

Failure Handling in a Reliable Multicast Protocol for Improving Buffer
Utilization and Accommodating Heterogeneous Receivers

Gunjan Khanna, Saurabh Bagchi

Dependable Computing Systems Lab
School of Electrical & Computer Engineering,

Purdue University
West Lafayette, IN.

John Rogers

Architecture, Standards & Security Eng.
Bank of America Corporate

Information Security
Charlotte, NC.

Email: {gkhanna, sbagchi}@purdue.edu, john.rogers@bankofamerica.com

Abstract

Reliable multicast protocols are an important class of
protocols for reliably disseminating information from a
sender to multiple receivers in the face of node and link
failures. A Tree-based Reliable Multicast Protocol
(TRAM) provides scalable reliable multicast by grouping
receivers in hierarchical repair groups and using a
selective acknowledgment mechanism. In this paper, we
present an improvement to TRAM to minimize the
resource utilization at intermediate hosts and to localize
the effect of slow or malicious receivers on normal
receivers. We present an evaluation of TRAM and
TRAM++ on a campus-wide WAN without errors and with
message errors. The evaluation brings out that, given a
constraint on the buffer availability at intermediate hosts,
TRAM++ can tolerate the constraint at the expense of
increasing the end-to-end latency for the normal receivers
by only 3.2% compared to TRAM in error-free cases.
When slow or faulty receivers are present, TRAM++ is
able to provide the same uninterrupted quality of service
to the normal nodes while localizing the effect of the faulty
ones without incurring any additional memory overhead.
Keywords: tree based reliable multicast, buffer utilization,
message errors, slow or unresponsive receivers, end-to-
end latency.

1. Introduction

The ability to reliably transmit and update large
amounts of data and content in real-time is crucial in a
large number of domains, such as for financial services,
content delivery network providers, large retail chains,
application service providers (ASPs), interactive TV,
wireless entertainment, and e-learning providers. It can
take considerable time and bandwidth if the sender must
send a separate copy to each receiver. IP multicasting
allows a sender to distribute data to all interested parties
while minimizing the use of network resources. Many
applications, however, require reliable data delivery which

is resilient to failures of nodes and network links. This
requirement is supported by reliable multicast protocols.

A Tree-based Reliable Multicast Protocol (TRAM) is
designed to provide multicast reliability that scales to a
large receiver population. TRAM ensures reliability by
using a selective acknowledgment mechanism and
scalability by adopting a hierarchical tree-based repair
mechanism. The receivers and the sender of a multicast
session dynamically form repair groups. These repair
groups are linked together hierarchically to form a tree
with the sender at the root of the tree, the receivers at the
leaves and entities called Repair Heads (RH) at the
intermediate levels of the tree. The RHs cache the
messages that pass through them and initiate local repair
by resending messages that are nacked by the receivers.

From an end-to-end perspective, we consider latency
and jitter as parameters of interest for receivers of a
multicast stream. We consider the scenario of a video
stream being delivered by TRAM and measure its output
parameter values. In addition to the performance metrics,
there are resource utilization metrics which characterize a
reliable multicast protocol. TRAM ensures the recovery
from missing messages by nacks and retransmissions by
the RHs. The RHs therefore need stable storage to buffer
messages that have not yet been received by all the
receivers. The aggregate buffer utilization in the system,
combined over the sender and all the RHs, is taken as one
indicator of resource usage in the system. In this paper, we
evaluate the existing TRAM implementation with respect
to performance and resource utilization, with varying
number of receivers. The evaluation is performed on a
campus-wide wide area network (WAN) with receivers
located at different distances from the source. The ability
of the reliable multicast protocol to tolerate faults is
evaluated under different message error conditions. The
errors injected are message drops, reorders, and delays,
and the performance metrics are measured under these
conditions.

It has to be considered that in a large group of multicast
receivers, not all the receivers will be identical.
Considering a practical scenario where different receivers
are present in different subnets, each has varying traffic

conditions and processing constraints. Some of the
receivers will be slow in processing the messages and
generating acks. Some receivers may be unresponsive for
long periods of time, either because of a natural failure or
performance bottleneck, or because of malicious purpose.
The design point should be that the QoS measures of the
normal receivers should be affected as little as possible
because of the slow and unresponsive receivers. We
propose a protocol based on TRAM, called TRAM++,
which localizes the effect of slow or unresponsive
receivers on the correctly functioning receivers. TRAM++
provides a mechanism to track unresponsive receivers and
beyond a threshold, prune the receivers. Since the
receivers are not homogenous, maintenance of synchrony
among the receivers is sacrificed as a deliberate design
choice to provide fairness to normal receivers. Pruning is
considered a necessary step to keep the system
performance above a tolerable limit, bound the resource
usage and to eliminate malicious receivers.

TRAM++ also optimizes the aggregate buffer usage in
the system under normal conditions without any
degradation of the performance parameters. It achieves
this by dropping the guarantee of recovery of missing
messages from the immediate RH to which the receiver is
connected. The RH may drop messages from its buffer in
order to accommodate new messages. The guarantee of
recovery is provided by the sender which buffers
messages in stable storage till they have been
acknowledged by every receiver.

