that this is a tighter bound than what
would be indicated by a linear extrapolation of the
number of nacks locally as in rule 3 (16 nacks instead
of 20). The second global rule corresponds to the
number of data packets seen at the global level which
is also a rule of type 3. For the deployment, this is kept
at 265 to 2500 in a 5 second period.

Several other rules are used in the experiments. A
combinatorial rule is that the data rate should be
between 20KBytes/sec and 40KBytes/sec. These are
specified as configuration parameters for TRAM.
Examples of further temporal rules are the state of a
receiver should not be the initial state 50ms after
receipt of a data packet at the initial state since it
should move into the ack-ing state. The number of re-
affiliations in a state is upper-bounded by 5 in 10
seconds. This rule prevents a malicious receiver
exhausting resources by disconnecting and re-
affiliating with different RHs or the sender in rapid
succession. The number of unicast hello messages
should be limited between 1 and 5 because it is sent
only when a particular receiver is not sending hello
replies. It is an indicator of the failure of the liveness
of the receiver.

3.4. Example of Rule Matching

Consider Rule no. 3 in Section 3.3 – T R3 S4 E12
0 5 5000. Let us assume that the current state of the
monitored entity is S4, and the first packet that is
received after entering S4 is a data retransmission
packet, denoted as E12. The Data Capturer captures
this packet and passes it to the State Maintainer. The
State Maintainer deduces the packet as an E12 event,
and checks to see if this is a valid event in state S4,
according to its reduced state transition diagram. As
this is the case, it further checks if there are any rules
corresponding to event E12 in state S4. Finding one,
the State Maintainer makes the appropriate state
transition and triggers the rule matching engine with
the given rule. The state variable corresponding to

number of E12 events for the given rule is
incremented. The rule matching engine instantiates a
Rule III object, setting the lower bound as 0, the upper
bound as 5, and the time period corresponding to Rule
III as 5000, as given in the rule. It also sets the
Variable Copier and Rule Matcher timers to generate
alarms at the end of 5000 ms. Any subsequent packet
corresponding to event E12 results in just an
increment of the appropriate state variable. A new rule
is not instantiated for the same master rule till the
previous rule has expired. At the end of 5000 ms, the
Variable Copier captures the state variable denoting
number of E12 events, and stores the same in the
instantiated rule. Following this, the Rule Matcher
compares this value to the lower bound and upper
bound, to decide if an error should be flagged. The
actual rule matching done by the Rule Matcher is a
simple comparison, and hence an O(1) operation.

4. Experiments and Results

4.1. Experimental Setup: Workload, Error

Injection, Topology

A streaming video application with MPEG-2
video stream is used as the workload. The application
is executed over TRAM, with the server running on
the sender and multiple clients running one on each
receiver. A client can flag an error if it views
degradation in its video quality because of slow data
rate, which is represented by a threshold. The
minimum and the maximum data rate specified by the
client to TRAM are 20 KBytes/sec and 40 KBytes/sec.
The TRAM sender provides a best effort service on
the basis of these configuration parameters.

The errors are injected into the header of the
TRAM packet before dispatching it to the receiver.
The receiver actively forwards the injected packet to
the Monitor. This emulates the condition that the
faulty packet is seen by the TRAM entities as well as
the Monitor. The errors are injected continuously for
a particular duration, denoted the Burst Length. This
mode of error injection helps in emulating a real
communication link where errors occur in bursts. The
default burst length for the Monitor coverage
measurements is kept at 15 ms.
Three error models are used for the injections.
(1) Stuck at Fault: In this error scenario, we
simulate a stuck-at fault by changing a randomly
selected header field into a different, valid, but
incorrect value. The header field is always converted
to the same value for all the packets in the entire burst
length period.

(2) Directed: The error injection is carried out into
a randomly selected header field and its value changed
to incorrect but valid values. Every packet is injected
differently, unlike in the stuck at fault model.
(3) Random: In this case, we choose a random
header field and inject a random value into it. The
injected value may not be valid with respect to the
protocol.

