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Abstract 
The wide deployment of high-speed computer 

networks has made distributed systems ubiquitous in 
today’s connected world The machines on which the 
distributed applications are hosted are heterogeneous 
in nature, the applications often run legacy code 
without the availability of their source code, the 
systems are of very large scales, and often have soft 
real-time guarantees. In this paper, we target the 
problem of online detection of disruptions through a 
generic external entity called Monitor that is able to 
observe the exchanged messages between the protocol 
participants and deduce any ongoing disruption by 
matching against a rule base composed of 
combinatorial and temporal rules. The Monitor 
architecture is application neutral, with the rule base 
making it specific to a protocol. To make the detection 
infrastructure scalable and dependable, we extend it 
to a hierarchical Monitor structure. The infrastructure 
is applied to a streaming video application running on 
a reliable multicast protocol called TRAM installed on 
the campus wide network. The evaluation brings out 
the scalability of the Monitor infrastructure and 
detection coverage under different kinds of faults for 
the single level and the hierarchical arrangements.   
 

1. Introduction 
 

The wide deployment of high-speed computer 
networks has made distributed systems ubiquitous in 
today’s connected world. Distributed middleware, 
such as CORBA, DCOM, GLOBE, distributed file 
systems, such as NFS, XFS and distributed 
coordination based systems, such as publish-subscribe 
systems, distributed network protocols, such as 
reliable multicast, and above all, the distributed 
infrastructure of the world wide web form the 
backbone of much of the information technology 
infrastructure of the world today. The infrastructure, 
however, is increasingly facing the challenge of 
dependability outages. The outages result both from 

naturally occurring failures and malicious attacks, 
collectively referred to as disruptions in this paper. 
The potential causes of natural failures are hardware 
failures, software defects, operator failures, and 
misconfigurations, while the malicious attacks may be 
launched by external or internal users. The 
consequences of downtime of distributed systems are 
catastrophic. An extent of the financial losses can be 
gauged from a survey by Meta Group Inc. of 21 
industrial sectors in 2000 [15], which found the mean 
loss of revenue due to an hour of computer system 
downtime to be $1.01M, with power companies at the 
top ($2.8M). Compare this to the average cost of $205 
per hour of employee downtime! Also, compare the 
computer system downtime cost today to the average 
of $82,500 in 1993 [16] and the trend becomes clear. 
Little wonder that distributed systems are called upon 
to provide always-available and trustworthy services. 
Failures of distributed systems employed in safety 
critical applications, such as, flight control, nuclear 
plant monitoring, and railway signaling, can lead to 
loss of human lives.  

The challenges to building distributed systems 
capable of tolerating disruptions are manifold. The 
machines on which the applications are hosted are 
heterogeneous in nature, the applications often run 
legacy code without the availability of their source 
code, the systems are of very large scales, of the order 
of tens of thousands of protocol participants (such as, 
a system with DNS clients and servers), and the 
systems often have soft real-time guarantees. While it 
may be possible to devise very optimized and targeted 
solutions for individual distributed applications, such 
approaches are not very interesting from a research 
standpoint due to their limited applicability. In our 
earlier work, we have demonstrated the ability to make 
a reliable multicast protocol, TRAM, resilient to a 
class of natural failure and a class of malicious attacks 
through incremental protocol changes [17]. However, 
the changes are intrusive to the protocol, require 
thorough understanding and access to the source code 
of the protocol, and are effective only against the 
specific classes of disruptions.  



 

In this paper, we propose a generic Monitor 
architecture for detection of disruptions in distributed 
applications, which pose all the challenges mentioned 
above. The solution approach employs a Monitor that 
snoops on the communication between the protocol 
participants and performs matching of the observed 
communication against a rule base that characterizes 
acceptable protocol behavior. The protocol 
participants are treated as black boxes and their 
internal state transitions are invisible to the Monitor. 
The Monitor architecture is generic and applicable to a 
large class of message passing based distributed 
applications, and it is the specification of the rule base 
that makes the Monitor specialized for an application. 
We provide a specification syntax for the rules, in 
which a rule may be combinatorial (valid for all points 
in time in the lifetime of the application) or temporal 
(which have an associated time component). We 
provide fast rule matching algorithms that match the 
incoming messages against the rules. In order to make 
the infrastructure scalable, efficient, and accurate, we 
propose a hierarchical Monitor structure where the 
Local Monitors directly gather communication 
between the protocol participants that are 
geographically localized and the higher level Monitors 
get processed and filtered messages from the lower 
level Monitors. This allows a higher level Monitor to 
perform detection using observed behavior that may 
not be local. Further, in the Monitor approach, the 
combination of the output from the Monitor and the 
monitored protocol satisfies the definition of a self-
checking system. This definition states that when 
subjected to the tolerated class of faults, the system 
either masks the fault, produces no output at all, or an 
output that falls outside the set of permissible outputs 
and can therefore be easily detected. 

The Monitor based approach is demonstrated by 
applying it to a streaming video application running on 
top of a tree-based reliable multicast protocol called 
TRAM. Three different kinds of errors are injected 
into the application and the performance and the 
accuracy of the Monitor structure evaluated. The 
overall detection coverage is 84.4% and 91.0% for the 
single level and the two-level Monitor system, 
respectively. The false alarm rate is 4% and is the 
same in the single level and the two-level hierarchical 
cases since all the false alarms are generated by the 
Local Monitors.  

The rest of the paper is organized as follows. 
Section 2 presents the design of the Monitor. Section 3 
provides details about the workload, the deployed 
system, and the instantiated rule base. Section 4 gives 
the experiments and the results. Section 5 surveys 

related work. Section 6 concludes the paper with 
mention of future work.  

 

2. Design 
 

In this discussion, we will use the term Monitor to 
refer to the detection infrastructure and observed 
entities to refer to the protocol participants that are 
being monitored. The Monitor is said to verify the 
observed entities. Since the application is considered 
to be a black box, there is no access to the source code 
of the protocol participants or to their execution hosts. 
The specification of the protocol is, however, available 
to the Monitor. The Monitor has access to the 
messages exchanged between the monitored entities, 
and hence is able to examine the communication 
header and payload. The Monitor approach employs a 
stateful model for rule matching, preserving state 
across messages. The Monitor would typically not run 
on the host of the observed entity but in its network 
vicinity and should be able to observe the messages in 
and out of the observed entity.  

