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Abstract 
 

Reliable multicast protocols are an important class of 
protocols for reliably disseminating information from a 
sender to multiple receivers in the face of node and link 
failures. A Tree-based Reliable Multicast Protocol 
(TRAM) provides scalable reliable multicast by grouping 
receivers in hierarchical repair groups and using a 
selective acknowledgment mechanism. In this paper, we 
present an improvement to TRAM to minimize the 
resource utilization at intermediate hosts and to localize 
the effect of slow or malicious receivers on normal 
receivers. We present an evaluation of TRAM and 
TRAM++ on a campus-wide WAN without errors and with 
message errors. The evaluation brings out that, given a 
constraint on the buffer availability at intermediate hosts, 
TRAM++ can tolerate the constraint at the expense of 
increasing the end-to-end latency for the normal receivers 
by only 3.2% compared to TRAM in error-free cases. 
When slow or faulty receivers are present, TRAM++ is 
able to provide the same uninterrupted quality of service 
to the normal nodes while localizing the effect of the faulty 
ones without incurring any additional memory overhead.  
Keywords: tree based reliable multicast, buffer utilization, 
message errors, slow or unresponsive receivers, end-to-
end latency.   
 
1. Introduction 
 

The ability to reliably transmit and update large 
amounts of data and content in real-time is crucial in a 
large number of domains, such as for financial services, 
content delivery network providers, large retail chains, 
application service providers (ASPs), interactive TV, 
wireless entertainment, and e-learning providers. It can 
take considerable time and bandwidth if the sender must 
send a separate copy to each receiver.  IP multicasting 
allows a sender to distribute data to all interested parties 
while minimizing the use of network resources.  Many 
applications, however, require reliable data delivery which 

is resilient to failures of nodes and network links. This 
requirement is supported by reliable multicast protocols. 

A Tree-based Reliable Multicast Protocol (TRAM) is 
designed to provide multicast reliability that scales to a 
large receiver population. TRAM ensures reliability by 
using a selective acknowledgment mechanism and 
scalability by adopting a hierarchical tree-based repair 
mechanism. The receivers and the sender of a multicast 
session dynamically form repair groups.  These repair 
groups are linked together hierarchically to form a tree 
with the sender at the root of the tree, the receivers at the 
leaves and entities called Repair Heads (RH) at the 
intermediate levels of the tree. The RHs cache the 
messages that pass through them and initiate local repair 
by resending messages that are nacked by the receivers.  

From an end-to-end perspective, we consider latency 
and jitter as parameters of interest for receivers of a 
multicast stream. We consider the scenario of a video 
stream being delivered by TRAM and measure its output 
parameter values. In addition to the performance metrics, 
there are resource utilization metrics which characterize a 
reliable multicast protocol. TRAM ensures the recovery 
from missing messages by nacks and retransmissions by 
the RHs. The RHs therefore need stable storage to buffer 
messages that have not yet been received by all the 
receivers. The aggregate buffer utilization in the system, 
combined over the sender and all the RHs, is taken as one 
indicator of resource usage in the system. In this paper, we 
evaluate the existing TRAM implementation with respect 
to performance and resource utilization, with varying 
number of receivers. The evaluation is performed on a 
campus-wide wide area network (WAN) with receivers 
located at different distances from the source. The ability 
of the reliable multicast protocol to tolerate faults is 
evaluated under different message error conditions. The 
errors injected are message drops, reorders, and delays, 
and the performance metrics are measured under these 
conditions.  

It has to be considered that in a large group of multicast 
receivers, not all the receivers will be identical. 
Considering a practical scenario where different receivers 
are present in different subnets, each has varying traffic 



 

conditions and processing constraints.  Some of the 
receivers will be slow in processing the messages and 
generating acks. Some receivers may be unresponsive for 
long periods of time, either because of a natural failure or 
performance bottleneck, or because of malicious purpose. 
The design point should be that the QoS measures of the 
normal receivers should be affected as little as possible 
because of the slow and unresponsive receivers. We 
propose a protocol based on TRAM, called TRAM++, 
which localizes the effect of slow or unresponsive 
receivers on the correctly functioning receivers. TRAM++ 
provides a mechanism to track unresponsive receivers and 
beyond a threshold, prune the receivers. Since the 
receivers are not homogenous, maintenance of synchrony 
among the receivers is sacrificed as a deliberate design 
choice to provide fairness to normal receivers. Pruning is 
considered a necessary step to keep the system 
performance above a tolerable limit, bound the resource 
usage and to eliminate malicious receivers. 

