
 1

Providing Automated Detection of Problems in

Virtualized Servers using Monitor framework

Gunjan Khanna, Saurabh Bagchi

School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN, USA

(gkhanna, sbagchi)@purdue.edu

Kirk Beaty, Andrzej Kochut, Gautam Kar

IBM T.J. Watson Research Center,

Hawthorne, NY, USA

(kirkbeaty, akochut, gkar)@us.ibm.com

Abstract —Increasing management costs with large servers

have caused adoption of a technique called Server

Virtualization whereby multiple virtual machines can be

hosted on the same physical machine. Reduction in the

number of physical machines and amount of rack space

brings the total cost of ownership down. Virtual servers

residing on the same physical machine are likely to suffer

resource contention under varying workload conditions. We

are targeting distributed environments where some services

are executed on virtual servers. Existing management

frameworks fail to address the problems faced in such

environments because of a narrow focus only at system

metrics which are not sufficient to explain the application

problems. Also the management frameworks cannot detect

problems arising out of virtualization. In this paper we

propose a hierarchical, scalable, non-intrusive Monitor

framework which addresses not only system level problems

but also problems in application semantics. We show how

design of Monitor framework is different from existing

management frameworks making it suitable for virtualized

environments. We demonstrate the specific class of problems

which the Monitor can detect in a virtualized environment

running an e-commerce application.

Index Terms: Server virtualization, Application performance

management, Error detection, Monitor framework.

I. INTRODUCTION

Traditionally business units used to deploy a new

machine for every new application. This has caused an

unplanned growth of servers most of which are

underutilized. This server sprawl has caused the

management cost to increase manifold. The costs arise due

to space and human skills required for these complex

systems. Virtualization is a new architectural approach

which is getting widely used in several business centers.

Providing an abstract layer between the operating system

and the hardware so as to isolate the two is referred to as

server virtualization. It allows users to install multiple

operating systems on a single physical machine with

perfect isolation from one another. A virtual system has its

own set of virtualized hardware components (like CPU,

NIC etc.). The layer between the virtual machine and the

physical machine that arbitrates access to resources is

called the hypervisor. In this paper, we specifically address

the problem of management of virtualized servers which

are created through server consolidation (see Figure 1).

Since these virtualized servers are running applications

together on the same physical hardware, they are more

susceptible to complex performance problems as compared

to stand-alone servers.

Management issues in a virtualized server environment

encompass initial configuration, resource allocation, load

management, and problem debugging. Since management

systems and virtualization have evolved in different

evolution paths, this leads to a wide disparity between the

current management frameworks and the virtualization

layer. For example, traditionally the management layer had

complete control over the operating applications but with

virtualization, the underlying hypervisor has several

control tasks which the management layer is unaware of. In

[11] the authors discuss the wide disparity which exists

between the current virtualization technologies and

existing management frameworks thus hinting at

developing new management infrastructures to handle the

virtualization environments.

Arguably, a possible solution for system management in

virtualized environments is to use existing management

agents on these virtual servers to obtain the virtual

system’s metrics. Management agents (like IBM Director

Agents[10]) are software pieces which are co-located with

the system which needs to be monitored. They periodically

(or on poll) collect system metrics and send them to a

central server. Unfortunately, virtualization hides the actual

CPU cycles and memory utilized on a host if the

management agent is installed on a virtual machine. In

order to be able to obtain some reasonable estimate of

these metrics, management agent(s) must be installed on

the physical machine as well. Hence in order to be able to

make any conclusion about the performance problems of

an application running on a virtual machine, data collected

from the two agents on the physical and the virtual systems

must be correlated.

Difficulty in detecting problems in resource allocation

can get exacerbated if the hypervisor itself employs

dynamic resource re-adjustment mechanisms. In a

distributed system, there are complex interactions between

the applications which can cause error propagation making

diagnosis harder. For example in Figure 1, assume App1

and 2 are running WebSphere while App3, 4, and 5 are

running replicated DB2 service to provide the database for

applications running on WebSphere. A problem in App2’s

load balancer can cause it to direct all the DB2 connections

to App3, leading to a high resource allocation of App3.

Traditional management agents sitting at App2 or App3

will not be able to detect this error propagation from App2

to App3. Customer load on these applications also keeps

varying and without any knowledge of workload profile it

is impossible to know the distribution of resource demands

of different applications a priori. Due to simultaneous

peaks in the workloads of two applications (say Appm and

 2

Appn) residing on the same physical machine, transient

resource contention could occur, potentially causing both

applications to violate Service Level Agreements(s)

(SLAs).