 
2.1. Monitor Architecture 
 
The Monitor architecture shown in Figure 1 consists 
of several components classified according to their 
functional roles.  

 
Figure 1. Monitor architecture with process flow 

and information flow among multiple components 
 

2.1.1 Data Capturer. The Data Capturer snoops 
on the communication channel and captures messages 
exchanged by the protocol participants. The capture 
can be in either active or passive mode. In the active 
mode, the protocol participant itself sends a copy of 
the message to the Monitor. In the passive mode, there 



 

is no direct cooperation from the participant and the 
Data Capturer snoops over packets exchanged in the 
communication medium. 

This may be achieved either by having the 
Monitor placed in the same broadcast LAN as the 
monitored entities in a promiscuous mode, or with 
router support with the router mirroring packets to the 
port to which the Monitor is connected. In switched 
environments, port mirroring enables data capture, by 
sending to the port a copy of all messages received by 
the switch. This feature can be configured in many of 
the popular switches available today, including the 
CISCO  Catalyst family, 3COM SuperStack, and Intel 
Express. Since the Monitor is considered a trusted 
entity in the system, we assume that cryptographic 
keys, if any, will be made available to it. Thus it can 
perform its processing after decrypting the message. 
The Data Capturer passes the message to the State 
Maintainer. 

 
2.1.2 State Maintainer. During the setup phase of 
the Monitor, the State Maintainer is loaded with a set 
of event definitions and a reduced state transition 
diagram of each monitored entity. The event definition 
maps the values of header fields in a message to an 
event. A reduced state transition diagram is input to 
the Maintainer, in which the transitions are due to 
messages sent and received by a monitored entity, and 
not due to any internal state transitions. The state 
objects are maintained in a global hash table, indexed 
by the state name. Each state object contains the state 
variables in the particular state, and the expected 
incoming events and the corresponding next state. The 
combination of current state and incoming event 
determines the set of rules to be matched. The rule 
base is linked to the State Maintainer, but is not a part 
of it. At runtime, the State Maintainer gets an 
incoming message from the Data Capturer, maps it to 
an event, checks if the event is an expected event in 
the current state, and if so, triggers the appropriate 
state transition and invokes the Rule Matching Engine 
with the appropriate rule(s). 
 

2.1.3 Rule Matching Engine. The Rule Matching 
Engine, which is triggered by the State Maintainer on 
the receipt of an appropriate event in an appropriate 
state, is the most resource intensive workhorse of the 
Monitor. In order to constrain the detection latency, it 
is crucial that the matching algorithms be optimized 
for speed. Due to the different nature of temporal and 
combinatorial rules (See Section 2.2), we provide 
separate matching algorithms for them.  

Each combinatorial rule is translated into an 
expression tree which has Boolean operators in the 

intermediate nodes, and operands (state, state variable, 
or event) in the leaf nodes. Combinatorial rule 
matching is performed by traversing the expression 
tree. We use two optimizations in the combinatorial 
rule matching. The first is based on the observation 
that the same rule may be matched multiple times and 
not all the operands would change between successive 
rule matches. Hence, the algorithm should be 
incremental in its Boolean value computation. This is 
achieved by storing the previously computed value in 
each node of the expression tree and for a non-leaf 
node, the list of operands in the sub-tree underneath it. 
The algorithm is passed the set of operands that have 
changed and it re-evaluates only that part of the 
expression tree which may have changed. The second 
optimization is to have the nodes arranged in order of 
the frequency of change with the more frequently 
changing operands towards the left. The algorithm 
visits nodes left to right, and if a rule has no repeated 
operand and a single operand has changed, as is often 
the case, then once a match occurs, the algorithm does 
not need to explore the remainder of the expression 
tree.  

Temporal rule matching handles appropriate 
alarm generation and rule matching according to 
temporal rule specifications. There are two time scales 
in the context of temporal rules, one is the time instant 
when the state variable is captured for matching, and 
the second is the time when the captured value is used. 
Since the two time points may be arbitrarily spread 
apart in time, two separate timers ― Variable Copier 
and Rule Matcher ― are used. After expiration of the 
Variable Copier timer, the Monitor copies the state 
variables to be examined in the rule into the rule 
object. After the expiration of the Rule Matcher timer, 
the rule is matched. The matching of temporal rules is 
thereby optimized for speed by having these two 
timers. Moreover, the variable copier ensures 
authenticity of the state variables captured for 
matching. Even if the rule matching itself is delayed, 
the state variables are captured at the precise moments 
they were meant to by the Variable Copier. The 
classification of the rules into four categories also adds 
efficiency in matching. This is because the rules are 
matched in the tightest category applicable, incurring 
the least possible overhead. The implementation 
involves creation of a thread pool so that matching 
multiple rules for a single or multiple monitored 
entities that are applicable in a particular state can 
occur concurrently.  

 

2.2. Structure of Rule Base 
 

Rules are specified in terms of current state, 



 

incoming event, and corresponding state variables. 
The formal rule syntax is important because it 
determines the expressibility of the system and by 
extension, its ability to detect different classes of 
disruptions. The syntax also determines the speed with 
which rule matching can be performed. The rules 
defined in the system could be derived from the 
specifications of the protocol or from the QoS 
requirements on the application. The rules are 
currently created manually by the administrator and 
fed in during the set up phase. Further, the rules 
defined are anomaly based (i.e., specify acceptable 
state transitions), and not misuse based. A primary 
reason for the choice is that the space of misuse based 
rules could be very large for real-world large scale 
distributed systems vulnerable to different kinds of 
disruptions. When choosing the rule base syntax, 
several existing approaches were evaluated. We use a 
formalism based on temporal logic actions [5],[6]. 
 

