
 1 

Providing Automated Detection of Problems in 

Virtualized Servers using Monitor framework 
 

Gunjan Khanna, Saurabh Bagchi 

School of Electrical and Computer Engineering, 

Purdue University, West Lafayette, IN, USA 

(gkhanna, sbagchi)@purdue.edu 
 

Kirk Beaty, Andrzej Kochut, Gautam Kar 

IBM T.J. Watson Research Center,  

Hawthorne, NY, USA 

(kirkbeaty, akochut, gkar)@us.ibm.com 

 
Abstract —Increasing management costs with large servers 

have caused adoption of a technique called Server 

Virtualization whereby multiple virtual machines can be 

hosted on the same physical machine. Reduction in the 

number of physical machines and amount of rack space 

brings the total cost of ownership down. Virtual servers 

residing on the same physical machine are likely to suffer 

resource contention under varying workload conditions. We 

are targeting distributed environments where some services 

are executed on virtual servers. Existing management 

frameworks fail to address the problems faced in such 

environments because of a narrow focus only at system 

metrics which are not sufficient to explain the application 

problems. Also the management frameworks cannot detect 

problems arising out of virtualization. In this paper we 

propose a hierarchical, scalable, non-intrusive Monitor 

framework which addresses not only system level problems 

but also problems in application semantics. We show how 

design of Monitor framework is different from existing 

management frameworks making it suitable for virtualized 

environments. We demonstrate the specific class of problems 

which the Monitor can detect in a virtualized environment 

running an e-commerce application.   

Index Terms: Server virtualization, Application performance 

management,  Error detection, Monitor framework. 

I. INTRODUCTION  

Traditionally business units used to deploy a new 

machine for every new application. This has caused an 

unplanned growth of servers most of which are 

underutilized. This server sprawl has caused the 

management cost to increase manifold. The costs arise due 

to space and human skills required for these complex 

systems. Virtualization is a new architectural approach 

which is getting widely used in several business centers. 

Providing an abstract layer between the operating system 

and the hardware so as to isolate the two is referred to as 

server virtualization. It allows users to install multiple 

operating systems on a single physical machine with 

perfect isolation from one another. A virtual system has its 

own set of virtualized hardware components (like CPU, 

NIC etc.). The layer between the virtual machine and the 

physical machine that arbitrates access to resources is 

called the hypervisor. In this paper, we specifically address 

the problem of management of virtualized servers which 

are created through server consolidation (see Figure 1). 

Since these virtualized servers are running applications 

together on the same physical hardware, they are more 

susceptible to complex performance problems as compared 

to stand-alone servers.   

Management issues in a virtualized server environment 

encompass initial configuration, resource allocation, load 

management, and problem debugging. Since management 

systems and virtualization have evolved in different 

evolution paths, this leads to a wide disparity between the 

current management frameworks and the virtualization 

layer. For example, traditionally the management layer had 

complete control over the operating applications but with 

virtualization, the underlying hypervisor has several 

control tasks which the management layer is unaware of. In 

[11] the authors discuss the wide disparity which exists 

between the current virtualization technologies and 

existing management frameworks thus hinting at 

developing new management infrastructures to handle the 

virtualization environments.  

Arguably, a possible solution for system management in 

virtualized environments is to use existing management 

agents on these virtual servers to obtain the virtual 

system’s metrics. Management agents (like IBM Director 

Agents[10]) are software pieces which are co-located with 

the system which needs to be monitored. They periodically 

(or on poll) collect system metrics and send them to a 

central server. Unfortunately, virtualization hides the actual 

CPU cycles and memory utilized on a host if the 

management agent is installed on a virtual machine. In 

order to be able to obtain some reasonable estimate of 

these metrics, management agent(s) must be installed on 

the physical machine as well. Hence in order to be able to 

make any conclusion about the performance problems of 

an application running on a virtual machine, data collected 

from the two agents on the physical and the virtual systems 

must be correlated.  