Problems in virtualized servers can be classified into

various categories for example: performance problems vs

misconfigurations, application level vs system level

problems, and syntactic vs semantic problems. Application

level problem could be a simple deadlock in DB2 table,

while a system level problem could be high CPU

utilization of a server. Typically semantic problems are

hard to detect because of the complex system interactions.

This gets further exacerbated in virtual scenarios because

of the sharing of resources. Current management systems

only concentrate on system parameters but as is evident

from the example of the load balancer, detection and

diagnosis of such problems is not feasible by simply

examining the system metrics. There is a need for mapping

between the application behavior and system metrics.

These mappings not only depend on the application but

also on the architecture of the underlying hardware. Thus

determining application problems through simply looking

at system metrics is not accurate and in most cases not

feasible. New management architecture is needed to judge

performance problems by taking into account both the

application level semantics and the system level semantics.

We propose such a management framework in the form

of hierarchical Monitor architecture which constantly

monitors and verifies the behavior of the applications

running on a virtualized server environment against a rule

base. This framework has been demonstrated by us for

error detection in [12]. The framework consists of Local,

Intermediate and Global Monitor(s) organized in a

hierarchy with a single Global Monitor (GM) at the root.

Each Local Monitor (LM) is responsible for monitoring the

local interaction of a domain which specifically would be

all the applications running in virtual servers on a single

physical machine. The monitoring takes the form of

matching the interactions against a rulebase of anomalous

rules. Intermediate Monitor(s) (IM) is responsible for

monitoring interactions between applications residing on

different virtual machines. Higher level Monitor(s) is

responsible for correlating and performing verification

over the aggregated information to ensure that inter-

physical machine interactions are correct. Monitor needs to

obtain the messages which are exchanged between the

applications to perform verification. A Local Monitor is

either placed on the hypervisor which has virtual servers

running on it or it can be placed in the vicinity with only a

simple packet forwarding functionality sitting at the

hypervisor to obtain these messages. Figure 4 illustrates

the hierarchical architecture of the Monitor. The Monitor

performs verification of application entities (e.g.,

applications running on virtual servers in the context of

this paper) against a rule base which is provided as an

input. In order to obtain the system level metrics like CPU,

memory etc., a management agent is installed on the

virtual server which reports these metrics to the Local

Monitor sitting on the hypervisor. The Monitor uses both

system level metrics obtained from the management agents

and application level semantics through the observed

messages to perform verification. The Monitor’s rule

expression infrastructure is rich and generic enough to

address most of the common problems faced in virtual

server scenarios. Detection of an error triggers the

diagnosis process which aims at pin-pointing the

application which is the root cause of the problem. For the

scope of this paper we restrict ourselves to problem

detection in virtualized server scenarios.

In this paper we make the following contributions:

• Applying a non-intrusive scalable Monitor framework

for problem detection in virtualized server scenarios.

• Architecture for correlating the information from

various local segments thus providing a global

detection framework.

• Providing stateful detection using both system and

application level semantics.

• Demonstrating how detection happens for a class of

common problems in IBM’s virtualized environment.

II. SYSTEM MODEL

A. Virtualized Server(s)

Figure 2 shows an example virtualized scenario on a

blade center. Blades in the IBM BladeCenter are the

physical machines which host the virtual servers. In the

example each of the three blades has a hypervisor (for

example VMWare ESX) installed. For each blade, the

Virtual Machines (VMi) are created on top of the ESX

server giving each of them equal shares of the physical

CPU by default. A hypervisor can be configured to give

preferential shares to a particular virtual machine, though

in today’s commercial systems, the allocation cannot be

varied at runtime. The BladeCenter is connected to a

storage area network (SAN) which provides shared storage

for all the blades. The virtual machine images are stored in

the SAN. Shared storage is only necessary to provide

seamless mobility of OS images from one physical blade to

another physical blade using VMotion, a product offering

from VMWare that lets users move live, running virtual

machines from one host to another while maintaining

continuous service availability. An example management

framework for such an environment could be IBM

Director, consisting of agents and a management server.

IBM Director Agents are installed on each hypervisor and

on the VMs as well. The IBM Director Server sits on a

separate machine and pulls management data from the

director agents. The management data consists of metrics

like CPU utilization, memory, I/O, etc. In a typical

deployment, each virtual machine runs only a single

instance of an application. The two primary applications

are IBM’s Websphere Application Server (WAS) and DB2

database server.