2.2.1 Combinatorial Rules. These are the rules 
expected to be valid for the entire period of execution 
of the system, except transients. A combinatorial rule 
has the operators ‘!’ for logical NOT, ‘V’ for logical 
OR, and ‘Λ’ for logical AND. Each expression 
representing a rule finally yields a Boolean true or 
false. Although the combinatorial rules must be valid 
for the entire length of time, there could be transients, 
which cause temporary deviations. The rule matching 
algorithm, given an input length of transients in the 
system, has the intelligence not to flag the temporary 
deviations as errors. 
 

2.2.2 Temporal Rules. We studied the properties 
of the rules for two applications – TRAM and SIP 
(Session Initiation Protocol), a signaling protocol used 
for exchanging control messages used to manage 
interactive multimedia sessions. After the study, we 
came up with following classification for the 
Temporal rules. While it is clearly impossible to claim 
that rules for detecting all kinds of disruptions in all 
networking protocols can be folded into these 
categories, a pragmatic design choice was made to 
come up with a classification that seem adequate for a 
large class of anticipated disruptions and protocols. 

Type I: 
true for ( , ) true for ( , )

p N N q I I
S T t t k S T t t b= ∈ + ⇒ = ∈ +  
The above rule represents the fact that if for some time 
k starting at tN, a state Sp is true, then it will cause the 
state Sq to be true for some time b starting at tI. The 
time tN represents a time when some defined event E1 
takes place.  

Type II: St ≠ St+∆, where St is the state of an object at 
time t and if a defined event Ei takes place at t.  
The state St will not remain constant for more than ∆ 
time units if an event Ei takes place.  
Type III: L ≤ |Vt| ≤ U, for t ∈ (ti,ti+k) 
The state variable Vt in a particular state SI will be 
bounded by L and U in some time k starting at time ti 
when the defined event corresponding to the rule first 
occurs.  
Type IV: L ≤ |Vt| ≤ U, for tœ(ti,ti +k)  ⇒  L′ ≤ |Bq| ≤ 
U′, for qœ(tn,tn+b).  
A state variable Vt being bounded by upper and lower 
bounds in time k will cause another state variable Bq to 
be within some lower and upper bounds and will hold 
true for some time interval b. This rule is in fact the 
master rule and the three previous rule types are 
special cases. But we still need the first three rule 
types because matching this class of rule entails 
matching more variables, which incurs higher latency 
than the first three classes. 

 

2.3. Hierarchical Monitor 
 
2.3.1 Mutli-level Monitor Architecture. A single 
Monitor constitutes a single point of failure, a large 
number of protocol participants might overwhelm the 
Monitor increasing the latency of detection, it is not 
scalable, and an effort to make it scalable by observing 
partial views of the system by monitoring only select 
entities may lead to reduced coverage. Therefore, in 
our system, we incorporate the idea of using a 
hierarchy of Monitors working interacting with one 
another to detect disruptions. The entire structure is 
divided into Local, Intermediate, and Global Monitors 
as shown in Figure 2. The functionality of the Local 
Monitor has been described earlier in the section on 
“Monitor Architecture” (Section 2.1). The 
Intermediate Monitor gathers information from several 
Local Monitors, each locally monitoring a set of 
entities. In addition, the Intermediate Monitor may 
also be monitoring entities directly. The Local and 
Intermediate Monitors perform filtering of messages 
which are not required for rule matching at the higher 
level, and processing, such as aggregation through 
counts of events. The Global Monitor has a global 
view of the protocol and is unique in the system. Its 
functionality does not involve matching many rules, as 
filtering is done at the local and the intermediate 
levels. In well designed protocols, most interaction 
among protocol participants is local, thus most 
messages are seen only at the Local Monitor.  The 
Global Monitor enhances coverage and accuracy, 
performing detection across multiple hosts monitored 



 

by different lower level Monitors. Each Monitor has 
the same architecture as described in Section 2.1 with 
the same rule base. 

The hierarchical approach increases the accuracy 
and the coverage of detection. Redundancy exists 
through having a protocol entity being monitored by 
multiple monitors on the path from the Local Monitor 
to which the entity is bound, to the Global Monitor. 
The Interaction Component in Figure 1 acts as the 
gateway for communication between monitors placed 
at the same level or at different levels.  
 

 
Figure 2. Example topology of Local (LM), 

Intermediate (IM), and Global (GM) Monitors.      
[C denotes a cluster] 

2.3.2 Rule Classifier. Owing to the hierarchical 
architecture of the Monitor, there are situations where 
all rules are not relevant to a given Monitor. The Rule 
Classifier is responsible for deciding whether a rule is 
to be matched at this Monitor. The Rule Classifier 
partitions the rule base automatically into three classes 
– one which is not relevant to the Monitor (Bypass 
Rule), the second which is relevant to the Monitor 
alone (Local Rule) and does not need to be observed 
by any other Monitor, and the third which is relevant 
to the Monitor plus some higher level Monitors 
(Global Rule). A rule does not enjoy a universal 
classification in the system. Rather, each rule 
classification is with respect to an individual Monitor. 
A global rule is further categorized as non-processable 
rule (message corresponding to the rule is simply 
forwarded), match-and-pass rule (message 
corresponding to the rule is matched and forwarded), 
and match-process-and-pass rule (message is 
matched, processed, and then forwarded). The 
algorithm for automatic rule classification can be 
found in another submission [18]. 
 

2.4. Design Requirements 
 

It is essential that the Monitor does not become a 
performance bottleneck for the monitored application. 
The Monitor should be capable of scaling to thousands 

of protocol participants. The Monitor should be 
applicable to a large class of applications with 
minimal effort in moving from one application to 
another. Finally, the Monitor should have a low 
latency of detection so that propagation of the 
disruption is limited. Let us see how these design 
requirements are met. 