The study shows that both TRAM and TRAM++ scale
well with respect to latency as the number of receivers is
increased, up to a total of 30. TRAM is not successful in
isolating the normal receivers from the effect of faulty or
malicious ones. TRAM++ is able to achieve this through
its protocol of differentiated acks and buffer management.
TRAM++ under a constraint of 16% of the TRAM buffer
availability at the RH is able to maintain the latency within
an overhead of 3.2% in the error free scenario. It is also
able to prune malicious receivers faster because of local
decision making ability at the RH without any additional
memory overhead. It is also able to isolate and prune a
malicious receiver that constantly joins and leaves the
multicast group in an attempt to cause denial of service in
the system. The rest of the paper is organized as follows.
Section 2 presents previous related work. In section 3, we
present the TRAM and the TRAM++ protocols. Section 4
details the implementation of TRAM++. Section 5 gives
the experiments and results, under no errors and with
errors. Section 6 concludes the paper.

2. Related Work

IP multicast is a protocol that defines a mechanism for
one or more senders to send data to a group of
receivers a collection of one or more hosts identified by

a single class D IP address [5]. The abstraction of multiple
hosts into a single entity provides several advantages over
unicast, or "point-to-point," protocols: the sender(s) only
manages a connection with the group, not all of its
members; and data can be sent to all the receivers without
multiple transmissions from the sender(s). In situations
where similar data is sent to multiple hosts, multicast IP
can provide bandwidth conservation, reduced resource
requirements for the server, and an increase in overall
scalability.

Though the general idea of IP multicast is simple, the
message delivery is purely best-effort and there is no
guarantee that the data is going to reach all the multicast
receivers. The loss of messages may be due to congestion,
failures of nodes, failures of links, etc. To address these
concerns, an enhanced category of multicast IP called
reliable multicast has evolved. It defines mechanisms to
monitor host population, congestion, transfer speeds, and
data loss on a per-host basis, and mechanisms to counter
the loss, thus providing a more reliable multicast
environment.

Due to the wide variety of applications which require
reliable multicast, it is considered that a “one size fits all”
protocol is infeasible. Therefore, three classes of protocols
have been proposed in the literature – (i) NACK oriented
protocols; (ii) Tree-based ACK oriented protocols; (iii)
Asynchronous layered coding protocols that use forward
error correction (FEC). Of these classes, the second or a
hybrid of the first two classes is of relevance to our current
work. Several protocols have been presented and studied
[8,12,13]. We chose TRAM as the representative protocol
for study since it had openly available source code and a
large active user community which was extremely useful
in setting up and troubleshooting the system. The detailed
evaluation of TRAM presented here is expected to shed
light on the other protocols too since many design
decisions are similar, such as local recovery at the repair
head (or the counterpart in the particular protocol), and
ack aggregation. The concern about constraining resource
usage at intermediate hosts and localizing the effect of
slow or malicious receivers applies to all reliable multicast
frameworks.

TRAM was first presented by Chiu et al in [2]. This
study evaluated some of the parameters considered here,
namely, rate, loss and cache occupancy, but using a
simulation model. The simulation model made several
simplifications – all RHs were at a fixed distance from the
sender, no node failures were simulated and only a small
subset of the links (between the RH and the receivers)
were injected with failures. The congestion control
mechanism in TRAM was studied in a recent paper by
Chiu et al [4]. The two aspects of congestion control –
receiver feedback based windowing and server data rate
based traffic shaper – are studied using an implementation
for a LAN and an emulator for a WAN. The study showed

how to dynamically adjust the data rate used to schedule
packet transmission at the sender to smooth the
transmission. The authors in [3] examine the issue of
pruning decisions in multicast transport protocols. The
decision boils down to choosing a minimum data rate and
pruning receivers that fail to meet the minimum rate. It is
mentioned that the minimum rate has to be chosen
carefully so as not to prune genuine receivers experiencing
occasional network bottlenecks. Determining an optimal
data rate for the system is dependent on the kind of
network and its traffic conditions, and is a complex
decision. The rate of the entire group is controlled by the
slowest receiver in the unpruned set of receivers. This
results in slowdown observed by normal receivers even in
completely disjoint parts of the multicast tree. The scheme
in [3] is a simplification of the more general scheme called
optimal pruning described in [7]. In that paper, the authors
propose multiple subgroups of receivers with a utility
function for individual nodes in the subgroup and one for
the subgroup as a whole. The algorithm presented aims to
pick the subgroup that maximizes the sum of node utility
and subgroup utility. We believe that the algorithm can
work if it is possible to assign utility functions for all
possible subgroups. In the practical scenario considered in
our paper, it was not possible to come up with a utility
assignment. Also, the pruning decision needs to be rapid
to isolate malicious receivers and the choice algorithm in
Jiang’s work runs in exponential time.

The design point of providing stable storage only at end
points has been proposed and implemented in the context
of publish-subscribe systems for a system called Gryphon
to provide reliable exactly-once message delivery in the
face of node failures [1]. The work assumed the extreme
design point of no stable storage available at the
intermediate nodes whereas in our study this is a
parameter that can be tuned.

A promising approach to building reliable distributed
systems is group communication [6]. Reliable group
communication is an important paradigm to build
distributed applications that require multi-peer interaction
with different levels of consistency. At least a decade of
research has gone into designing and improving group
communication protocols to provide membership,
multicast and ordering services. However, such protocols
are overkill for our goal. First, the members of a group are
considered homogeneous and group joins and leaves are
made visible to all the group members. Second, the design
principle in our system is not to enforce synchronicity
among the group members which is what the group
communication protocols are designed to achieve. Finally,
the group communication paradigm is particularly suited
to local area networks with tight bounds on end-to-end
latency which may not be achievable in the wide area
network considered