Before we propose the architecture for management of

virtualized server(s), we provide some detail on the generic

Monitor architecture and explain how it is different from

existing management frameworks.

B. Monitor Architecture

The Monitor(s) snoops over the communication

between the interacting applications and performs

matching of the observed communication against a rule

base that characterizes acceptable behavior.

 3

Heterogeneous underutilized server environm ent (one application per server)

Hypervisor

App 1
on

Guest
O S

App 2
on

G uest
OS

VM1 VM 2

Server1

Hypervisor

App 3
on

G uest
O S

App 4
on

G uest
O S

VM 3 VM4

Server 2

Hypervisor

App m
on

G uest
OS

App n
on

Guest
O S

VM m VMn

Server m

App 1

OS1

Server 1

App 2

OS2

Server 2

App 3 App 4 App n

OSn

Server n

30% 40%

OS3

Server 3

25%

O S4

Server 4

30% 50%

Hom ogeneous server environm ent w ith virtual m achines and high utilization

Consolidation Process

App 5
on

Guest
O S

App 5

VM5

Server 5

O S5

35%

App m

Server m

O Sm

28%

Figure 1: A Typical Server Virtualization Scenario

used for Server Consolidation

VM21

VM11

VM13

VM12

VMk2

VMk1

IBM BladeCenter

DA

DA

DA

DA DA

DA

IBM Director

Server

SAN

ESX

Hypervisor

ESX

Hypervisor

ESX

Hypervisor

Virtual Servers

DA IBM Director Agents

VM21

VM11

VM13

VM12

VMk2

VMk1

IBM BladeCenter

DA

DA

DA

DA DA

DA

IBM Director

Server

SAN

ESX

Hypervisor

ESX

Hypervisor

ESX

Hypervisor

VM21

VM11

VM13

VM12

VMk2

VMk1

IBM BladeCenter

DA

DA

DA

DA DA

DA

IBM Director

Server

SAN

ESX

Hypervisor

ESX

Hypervisor

ESX

Hypervisor

Virtual Servers

DA IBM Director Agents

Figure 2: IBM’s virtualized server scenario on a

BladeCenter

The individual servers can be treated as black boxes and

their internal state transitions are invisible to the Monitor.

Monitor has several modules including Data Capturer,

State Maintainer and Detection Engine (see Figure 3). Data

Capturer is responsible for obtaining the messages

exchanged by the interacting applications. State Maintainer

maintains a Monitor view of the application state through

information extracted from the observed messages.

Detection engine is responsible for detecting problems in

the application. More details on Monitor’s individual

components can be found in [13]. The Monitor architecture

is generic and applicable to a large class of message

passing based distributed applications which might be

running on the virtual server. It is the specification of the

rulebase that makes the Monitor specific for that

application. We provide a specification syntax for the

rules, in which a rule may be combinatorial (valid for all

points in time in the lifetime of the application) or temporal

(which have an associated time component). We provide

fast rule matching algorithms that match the incoming

messages against the rules. In order to make the

infrastructure scalable, efficient, and accurate, we develop

a hierarchical Monitor structure where the Local Monitors

directly gather communication between the interacting

applications that are geographically localized and the

higher level Monitors get processed and filtered messages

from the lower level Monitors (Figure 4). This allows a

higher level Monitor to perform detection using observed

behavior that may not be local. Monitors are replicated at

each hierarchical level to obtain fault tolerance from

transient faults within the Monitor(s).

Figure 3: Monitor architecture with process flow and

information flow among multiple components

C: Clusters consisting of each Hypervisor; LM: Local

Monitor; IM: Intermediate Monitor; GM: Global Monitor

Figure 4: Example topology of local, intermediate, and

global monitors

C. Differences from the existing Management

Frameworks

There are several management frameworks available to

provide management tools to a system administrator, such

as IBM Tivoli [6] and HP OpenView [16]. Broadly most of

the management frameworks consist of two parts: an Agent

and a Server. The agent is co-located with the machine

which is running the application and mostly the agent is

custom-built for each kind of application. The Agent is

responsible for sending system metrics like CPU, memory

and disk usage to the server which is placed on a separate

machine in the vicinity. Currently the management

frameworks are centralized with the server collecting all

the information and using heuristics to detect bottleneck

events. The Monitor architecture differs from the existing

Management frameworks in several aspects, the most

prominent ones are as follows:

 4

• Existing frameworks require co-located agents

which measure the system metrics to deduce

performance problems. For e.g., a Director agent

would report performance problem on measuring

a high CPU utilization. While the Monitor(s)

perform verification of the application level

semantics along with system level metrics,

ensuring that application is functioning properly.