TRAM++ also optimizes the aggregate buffer usage in 
the system under normal conditions without any 
degradation of the performance parameters. It achieves 
this by dropping the guarantee of recovery of missing 
messages from the immediate RH to which the receiver is 
connected. The RH may drop messages from its buffer in 
order to accommodate new messages. The guarantee of 
recovery is provided by the sender which buffers 
messages in stable storage till they have been 
acknowledged by every receiver. 

The study shows that both TRAM and TRAM++ scale 
well with respect to latency as the number of receivers is 
increased, up to a total of 30. TRAM is not successful in 
isolating the normal receivers from the effect of faulty or 
malicious ones. TRAM++ is able to achieve this through 
its protocol of differentiated acks and buffer management. 
TRAM++ under a constraint of 16% of the TRAM buffer 
availability at the RH is able to maintain the latency within 
an overhead of 3.2% in the error free scenario. It is also 
able to prune malicious receivers faster because of local 
decision making ability at the RH without any additional 
memory overhead. It is also able to isolate and prune a 
malicious receiver that constantly joins and leaves the 
multicast group in an attempt to cause denial of service in 
the system. The rest of the paper is organized as follows. 
Section 2 presents previous related work. In section 3, we 
present the TRAM and the TRAM++ protocols. Section 4 
details the implementation of TRAM++. Section 5 gives 
the experiments and results, under no errors and with 
errors. Section 6 concludes the paper. 
 
2. Related Work 
 

IP multicast is a protocol that defines a mechanism for 
one or more senders to send data to a group of 
receivers a collection of one or more hosts identified by 

a single class D IP address [5]. The abstraction of multiple 
hosts into a single entity provides several advantages over 
unicast, or "point-to-point," protocols: the sender(s) only 
manages a connection with the group, not all of its 
members; and data can be sent to all the receivers without 
multiple transmissions from the sender(s). In situations 
where similar data is sent to multiple hosts, multicast IP 
can provide bandwidth conservation, reduced resource 
requirements for the server, and an increase in overall 
scalability.  

Though the general idea of IP multicast is simple, the 
message delivery is purely best-effort and there is no 
guarantee that the data is going to reach all the multicast 
receivers. The loss of messages may be due to congestion, 
failures of nodes, failures of links, etc. To address these 
concerns, an enhanced category of multicast IP called 
reliable multicast has evolved. It defines mechanisms to 
monitor host population, congestion, transfer speeds, and 
data loss on a per-host basis, and mechanisms to counter 
the loss, thus providing a more reliable multicast 
environment. 

Due to the wide variety of applications which require 
reliable multicast, it is considered that a “one size fits all” 
protocol is infeasible. Therefore, three classes of protocols 
have been proposed in the literature – (i) NACK oriented 
protocols; (ii) Tree-based ACK oriented protocols; (iii) 
Asynchronous layered coding protocols that use forward 
error correction (FEC). Of these classes, the second or a 
hybrid of the first two classes is of relevance to our current 
work. Several protocols have been presented and studied 
[8,12,13]. We chose TRAM as the representative protocol 
for study since it had openly available source code and a 
large active user community which was extremely useful 
in setting up and troubleshooting the system. The detailed 
evaluation of TRAM presented here is expected to shed 
light on the other protocols too since many design 
decisions are similar, such as local recovery at the repair 
head (or the counterpart in the particular protocol), and 
ack aggregation. The concern about constraining resource 
usage at intermediate hosts and localizing the effect of 
slow or malicious receivers applies to all reliable multicast 
frameworks. 

TRAM was first presented by Chiu et al in [2]. This 
study evaluated some of the parameters considered here, 
namely, rate, loss and cache occupancy, but using a 
simulation model. The simulation model made several 
simplifications – all RHs were at a fixed distance from the 
sender, no node failures were simulated and only a small 
subset of the links (between the RH and the receivers) 
were injected with failures. The congestion control 
mechanism in TRAM was studied in a recent paper by 
Chiu et al [4]. The two aspects of congestion control – 
receiver feedback based windowing and server data rate 
based traffic shaper – are studied using an implementation 
for a LAN and an emulator for a WAN. The study showed 