3. Protocol Description

3.1. TRAM

The detailed description of TRAM can be found in [2].
We provide an overview here and present details of the
features relevant to the study. TRAM is distributed as a
part of the Java Reliable Multicast Service (JRMS) by Sun
Microsystems [11]. JRMS is a set of libraries and services
for building multicast-aware applications. TRAM is
designed for high scalability targeted towards multicasting
streaming data from a single sender to a large number of
receivers. TRAM ensures reliability by using a selective
acknowledgement mechanism. An ack is sent in the form
of an offset and a bit vector once every ack window (32
packets). It provides scalability by adopting a hierarchical
tree-based repair mechanism. The receivers and the data
source of a multicast session in TRAM interact with each
other to dynamically form repair groups. These repair
groups are linked together in a hierarchical manner to
form a tree with the sender at the root of the tree. Figure 1
shows a typical TRAM repair tree. The nodes participating
in TRAM play three roles, some nodes playing multiple
roles – sender, receiver and repair head (RH). Every repair
group has a receiver that functions as a group head; the
rest function as group members which are said to be
affiliated with their head. All members receive data
multicast by the sender. The group members report lost
and successfully received messages to the group head
using a selective acknowledgement mechanism. Every ack
message contains a start message number indicating the
first missing message, and a bit vector, with a 1 denoting a
missing packet and a 0 denoting a received packet. If no
packets are missing, the message number indicates all
messages prior to and including this one has been received
and the bit vector is of zero length. An ack message is sent
after every ack window worth of packets has been
received, or an ack interval timer goes off. The RHs cache
every message sent by the sender and provide repair
service for messages that are reported as lost by the
members. The RH’s maintain a high and low water mark
for monitoring cache occupancy. If the amount of buffer
occupied by the packets goes beyond the high water mark,
an attempt is made to purge the cache. Failure to do so is
taken as an indication of congestion in the network. The
RHs aggregate acks from all its members and send an
aggregate ack up to the sender to avoid the problem of ack
implosion. The data rate sent out by the sender is bounded
by maximum and minimum rates configured at the sender.
Receivers that cannot keep up with the minimum data rate
can be pruned from the repair tree.

(a) (b)

Repair Group Sender Repair Head Receiver

Stable storage Control-Data
Message Connection

Temporary Repair
Group Formation

(a) (b)

Repair Group Sender Repair Head Receiver

Stable storage Control-Data
Message Connection

Temporary Repair
Group Formation

Figure 1. (a) TRAM hierarchical repair tree (from
[2]) (b) TRAM++ hierarchical repair tree with
temporary reaffiliation

Figure 1(a) shows a TRAM deployment with a sender,
two levels of RHs and multiple receivers connected
through links over which bi-directional data and ack
messages flow. Two examples of repair groups are shown,
one involving the sender and the two RHs at the first level,
and the second showing a RH and its receivers.

3.2. TRAM++

TRAM++ maintains the hierarchical structure of
TRAM. It builds upon TRAM with the following two
goals:
1. Reduce the resource requirement at the repair heads,
chiefly cache utilization, but also processing.
2. Sandboxing the slow or malicious receivers and prevent
the correctly functioning receivers from being affected.

To achieve these goals, TRAM++ introduces the
changes described below.

Buffer management at RH: The design point in
TRAM++ is that the RHs may be spread over a wide area
and have constraints on available buffer, while the sender
has higher, though not infinite, buffer capacity. TRAM++
optimizes the buffer requirement at the RHs by pruning
old messages even if they have not been acknowledged by
all its receivers. The advantage is that this frees up the
buffer resources at the RH for accommodating new
messages which are required for the well-behaved
receivers to make progress. Consequently, a nack from a
receiver may not always be satisfied locally at the
immediate RH. A message is not discarded from the
sender’s storage till it has been acked by all the receivers.
Therefore, a nack can always be satisfied by the sender.
When a RH cannot satisfy a nack, it indicates to the
receiver to initiate a temporary re-affiliation with a RH at
a higher level. A figure of the hierarchical structure in
TRAM++ with a sender, receivers and repair heads is
shown in Figure 1(b). Temporary re-affiliation is shown
through the dotted arrow, where the receiver re-affiliates
temporarily with a higher level RH for recovering the
messages its RH does not have. The reaffiliation is

transient and lasts for the duration of recovery of the
single packet. This process is repeated recursively if
recovery is not successful at the higher level, till the
receiver reaffiliates with the sender at which point its nack
is guaranteed to be satisfied.
Handling Slow or Malicious Receivers: TRAM lets the
data rate be driven by the slowest receiver. Therefore, the
effect of a slow receiver is visible to the correctly
functioning receivers all across the network. Even if the
feature of TRAM that allows slow receivers to be pruned
is turned on (which it is not for most deployments), the
threshold minimum tolerable data rate is set quite
conservatively. Hence, there are likely to be large periods
of slowdown to the normal receivers. On the contrary,
TRAM++ localizes the disruption to the part of the tree
where the lagging receivers reside. In TRAM++, the RH
uses two types of acks – a greedy ack and a permanent
ack. The maximum sequence number of the packet that the
sender should send down is sent piggybacked with acks.
The greedy ack is sent by the RH upwards when its buffer
reaches the low water mark. The purpose of sending the
greedy ack is to indicate to the sender to send new data
down even though all the receivers have not acked yet.
The permanent ack is sent once all the receivers have
acked. The role of this ack is to let the sender know that
reclamation of storage is possible. In TRAM, the sequence
number sent upwards is determined by the slowest
receiver thus affecting the data rate observed by all the
receivers, normal or laggard. In TRAM++, the sequence
number is determined by the RH’s available buffer
capacity. Incorporating the additional ack requires
additional computation at the sender and the RHs, which is
the same cost as for the basic ack determination in TRAM.
But in a failure free system where all receivers are keeping
up with the data rate, the RH’s buffer space is not put
under pressure and therefore, the greedy acks are not sent
and the additional processing overhead is not incurred.