We carry out two sets of run for each type of error
injection, one with a loose client and another with a
tight client. A loose client checks the data rate after
every 4 Ack windows (approximately every 4.3
seconds) while a tight client checks the data rate after
every Ack window. In practical terms, a tight client
emulates a client less tolerant of transient slow downs
in its received data rate.

There are four possible consequences of errors
injected into the packets – exception is raised by the
protocol (E), the client crashes (C), the client flags a
low data rate error (DE), or no failure occurs (NF). It is
possible for one, two, or all three of exception, crash
and client data rate error to occur. The consequence of
an error injection is represented as a tuple of up to
three elements with the prefix “N” before a
consequence denoting that the consequence did not
occur. Thus (NE; NC; DE) denotes no exception, no
crash, but client flagged a data rate error. When only a
single consequence occurs, the notation can be
abbreviated, as (DE) for the above case. Also,
whenever an error is manifested in the protocol, the
data rate ultimately drops leading to the data rate error
(DE). If data rate error is not the only consequence, DE
is dropped from the notation. The experimental runs,
where the Monitor detects the failure before any of the
protocol manifestations, are classified as Monitor
detection. If the Monitor flags an alarm after an error
has been manifested in the client (any of E, C, or DE),
this is a case of error propagation and is classified as a
coverage miss. An error which does not lead to a
failure but is flagged by the Monitor is categorized as
a false alarm.

For the experiments we use a cluster of Linux
machines, with the TRAM protocol entities run on 450
MHz Pentium II machines with 256 MB of memory
and the Monitors run on Pentium 4 2.26 GHz
processor machines with 1 GB memory, 533 FSB and
512 KB cache. The entities are connected among
themselves by 1 Gbps links and the entities are
connected to the Monitors with 100 Mbps links.

At the outset we conduct performance
experiments on the single level Monitor system. It is
seen that the latency of detection at one Monitor is less
than 30 ms when it matches 50 packets/sec or less and
beyond that it grows linearly. With varying the

number of receivers, the increase in latency is found to
be linear with 6.25 ms for 1 receiver and growing to
16.71 ms for 26 receivers. This amount of latency is
considered tolerable in many environments.

4.2. Single Level Monitor Results

Table 1 presents the effect of the three types of
error injection on the protocol. Each kind of injection
with each client (loose and tight) is carried out for 100
runs. A run is defined as an execution of the
application with error injection where either the
Monitor flags an error or the application has a failure
or both. The first four columns are the different
consequences of the error injection and are listed as:
(Number of cases detected by the Monitor)/(Total
number of such cases) (% Coverage of the Monitor).
There are no experimental runs where the receiver
crashes without any exception and hence this
consequence is not shown in the table. This indicates
that the exception flagging in TRAM is very
extensive. Oftentimes, the receiver side code catches
the exception through large try-catch block, but does
not do any application specific processing. It prints out
the exception stack and allows the receiver to crash.

Overall, Monitor accuracy for the single level
case is 84.37%. If we look across the columns for
various types of injections, we see that the Monitor’s
accuracy is high for DE, but drops for (E;NC). This is
due to the fact that the exception, if raised by the
protocol, is done very soon after the error, before the
Monitor can flag it, which it does eventually.
However, the case counts as a coverage miss for the
Monitor. The Monitor’s latency negatively affects its
coverage as evidenced by the significant drop in
coverage from the loose client to the tight client. Part
of the latency is a fundamental property of the rule
base and cannot be solved by faster processing at the
Monitor. Several rules have the form of counting a
particular event over a given time interval and

checking bounds on the number of occurrences of the
event. The length of the time interval forms a
constraint in terms of the minimum granularity at
which faults can be detected. Hence, a single error that
causes an exception goes undetected and the coverage
for the (E;NC) cases is considerably lower than for
other categories. An alternate design of maintaining a
sliding window of the events and a running count
would eliminate this problem of higher latency but is
not used due to the high state maintenance and
processing overhead it entails on the Monitor.