 

how to dynamically adjust the data rate used to schedule 
packet transmission at the sender to smooth the 
transmission. The authors in [3] examine the issue of 
pruning decisions in multicast transport protocols. The 
decision boils down to choosing a minimum data rate and 
pruning receivers that fail to meet the minimum rate. It is 
mentioned that the minimum rate has to be chosen 
carefully so as not to prune genuine receivers experiencing 
occasional network bottlenecks. Determining an optimal 
data rate for the system is dependent on the kind of 
network and its traffic conditions, and is a complex 
decision. The rate of the entire group is controlled by the 
slowest receiver in the unpruned set of receivers. This 
results in slowdown observed by normal receivers even in 
completely disjoint parts of the multicast tree. The scheme 
in [3] is a simplification of the more general scheme called 
optimal pruning described in [7]. In that paper, the authors 
propose multiple subgroups of receivers with a utility 
function for individual nodes in the subgroup and one for 
the subgroup as a whole. The algorithm presented aims to 
pick the subgroup that maximizes the sum of node utility 
and subgroup utility. We believe that the algorithm can 
work if it is possible to assign utility functions for all 
possible subgroups. In the practical scenario considered in 
our paper, it was not possible to come up with a utility 
assignment. Also, the pruning decision needs to be rapid 
to isolate malicious receivers and the choice algorithm in 
Jiang’s work runs in exponential time. 

The design point of providing stable storage only at end 
points has been proposed and implemented in the context 
of publish-subscribe systems for a system called Gryphon 
to provide reliable exactly-once message delivery in the 
face of node failures [1]. The work assumed the extreme 
design point of no stable storage available at the 
intermediate nodes whereas in our study this is a 
parameter that can be tuned. 

A promising approach to building reliable distributed 
systems is group communication [6]. Reliable group 
communication is an important paradigm to build 
distributed applications that require multi-peer interaction 
with different levels of consistency. At least a decade of 
research has gone into designing and improving group 
communication protocols to provide membership, 
multicast and ordering services. However, such protocols 
are overkill for our goal. First, the members of a group are 
considered homogeneous and group joins and leaves are 
made visible to all the group members. Second, the design 
principle in our system is not to enforce synchronicity 
among the group members which is what the group 
communication protocols are designed to achieve. Finally, 
the group communication paradigm is particularly suited 
to local area networks with tight bounds on end-to-end 
latency which may not be achievable in the wide area 
network considered 
 

3. Protocol Description 
 
3.1. TRAM 
 

The detailed description of TRAM can be found in [2]. 
We provide an overview here and present details of the 
features relevant to the study. TRAM is distributed as a 
part of the Java Reliable Multicast Service (JRMS) by Sun 
Microsystems [11]. JRMS is a set of libraries and services 
for building multicast-aware applications. TRAM is 
designed for high scalability targeted towards multicasting 
streaming data from a single sender to a large number of 
receivers. TRAM ensures reliability by using a selective 
acknowledgement mechanism. An ack is sent in the form 
of an offset and a bit vector once every ack window (32 
packets). It provides scalability by adopting a hierarchical 
tree-based repair mechanism. The receivers and the data 
source of a multicast session in TRAM interact with each 
other to dynamically form repair groups. These repair 
groups are linked together in a hierarchical manner to 
form a tree with the sender at the root of the tree. Figure 1 
shows a typical TRAM repair tree. The nodes participating 
in TRAM play three roles, some nodes playing multiple 
roles – sender, receiver and repair head (RH). Every repair 
group has a receiver that functions as a group head; the 
rest function as group members which are said to be 
affiliated with their head. All members receive data 
multicast by the sender.  The group members report lost 
and successfully received messages to the group head 
using a selective acknowledgement mechanism. Every ack 
message contains a start message number indicating the 
first missing message, and a bit vector, with a 1 denoting a 
missing packet and a 0 denoting a received packet. If no 
packets are missing, the message number indicates all 
messages prior to and including this one has been received 
and the bit vector is of zero length. An ack message is sent 
after every ack window worth of packets has been 
received, or an ack interval timer goes off. The RHs cache 
every message sent by the sender and provide repair 
service for messages that are reported as lost by the 
members. The RH’s maintain a high and low water mark 
for monitoring cache occupancy. If the amount of buffer 
occupied by the packets goes beyond the high water mark, 
an attempt is made to purge the cache. Failure to do so is 
taken as an indication of congestion in the network.  The 
RHs aggregate acks from all its members and send an 
aggregate ack up to the sender to avoid the problem of ack 
implosion. The data rate sent out by the sender is bounded 
by maximum and minimum rates configured at the sender. 
Receivers that cannot keep up with the minimum data rate 
can be pruned from the repair tree. 
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Figure 1. (a) TRAM hierarchical repair tree (from 
[2]) (b) TRAM++ hierarchical repair tree with 
temporary reaffiliation 