TRAM++ has the functionality to prune receivers
which are considered lagging beyond an acceptable
degree. The metric used for the pruning decision is the
percentage of retransmission requests which cannot be
locally satisfied and require temporary re-affiliation. The
percentage is calculated as a fraction of the total number
of packets. When the metric exceeds a tunable threshold
parameter, the receiver is pruned. This is an effective
means of removing malicious receivers which may
increase the processing load in the system by requesting
repeated retransmissions. Alternately, this may serve as an
indication to the receiver to disassociate from the current
RH because of its resource constraints and reaffiliate with
a more resource rich RH.

4. Implementation

In this section, we present the details of the TRAM
implementation which are of importance to the protocol
and the changes that have been made in TRAM++.

4.1. TRAM Implementation

The TRAM code is multi-threaded. These threads are

responsible for carrying out the group management
functions in addition to basic sending and receiving of
data packets. GroupMgmtThread is the main thread which
is responsible for starting up TRAM, initiation of the
beacon messages by the sender and affiliation of the
receivers to the senders or repair heads. The beacon
messages are used to advertise the session and invite
nodes to join the multicast session. This thread performs
the task of sending periodic hello messages among the
receivers and its head. Each receiver also maintains a
backup list of heads which it can switch to if the current
head resigns or fails. Once the data transmission phase
starts, InputDispThread and OutputDispThread come into
picture. OutputDispThread transmits the packets.
InputdispThread gives the packet to all the listeners and
then, each entity calls its received packet method to get the
desired packet. Figure 2 shows pictorially the threads or
methods which are used for upstream and downstream
communication in TRAM. In the case of errors, the
downstream path is identical to the error free case. In the
upstream path, the receiver sends nacks to the RH which
transmits the requested packets; the RH adjusts the data
rate and sends the adjusted rate to the sender which finally
adjusts its own rate.

sender

Repair Head

Receiver

1) Sender Calls
OutputDispThread ,

to multicast.
2) InputDispThread will listen

for the packet at the repair
head and in for the
DataPacketListeners

3) RH calls receiveDataPacket
and caches the packet in
the DataCache.

4) RH repeats the process to
send packet to receiver

(a)

DD

D

sender

Repair Head

Receiver

1) Sender Calls
OutputDispThread ,

to multicast.
2) InputDispThread will listen

for the packet at the repair
head and in for the
DataPacketListeners

3) RH calls receiveDataPacket
and caches the packet in
the DataCache.

4) RH repeats the process to
send packet to receiver

(a)

DD

D

InputDispThread

OutputDispThread

sender

Repair Head

Receiver

1) Receiver sends a unicast Ack
once in an ack window

2) RH uses AckPacketListener
to get ack.

3) RH calls receiveAckPacket
in HeadAck class to process
it.

4) RH purges cache only if it
reaches high water mark

5) RH finally sends cumulative
ack to sender using same
modules

(b)

ack

ack

sender

Repair Head

Receiver

1) Receiver sends repeated
nacks.

2) RH uses AckPacketListener
to get ack.

3) RH uses HeadAck class to
retransmit the packet.

4) RH calculates the avg data
rate and readjusts the
highestSequenceNumber.

5) RH finally sends congestion
message above and slows
the data rate, cannot purge
cache.

6) Sender also adjust to that
data rate.

(c)

nack

Congestion

InputDispThread

OutputDispThread

sender

Repair Head

Receiver

1) Receiver sends a unicast Ack
once in an ack window

2) RH uses AckPacketListener
to get ack.

3) RH calls receiveAckPacket
in HeadAck class to process
it.

4) RH purges cache only if it
reaches high water mark

5) RH finally sends cumulative
ack to sender using same
modules

(b)

ack

ack

sender

Repair Head

Receiver

1) Receiver sends repeated
nacks.

2) RH uses AckPacketListener
to get ack.

3) RH uses HeadAck class to
retransmit the packet.

4) RH calculates the avg data
rate and readjusts the
highestSequenceNumber.

5) RH finally sends congestion
message above and slows
the data rate, cannot purge
cache.

6) Sender also adjust to that
data rate.

(c)

nack

Congestion

Figure 2. TRAM message processing (a)
downstream with no errors, (b) upstream with no
errors, (c) upstream with message, node or link
errors

4.2. Modifications for TRAM++

To create TRAM++ from TRAM, we have added new
message types to the existing message and sub-message
types of TRAM. We have tried to minimize the changes to
the basic TRAM structure and be able to add a separate
layer of functionality which transforms TRAM to
TRAM++. The processing of messages downstream and
acks upstream in the no error scenario is shown in Figure
3 and for errors in Figure 4.

sender

Repair Head

Receiver

1) Sender calls OutputDispThread ,
to multicast.

2) InputDispThread will listen
for the packet at the repair
head and in for the
DataPacketListeners

3) RH calls receiveDataPacket
and caches the packet in
the DataCache.

4) RH repeats the process to
send packet to receiver

InputDispThread
OutputDispThread

(a)

D

D

D

sender

Repair Head

Receiver

1) Receiver sends a unicast Ack
once in an ack window

2) RH uses AckPacketListener
to get ack.

3) RH calls receiveAckPacket
in HeadAck class to process it.

4) RH sends greedy ack(GAck)
and purges cache regularly.

5) RH sends permanent ack
(PAck) finally to sender using
same modules

(b)

ack

GAck PAck

Legend:

sender

Repair Head

Receiver

1) Sender calls OutputDispThread ,
to multicast.