Considering the error injection experiments with
the loose random client (LR), overall there is 9.2%
missed alarms and 8% false alarms. The main source
of missed alarms is the case when there is an
exception but no crash of the receiver. An example of
this is when the protocol flags an exception because of
a large message length and then continues to run. But
this is missed by the Monitor. This happens when an
injected error into the packet header converts a data
packet to an ack packet whose length is greater than
expected, leading to an exception. The Monitor is
effective in catching the cases where the client flags a
slow data error rate. For TR we see an identical
number of DE as in LR. However, since the receiver is
checking its observed data rate more frequently, it is
able to find the slow data rate error much faster. The
Monitor’s detection latency, on the other hand,
remains the same, causing the detection accuracy to go
down to 90%. For the directed error injection for the
loose client (LD) there are 18% DE errors out of which
83% are caught by the Monitor. Compared to LR,
there is an increase in the cases where exceptions are
raised ((E;NC) and (E;C)) and an equal decrease in DE
errors. This can be attributed to the fact that in random
injection, packets are injected with message type and
sub-message type lying outside the defined set of
protocol messages. In such cases the packets are
mostly discarded by the protocol. Thus, the receiver
does not see any data packet leading to it flagging the

Table 2. Results of error injection with single level Monitor

No Exception
No Crash
Slow data rate
(DE)

Exception
No Crash
(E;NC;DE)

Exception
Crash

Slow data rate
(E;C;DE)

Missed Alarms

False Alarm Coverage

Loose
Random
(LR)

57/58
(98%)

24/30
(80%)

4/4
(100%)

7/92(7.6%) 8% 85/92
(92.4%)

Tight
Random
(TR)

52/58
(90%)

17/26
(65%)

6/6
(100%)

15/90(16.67%) 10% 75/90
(83.3%)

Loose
Directed
(LD)

15/18
(83%)

51/64
(80%)

17/18
(94%)

17/100(17%) 0% 83/100
(83%)

Tight
Directed
(TD)

23/28
(82.1%)

50/62
(80.5%)

10/10
(100%)

17/100(17%) 0% 83/100
(83%)

Loose stuck
at (LS)

43/44
(98%)

38/50
(76%)

2/2
(100%)

13/96(13.54%) 4% 83/96
(86.46%)

Tight stuck
at (TS)

47/52
(90.38%)

23/32
(71.8%)

7/14
(50%)

21/98(21.4%) 2% 77/98
(79%)

 90/576(15.63%) 24/600 (4%) 486/576(84.37%)

low data rate error. But in directed injection, different
valid but incorrect types of packets are generated in
every injection. This causes several invalid transitions
in the protocol leading to an increase in the number of
exceptions and crashes. The Monitor has an overall
coverage of 83%, with greater effectiveness in
capturing errors that lead to crashes. In the directed
injections, the false alarms are eliminated because of
increase in the number of invalid transitions, as argued
earlier, leading to manifested errors.

In the stuck-at error injection, for LS, about 44%
protocol responses are (DE) and 50% are (E;NC). The
Monitor detects 98% and 76% of these cases,
respectively, confirming the trend from LR that loose
client data rate failures are easier for the Monitor to
detect than exceptions. There is a sharp increase in the
DE errors compared to directed injection. In stuck-at
injection, if the injected packet is not expected in a
particular state, it is discarded. This causes few state
transitions in the protocol, but the data rate goes down
ultimately leading to the receiver error. The number of
false alarms is low (2%) indicating that the protocol is
affected in most cases. Distinctly in TS, the number of
(E;NC) cases drops to 32% because the tight client
causes a DE to be flagged before an exception takes
place. Monitor is only able to detect 72% of these
cases. There is a sharp rise in the number of (E;C) to
14% half of which are missed by the Monitor. The
increase is due to the fact that in stuck-at injection, the
same packet is injected for the burst length and if it is
a valid protocol packet but injected in a wrong state, it
causes the protocol to crash and not simply throw
exception. The reduction in coverage is due to the fact
that since the same faulty packet is injected, it may
cause internal state transitions at the receiver, while
the Monitor only observes external messages. These
internal state transitions may be preliminary to an
exception or a crash which is missed by the Monitor.