For example: if there is a problem in an EJB and

it causes a DB2 table to get locked then a

management module which is only looking at the

system metrics will not be able to diagnose it.

Monitor needs to correlate the information

between the application and system layer.. As

explained in the architecture in section II. B., the

Monitor verifies the messages exchanged by the

application entities against a rulebase to detect

errors. Due to the above difference the Monitor

perceives the application as a black-box and

performs both detection and diagnosis in a non-

intrusive fashion. This requires no change to the

application for management purposes.

• In contrast to the central architecture, Monitor has

a hierarchical architecture which performs

filtering of local messages at the lower levels.

Each local Monitor verifies the messages which

are required for local rules and only sends

aggregate information for the other messages.

This aggregate information which is collected by

the higher level Monitor is used for detecting

violations in the application across the local

domains. For example: If there are multiple

clusters running a common application, a system

administrator might restrict the number of

customers to say 10 and overall the total

customers can be allowed to 100. In such a

scenario each local Monitor will verify for the

cluster within its domain the number of

customers. While an aggregate count of the

customers would be sent up from each local

Monitor to a higher level Monitor (say IM or GM)

who would verify that the total customer count is

below 100. This provides scalability with the

increasing number of application entities. Since

each Monitor only checks for some rules, the load

on the Monitor is restricted. A hierarchical

framework is also important because the

application can have different behavior in the

local domain compared to the global perspective.

Since in a common virtualized environment, most

of the interactions will be local, most of the

interactions are only matched at the LM and do

not reach the higher level Monitors.

• Current management frameworks are quite rigid

and once set up, require intensive human interface

to adjust to changes. The Monitor(s) on the other

hand are re-configurable to new application or

environment, providing autonomic functionalities

and are fault tolerant. Only the appropriate

rulebase needs to be loaded into the Monitor.

III. MONITOR(S) FOR VIRTUALIZED SERVER

ENVIRONMENTS

A. Challenges

Management of servers in a virtualized environment

poses several challenges to the existing management

frameworks. Some of the common challenges faced in

detection of performance problems are as follows:

1. How to quickly detect the problem that arises out of

the resource contention between multiple applications

running on the same host?

2. How to find out error propagation real-time during the

execution of the applications?

3. In virtualized scenarios there might be local

interactions between the applications residing on the

same hypervisor and inter-hypervisor interactions both

of which need to be addressed in a scalable fashion.

4. A local determination of problem within a virtual

server is likely to be misleading. For example, an

agent on one of the virtual servers may be reporting

that CPU cycles are not available, while there may be

idle cycles at the hypervisor. How to correlate the

information about the system metrics with the

application state information obtained through

monitoring of messages?

5. How to correlate the information about the system

metrics obtained from the virtual machines with the

system information obtained from the hypervisor (i.e.

the actual physical machine)?

6. How to detect system resource level and application

level dependencies between the various virtual servers

running on the same physical hardware?

B. Proposed Solution

We propose to use the Monitor architecture for

detecting performance problems (or errors configuration).

As depicted in Figure 5, each hypervisor has a local

Monitor placed which would verify the local interactions

between the applications running on that hypervisor. Here

we need to co-locate the Monitor at the same host because

when virtual servers are installed on a hypervisor, a virtual

switch is created to route packets between the virtual

servers and is bound to one of the NICs present on the

machine. Communication through “network packets”

exchanged between the servers goes through this virtual

switch. Since the packets never leave the physical machine,

it is difficult to snoop over these packets without active

support from the applications or the hypervisor (e.g., a

simple trap on the hypervisor which copies the packets on

the virtual switch and forwards to the Local Monitor). It is

considered least intrusive to have the Local Monitor co-

located on the machine because no change is required to

the hypervisor. Assuming a Local Monitor is residing on

each hypervisor, we can have multiple hypervisors forming

a cluster. Intermediate Monitor is placed in the vicinity

preferably the same LAN for verification of messages

exchanged between the applications on different

hypervisors. The architecture can be extended to have

several IMs and a Global Monitor too based on the size of

a virtualized environment. A common rule base and state

transition diagram of the applications verified is provided

as an input to the Monitors at all levels.