2) InputDispThread will listen
for the packet at the repair
head and in for the
DataPacketListeners

3) RH calls receiveDataPacket
and caches the packet in
the DataCache.

4) RH repeats the process to
send packet to receiver

InputDispThread
OutputDispThread

(a)

D

D

D

sender

Repair Head

Receiver

1) Receiver sends a unicast Ack
once in an ack window

2) RH uses AckPacketListener
to get ack.

3) RH calls receiveAckPacket
in HeadAck class to process it.

4) RH sends greedy ack(GAck)
and purges cache regularly.

5) RH sends permanent ack
(PAck) finally to sender using
same modules

(b)

ack

GAck PAck

Legend:

Figure 3. TRAM++ implementation for (a)
upstream and (b) downstream message
processing with no errors

sender

Repair Head

Receiver

1) Sender calls OutputDispThread ,
to multicast.

2) Sender might do an unicast if
some receiver down below
requests for packet

3) InputDispThread will listen
for the packet at the repair
head and inform
DataPacketListeners and
GrndDataPacketListeners.

4) RH calls receiveDataPacket
and caches the packet in
the DataCache.

5) RH repeats the process to
send packet to receiver

D

D

Repair from
Grnd Parent

(a)

Legend:

sender

Repair Head

Receiver

1) Receiver sends repeated
nacks.

2) RH uses AckPacketListener
to get nack.

3) RH uses HeadAck class to
retransmit the packet or
direct to GrandParent
depending upon availability in
buffer.

4) RH will report its own
highestSequenceNumber
(piggy backed on Gack).

5) Receiver will send nack to
GrndParent and seek repair.

6) The data rate will be high
until congestion reported.

nack

Gack Pack

(b)

sender

Repair Head

Receiver

1) Sender calls OutputDispThread ,
to multicast.

2) Sender might do an unicast if
some receiver down below
requests for packet

3) InputDispThread will listen
for the packet at the repair
head and inform
DataPacketListeners and
GrndDataPacketListeners.

4) RH calls receiveDataPacket
and caches the packet in
the DataCache.

5) RH repeats the process to
send packet to receiver

D

D

Repair from
Grnd Parent

(a)

Legend:

sender

Repair Head

Receiver

1) Receiver sends repeated
nacks.

2) RH uses AckPacketListener
to get nack.

3) RH uses HeadAck class to
retransmit the packet or
direct to GrandParent
depending upon availability in
buffer.

4) RH will report its own
highestSequenceNumber
(piggy backed on Gack).

5) Receiver will send nack to
GrndParent and seek repair.

6) The data rate will be high
until congestion reported.

nack

Gack Pack

(b)

Figure 4. TRAM++ implementation for (a)
upstream and (b) downstream message
processing with message errors

The ack processing mechanism of TRAM is modified
for TRAM++. In TRAM++ as the ack (implicit nack) is
received by the repair head, it checks which packets the
receiver has asked for retransmission. If the packet is not
in the cache, the repair head sends a packet called
NOT_REPAIRED to the receiver. This sub-message type
forces the receiver to go for temporary re-affiliation. The
data packet sent by the RH in response to the above type
of nack, has a payload which only contains information
about the higher-level repair head, also called Grand
Repair Head (GRH). The receiver uses this information
and sends a request for the missing packet to the new
GRH. The GRH unicasts the requested data packet to the
receiver. In TRAM, there is no notion of sending data
through unicast. To enable this, we have added a message
type called UCAST_DATA. A flag is added to the ack
packet of TRAM to differentiate between greedy and
permanent ack types. The execution steps of TRAM++
with errors are shown in Figure 4. The downstream
processing is identical to the TRAM case except that the
sender may send a unicast if some receiver had directly
requested a retransmission through the temporary re-
affiliation process.

4.3. Experiments and Results

TRAM and TRAM++ are installed on a campus-wide
WAN and experiments are conducted on the testbed. The
experiments have two broad goals:
1. Evaluate the scalability of TRAM with the number of

receivers and its robustness to different types of
message errors.

2. Evaluate the improvement provided by TRAM++ in
the event of failures and overhead incurred by
TRAM++ under failure-free conditions.

4.4. Testbed Setup

The testbed has a sender, multiple repair heads and

varying number of receivers. The computing machines are

distributed across campus in the Mathematics (clusters al-
zn), Electrical Engineering (named pegasus and lyra,
together with its cluster) and Materials Science (msee190)
buildings. The machine named msee190 is always used
exclusively as the sender. All the machines run RedHat
Linux. It is important to note that the implementation is
done and the experiments performed on a production
campus-wide wide area network with normal traffic
coexisting with the reliable multicast traffic.

Table 1. Hardware Configuration
MSEE machine (Sender) Pentium IV, 1.5 GHz, 1 GB

memory
EE machines Pentium IV, 2.26 GHz, 1 GB, 533

FSB, 512 KB cache
Math machines Pentium II, 450 MHz, 256 MB,

divided into 13 clusters with 48
machines in each

RtrMSEE Cisco 5505 switch
RtrMATH Cisco 6509 switch
Links Intra-cluster links 100 Mbps, inter-

cluster links 1 Gbps

msee190

lyra

pegasus

RtrMSEE

msee190

RtrMSEE

RtrMATH

al
cluster m/c

zn
cluster m/c

R R

SS

RtrMSEE

RtrMATH

RHRH

R R

RHRH

S

RTR

R

13 clusters, 48 machines in each

(a) (b)

msee190

lyra

pegasus

RtrMSEE

msee190

RtrMSEE

RtrMATH

al
cluster m/c

zn
cluster m/c

R R

SS

RtrMSEE

RtrMATH

RHRH

R R

RHRH

S

RTR

R

13 clusters, 48 machines in each

(a) (b)
Figure 5. Sample physical and logical
configuration for deployment with (a) 2 hops (b) 4
hops between sender & receiver