Figure 1(a) shows a TRAM deployment with a sender, 
two levels of RHs and multiple receivers connected 
through links over which bi-directional data and ack 
messages flow. Two examples of repair groups are shown, 
one involving the sender and the two RHs at the first level, 
and the second showing a RH and its receivers. 

 
3.2. TRAM++ 
 

TRAM++ maintains the hierarchical structure of 
TRAM. It builds upon TRAM with the following two 
goals: 
1. Reduce the resource requirement at the repair heads, 
chiefly cache utilization, but also processing. 
2. Sandboxing the slow or malicious receivers and prevent 
the correctly functioning receivers from being affected. 

To achieve these goals, TRAM++ introduces the 
changes described below.  

Buffer management at RH: The design point in 
TRAM++ is that the RHs may be spread over a wide area 
and have constraints on available buffer, while the sender 
has higher, though not infinite, buffer capacity. TRAM++ 
optimizes the buffer requirement at the RHs by pruning 
old messages even if they have not been acknowledged by 
all its receivers. The advantage is that this frees up the 
buffer resources at the RH for accommodating new 
messages which are required for the well-behaved 
receivers to make progress. Consequently, a nack from a 
receiver may not always be satisfied locally at the 
immediate RH. A message is not discarded from the 
sender’s storage till it has been acked by all the receivers. 
Therefore, a nack can always be satisfied by the sender. 
When a RH cannot satisfy a nack, it indicates to the 
receiver to initiate a temporary re-affiliation with a RH at 
a higher level. A figure of the hierarchical structure in 
TRAM++ with a sender, receivers and repair heads is 
shown in Figure 1(b). Temporary re-affiliation is shown 
through the dotted arrow, where the receiver re-affiliates 
temporarily with a higher level RH for recovering the 
messages its RH does not have. The reaffiliation is 

transient and lasts for the duration of recovery of the 
single packet. This process is repeated recursively if 
recovery is not successful at the higher level, till the 
receiver reaffiliates with the sender at which point its nack 
is guaranteed to be satisfied. 
Handling Slow or Malicious Receivers: TRAM lets the 
data rate be driven by the slowest receiver. Therefore, the 
effect of a slow receiver is visible to the correctly 
functioning receivers all across the network. Even if the 
feature of TRAM that allows slow receivers to be pruned 
is turned on (which it is not for most deployments), the 
threshold minimum tolerable data rate is set quite 
conservatively. Hence, there are likely to be large periods 
of slowdown to the normal receivers. On the contrary, 
TRAM++ localizes the disruption to the part of the tree 
where the lagging receivers reside. In TRAM++, the RH 
uses two types of acks – a greedy ack and a permanent 
ack. The maximum sequence number of the packet that the 
sender should send down is sent piggybacked with acks. 
The greedy ack is sent by the RH upwards when its buffer 
reaches the low water mark. The purpose of sending the 
greedy ack is to indicate to the sender to send new data 
down even though all the receivers have not acked yet. 
The permanent ack is sent once all the receivers have 
acked. The role of this ack is to let the sender know that 
reclamation of storage is possible. In TRAM, the sequence 
number sent upwards is determined by the slowest 
receiver thus affecting the data rate observed by all the 
receivers, normal or laggard. In TRAM++, the sequence 
number is determined by the RH’s available buffer 
capacity. Incorporating the additional ack requires 
additional computation at the sender and the RHs, which is 
the same cost as for the basic ack determination in TRAM. 
But in a failure free system where all receivers are keeping 
up with the data rate, the RH’s buffer space is not put 
under pressure and therefore, the greedy acks are not sent 
and the additional processing overhead is not incurred. 