Difficulty in detecting problems in resource allocation 

can get exacerbated if the hypervisor itself employs 

dynamic resource re-adjustment mechanisms. In a 

distributed system, there are complex interactions between 

the applications which can cause error propagation making 

diagnosis harder. For example in Figure 1, assume App1 

and 2 are running WebSphere while App3, 4, and 5 are 

running replicated DB2 service to provide the database for 

applications running on WebSphere. A problem in App2’s 

load balancer can cause it to direct all the DB2 connections 

to App3, leading to a high resource allocation of App3. 

Traditional management agents sitting at App2 or App3 

will not be able to detect this error propagation from App2 

to App3. Customer load on these applications also keeps 

varying and without any knowledge of workload profile it 

is impossible to know the distribution of resource demands 

of different applications a priori. Due to simultaneous 

peaks in the workloads of two applications (say Appm and 
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Appn) residing on the same physical machine, transient 

resource contention could occur, potentially causing both 

applications to violate Service Level Agreements(s) 

(SLAs).  

Problems in virtualized servers can be classified into 

various categories for example: performance problems vs 

misconfigurations, application level vs system level 

problems, and syntactic vs semantic problems. Application 

level problem could be a simple deadlock in DB2 table, 

while a system level problem could be high CPU 

utilization of a server. Typically semantic problems are 

hard to detect because of the complex system interactions. 

This gets further exacerbated in virtual scenarios because 

of the sharing of resources. Current management systems 

only concentrate on system parameters but as is evident 

from the example of the load balancer, detection and 

diagnosis of such problems is not feasible by simply 

examining the system metrics. There is a need for mapping 

between the application behavior and system metrics. 

These mappings not only depend on the application but 

also on the architecture of the underlying hardware. Thus 

determining application problems through simply looking 

at system metrics is not accurate and in most cases not 

feasible. New management architecture is needed to judge 

performance problems by taking into account both the 

application level semantics and the system level semantics.  

We propose such a management framework in the form 

of hierarchical Monitor architecture which constantly 

monitors and verifies the behavior of the applications 

running on a virtualized server environment against a rule 

base. This framework has been demonstrated by us for 

error detection in [12]. The framework consists of Local, 

Intermediate and Global Monitor(s) organized in a 

hierarchy with a single Global Monitor (GM) at the root. 

Each Local Monitor (LM) is responsible for monitoring the 

local interaction of a domain which specifically would be 

all the applications running in virtual servers on a single 

physical machine. The monitoring takes the form of 

matching the interactions against a rulebase of anomalous 

rules. Intermediate Monitor(s) (IM) is responsible for 

monitoring interactions between applications residing on 

different virtual machines. Higher level Monitor(s) is 

responsible for correlating and performing verification 

over the aggregated information to ensure that inter-

physical machine interactions are correct. Monitor needs to 

obtain the messages which are exchanged between the 

applications to perform verification.  A Local Monitor is 

either placed on the hypervisor which has virtual servers 

running on it or it can be placed in the vicinity with only a 

simple packet forwarding functionality sitting at the 

hypervisor to obtain these messages. Figure 4 illustrates 

the hierarchical architecture of the Monitor. The Monitor 

performs verification of application entities (e.g., 

applications running on virtual servers in the context of 

this paper) against a rule base which is provided as an 

input. In order to obtain the system level metrics like CPU, 

memory etc., a management agent is installed on the 

virtual server which reports these metrics to the Local 

Monitor sitting on the hypervisor. The Monitor uses both 

system level metrics obtained from the management agents 

and application level semantics through the observed 

messages to perform verification. The Monitor’s rule 

expression infrastructure is rich and generic enough to 

address most of the common problems faced in virtual 

server scenarios. Detection of an error triggers the 

diagnosis process which aims at pin-pointing the 

application which is the root cause of the problem. For the 

scope of this paper we restrict ourselves to problem 

detection in virtualized server scenarios.  

In this paper we make the following contributions: 

• Applying a non-intrusive scalable Monitor framework 

for problem detection in virtualized server scenarios. 

• Architecture for correlating the information from 

various local segments thus providing a global 

detection framework.  

• Providing stateful detection using both system and 

application level semantics. 