Different experiments are conducted with the receivers
at different hops distance from the sender. In Figure 5, we
show the physical and logical views of two different hop
topologies. The physical topologies show the routers as
well as the protocol participants (sender, receiver or RH),
while the logical topologies only show the participants. A
hop is defined as a link in the physical topology. This is
different from the traditional definition of TTL in
networking. For example, traversal from a receiver within
a Math cluster machine to its RH in the same cluster does
not decrement the TTL, but is considered a hop. We felt
this to be reasonable because there is a cost of processing
both at protocol participants and at the routers.

We use the reliable multicast infrastructure to send a
high bandwidth Mpeg-2 video data feed from the sender to

Logical Physical

Physical

Logical

the receivers. A 40 kbps feed is sent in 1316 bit payload
packets, leaving space for the TRAM and the IP headers to
fit within 1500 Ethernet MTU. The number of packets sent
is at least 8000, with a larger number if the initial
transients, which are discarded from our results, are
longer. The parameters of the protocol set at the
participants are shown in Table 2.

Table 2. TRAM and TRAM++ configuration
settings

Parameter Value Parameter Value

(Max, Min)
data rate

(40 kbps, 1
kbps)

TRAM:
Stable
storage size
at RH
(TRAM)

1200 packets

TRAM:
Low water
mark: High
water mark
(# packets)

400:800

TRAM++:
Stable
storage size
at RH

200 packets

TRAM++:
Low water
mark: High
water mark
(# packets)

32:120

TRAM++:
Pruning of
receiver (%
of packets
asking for
reaffiliation)

0.08%

Normal and Error Injection Runs: A single run of the
experiment is defined as the transfer of at least 8,000
packets of the video feed. A normal run is one where no
errors are injected, though the variability of the
environment may create congestion and transient
instability such as spikes in latency. In the error injection
runs, three kinds of message errors are simulated in the
network – drops, delays and reordering. In one error
injection run, a single receiver is identified as the faulty
(or, malicious) one and the error injector works on its link.
For message drops, a message is dropped on the
downward link between the RH and a single receiver. For
simulating message delays, the ack packet from the faulty
receiver is delayed on the upstream link to the RH. For
injecting message reorderings, we vary the inter-message
gap (Md) between the messages which are to be reordered.
Recollect that the ack window (Wa) is the number of
packets for which one ack gets sent. If Md<Wa, then
TRAM buffers the out-of-order packet and delivers it
when an ordered sequence of packets can be created. This
results in behavior identical to the error free case. If
Md≥Wa, then the receiver sends a nack in the next ack
window for the message whose place was taken by the
out-of-order packet. This is identical to the message drop
case and hence we do not separately show results for the
message reordering case.

5. Evaluation of TRAM

5.1. Error-Free Case

In this experiment, we investigate how TRAM scales
with the number of receivers. The latency curves in Figure
6(a) show that the latency is substantially less for the
single hop case since the message is on a direct connection
and does not have to traverse a router. The latency for 2, 3
or 4 hops is comparable. None of the latencies become
substantially worse with increasing number of receivers.
The next experiment investigates the buffer utilization at
the RH. TRAM is set up to use one-thirds of maximum
buffer capacity (1200 packets) as the low water mark and
two-thirds as the high water mark. Therefore, the buffer
utilization oscillates between 400 and 800 packets, i.e.,
between 526.4 KB and 1.0528 MB. This is found to be
true as the number of receivers is increased and is also
independent of whether the utilization is at the RH or the
sender. When we measure the data rate against time (or
equivalently the number of the ack packet), it is found
that, after the initial transient, the data rate picks up and
tends towards the max data rate specified in the
configuration.

(a)

200

300

400

500

600

0 10 20 30 40 50

Number of receivers

La
te

nc
y

(m
s)

1 hop 2 hops 3 hops 4 hops

(b)

0

400

800

1200

0 350 700

Ack Number
B

uf
fe

r U
til

iz
at

io
n

(K
B

)

Figure 6. Evaluation of TRAM in error-free case

5.1. Error Injection Case

For TRAM, the effect of the error on the faulty receiver
and the normal receiver will be identical, and therefore no
distinction is made in the following discussion.

(a)

0

5

10

15

20

25

0 1000 2000 3000 4000

Packets

La
te

nc
y

(1
03 m

s)

(b)

0

10

20

30

40

0 500 1000

Ack Packet

D
at

a
R

at
e

(K
bp

s)

(c)

600

700

800

900

0 500 1000

Ack Packet

B
uf

fe
r S

iz
e

(#

pa
ck

et
s)

(d)

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

Packets

La
te
nc

y
(1
03 m

s)

(e)

0

2000

4000

6000

0 500 1000

Ack Number

D
at

a
R

at
e

(b
ps

)

(f)

-200
0

200
400
600
800

1000

0 500 1000

Ack Number

B
uf

fe
r S

iz
e

(#
 P

ac
ke

ts
)

Figure 7. Effect of message drop on TRAM:
(a)&(d) Latency for 3 and 5 packets dropped out
of 50, (b)&(e) Data Rates, (c)&(f) Buffer
Occupancy

Figure 7 shows the variation of latency, data rates, and
buffer utilization with the number of receivers for two
different message drop rates – 3 every 50 and 5 every 50
packets. The buffer utilization at the RH (Figure 7(c),(f))
shows an interesting trend. The purging of the buffer
begins when its size reaches the high water mark (800
packets), and while under error-free conditions, the

purging would have been able to reduce the buffer
utilization to 400 packets, here the reduction is only down
to about 750 packets. If the drop rate is increased to 5 out
of every 50 packets, the affected receiver is pruned. On
pruning, the buffer is purged completely since the packets
were being buffered to accommodate the receiver that just
got pruned. Therefore the utilization comes down to zero.
Immediately after pruning, the sender tries to increase the
data rate and the utilization goes back to the usual
oscillation between 400 and 800 packets till the pruning
happens next.