4.3. Hierarchical Monitor Results

The setup for the hierarchical Monitor is shown in
Figure 5. It is a two level hierarchy with each Local
Monitor overseeing two receivers and a Global
Monitor overseeing the two Local Monitors. The
definitions of the coverage misses have to be carefully

considered in the hierarchical Monitor case. Consider
a chain of overseeing Monitors for each receiver. A
receiver is either verified by LM1 (Local Monitor 1)
and GM (Global Monitor), or LM2 (Local Monitor 2)
and GM. If either of the Monitors verifying an entity
reports the error before the error manifests in the
protocol, then the error is considered covered. The
way the manifestation of the error in the protocol is
defined differs for the Global and the Local Monitor.

Figure 5. Two level Monitor hierarchy used for the

experiments
If the Global Monitor detects the error after the

client reports the data error, it is still considered to be
covered, while detection after an exception or crash is
expectedly a miss. This relaxed definition accounts for
the structure of the global rules, which imposes
aggregation at the Local Monitor level and therefore,
increases the delay between the erroneous packet
being generated and rule matching at the Global
Monitor. Also, detection by the Global Monitor can
potentially convey more information about the error
(such as, rate of spread) and a client data rate error is
considered to be one which can be tolerated in the
environment for transient periods while crashes or
exceptions cannot.

The results from the injection are shown in Table
2. The results show the coverage miss by the Local
Monitors and the entire Monitor system separately to
bring out the advantages of deploying the two-level
Monitor system. Note that these are a new set of
experiments compared to the single level experiments
presented in Table 1. The coverages for the single

level case differ only due to statistical differences
caused by the two sets of experiments. For the
hierarchical Monitor system, the false alarm rate
remains the same as for the single level case since all
the false alarms come from the Local Monitors, which
remain identical in the two cases. The hierarchical
Monitor system shows a high overall accuracy of
90.97%, an improvement of about 7% over the single

level Monitor. This improvement is achieved by
adding just two rules at the Global Monitor. The
results corroborate the need for a hierarchical setup of
Monitors. The increase in coverage is most significant
for the loose directed case (12%).

Table 3. Results of error injection with hierarchical Monitor

No
Exception
No Crash
Slow data
rate (DE)

Exception
No Crash
(E;NC;DE)

Exception
Crash
Slow data
rate
(E;C;DE)

Missed
Alarms by
Hierarchic
al Monitor
System

False
Alarm

Coverage
By
Hierarchic
al
Monitor
System

Coverage
by Single
Level
Monitor

Improvem
ent over
Single
Level

Loose
Random
(LR)

29/29
(100%)

13/15
(87%)

2/2
(100%)

2/46
(4.34%)

8% 44/46
(95.66%)

42/46
(91.30%)

4.36%

Tight
Random
(TR)

28/29
(96.5%)

9/13
(69.2%)

3/3
(100%)

5/45
(11.1%)

10% 40/45
(88.88%)

37/45
(82.22%)

6.60%

Loose
Directed
(LD)

8/9
(89%)

30/32
(94%)

9/9
(100%)

3/50
(6.00%)

0% 47/50
(94.00%)

41/50
(82.00%)

12.00%

Tight
Directed
(TD)

12/14
(86%)

26/31
(83.8%)

5/5
(100%)

7/50
(14.0%)

0% 43/50
(86.00%)

41/50
(82.00%)

4.00%

Loose
stuck at
(LS)

22/22
(100%)