• Demonstrating how detection happens for a class of 

common problems in IBM’s virtualized environment. 

II. SYSTEM MODEL 

A. Virtualized Server(s) 

Figure 2 shows an example virtualized scenario on a 

blade center. Blades in the IBM BladeCenter are the 

physical machines which host the virtual servers. In the 

example each of the three blades has a hypervisor (for 

example VMWare ESX) installed. For each blade, the 

Virtual Machines (VMi) are created on top of the ESX 

server giving each of them equal shares of the physical 

CPU by default. A hypervisor can be configured to give 

preferential shares to a particular virtual machine, though 

in today’s commercial systems, the allocation cannot be 

varied at runtime. The BladeCenter is connected to a 

storage area network (SAN) which provides shared storage 

for all the blades. The virtual machine images are stored in 

the SAN.  Shared storage is only necessary to provide 

seamless mobility of OS images from one physical blade to 

another physical blade using VMotion, a product offering 

from VMWare that lets users move live, running virtual 

machines from one host to another while maintaining 

continuous service availability. An example management 

framework for such an environment could be IBM 

Director, consisting of agents and a management server. 

IBM Director Agents are installed on each hypervisor and 

on the VMs as well. The IBM Director Server sits on a 

separate machine and pulls management data from the 

director agents. The management data consists of metrics 

like CPU utilization, memory, I/O, etc. In a typical 

deployment, each virtual machine runs only a single 

instance of an application. The two primary applications 

are IBM’s Websphere Application Server (WAS) and DB2 

database server.  

Before we propose the architecture for management of 

virtualized server(s), we provide some detail on the generic 

Monitor architecture and explain how it is different from 

existing management frameworks. 

B. Monitor Architecture 

 

The Monitor(s) snoops over the communication 

between the interacting applications and performs 

matching of the observed communication against a rule 

base that characterizes acceptable behavior. 
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Figure 1: A Typical Server Virtualization Scenario 

used for Server Consolidation 
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Figure 2: IBM’s virtualized server scenario on a 

BladeCenter  

The individual servers can be treated as black boxes and 

their internal state transitions are invisible to the Monitor. 

Monitor has several modules including Data Capturer, 

State Maintainer and Detection Engine (see Figure 3). Data 

Capturer is responsible for obtaining the messages 

exchanged by the interacting applications. State Maintainer 

maintains a Monitor view of the application state through 

information extracted from the observed messages. 

Detection engine is responsible for detecting problems in 

the application. More details on Monitor’s individual 

components can be found in [13]. The Monitor architecture 

is generic and applicable to a large class of message 

passing based distributed applications which might be 

running on the virtual server. It is the specification of the 

rulebase that makes the Monitor specific for that 

application. We provide a specification syntax for the 

rules, in which a rule may be combinatorial (valid for all 

points in time in the lifetime of the application) or temporal 

(which have an associated time component). We provide 

fast rule matching algorithms that match the incoming 

messages against the rules. In order to make the 

infrastructure scalable, efficient, and accurate, we develop 

a hierarchical Monitor structure where the Local Monitors 

directly gather communication between the interacting 

applications that are geographically localized and the 

higher level Monitors get processed and filtered messages 

from the lower level Monitors (Figure 4). This allows a 

higher level Monitor to perform detection using observed 

behavior that may not be local. Monitors are replicated at 

each hierarchical level to obtain fault tolerance from 

transient faults within the Monitor(s).   

 

Figure 3: Monitor architecture with process flow and 

information flow among multiple components 

 
C: Clusters consisting of each Hypervisor; LM: Local 

Monitor; IM: Intermediate Monitor; GM: Global Monitor 

Figure 4: Example topology of local, intermediate, and 

global monitors 

C. Differences from the existing Management 

Frameworks 

 