In Figure 8, we show the effect of introducing message
delays in TRAM. In the first experiment, a delay of 8,000
ms is introduced. The latency shows a regular spike of
8,000 ms and this spike repeats roughly every 32 packets
since the ack window is set to 32 and a delay is introduced
for every ack. The data rate shows congestion control at
work. The sender tries to increase the data rate to the max
rate, but is forced back because of the delayed ack. It
reduces the data rate, but is able to sustain a rate greater
than 1 kbps, and as a result, the receiver does not get
pruned. The buffer utilization varies between the low and
high water mark as in the error free case (Figure 6(b)). It is
found that a delay of 10,000 ms causes pruning of the
slow receiver. Once pruning of misbehaving receivers
happens, the remaining receivers continue to see
performance as in the error free case.

(a)

0

4

8

12

0 200 400 600 800

Ack Number

D
at

a
R

at
e

(1
03 bp

s)

(b)

0

10

20

30

40

0 1000 2000 3000 4000

Packet Num ber

La
te

nc
y

(m
s)

(c)

0

10

20

30

40

0 2000 4000 6000 8000 10000

Packet Number

la
te

nc
y

(1
0

3
m

s)

Receiver
Pruned

Figure 8. Effect of message delay on TRAM: (a)-(b) Delay of 8000 ms, no pruning; (c) Delay of 10000 ms,
pruning.

6. Evaluation of TRAM++

6.1. Error-Free Case

The results of the scalability test of TRAM++ are
shown in Figure 9. It is observed that the protocol is
scalable like TRAM in the range under consideration (5-
30 receivers). The variation in latency in this range is
about 1.01%. The average latency in the range is 584.44
ms, which gives a 3.2% overhead over TRAM. As the

buffer constraint is varied in TRAM++, the relative
overhead is found to remain constant in the error free
case. This is expected since the buffer is not completely
utilized in the absence of errors. The overhead is ascribed
to three main reasons: extra message schema matching
due to the introduction of new message types, aggressive
cache pruning to satisfy the storage constraints at the RH,
and additional control messages – two kinds of acks being
sent upstream by the RHs.

Regarding the comparative resource usage, the CPU
utilization is very close to zero for the maximum data rate

that the network infrastructure can support and therefore
cannot form a meaningful point of comparison between
the two protocols. The main memory utilization for both
TRAM and TRAM++ vary between 7.5% and 30.0%. The
sender buffer utilization curve shown in Figure 9(b)
oscillates between 400 and 800 packets as in TRAM’s
buffer utilization. The RH buffer utilization varies
between the maximum pruning level (32 kB) and the high

water mark (120 kB) and is shown in Figure 9(c). In the
no error case, this buffer utilization does not depend on
the number of receivers. A system designer can set the
buffer upper bound knowing the stable storage constraints
and TRAM++ will operate under the bound. The data rate
supported by TRAM++ also approaches the max data rate
parameter set in the system (40 kbps).

(a)

200

300

400

500

600

0 5 10 15 20 25

Number of receivers

La
te

nc
y

(m
s)

(b)

0
200
400

600
800

1000

0 200 400 600

Ack Number

S
en

de
r B

uf
fe

r
U

til
iz

at
io

n
(#

P

ac
ke

ts
)

(c)

0

50

100

150

200

250

0 100 200 300 400

Ack Number

R
H

 B
uf

fe
r U

til
iz

at
io

n(

P
ac

ke
ts

)

Figure 9. Evaluation of TRAM++ in error-free case: (a) Receiver latency (b) Sender buffer utilization and
(c) Repair Head buffer utilization for 27 receivers

6.2. Error Injection Case

For message drops, we drop 5 packets out of every
50.The results are shown in Figure 10. It is observed that
the malicious receiver gets pruned at around 650 packets,
after which the system behaves as in the error free case.
The sender’s buffer utilization once drops to zero because
of purging of entire cache at the time of pruning. Then the
utilization oscillates as usual between 400 and 800
packets, and the data rate also tends towards the
maximum. However, the buffer utilization at the RH goes
up to the maximum buffer space, before purging occurs.
For 2 out of 50 packets being dropped, the receiver is
repeatedly pruned and rejoins the multicast group. The
normal or non-faulty node is not affected at all and its
latency remains around the no error scenario value. This
achieves the important design goal of TRAM++ of
isolating the effect of a malfunctioning receiver to its part
of the repair tree. Contrast this to the behavior in TRAM
shown in Figure 7 where the latency of the normal
receiver is shown to go above 10,000 ms for similar drop
rates. We had the malicious receiver repeatedly reconnect
to the multicast group to test the robustness of TRAM++
to this kind of malicious behavior.