TRAM++ has the functionality to prune receivers 
which are considered lagging beyond an acceptable 
degree. The metric used for the pruning decision is the 
percentage of retransmission requests which cannot be 
locally satisfied and require temporary re-affiliation. The 
percentage is calculated as a fraction of the total number 
of packets. When the metric exceeds a tunable threshold 
parameter, the receiver is pruned. This is an effective 
means of removing malicious receivers which may 
increase the processing load in the system by requesting 
repeated retransmissions. Alternately, this may serve as an 
indication to the receiver to disassociate from the current 
RH because of its resource constraints and reaffiliate with 
a more resource rich RH. 
 
4. Implementation 
 



 

In this section, we present the details of the TRAM 
implementation which are of importance to the protocol 
and the changes that have been made in TRAM++. 

 
4.1. TRAM Implementation  

 
The TRAM code is multi-threaded. These threads are 

responsible for carrying out the group management 
functions in addition to basic sending and receiving of 
data packets. GroupMgmtThread is the main thread which 
is responsible for starting up TRAM, initiation of the 
beacon messages by the sender and affiliation of the 
receivers to the senders or repair heads. The beacon 
messages are used to advertise the session and invite 
nodes to join the multicast session. This thread performs 
the task of sending periodic hello messages among the 
receivers and its head. Each receiver also maintains a 
backup list of heads which it can switch to if the current 
head resigns or fails. Once the data transmission phase 
starts, InputDispThread and OutputDispThread come into 
picture. OutputDispThread transmits the packets. 
InputdispThread gives the packet to all the listeners and 
then, each entity calls its received packet method to get the 
desired packet.  Figure 2 shows pictorially the threads or 
methods which are used for upstream and downstream 
communication in TRAM. In the case of errors, the 
downstream path is identical to the error free case. In the 
upstream path, the receiver sends nacks to the RH which 
transmits the requested packets; the RH adjusts the data 
rate and sends the adjusted rate to the sender which finally 
adjusts its own rate.  
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Figure 2. TRAM message processing (a) 
downstream with no errors, (b) upstream with no 
errors, (c) upstream with message, node or link 
errors 
 
4.2. Modifications for TRAM++ 
 

To create TRAM++ from TRAM, we have added new 
message types to the existing message and sub-message 
types of TRAM. We have tried to minimize the changes to 
the basic TRAM structure and be able to add a separate 
layer of functionality which transforms TRAM to 
TRAM++. The processing of messages downstream and 
acks upstream in the no error scenario is shown in Figure 
3 and for errors in Figure 4. 
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Figure 3. TRAM++ implementation for (a) 
upstream and (b) downstream message 
processing with no errors 
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Figure 4. TRAM++ implementation for (a) 
upstream and (b) downstream message 
processing with message errors 

The ack processing mechanism of TRAM is modified 
for TRAM++.  In TRAM++ as the ack (implicit nack) is 
received by the repair head, it checks which packets the 
receiver has asked for retransmission. If the packet is not 
in the cache, the repair head sends a packet called 
NOT_REPAIRED to the receiver. This sub-message type 
forces the receiver to go for temporary re-affiliation. The 
data packet sent by the RH in response to the above type 
of nack, has a payload which only contains information 
about the higher-level repair head, also called Grand 
Repair Head (GRH). The receiver uses this information 
and sends a request for the missing packet to the new 
GRH. The GRH unicasts the requested data packet to the 
receiver. In TRAM, there is no notion of sending data 
through unicast. To enable this, we have added a message 
type called UCAST_DATA. A flag is added to the ack 
packet of TRAM to differentiate between greedy and 
permanent ack types. The execution steps of TRAM++ 
with errors are shown in Figure 4. The downstream 
processing is identical to the TRAM case except that the 
sender may send a unicast if some receiver had directly 
requested a retransmission through the temporary re-
affiliation process. 
 
4.3. Experiments and Results  
 

TRAM and TRAM++ are installed on a campus-wide 
WAN and experiments are conducted on the testbed. The 
experiments have two broad goals:  
1. Evaluate the scalability of TRAM with the number of 

receivers and its robustness to different types of 
message errors. 

2. Evaluate the improvement provided by TRAM++ in 
the event of failures and overhead incurred by 
TRAM++ under failure-free conditions.  

 
4.4. Testbed Setup 

 
The testbed has a sender, multiple repair heads and 

varying number of receivers. The computing machines are 

distributed across campus in the Mathematics (clusters al-
zn), Electrical Engineering (named pegasus and lyra, 
together with its cluster) and Materials Science (msee190) 
buildings. The machine named msee190 is always used 
exclusively as the sender. All the machines run RedHat 
Linux. It is important to note that the implementation is 
done and the experiments performed on a production 
campus-wide wide area network with normal traffic 
coexisting with the reliable multicast traffic. 