23/25
(92%)

1/1
(100%)

2/48
(4.17%)

4% 46/48
(95.83%)

42/48
(87.50%)

9.37%

Tight stuck
at (TS)

24/26
(92%)

14/16
(88%)

4/7
(57%)

7/49
(14.2%)

2% 42/49
(85.80%)

39/49
(79.59%)

6.20%

 26/288
(9.02%)

12/300
(4%)

262/288
(90.97%)

242/288
(84.03%)

6.94%

On further investigation, it is found that the rule at the
Global Monitor that checks the aggregate data rate is
successful in pre-emptively detecting some cases
which cause exceptions and crashes and therefore
improves the coverage. As in the single level case, the
system performs worse when the protocol’s
manifestation of error is exception, since it flags the
error often after the exception has been raised. The
Monitor system’s performance in the directed and
stuck-at injections with loose client is worse than for
random injections due to the same reason as in the
single level case (more number of invalid protocol
transitions). However, the difference in coverage is not
as sharp indicating that the global rules are able to pre-
emptively catch some of the failure cases. For the tight
client in directed and stuck-at, the global rules do not
make as much of a difference since the receiver data
rate error detection dominates and often occurs before
the global rules can flag the error.

5. Related Work

Preliminary to building self-checking protocols,
the application behavior has to be specified formally.

Different formalisms exist for distributed systems, the
most common ones being Extended State Machines
[4], Temporal Logic Actions (TLA) [5],[6], and Petri
net based models [7]. Our approach is derived from
the TLA model where the valid actions are represented
as logical formulas. The formulas can be augmented
with the notion of lower and upper time bounds to
capture the temporal properties of protocols. There is a
volume of work on detecting crash failures through
heartbeats, failure detectors, etc. (e.g., see [21]),
building resilient distributed applications through fault
tolerant algorithms built into the application (e.g., see
[22],[23]). Their goals are considerably different from
the work presented here and hence, not surveyed
further. There is previous work [8],[9] that has
approached the problem of detection and diagnosis in
distributed applications modeled as communicating
finite state machines. The designs have looked at a
restricted set of errors (such as, livelocks) or depended
on alerts from the protocol entities themselves. There
exist systems with the high-level goal of checking
online system behavior against specifications [24]-
[27]. However, they differ widely in approach,
assumptions, or focus. For example, the MAC project

[27] is focused on bridging the gap between the high
level specification of correctness and the low level
events generated by the system implemented in Java.

A detection approach using event graphs is
proposed in [10], where the only property being
verified is whether the number of usages of a resource,
executions of a critical section, or some other event
globally lies within an acceptable range. The problem
of diagnosis in distributed systems has been studied in
[11],[12] which have relied on participation by the
protocol entities and the classes of faults have also
been restricted.

Near identical goals, as in this paper, has
motivated the work in [3] and [13]. In the first work,
the approach is to structure the system as two distinct
sub systems ⎯ worker and observer. The worker is
the traditional system implementation, while the
observer is the redundant system implementation
whose outputs are comparable to the worker outputs.
The observer can only spy on interactions, without any
worker support. The observer is made highly reliable
through formally specifying and verifying it. Some
unanswered questions are that the observer is a
monolithic entity and is not shown to be able to
operate outside a broadcast medium, how the subset of
worker functionalities for observing is determined, and
the independent verification of layers of the worker
are apt to miss out misbehaviors that span multiple
layers. An extension to use multiple observers is
proposed in [14], but it requires a global state graph of
the system which may be infeasible to build or verify
at runtime for complex systems. In [13], the authors
propose a compositional approach to automatic
monitoring of distributed systems specified using
CFSMs. The fundamental contribution is to show how
to monitor a complex system by monitoring individual
components, thereby eliminating the state space
explosion problem. This work assumes some internal
states are visible to the monitor through program
instrumentation, etc. It assumes that if local
interactions are correct, the system execution is
globally correct. This is in contrast to our system,
where we allow for the possibility of a global rule
flagging an error where the local rules missed it.
Finally, the effectiveness of the approach has not been
demonstrated through any error injection based
experiments.