There are several management frameworks available to 

provide management tools to a system administrator, such 

as IBM Tivoli [6] and HP OpenView [16]. Broadly most of 

the management frameworks consist of two parts: an Agent 

and a Server. The agent is co-located with the machine 

which is running the application and mostly the agent is 

custom-built for each kind of application. The Agent is 

responsible for sending system metrics like CPU, memory 

and disk usage to the server which is placed on a separate 

machine in the vicinity. Currently the management 

frameworks are centralized with the server collecting all 

the information and using heuristics to detect bottleneck 

events. The Monitor architecture differs from the existing 

Management frameworks in several aspects, the most 

prominent ones are as follows:  
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• Existing frameworks require co-located agents 

which measure the system metrics to deduce 

performance problems. For e.g., a Director agent 

would report performance problem on measuring 

a high CPU utilization. While the Monitor(s) 

perform verification of the application level 

semantics along with system level metrics, 

ensuring that application is functioning properly. 

For example: if there is a problem in an EJB and 

it causes a DB2 table to get locked then a 

management module which is only looking at the 

system metrics will not be able to diagnose it. 

Monitor needs to correlate the information 

between the application and system layer.. As 

explained in the architecture in section II. B., the 

Monitor verifies the messages exchanged by the 

application entities against a rulebase to detect 

errors.  Due to the above difference the Monitor 

perceives the application as a black-box and 

performs both detection and diagnosis in a non-

intrusive fashion. This requires no change to the 

application for management purposes.  

• In contrast to the central architecture, Monitor has 

a hierarchical architecture which performs 

filtering of local messages at the lower levels. 

Each local Monitor verifies the messages which 

are required for local rules and only sends 

aggregate information for the other messages. 

This aggregate information which is collected by 

the higher level Monitor is used for detecting 

violations in the application across the local 

domains. For example: If there are multiple 

clusters running a common application, a system 

administrator might restrict the number of 

customers to say 10 and overall the total 

customers can be allowed to 100. In such a 

scenario each local Monitor will verify for the 

cluster within its domain the number of 

customers. While an aggregate count of the 

customers would be sent up from each local 

Monitor to a higher level Monitor (say IM or GM) 

who would verify that the total customer count is 

below 100. This provides scalability with the 

increasing number of application entities. Since 

each Monitor only checks for some rules, the load 

on the Monitor is restricted. A hierarchical 

framework is also important because the 

application can have different behavior in the 

local domain compared to the global perspective. 

Since in a common virtualized environment, most 

of the interactions will be local, most of the 

interactions are only matched at the LM and do 

not reach the higher level Monitors.   

• Current management frameworks are quite rigid 

and once set up, require intensive human interface 

to adjust to changes. The Monitor(s) on the other 

hand are re-configurable to new application or 

environment, providing autonomic functionalities 

and are fault tolerant. Only the appropriate 

rulebase needs to be loaded into the Monitor.  

III. MONITOR(S) FOR VIRTUALIZED SERVER 

ENVIRONMENTS  

A. Challenges 

Management of servers in a virtualized environment 

poses several challenges to the existing management 

frameworks. Some of the common challenges faced in 

detection of performance problems are as follows: 

1. How to quickly detect the problem that arises out of 

the resource contention between multiple applications 

running on the same host?  

2. How to find out error propagation real-time during the 

execution of the applications? 

3. In virtualized scenarios there might be local 

interactions between the applications residing on the 

same hypervisor and inter-hypervisor interactions both 

of which need to be addressed in a scalable fashion.  

4. A local determination of problem within a virtual 

server is likely to be misleading. For example, an 

agent on one of the virtual servers may be reporting 

that CPU cycles are not available, while there may be 

idle cycles at the hypervisor. How to correlate the 

information about the system metrics with the 

application state information obtained through 

monitoring of messages? 

5. How to correlate the information about the system 

metrics obtained from the virtual machines with the 

system information obtained from the hypervisor (i.e. 

the actual physical machine)?   

6. How to detect system resource level and application 

level dependencies between the various virtual servers 

running on the same physical hardware? 

B. Proposed Solution  

We propose to use the Monitor architecture for 

detecting performance problems (or errors configuration). 