Table 1. Hardware Configuration 
MSEE machine (Sender) Pentium IV, 1.5 GHz, 1 GB 

memory 
EE machines Pentium IV, 2.26 GHz, 1 GB, 533 

FSB, 512 KB cache 
Math machines Pentium II, 450 MHz, 256 MB, 

divided into 13 clusters with 48 
machines in each 

RtrMSEE Cisco 5505 switch 
RtrMATH Cisco 6509 switch 
Links Intra-cluster links 100 Mbps, inter-

cluster links 1 Gbps 
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Figure 5. Sample physical and logical 
configuration for deployment with (a) 2 hops (b) 4 
hops between sender & receiver 

Different experiments are conducted with the receivers 
at different hops distance from the sender. In Figure 5, we 
show the physical and logical views of two different hop 
topologies. The physical topologies show the routers as 
well as the protocol participants (sender, receiver or RH), 
while the logical topologies only show the participants. A 
hop is defined as a link in the physical topology. This is 
different from the traditional definition of TTL in 
networking. For example, traversal from a receiver within  
a Math cluster machine to its RH in the same cluster does 
not decrement the TTL, but is considered a hop. We felt 
this to be reasonable because there is a cost of processing 
both at protocol participants and at the routers. 

We use the reliable multicast infrastructure to send a 
high bandwidth Mpeg-2 video data feed from the sender to 

Logical Physical 

Physical 

Logical 



 

the receivers. A 40 kbps feed is sent in 1316 bit payload 
packets, leaving space for the TRAM and the IP headers to 
fit within 1500 Ethernet MTU. The number of packets sent 
is at least 8000, with a larger number if the initial 
transients, which are discarded from our results, are 
longer. The parameters of the protocol set at the 
participants are shown in Table 2.  

Table 2. TRAM and TRAM++ configuration 
settings 

Parameter Value Parameter Value 
 
(Max, Min) 
data rate 

 
(40 kbps, 1 
kbps) 

TRAM: 
Stable 
storage size 
at RH 
(TRAM) 

 
1200 packets 
 
 

TRAM: 
Low water 
mark: High 
water mark 
(# packets) 

 
400:800 

TRAM++: 
Stable 
storage size 
at RH 

 
200 packets 

TRAM++: 
Low water 
mark: High 
water mark 
(# packets) 

 
32:120 

TRAM++:  
Pruning of 
receiver (% 
of packets 
asking for 
reaffiliation)  

0.08% 

 
Normal and Error Injection Runs: A single run of the 
experiment is defined as the transfer of at least 8,000 
packets of the video feed. A normal run is one where no 
errors are injected, though the variability of the 
environment may create congestion and transient 
instability such as spikes in latency. In the error injection 
runs, three kinds of message errors are simulated in the 
network – drops, delays and reordering. In one error 
injection run, a single receiver is identified as the faulty 
(or, malicious) one and the error injector works on its link. 
For message drops, a message is dropped on the 
downward link between the RH and a single receiver. For 
simulating message delays, the ack packet from the faulty 
receiver is delayed on the upstream link to the RH. For 
injecting message reorderings, we vary the inter-message 
gap (Md) between the messages which are to be reordered. 
Recollect that the ack window (Wa) is the number of 
packets for which one ack gets sent. If Md<Wa, then 
TRAM buffers the out-of-order packet and delivers it 
when an ordered sequence of packets can be created. This 
results in behavior identical to the error free case. If 
Md≥Wa, then the receiver sends a nack in the next ack 
window for the message whose place was taken by the 
out-of-order packet. This is identical to the message drop 
case and hence we do not separately show results for the 
message reordering case.  
 