First, the Monitor is not a performance bottleneck 
since it functions asynchronously to the application 
protocol and runs on independent hosts, not those of 
the participants. Second, the hierarchical Monitor 
structure addresses the issue of scalability. The Local 
Monitors oversee the local communication among the 
participants, while the higher level Monitors are 
invoked if the behavior to be monitored spans multiple 
local clusters. Since for a well-designed protocol, the 
local communication should be the common 
communication pattern, the proposed architecture can 
scale with the number of participants. Third, the 
Monitor is generic in its architecture and therefore, 
widely applicable to message passing based 
distributed protocols. The rule base which is specific 
to the application is also specified in an easily 
understandable temporal and combinatorial logic 
format. There are automated rule classification 
algorithms to take a unified rule base and partition it 
into local and global rules. Fourth, the challenge of 
providing low latency detection is addressed by 
partitioning the rules intelligently, thereby minimizing 
the number of rules to be matched at any Monitor. 
Also, highly speed optimized and distinct algorithms 
for matching the temporal and combinatorial rules are 
provided. 
 
3. System Description 
 
3.1. Workload 
 

The Monitor architecture described in Section 2.1 
is implemented in Java for portability reasons.  We 
demonstrate the use of the Monitor on the running 
example protocol ― a reliable multicast protocol 
called TRAM [19],[20] to make it self checking. 

TRAM is a hierarchical tree based reliable 
multicast protocol for multicasting data from a single 
sender to multiple receivers. The receivers and the 
data source of a multicast session in TRAM interact 
with each other to dynamically form repair groups. 
Figure 3 shows a typical TRAM repair tree. The nodes 
participating in TRAM play three roles, some nodes 
playing multiple roles – sender, receiver and repair 
head (RH).  
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Head

Receiver S table 
storage

-
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-

Message Connection  
Figure 3. Hierarchical tree structure in TRAM 

Within a repair group, recovery happens locally 
through the RH, which stores the data in stable store 
till all receivers in the group have acknowledged 
receipt. These repair groups are linked together in a 
hierarchical manner to form a tree with the sender at 
the root of the tree. The group members report lost and 
successfully received messages to the RH using a 
selective acknowledgement mechanism. A nack 
message is sent implicitly through the ack by setting a 
bit vector accompanying the ack message 
appropriately to indicate the missing packets. An ack 
message is sent after every ack window worth of 
packets has been received, or an ack interval timer 
goes off. The RHs aggregate acks from all its 
members and send an aggregate ack up to the higher 
level to avoid the problem of ack implosion.  

The different kind of messages exchanged in 
TRAM and their interpretations are given in Table 1. 
The values in two header fields Message Type and 
Sub-message Type together determine the control 
message type. 

 

3.2. Monitor State 
 

In our implementation, the recipient of a packet 
does active forwarding of the packet to the Local 
Monitor. The Monitor reads the header fields, maps 
the packet to an event, performs the appropriate state 
transitions and finally, performs the relevant rule 
matching. The Monitor follows a reduced STD which 
is input by the system administrator. Forming the 
reduced STD is somewhat of an art that the 
administrator deploying the Monitor needs to master. 
We are currently exploring some methods for 
automating the reduced STD creation given some 
formal specification of the protocol, such as UML 
state diagram. Minimally, the states in the reduced 
STD must cover all the states mentioned in the rules in 

the rule base. Henceforth, in the description of the 
reduced STD and the rule base, we use the event IDs 
instead of the packet types. The mapping is given in 
Table 1. 

The reduced STD of the receiver, which is stored 
in the State Maintainer, is shown in Figure 4. In state 
S2, the receiver checks the integrity of the data packet 
using the sequence number of the packet. From state 
S3, if an unexpected error event happens in the 
interaction between the receiver and its RH, it starts a 
counter and goes to state S4. If the counter value 
exceeds a threshold, the receiver disassociates itself 
with the current RH and re-affiliates with a different 
RH. The CNF form of the syntax for representing the 
STD is STDSpec⇒“:”CurStateID(IncomingEventID 
NextStateID)+ (“!” “:”CurStateID (IncomingEventID 
NextStateID)+)*   

Functioning State 
(S1)

Check 
data/Wait to 

Ack (S2)

E11

Waiting for 
data (S3)

Counter 
(S4)

Re-affiliation (S5)

E9

E11

E12

Timeout
E9

E11

Timeout
E10
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(S1)
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data/Wait to 

Ack (S2)

E11
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data (S3)

Counter 
(S4)

Re-affiliation (S5)

E9

E11

E12

Timeout
E9

E11

Timeout
E10

 
Figure 4. Reduced STD for the TRAM receiver 

Table 1. Different control messages in TRAM 
Message 
Name 

(Source, 
Destination) 

Interpretation Event 
ID 

Beacon Sender, 
Anybody 
within set TTL 
distance 

Initialization 
message for sender 
to query for 
interested entities to 
join in its multicast 
stream 

E1 

Head Adv. Sender(RH), 
Receivers 

Repair Heads send 
advertisement of the 
channel 

E3 

Data Sender(RH), 
Receivers(RH) 

Multicast Data sent 
from head to group 
members 

E11 



 

Head Bind Receiver, 
Repair 
Head(Sender) 

Receiver sends a 
request to join group 
in the form of Head 
Bind 

E10 

Accept/Reject Repair 
Head(Sender), 
Receiver(RH) 

Acceptance or 
Rejection message 
sent by the repair 
head to the seeking 
receiver. 

E6, 
E7 

Ack Packet Receiver, 
Repair 
Head(Sender) 

Aggregate 
Acknowledgement 
sent by the receiver 
to the repair head. 

E9 

Member 
Solicitation 

Receiver, 
RH(Sender) 

Message sent by a 
receiver seeking to 
join a group when 
group formation is 
started by receiver. 

E4 

Hello 
Messages 
(Reply) 

RH(Receiver), 
Receiver(RH) 

Indication of 
Liveliness of the 
members. 