6. Conclusion

In this paper, we have presented the Monitor
architecture for detecting natural failures and
malicious attacks, collectively termed disruptions, in
large distributed systems. The Monitor is an external

entity that observes exchanged messages between the
protocol participants and deduces any ongoing
disruption by matching the exchanges against a rule
base of combinatorial and temporal rules. To make the
detection infrastructure scalable and dependable, a
hierarchical Monitor architecture is presented. The
infrastructure is applied to a streaming video
application running on a reliable multicast protocol
called TRAM over the Purdue campus-wide network.
The evaluation shows coverage of 84% and 91% for
single level and two level Monitor deployments
aggregated over three different classes of errors.

Current work is focusing on redundancy in the
Monitor hierarchy with a protocol participant being
monitored by multiple Monitors at the same level. We
are also investigating making the environment
dynamic where participants and Monitors may come
and go, and the assignment of the protocol entities to
the Monitors may change dynamically. We are
extending our framework to deal with the sources of
non determinism like delays in the network and
difference in the sequence of observed events from the
sequence of occurred events.

Acknowledgements

We have been enormously helped in the
deployment and management of TRAM on Purdue’s
network by personnel at ITAP, Purdue, which is our
information technology organization. Particular thanks
go out to Casey Carlson and Dale Talcott.

References

[1] D. A. Anderson and G. Metze, “Design of totally self-

checking circuits for m-out-of-n codes,” IEEE Trans.
on Computers, vol. 22, Mar 1973.

[2] M. Diaz, P. Azema, and J. M. Ayache, “Unified design
of self-checking and fail safe combinational circuits and
sequential machines,” IEEE Trans. on Computers, vol.
28, no. 3, pp. 276-281, Mar 1979.

[3] M. Diaz, G. Juanole, and J.-P. Courtiat, “Observer-A
Concept for Formal On-Line Validation of Distributed
Systems,” IEEE Trans. on Software Engineering, vol.
20, no. 12, pp. 900-913, Dec 1994.

[4] A. S. Danthine, “Protocol representation with finite
state models,” IEEE Trans. on Communications, vol.
28, no. 4, pp. 632-643, Apr 1980.

[5] L. Lamport, "The temporal logic of actions," ACM
Transactions on Programming Languages and Systems,
16(3):872–923, 1994.

[6] Z. Liu and M. Joseph, "Specification and Verification
of Fault-Tolerance, Timing, and Scheduling," ACM

Transactions on Programming Languages and Systems,
21(1):46-89, 1999.

[7] B. Berthomieu and M. Diaz, “Modeling and
Verification of Time Dependent Systems using Time
Petri Nets,” IEEE Trans. on Software Engineering, vol.
17 , no. 3 , pp. 259-273, Mar 1991.

[8] W. Peng, “Deadlock Detection in Communicating
Finite State Machines by Even Reachability Analysis,”
IEEE Conference on Computer Communications and
Networks (ICCCN), pp. 656-662, Sep 1995.

[9] A. Agarwal and J. W. Atwood, “A Unified Approach to
Fault-Tolerance in Communication Protocols based on
Recovery Procedures,” IEEE/ACM Trans. on
Networking, , vol. 4 , no. 5 , pp. 785-795, Oct 1996.

[10] L.-B. Chen and I-C. Wu, “Detection of Summative
Global Predicates,” IEEE Conference on Parallel and
Distributed Systems (ICPADS '97), pp. 466-473, Dec
1997.

[11] I. Katzela and M. Schwartz, “Schemes for Fault
Identification in Communication Networks,”
IEEE/ACM Trans. on Networking, vol. 3 , no. 6 , pp.
753-764, Dec 1995.