5. Evaluation of TRAM 
 

5.1. Error-Free Case 
 

In this experiment, we investigate how TRAM scales 
with the number of receivers. The latency curves in Figure 
6(a) show that the latency is substantially less for the 
single hop case since the message is on a direct connection 
and does not have to traverse a router. The latency for 2, 3 
or 4 hops is comparable. None of the latencies become 
substantially worse with increasing number of receivers. 
The next experiment investigates the buffer utilization at 
the RH. TRAM is set up to use one-thirds of maximum 
buffer capacity (1200 packets) as the low water mark and 
two-thirds as the high water mark. Therefore, the buffer 
utilization oscillates between 400 and 800 packets, i.e., 
between 526.4 KB and 1.0528 MB. This is found to be 
true as the number of receivers is increased and is also 
independent of whether the utilization is at the RH or the 
sender. When we measure the data rate against time (or 
equivalently the number of the ack packet), it is found 
that, after the initial transient, the data rate picks up and 
tends towards the max data rate specified in the 
configuration.   
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Figure 6. Evaluation of TRAM in error-free case 
 
5.1. Error Injection Case 
 

For TRAM, the effect of the error on the faulty receiver 
and the normal receiver will be identical, and therefore no 
distinction is made in the following discussion.  
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Figure 7. Effect of message drop on TRAM: 
(a)&(d) Latency for 3 and 5 packets dropped out 
of 50, (b)&(e) Data Rates, (c)&(f) Buffer 
Occupancy  

Figure 7 shows the variation of latency, data rates, and 
buffer utilization with the number of receivers for two 
different message drop rates – 3 every 50 and 5 every 50 
packets. The buffer utilization at the RH (Figure 7(c),(f)) 
shows an interesting trend. The purging of the buffer 
begins when its size reaches the high water mark (800 
packets), and while under error-free conditions, the 

purging would have been able to reduce the buffer 
utilization to 400 packets, here the reduction is only down 
to about 750 packets. If the drop rate is increased to 5 out 
of every 50 packets, the affected receiver is pruned. On 
pruning, the buffer is purged completely since the packets 
were being buffered to accommodate the receiver that just 
got pruned. Therefore the utilization comes down to zero. 
Immediately after pruning, the sender tries to increase the 
data rate and the utilization goes back to the usual 
oscillation between 400 and 800 packets till the pruning 
happens next. 

In Figure 8, we show the effect of introducing message 
delays in TRAM. In the first experiment, a delay of 8,000 
ms is introduced. The latency shows a regular spike of 
8,000 ms and this spike repeats roughly every 32 packets 
since the ack window is set to 32 and a delay is introduced 
for every ack. The data rate shows congestion control at 
work. The sender tries to increase the data rate to the max 
rate, but is forced back because of the delayed ack. It 
reduces the data rate, but is able to sustain a rate greater 
than 1 kbps, and as a result, the receiver does not get 
pruned. The buffer utilization varies between the low and 
high water mark as in the error free case (Figure 6(b)). It is 
found that a delay of 10,000 ms causes pruning of the 
slow receiver. Once pruning of misbehaving receivers 
happens, the remaining receivers continue to see 
performance as in the error free case.  
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Figure 8. Effect of message delay on TRAM: (a)-(b) Delay of 8000 ms, no pruning; (c) Delay of 10000 ms, 
pruning.  
 
6. Evaluation of TRAM++ 
 
6.1. Error-Free Case 
 

The results of the scalability test of TRAM++ are 
shown in Figure 9. It is observed that the protocol is 
scalable like TRAM in the range under consideration (5-
30 receivers). The variation in latency in this range is 
about 1.01%. The average latency in the range is 584.44 
ms, which gives a 3.2% overhead over TRAM. As the 

buffer constraint is varied in TRAM++, the relative 
overhead is found to remain constant in the error free 
case. This is expected since the buffer is not completely 
utilized in the absence of errors. The overhead is ascribed 
to three main reasons: extra message schema matching 
due to the introduction of new message types, aggressive 
cache pruning to satisfy the storage constraints at the RH, 
and additional control messages – two kinds of acks being 
sent upstream by the RHs. 

Regarding the comparative resource usage, the CPU 
utilization is very close to zero for the maximum data rate 



 

that the network infrastructure can support and therefore 
cannot form a meaningful point of comparison between 
the two protocols. The main memory utilization for both 
TRAM and TRAM++ vary between 7.5% and 30.0%. The 
sender buffer utilization curve shown in Figure 9(b) 
oscillates between 400 and 800 packets as in TRAM’s 
buffer utilization. The RH buffer utilization varies 
between the maximum pruning level (32 kB) and the high 

water mark (120 kB) and is shown in Figure 9(c). In the 
no error case, this buffer utilization does not depend on 
the number of receivers. A system designer can set the 
buffer upper bound knowing the stable storage constraints 
and TRAM++ will operate under the bound. The data rate 
supported by TRAM++ also approaches the max data rate 
parameter set in the system (40 kbps).