E2, 
E8 

Data 
Retransmission 

Sender(RH), 
Receivers(RH) 

Data is 
retransmitted if a 
nack is received 

E12 

 

3.3. Monitor Rule Base For TRAM 
 

The rule base consists of anomaly-based rules 
governing the execution of the protocol as seen from 
the viewpoint of the TRAM receiver. In a rule 
specification, the first letter (T/C) specifies whether 
the rule is temporal or combinatorial in nature, while 
(R1/R2/R3/R4) indicates the sub-type of the rule in the 
temporal category as defined in Section 3. Here we 
give examples of rules for the TRAM receiver used in 
the experiments.  
1. T R3 S2 E11 30 500 5000. The number of data 
packets observed during a time period of 5000 ms can 
be any number between 30 and 500. The thresholds 
are calculated using the maximum and minimum data 
rate specified by the user. 
2. T R4 S2 E11 30 500 5000 S2 E9 1 8 500 7000. If 
there are between 30 and 500 data packets in 5000 ms 
in given state, then the number of ACK packets should 
be between 1 and 8 from 500ms to 7000ms in the 
same state. Again the numbers are based on the 
propagation delay of the packets and the fact that 
receiver acks at intervals of every 32 packets, the 
default ack window. 
3. T R3 S4 E12 0 5 5000. We restrict the number of 
nacks to be a max of 5 within 5000 ms. This number is 
calculated based on the minimum acceptable data rate 
and the sliding window protocol followed by TRAM 
for data transmission. A subtle, yet important, 
technique is used to specify any rule that involves 
nacks. In TRAM, a nack is sent implicitly in the form 
of an ack by sending a bit vector and setting the 
corresponding bit in the vector to be 1. The Monitor 

only examines the packet header and therefore cannot 
observe the bit vector sent as payload. In order to 
observe a nack, the Monitor uses a resultant effect ― 
the data retransmission which usually follows a nack. 
4. T R3 S1 E15 0 16 5000. This is a global rule 
which restricts the total number of nacks seen 
globally. The Local Monitors, on receipt of a nack 
packet, process the rule, and pass the computed results 
of the number of nacks seen locally as a new event 
(E15) to the Global Monitor. In the deployment used 
in the experiments, the Global Monitor verifies two 
Local Monitors, each of which verifies two nodes. The 
aggregate number of nacks is restricted to 16, within 5 
seconds. Note that this is a tighter bound than what 
would be indicated by a linear extrapolation of the 
number of nacks locally as in rule 3 (16 nacks instead 
of 20). The second global rule corresponds to the 
number of data packets seen at the global level which 
is also a rule of type 3. For the deployment, this is kept 
at 265 to 2500 in a 5 second period.   

Several other rules are used in the experiments. A 
combinatorial rule is that the data rate should be 
between 20KBytes/sec and 40KBytes/sec. These are 
specified as configuration parameters for TRAM. 
Examples of further temporal rules are the state of a 
receiver should not be the initial state 50ms after 
receipt of a data packet at the initial state since it 
should move into the ack-ing state. The number of re-
affiliations in a state is upper-bounded by 5 in 10 
seconds. This rule prevents a malicious receiver 
exhausting resources by disconnecting and re-
affiliating with different RHs or the sender in rapid 
succession. The number of unicast hello messages 
should be limited between 1 and 5 because it is sent 
only when a particular receiver is not sending hello 
replies. It is an indicator of the failure of the liveness 
of the receiver. 

 
3.4. Example of Rule Matching 
 

Consider Rule no. 3 in Section 3.3 – T R3 S4 E12 
0 5 5000. Let us assume that the current state of the 
monitored entity is S4, and the first packet that is 
received after entering S4 is a data retransmission 
packet, denoted as E12. The Data Capturer captures 
this packet and passes it to the State Maintainer. The 
State Maintainer deduces the packet as an E12 event, 
and checks to see if this is a valid event in state S4, 
according to its reduced state transition diagram. As 
this is the case, it further checks if there are any rules 
corresponding to event E12 in state S4. Finding one, 
the State Maintainer makes the appropriate state 
transition and triggers the rule matching engine with 
the given rule. The state variable corresponding to 



 

number of E12 events for the given rule is 
incremented. The rule matching engine instantiates a 
Rule III object, setting the lower bound as 0, the upper 
bound as 5, and the time period corresponding to Rule 
III as 5000, as given in the rule. It also sets the 
Variable Copier and Rule Matcher timers to generate 
alarms at the end of 5000 ms. Any subsequent packet 
corresponding to event E12 results in just an 
increment of the appropriate state variable. A new rule 
is not instantiated for the same master rule till the 
previous rule has expired. At the end of 5000 ms, the 
Variable Copier captures the state variable denoting 
number of E12 events, and stores the same in the 
instantiated rule. Following this, the Rule Matcher 
compares this value to the lower bound and upper 
bound, to decide if an error should be flagged. The 
actual rule matching done by the Rule Matcher is a 
simple comparison, and hence an O(1) operation. 
 
4. Experiments and Results 
 
4.1. Experimental Setup: Workload, Error 

Injection, Topology 
 

A streaming video application with MPEG-2 
video stream is used as the workload. The application 
is executed over TRAM, with the server running on 
the sender and multiple clients running one on each 
receiver. A client can flag an error if it views 
degradation in its video quality because of slow data 
rate, which is represented by a threshold. The 
minimum and the maximum data rate specified by the 
client to TRAM are 20 KBytes/sec and 40 KBytes/sec. 
The TRAM sender provides a best effort service on 
the basis of these configuration parameters.   

The errors are injected into the header of the 
TRAM packet before dispatching it to the receiver. 
The receiver actively forwards the injected packet to 
the Monitor. This emulates the condition that the 
faulty packet is seen by the TRAM entities as well as 
the Monitor.  The errors are injected continuously for 
a particular duration, denoted the Burst Length. This 
mode of error injection helps in emulating a real 
communication link where errors occur in bursts. The 
default burst length for the Monitor coverage 
measurements is kept at 15 ms. 
Three error models are used for the injections.  
(1) Stuck at Fault: In this error scenario, we 
simulate a stuck-at fault by changing a randomly 
selected header field into a different, valid, but 
incorrect value. The header field is always converted 
to the same value for all the packets in the entire burst 
length period.  

(2) Directed: The error injection is carried out into 
a randomly selected header field and its value changed 
to incorrect but valid values. Every packet is injected 
differently, unlike in the stuck at fault model. 
(3) Random: In this case, we choose a random 
header field and inject a random value into it. The 
injected value may not be valid with respect to the 
protocol. 