As depicted in Figure 5, each hypervisor has a local 

Monitor placed which would verify the local interactions 

between the applications running on that hypervisor. Here 

we need to co-locate the Monitor at the same host because 

when virtual servers are installed on a hypervisor, a virtual 

switch is created to route packets between the virtual 

servers and is bound to one of the NICs present on the 

machine. Communication through “network packets” 

exchanged between the servers goes through this virtual 

switch. Since the packets never leave the physical machine, 

it is difficult to snoop over these packets without active 

support from the applications or the hypervisor (e.g., a 

simple trap on the hypervisor which copies the packets on 

the virtual switch and forwards to the Local Monitor). It is 

considered least intrusive to have the Local Monitor co-

located on the machine because no change is required to 

the hypervisor.  Assuming a Local Monitor is residing on 

each hypervisor, we can have multiple hypervisors forming 

a cluster. Intermediate Monitor is placed in the vicinity 

preferably the same LAN for verification of messages 

exchanged between the applications on different 

hypervisors. The architecture can be extended to have 

several IMs and a Global Monitor too based on the size of 

a virtualized environment. A common rule base and state 

transition diagram of the applications verified is provided 

as an input to the Monitors at all levels.
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Figure 5: Illustration of Monitor usage for managing virtualized server environment 

Rules can be formed of the states, events, state variables 

and time of transitions. Each state has a set of state 

variables. Events may cause transitions between states. In 

our context, events are message sends and receives which 

an application running on virtualized system may perform. 

The rulebase consists of Temporal and Combinatorial 

rules. Temporal rules are valid for some time duration 

while the combinatorial rules are valid for all times. 

Temporal rules can be divided into the following five 

categories that seem adequate for a large class of 

anticipated disruptions and protocols. 

Type I:  

true for ( , ) true for ( , )
p N N q I I

S T t t k S T t t b= ∈ + ⇒ = ∈ +  

The above rule represents the fact that if for some time 

k starting at tN, a state Sp is true, then it will cause the state 

Sq to be true for some time b starting from tI. The time tN 

represents a time when some defined event E1 takes place.  

Type II: St is the state of an object at time t : St ≠ St+∆, if 

event Ei takes place at t. The state St will not remain 

constant for more than ∆ time units if an event Ei takes 

place.  

Type III: L ≤ |Vt| ≤ U t ∈ (ti,ti+k) 

The state variable Vt in a particular state SI will be bounded 

by L and U in some time k starting at time ti when the 

defined event corresponding to the rule first occurs.  

Type IV: t∀ ∈(ti,ti +k) L ≤ |Vt| ≤ U ⇒  L’ ≤ |Bq| ≤ U’ 

q∀ ∈(tn,tn+b). A state variable Vt being bounded by upper 

and lower bounds in time k will cause another state 

variable Bq to be within some bounds and will hold true for 

some time interval b. This rule is in fact the master rule 

and the three previous rule types are special cases. But we 

still need the first three rule types because matching this 

class of rule entails matching more variables, which incurs 

higher latency than the first three classes. 

Type V: 

αβ

βαα

>

++∈∀≠⇒+∈∀=

..

);,(),( 0000

ts

tttSstttSs ii

This rule prevents a state transition from Si back to the 

same state.  Rule format allows ease in expressibility of 

common problems faced in virtualized scenarios. They also 

help  in describing system and application level semantics 

together.  

 

Monitors perform automatic rule segmentation to 

deduce the rules relevant for its verification domain. For 

example:  

1. Local Rule. A local rule is matched at the current 

Monitor only and does not cause any event to be 

generated for matching at any other Monitor.  

2. Global Rule. A global rule generates event(s) to be 

forwarded for subsequent matching at other Monitors.  
 