  

(a)

200

300

400

500

600

0 5 10 15 20 25

Number of receivers

La
te

nc
y 

(m
s)

(b)

0
200
400

600
800

1000

0 200 400 600

Ack Number

S
en

de
r B

uf
fe

r 
U

til
iz

at
io

n 
(#

 
P

ac
ke

ts
)

(c)

0

50

100

150

200

250

0 100 200 300 400

Ack Number

R
H

 B
uf

fe
r U

til
iz

at
io

n(
# 

P
ac

ke
ts

)

 
Figure 9. Evaluation of TRAM++ in error-free case: (a) Receiver latency (b) Sender buffer utilization and 
(c) Repair Head buffer utilization for 27 receivers  
 
6.2. Error Injection Case 
 

For message drops, we drop 5 packets out of every 
50.The results are shown in Figure 10. It is observed that 
the malicious receiver gets pruned at around 650 packets, 
after which the system behaves as in the error free case. 
The sender’s buffer utilization once drops to zero because 
of purging of entire cache at the time of pruning. Then the 
utilization oscillates as usual between 400 and 800 
packets, and the data rate also tends towards the 
maximum. However, the buffer utilization at the RH goes 
up to the maximum buffer space, before purging occurs. 
For 2 out of 50 packets being dropped, the receiver is 
repeatedly pruned and rejoins the multicast group. The 
normal or non-faulty node is not affected at all and its 
latency remains around the no error scenario value. This 
achieves the important design goal of TRAM++ of 
isolating the effect of a malfunctioning receiver to its part 
of the repair tree. Contrast this to the behavior in TRAM 
shown in Figure 7 where the latency of the normal 
receiver is shown to go above 10,000 ms for similar drop 
rates. We had the malicious receiver repeatedly reconnect 
to the multicast group to test the robustness of TRAM++ 
to this kind of malicious behavior.  
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Figure 10. Evaluation of TRAM++ under message 
drop rate of 5 out of 50 packets. 

In the case of message delays, the pruning is found to 
happen for delays of  8000 ms and above. Figure 11 
shows a scenario where pruning is not done (delay = 1000 
ms). For the no-pruning scenario, the sender data rate and 
buffer utilization behave as in the error free case (see 
Figure 6(b) & Figure 9(b) respectively). The latency of 
the normal receiver remains unaffected though the sender 
detected congestion causes its latency to rise towards the 
end of the experimental run. The malicious receiver has a 



 

saw-tooth latency pattern with the peak separated from the 
base by the delay amount.  
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Figure 11. Effect of message delay (1000 ms) on 
TRAM++ (a) Normal receiver (b) Faulty receiver 
 
6.3. Highlights of Result 
 
1. Both TRAM and TRAM++ scale well with respect to 
latency as the number of receivers is increased, up to a 
total of 30. Under error-free conditions, both were able to 
maintain a streaming video of data rate 40 Kbps, but not 
the next higher step of 60 Kbps.  
2. TRAM is not successful in isolating the normal 
receivers from the effect of faulty or malicious ones. 
TRAM++ is able to achieve this through its protocol of 
differentiated acks and buffer management. 
3. TRAM++ under a constraint of 16% of the TRAM 
buffer availability at the RH is able to maintain the end-
to-end latency within 3.2% of TRAM for the error free 
case. TRAM++ achieves this without any additional 
memory overhead. In cases with message errors, the 
latency of normal receivers in TRAM++ is better by a 
factor of up to 30. TRAM++ is also able to prune 
malicious receivers faster because of local decision-
making ability at the RH. 
 
6. Conclusions 
 

In this paper, we have presented an evaluation of a 
tree-based reliable multicast protocol called TRAM in 
error-free and message error prone environments. Two 
design improvements to TRAM are presented and the new 
protocol called TRAM++ is evaluated. The comparison 
brings out that both protocols are scalable in the range of 
receivers studied. If buffer utilization constraints are 
enforced on the intermediate nodes, then TRAM++ can 
operate under the constraints without substantial latency 
degradation compared to TRAM. It can localize the effect 
of a few slow or malicious receivers on the rest of the 
system. We are currently working on a distributed monitor 
architecture to detect failures or intrusions and work 
collaboratively with the TRAM++ participants to isolate 
the malfunctioning entity. The goal is to perform the 
diagnosis scalably and with low detection latency. 
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