We carry out two sets of run for each type of error 
injection, one with a loose client and another with a 
tight client. A loose client checks the data rate after 
every 4 Ack windows (approximately every 4.3 
seconds) while a tight client checks the data rate after 
every Ack window. In practical terms, a tight client 
emulates a client less tolerant of transient slow downs 
in its received data rate. 

There are four possible consequences of errors 
injected into the packets – exception is raised by the 
protocol (E), the client crashes (C), the client flags a 
low data rate error (DE), or no failure occurs (NF). It is 
possible for one, two, or all three of exception, crash 
and client data rate error to occur. The consequence of 
an error injection is represented as a tuple of up to 
three elements with the prefix “N” before a 
consequence denoting that the consequence did not 
occur. Thus (NE; NC; DE) denotes no exception, no 
crash, but client flagged a data rate error. When only a 
single consequence occurs, the notation can be 
abbreviated, as (DE) for the above case. Also, 
whenever an error is manifested in the protocol, the 
data rate ultimately drops leading to the data rate error 
(DE). If data rate error is not the only consequence, DE 
is dropped from the notation. The experimental runs, 
where the Monitor detects the failure before any of the 
protocol manifestations, are classified as Monitor 
detection. If the Monitor flags an alarm after an error 
has been manifested in the client (any of E, C, or DE), 
this is a case of error propagation and is classified as a 
coverage miss. An error which does not lead to a 
failure but is flagged by the Monitor is categorized as 
a false alarm.  

For the experiments we use a cluster of Linux 
machines, with the TRAM protocol entities run on 450 
MHz Pentium II machines with 256 MB of memory 
and the Monitors run on Pentium 4 2.26 GHz 
processor machines with 1 GB memory, 533 FSB and 
512 KB cache. The entities are connected among 
themselves by 1 Gbps links and the entities are 
connected to the Monitors with 100 Mbps links.  

At the outset we conduct performance 
experiments on the single level Monitor system. It is 
seen that the latency of detection at one Monitor is less 
than 30 ms when it matches 50 packets/sec or less and 
beyond that it grows linearly. With varying the 



 

number of receivers, the increase in latency is found to 
be linear with 6.25 ms for 1 receiver and growing to 
16.71 ms for 26 receivers. This amount of latency is 
considered tolerable in many environments. 
 

4.2. Single Level Monitor Results 
 

Table 1 presents the effect of the three types of 
error injection on the protocol.  Each kind of injection 
with each client (loose and tight) is carried out for 100 
runs. A run is defined as an execution of the 
application with error injection where either the 
Monitor flags an error or the application has a failure 
or both. The first four columns are the different 
consequences of the error injection and are listed as:  
(Number of cases detected by the Monitor)/(Total 
number of such cases) (% Coverage of the Monitor). 
There are no experimental runs where the receiver 
crashes without any exception and hence this 
consequence is not shown in the table. This indicates 
that the exception flagging in TRAM is very 
extensive. Oftentimes, the receiver side code catches 
the exception through large try-catch block, but does 
not do any application specific processing. It prints out 
the exception stack and allows the receiver to crash. 

Overall, Monitor accuracy for the single level 
case is 84.37%. If we look across the columns for 
various types of injections, we see that the Monitor’s 
accuracy is high for DE, but drops for (E;NC). This is 
due to the fact that the exception, if raised by the 
protocol, is done very soon after the error, before the 
Monitor can flag it, which it does eventually. 
However, the case counts as a coverage miss for the 
Monitor. The Monitor’s latency negatively affects its 
coverage as evidenced by the significant drop in 
coverage from the loose client to the tight client. Part 
of the latency is a fundamental property of the rule 
base and cannot be solved by faster processing at the 
Monitor. Several rules have the form of counting a 
particular event over a given time interval and 

checking bounds on the number of occurrences of the 
event. The length of the time interval forms a 
constraint in terms of the minimum granularity at 
which faults can be detected. Hence, a single error that 
causes an exception goes undetected and the coverage 
for the (E;NC) cases is considerably lower than for 
other categories. An alternate design of maintaining a 
sliding window of the events and a running count 
would eliminate this problem of higher latency but is 
not used due to the high state maintenance and 
processing overhead it entails on the Monitor.   

Considering the error injection experiments with 
the loose random client (LR), overall there is 9.2% 
missed alarms and 8% false alarms. The main source 
of missed alarms is the case when there is an 
exception but no crash of the receiver. An example of 
this is when the protocol flags an exception because of 
a large message length and then continues to run. But 
this is missed by the Monitor. This happens when an 
injected error into the packet header converts a data 
packet to an ack packet whose length is greater than 
expected, leading to an exception. The Monitor is 
effective in catching the cases where the client flags a 
slow data error rate. For TR we see an identical 
number of DE as in LR. However, since the receiver is 
checking its observed data rate more frequently, it is 
able to find the slow data rate error much faster. The 
Monitor’s detection latency, on the other hand, 
remains the same, causing the detection accuracy to go 
down to 90%. For the directed error injection for the 
loose client (LD) there are 18% DE errors out of which 
83% are caught by the Monitor. Compared to LR, 
there is an increase in the cases where exceptions are 
raised ((E;NC) and (E;C)) and an equal decrease in  DE 
errors. This can be attributed to the fact that in random 
injection, packets are injected with message type and 
sub-message type lying outside the defined set of 
protocol messages. In such cases the packets are 
mostly discarded by the protocol. Thus, the receiver 
does not see any data packet leading to it flagging the 

Table 2. Results of error injection with single level Monitor 
  
  
  
  

No Exception 
No Crash 
Slow  data  rate 
(DE) 
  

Exception 
No Crash 
(E;NC;DE) 

Exception  
Crash 

Slow data rate  
(E;C;DE) 

  

Missed Alarms 
  

False Alarm  Coverage 
  
  
  

Loose 
Random 
(LR) 

57/58 
(98%) 

24/30 
(80%) 

4/4 
(100%) 

7/92(7.6%)  8%  85/92 
(92.4%) 