(a)

600
610
620
630
640
650

0 4000 8000

Packets

N
or

m
al

La

te
nc

y(
m

s)
(b)

0

500

1000

0 250 500 750

Ack Number

Fa
ul

ty
La

te
nc

y
(m

s)

Receiver Pruned

(c)

0

100

200

300

0 500 1000 1500 2000

Ack Number

R
H

 B
uf

fe
r (

pk

ts
)

(d)

0

400

800

0 250 500 750
Ack Number

Se
nd

er
 B

uf
fe

r
(#

 p
kt

s)

Figure 10. Evaluation of TRAM++ under message
drop rate of 5 out of 50 packets.

In the case of message delays, the pruning is found to
happen for delays of 8000 ms and above. Figure 11
shows a scenario where pruning is not done (delay = 1000
ms). For the no-pruning scenario, the sender data rate and
buffer utilization behave as in the error free case (see
Figure 6(b) & Figure 9(b) respectively). The latency of
the normal receiver remains unaffected though the sender
detected congestion causes its latency to rise towards the
end of the experimental run. The malicious receiver has a

saw-tooth latency pattern with the peak separated from the
base by the delay amount.

(a)

580

600

620

640

0 5000 10000

Packets

N
or

m
al

 L
at

en
cy

(m

s)

(b)

0

400

800

1200

1600

0 250 500
Packets

Fa
ul

ty
 L

at
en

cy

(m
s)

Figure 11. Effect of message delay (1000 ms) on
TRAM++ (a) Normal receiver (b) Faulty receiver

6.3. Highlights of Result

1. Both TRAM and TRAM++ scale well with respect to
latency as the number of receivers is increased, up to a
total of 30. Under error-free conditions, both were able to
maintain a streaming video of data rate 40 Kbps, but not
the next higher step of 60 Kbps.
2. TRAM is not successful in isolating the normal
receivers from the effect of faulty or malicious ones.
TRAM++ is able to achieve this through its protocol of
differentiated acks and buffer management.
3. TRAM++ under a constraint of 16% of the TRAM
buffer availability at the RH is able to maintain the end-
to-end latency within 3.2% of TRAM for the error free
case. TRAM++ achieves this without any additional
memory overhead. In cases with message errors, the
latency of normal receivers in TRAM++ is better by a
factor of up to 30. TRAM++ is also able to prune
malicious receivers faster because of local decision-
making ability at the RH.

6. Conclusions

In this paper, we have presented an evaluation of a
tree-based reliable multicast protocol called TRAM in
error-free and message error prone environments. Two
design improvements to TRAM are presented and the new
protocol called TRAM++ is evaluated. The comparison
brings out that both protocols are scalable in the range of
receivers studied. If buffer utilization constraints are
enforced on the intermediate nodes, then TRAM++ can
operate under the constraints without substantial latency
degradation compared to TRAM. It can localize the effect
of a few slow or malicious receivers on the rest of the
system. We are currently working on a distributed monitor
architecture to detect failures or intrusions and work
collaboratively with the TRAM++ participants to isolate
the malfunctioning entity. The goal is to perform the
diagnosis scalably and with low detection latency.

Acknowledgements
This work is supported in part through a grant from the
Purdue Research Foundation. Installation support for
TRAM and TRAM++ was provided by Dale Talcott and
Casey Carlson of Purdue ITAP.

7. References

[1] S. Bhola, R. Strom, S. Bagchi, Y. Zhao and J. Auerbach,
"Exactly-once Delivery in a Content-based Publish-Subscribe
System". Dependable Systems and Networks (DSN'02), pp. 7-
16, June 2002.
[2] Dah Ming Chiu, Stephen Hurst, Miriam Kadansky and
Joseph Wesley, “TRAM: A Tree-based Reliable Multicast
Protocol”, Sun Technical Report TR 98-66, July 1998.
[3] Dah Ming Chiu, Miriam Kadansky, Joe Provino, Joseph
Wesley and Haifeng Zhu, “Pruning algorithms for multicast flow
control”, Proceedings of NGC 2000 on Networked group
communication, pp. 83-92.
[4] Dah Ming Chiu, M. Kadansky, Joe Provino, J. Wesley, H.
Bischof, Haifeng Zhu, “A congestion control algorithm for tree-
based reliable multicast protocols”, Proceedings of INFOCOMM
2002, pp.1209-1217.
[5] H. Eriksson, “MBone: The Multicast Backbone”,
Communications of the ACM, pp.54-60, August 1994.
[6] Mark Hayden, “The Ensemble System,” Cornell University
Technical Report, TR98-1662, January 1998.
[7] T.Jiang, M.Ammar, and E.Zegura, "On the Use of
Destination Set Grouping to Improve Inter-receiver Fairness for
Multicast ABR Sessions", in Proceedings of INFOCOMM 2000,
pp.42-51.
[8] Sanjoy Paul and John C. Lin, “RMTP: A Reliable Multicast
Transport Protocol”, INFOCOMM 1996, pp.1414-1424.
[9] Robbert van Renesse, Kenneth P. Birman, and Silvano
Maffeis, “Horus, a flexible Group Communication System,”
Communications of the ACM, April 1996.
[10] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L.
Zhang, “A reliable multicast framework for lightweight session
and application layer framing,” IEEE/ACM Trans. Networking,
vol. 5, Volume 5, Number 6, pp. 784-803.
[11] Java Reliable Multicast Service. At:
http://www.experimentalstuff.com/Technologies/JRMS/
[12] R. Yavatkar, J. Griffioen, and M. Sudan, “A Reliable
Dissemination Protocol for Interactive Collaborative
Applications”, In Proceedings of the ACM Multimedia '95
Conference, November 1995.
[13] S. Floyd, V. Jacobson, C. Liu, S. McCanne, L. Zhang, “A
Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing”, IEEE/ACM Transactions on
Networking, December 1997, pp. 784-803.