[12] M. A. Hiltunen, “Membership and System Diagnosis,”
In 14th IEEE Symposium on Reliable Distributed
Systems (SRDS ’95), pp. 208-217, Sep 1995.

[13] M. Zulkernine and R. E. Seviora, “A Compositional
Approach to Monitoring Distributed Systems,” IEEE
International Conference on Dependable Systems and
Networks (DSN'02), pp. 763-772, Jun 2002.

[14] C. Wang and M. Schwartz, “Fault Detection with
Multiple Observers,” IEEE/ACM Trans. on
Networking, vol. 1, no. 1, pp. 48-55, February 1993.

[15] META Group, Inc.,"Quantifying Performance Loss: IT
Performance Engineering and Measurement
Strategies", November 22, 2000. Available at:
http://www.metagroup.com/cgi-
bin/inetcgi/jsp/displayArticle.do?oid=18750

[16] FIND/SVP, 2003, "Costs of Computer Downtime to
American Businesses," At: www.findsvp.com

[17] G. Khanna, J. S. Rogers, and S. Bagchi, “Failure
Handling in a Reliable Multicast Protocol for
Improving Buffer Utilization and Accommodating
Heterogeneous Receivers,” In IEEE Pacific Rim
Dependable Computing Conference (PRDC ’04), pp.
15-24, March 2004.

[18] P. Varadharajan, G. Khanna, and S. Bagchi,
“Automated Online Monitoring of Distributed
Applications through External Monitors,” Submitted to
IEEE Trans. on Parallel and Distributed Systems.
Available at:

 www.ece.purdue.edu/~sbagchi/research.html
[19] D. M. Chiu, S. Hurst, M. Kadansky, and J. Wesley,

“TRAM: A Tree-based Reliable Multicast Protocol”,
Sun Technical Report TR 98-66, July 1998.

[20] D. M. Chiu, M. Kadansky, J. Provino, J. Wesley, H.
Bischof, and H. Zhu, “A Congestion Control Algorithm
for Tree-based Reliable Multicast Protocols”, In
Proceedings of INFOCOM ’02, pp.1209-1217, 2002.

[21] W. Chen, S. Toueg, and M. K. Aguilera, “On the
Quality of Service of Failure Detectors,” In IEEE
International Conference on Dependable Systems and
Networks (DSN'00), pp. 191-201, Jun 2000.

[22] R. Baldoni, J.-M. Helary, and M. Raynal, “From Crash
Fault-Tolerance to Arbitrary-Fault Tolerance: Towards
a Modular Approach,” In IEEE International
Conference on Dependable Systems and Networks
(DSN'00), pp. 273-282, Jun 2000.

[23] S. Krishna, T. Diamond, and V. S. S. Nair,
“Hierarchical Object Oriented Approach to Fault
Tolerance in Distributed Systems,” In Proceedings of
IEEE International Symposium on Software Reliability
Engineering (ISSRE ’93), pp. 168-177, Nov 1993.

[24] A. K. Mok and G. Liu, “Early Detection of Timing
Constraint Violation at Runtime,” In Proceedings of the
IEEE Real-Time Systems Symposium, December 1997.

[25] F. Jahanian and A. Goyal, “A Formalism for
Monitoring Real-Time Constraints at Run-Time,” In
Proceedings of the 20th International Symposium on
Fault-Tolerant Computing Systems (FTCS-20), pp.148-
155, 1990.

[26] K. Havelund and G. Rosu, "Monitoring Java programs
with Java PathExplorer," in K. Havelund and G. Rosu
(Eds.), Proceedings of Runtime Verification (RV'01),
Vol. 55 of Electronic Notes in Theoretical Computer
Science, Elsevier Science, 2001c.

[27] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg
Sokolsky, Mahesh Viswanathan, “Java-MaC: a
Rigorous Run-time Assurance Tool for Java Programs,”
In “Formal Methods in Systems Design”, vol. 24, no. 2,
March 2004.