Tight 
Random 
(TR) 

52/58 
(90%) 

17/26 
(65%) 

6/6 
(100%) 

15/90(16.67%)  10%  75/90 
(83.3%) 

Loose 
Directed 
(LD) 

15/18 
(83%) 

51/64 
(80%) 

17/18 
(94%) 

17/100(17%)  0%  83/100 
(83%) 



 

Tight 
Directed 
(TD) 

23/28 
(82.1%) 

50/62 
(80.5%) 

10/10 
(100%) 

17/100(17%)  0%  83/100 
(83%) 

Loose stuck 
at (LS) 

43/44 
(98%) 

38/50 
(76%) 

2/2 
(100%) 

13/96(13.54%)  4%  83/96 
(86.46%) 

Tight stuck 
at (TS) 

47/52 
(90.38%) 

23/32 
(71.8%) 

7/14 
(50%) 

21/98(21.4%)  2%  77/98 
(79%) 

        90/576(15.63%)  24/600 (4%)  486/576(84.37%) 

 
low data rate error. But in directed injection, different 
valid but incorrect types of packets are generated in 
every injection. This causes several invalid transitions 
in the protocol leading to an increase in the number of 
exceptions and crashes. The Monitor has an overall 
coverage of 83%, with greater effectiveness in 
capturing errors that lead to crashes. In the directed 
injections, the false alarms are eliminated because of 
increase in the number of invalid transitions, as argued 
earlier, leading to manifested errors.  

In the stuck-at error injection, for LS, about 44% 
protocol responses are (DE) and 50% are (E;NC).  The 
Monitor detects 98% and 76% of these cases, 
respectively, confirming the trend from LR that loose 
client data rate failures are easier for the Monitor to 
detect than exceptions. There is a sharp increase in the 
DE errors compared to directed injection. In stuck-at 
injection, if the injected packet is not expected in a 
particular state, it is discarded. This causes few state 
transitions in the protocol, but the data rate goes down 
ultimately leading to the receiver error. The number of 
false alarms is low (2%) indicating that the protocol is 
affected in most cases. Distinctly in TS, the number of 
(E;NC) cases drops to 32% because the tight client 
causes a DE to be flagged before an exception takes 
place. Monitor is only able to detect 72% of these 
cases.  There is a sharp rise in the number of (E;C) to 
14% half of which are missed by the Monitor. The 
increase is due to the fact that in stuck-at injection, the 
same packet is injected for the burst length and if it is 
a valid protocol packet but injected in a wrong state, it 
causes the protocol to crash and not simply throw 
exception. The reduction in coverage is due to the fact 
that since the same faulty packet is injected, it may 
cause internal state transitions at the receiver, while 
the Monitor only observes external messages. These 
internal state transitions may be preliminary to an 
exception or a crash which is missed by the Monitor. 
 

4.3. Hierarchical Monitor Results 
 

The setup for the hierarchical Monitor is shown in 
Figure 5. It is a two level hierarchy with each Local 
Monitor overseeing two receivers and a Global 
Monitor overseeing the two Local Monitors. The 
definitions of the coverage misses have to be carefully 

considered in the hierarchical Monitor case. Consider 
a chain of overseeing Monitors for each receiver. A 
receiver is either verified by LM1 (Local Monitor 1) 
and GM (Global Monitor), or LM2 (Local Monitor 2) 
and GM. If either of the Monitors verifying an entity 
reports the error before the error manifests in the 
protocol, then the error is considered covered. The 
way the manifestation of the error in the protocol is 
defined differs for the Global and the Local Monitor. 

 
Figure 5. Two level Monitor hierarchy used for the 

experiments  
If the Global Monitor detects the error after the 

client reports the data error, it is still considered to be 
covered, while detection after an exception or crash is 
expectedly a miss. This relaxed definition accounts for 
the structure of the global rules, which imposes 
aggregation at the Local Monitor level and therefore, 
increases the delay between the erroneous packet 
being generated and rule matching at the Global 
Monitor. Also, detection by the Global Monitor can 
potentially convey more information about the error 
(such as, rate of spread) and a client data rate error is 
considered to be one which can be tolerated in the 
environment for transient periods while crashes or 
exceptions cannot. 

The results from the injection are shown in Table 
2. The results show the coverage miss by the Local 
Monitors and the entire Monitor system separately to 
bring out the advantages of deploying the two-level 
Monitor system. Note that these are a new set of 
experiments compared to the single level experiments 
presented in Table 1. The coverages for the single 



 

level case differ only due to statistical differences 
caused by the two sets of experiments. For the 
hierarchical Monitor system, the false alarm rate 
remains the same as for the single level case since all 
the false alarms come from the Local Monitors, which 
remain identical in the two cases. The hierarchical 
Monitor system shows a high overall accuracy of 
90.97%, an improvement of about 7% over the single 

level Monitor. This improvement is achieved by 
adding just two rules at the Global Monitor. The 
results corroborate the need for a hierarchical setup of 
Monitors. The increase in coverage is most significant 
for the loose directed case (12%). 

 

 

Table 3. Results of error injection with hierarchical Monitor 
  
  
  

No 
Exception 
No Crash 
Slow data 
rate (DE) 

Exception 
No Crash 
(E;NC;DE) 

Exception 
Crash 
Slow data 
rate 
(E;C;DE) 

Missed 
Alarms by 
Hierarchic
al Monitor 
System 

False 
Alarm 

Coverage 
By 
Hierarchic
al 
Monitor 
System 

Coverage 
by Single 
Level 
Monitor 

Improvem
ent over 
Single 
Level 

Loose 
Random 
(LR) 

29/29 
(100%) 

13/15 
(87%) 

2/2 
(100%) 

2/46 
(4.34%) 

8%  44/46 
(95.66%) 

42/46 
(91.30%) 

4.36% 

Tight 
Random 
(TR) 

28/29 
(96.5%) 

9/13 
(69.2%) 

3/3 
(100%) 

5/45 
(11.1%) 

10%  40/45 
(88.88%) 

37/45 
(82.22%) 

6.60% 

Loose 
Directed 
(LD) 