C. Problems Detected using Monitor Architecture 

The Monitor can detect a large set of problems 

occurring in virtualized scenarios including application and 

system level problems. For example, consider the three 

applications running on a hypervisor in Figure 5. Lets 

assume that S1, S2, S3 correspond to the states with peak 

resource consumption which cannot be supported on the 

same physical machine. From Figure 5 we can see that 

these applications should not achieve peak resource 

consumption at the same time i.e., ⌐( S1 Λ S2 ΛS3 ) forms a 

combinatorial rule to detect the system level problem. An 

example of application level problem could be table lock 

contention at a common DB2 server serving multiple 

WASs. One could have a temporal rule which restricts the 

number of simultaneous open DB2 connections between 

[L0, U0]. Formally stated:  

),(.. 00 δε +∀≤≤⇒==∃ TTtUOLtrueStsTt ci

; where Si is a state of DB2, Oc are the number of open 

connections between time (T, T+ δ). The rule states that if 

the DB2 application enters a state Si then the number of 

open connections must be restricted between [L0, U0].  

Because of the hierarchical structure, Monitor(s) can 

correlate messages (and alarms) from Local Monitor(s) to 

provide increased coverage. Consider in Figure 5 that one 

of the hypervisor has a WAS server running which 
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connects to 3 replicas of DB2 instances running on the 

second hypervisor. If there is a fault present in WAS which 

causes it to contact only one of the replicas, there will be 

higher resource utilization for that replica. A rule which 

forces near equal resource utilization for all the replicas 

would get violated at the Local Monitor. Additionally since 

other DB2 replicas are not seeing any messages, it would 

cause an appropriate rule to flag in the Local Monitor 

sitting on that hypervisor. Since an Intermediate Monitor 

would be verifying these inter-hypervisor messages, it can 

correlate the alarms from Local Monitors. This is also an 

example where the Monitor(s) correlate the information 

from the system metrics with the application state. Another 

example could be where a temporal rule consists of the 

number of customer requests in WAS and its CPU 

utilization like 

),(

),(10

l+∀≤≤⇒

+∀≤≤

TTtUWASL

TTtCCCIf

CPUCPUCPU

W

ε

δε
 

Here the Monitor is using the system level information 

(CPU) with the application data (Customers) to perform 

problem detection.    
 

D. Addressing Challenges 

We will briefly discuss why the Monitor architecture is 

able to handle the challenges raised by the virtual server 

scenarios.  

1. Local Monitor sitting on each hypervisor collects the 

system level metrics of the physical machine and the 

virtualized server(s) hosting the application(s). 

Monitor performs local aggregation of this 

information and detects resource contentions.  

Combinatorial rules such as ⌐( S1 Λ S2 ΛS3 ) 

(explained before) can detect if there is resource 

contention at the applications. Further Local Monitor 

can also detect if a particular application needs more 

resources by correlating the system metrics with the 

monitored messages. For e.g., if a WAS application is 

requesting for a lot of DB2 connections, or the number 

of customers have increased, which is causing the 

resource contention (monitored as system metrics).  A 

temporal rule  

),(.. 10 ∆+∀≤≤⇒==∃ TTtCCCtrueStsTt Wk ε

where Cw represents the number of simultaneous 

customer requests at WAS, for detection.  

2. Due to the hierarchical architecture the Monitor(s) 

verifies the local interaction at the Local Monitor and 

filters these messages. Only aggregate information 

about messages which are inter-hypervisor are passed 

to higher level Monitor (like IM in Figure 5) for 

verification. Local filtering and load sharing between 

the Monitors, ensures the scalability of the framework.  

Because the Monitor(s) only views the external 

messages and system metrics, it requires no change to 

the application or the hypervisor. The Monitor can 

perform the rule matchings efficiently making it an 

online detection framework (see [13]).  

3. As part of ongoing work, we are exploring diagnosis 

by the Monitor. Due to the capability of correlation, 

the Monitor can perform some diagnosis through 

observing the causal order of events (messages in this 

context). Causal trace back of these events and their 

verification could aid in diagnosis of the faulty 

application.    

IV. CONCLUSIONS 

In this paper we show how the hierarchical Monitor 

architecture can be used to solve specific application 

problems in virtualized server scenarios.  As a part of 

current ongoing research we are investigating how to 

extend this architecture for performing diagnosis. The big 

question is how to identify the applications that are causing 

the resource contention, without putting intrusive 

instrumentation in the applications. We have proposed a 

generic diagnosis framework [15] and it will be applied to 

the application scenario described here. 
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