8/9 
(89%) 

30/32 
(94%) 

9/9 
(100%) 

3/50 
(6.00%) 

0%  47/50 
(94.00%) 

41/50 
(82.00%) 

12.00% 

Tight 
Directed 
(TD) 

12/14 
(86%) 

26/31 
(83.8%) 

5/5 
(100%) 

7/50 
(14.0%) 

0%  43/50 
(86.00%) 

41/50 
(82.00%) 

4.00% 

Loose 
stuck at 
(LS) 

22/22 
(100%) 

23/25 
(92%) 

1/1 
(100%) 

2/48 
(4.17%) 

4%  46/48 
(95.83%) 

42/48 
(87.50%) 

9.37% 

Tight stuck 
at (TS) 

24/26 
(92%) 

14/16 
(88%) 

4/7 
(57%) 

7/49 
(14.2%) 

2%  42/49 
(85.80%) 

39/49 
(79.59%) 

6.20% 

        26/288 
(9.02%) 

12/300 
(4%) 

262/288 
(90.97%) 

242/288 
(84.03%) 

6.94% 

  
On further investigation, it is found that the rule at the 
Global Monitor that checks the aggregate data rate is 
successful in pre-emptively detecting some cases 
which cause exceptions and crashes and therefore 
improves the coverage. As in the single level case, the 
system performs worse when the protocol’s 
manifestation of error is exception, since it flags the 
error often after the exception has been raised. The 
Monitor system’s performance in the directed and 
stuck-at injections with loose client is worse than for 
random injections due to the same reason as in the 
single level case (more number of invalid protocol 
transitions). However, the difference in coverage is not 
as sharp indicating that the global rules are able to pre-
emptively catch some of the failure cases. For the tight 
client in directed and stuck-at, the global rules do not 
make as much of a difference since the receiver data 
rate error detection dominates and often occurs before 
the global rules can flag the error. 

 
5. Related Work 
 

Preliminary to building self-checking protocols, 
the application behavior has to be specified formally. 

Different formalisms exist for distributed systems, the 
most common ones being Extended State Machines 
[4], Temporal Logic Actions (TLA) [5],[6], and Petri 
net based models [7]. Our approach is derived from 
the TLA model where the valid actions are represented 
as logical formulas. The formulas can be augmented 
with the notion of lower and upper time bounds to 
capture the temporal properties of protocols. There is a 
volume of work on detecting crash failures through 
heartbeats, failure detectors, etc. (e.g., see [21]), 
building resilient distributed applications through fault 
tolerant algorithms built into the application (e.g., see 
[22],[23]). Their goals are considerably different from 
the work presented here and hence, not surveyed 
further. There is previous work [8],[9] that has 
approached the problem of detection and diagnosis in 
distributed applications modeled as communicating 
finite state machines. The designs have looked at a 
restricted set of errors (such as, livelocks) or depended 
on alerts from the protocol entities themselves. There 
exist systems with the high-level goal of checking 
online system behavior against specifications [24]-
[27]. However, they differ widely in approach, 
assumptions, or focus. For example, the MAC project 



 

[27] is focused on bridging the gap between the high 
level specification of correctness and the low level 
events generated by the system implemented in Java. 

A detection approach using event graphs is 
proposed in [10], where the only property being 
verified is whether the number of usages of a resource, 
executions of a critical section, or some other event 
globally lies within an acceptable range. The problem 
of diagnosis in distributed systems has been studied in 
[11],[12] which have relied on participation by the 
protocol entities and the classes of faults have also 
been restricted.  

Near identical goals, as in this paper, has 
motivated the work in [3] and [13]. In the first work, 
the approach is to structure the system as two distinct 
sub systems ⎯ worker and observer. The worker is 
the traditional system implementation, while the 
observer is the redundant system implementation 
whose outputs are comparable to the worker outputs. 
The observer can only spy on interactions, without any 
worker support. The observer is made highly reliable 
through formally specifying and verifying it. Some 
unanswered questions are that the observer is a 
monolithic entity and is not shown to be able to 
operate outside a broadcast medium, how the subset of 
worker functionalities for observing is determined, and 
the independent verification of layers of the worker 
are apt to miss out misbehaviors that span multiple 
layers. An extension to use multiple observers is 
proposed in [14], but it requires a global state graph of 
the system which may be infeasible to build or verify 
at runtime for complex systems. In [13], the authors 
propose a compositional approach to automatic 
monitoring of distributed systems specified using 
CFSMs. The fundamental contribution is to show how 
to monitor a complex system by monitoring individual 
components, thereby eliminating the state space 
explosion problem. This work assumes some internal 
states are visible to the monitor through program 
instrumentation, etc. It assumes that if local 
interactions are correct, the system execution is 
globally correct. This is in contrast to our system, 
where we allow for the possibility of a global rule 
flagging an error where the local rules missed it. 
Finally, the effectiveness of the approach has not been 
demonstrated through any error injection based 
experiments.  

 

6. Conclusion 
 

In this paper, we have presented the Monitor 
architecture for detecting natural failures and 
malicious attacks, collectively termed disruptions, in 
large distributed systems. The Monitor is an external 

entity that observes exchanged messages between the 
protocol participants and deduces any ongoing 
disruption by matching the exchanges against a rule 
base of combinatorial and temporal rules. To make the 
detection infrastructure scalable and dependable, a 
hierarchical Monitor architecture is presented. The 
infrastructure is applied to a streaming video 
application running on a reliable multicast protocol 
called TRAM over the Purdue campus-wide network. 
The evaluation shows coverage of 84% and 91% for 
single level and two level Monitor deployments 
aggregated over three different classes of errors. 

Current work is focusing on redundancy in the 
Monitor hierarchy with a protocol participant being 
monitored by multiple Monitors at the same level. We 
are also investigating making the environment 
dynamic where participants and Monitors may come 
and go, and the assignment of the protocol entities to 
the Monitors may change dynamically. We are 
extending our framework to deal with the sources of 
non determinism like delays in the network and 
difference in the sequence of observed events from the 
sequence of occurred events.  
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