 5

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Router
Intermediate

Monitor

Logical Flow between

Monitor(s)

Physical Connections

Hardware Boxes

Virtual Servers

Monitor(s)

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Hypervisor
Local

Monitor

App1 App2 App3

Router
Intermediate

Monitor

Logical Flow between

Monitor(s)

Physical Connections

Hardware Boxes

Virtual Servers

Monitor(s)
Figure 5: Illustration of Monitor usage for managing virtualized server environment

Rules can be formed of the states, events, state variables

and time of transitions. Each state has a set of state

variables. Events may cause transitions between states. In

our context, events are message sends and receives which

an application running on virtualized system may perform.

The rulebase consists of Temporal and Combinatorial

rules. Temporal rules are valid for some time duration

while the combinatorial rules are valid for all times.

Temporal rules can be divided into the following five

categories that seem adequate for a large class of

anticipated disruptions and protocols.

Type I:

true for (,) true for (,)
p N N q I I

S T t t k S T t t b= ∈ + ⇒ = ∈ +

The above rule represents the fact that if for some time

k starting at tN, a state Sp is true, then it will cause the state

Sq to be true for some time b starting from tI. The time tN

represents a time when some defined event E1 takes place.

Type II: St is the state of an object at time t : St ≠ St+∆, if

event Ei takes place at t. The state St will not remain

constant for more than ∆ time units if an event Ei takes

place.

Type III: L ≤ |Vt| ≤ U t ∈ (ti,ti+k)

The state variable Vt in a particular state SI will be bounded

by L and U in some time k starting at time ti when the

defined event corresponding to the rule first occurs.

Type IV: t∀ ∈(ti,ti +k) L ≤ |Vt| ≤ U ⇒ L’ ≤ |Bq| ≤ U’

q∀ ∈(tn,tn+b). A state variable Vt being bounded by upper

and lower bounds in time k will cause another state

variable Bq to be within some bounds and will hold true for

some time interval b. This rule is in fact the master rule

and the three previous rule types are special cases. But we

still need the first three rule types because matching this

class of rule entails matching more variables, which incurs

higher latency than the first three classes.

Type V:

αβ

βαα

>

++∈∀≠⇒+∈∀=

..

);,(),(0000

ts

tttSstttSs ii

This rule prevents a state transition from Si back to the

same state. Rule format allows ease in expressibility of

common problems faced in virtualized scenarios. They also

help in describing system and application level semantics

together.

Monitors perform automatic rule segmentation to

deduce the rules relevant for its verification domain. For

example:

1. Local Rule. A local rule is matched at the current

Monitor only and does not cause any event to be

generated for matching at any other Monitor.

2. Global Rule. A global rule generates event(s) to be

forwarded for subsequent matching at other Monitors.

C. Problems Detected using Monitor Architecture

The Monitor can detect a large set of problems

occurring in virtualized scenarios including application and

system level problems. For example, consider the three

applications running on a hypervisor in Figure 5. Lets

assume that S1, S2, S3 correspond to the states with peak

resource consumption which cannot be supported on the

same physical machine. From Figure 5 we can see that

these applications should not achieve peak resource

consumption at the same time i.e., ⌐(S1 Λ S2 ΛS3) forms a

combinatorial rule to detect the system level problem. An

example of application level problem could be table lock

contention at a common DB2 server serving multiple

WASs. One could have a temporal rule which restricts the

number of simultaneous open DB2 connections between

[L0, U0]. Formally stated:

),(.. 00 δε +∀≤≤⇒==∃ TTtUOLtrueStsTt ci

; where Si is a state of DB2, Oc are the number of open

connections between time (T, T+ δ). The rule states that if

the DB2 application enters a state Si then the number of

open connections must be restricted between [L0, U0].

Because of the hierarchical structure, Monitor(s) can

correlate messages (and alarms) from Local Monitor(s) to

provide increased coverage. Consider in Figure 5 that one

of the hypervisor has a WAS server running which

 6

connects to 3 replicas of DB2 instances running on the

second hypervisor. If there is a fault present in WAS which

causes it to contact only one of the replicas, there will be

higher resource utilization for that replica. A rule which

forces near equal resource utilization for all the replicas

would get violated at the Local Monitor. Additionally since

other DB2 replicas are not seeing any messages, it would

cause an appropriate rule to flag in the Local Monitor

sitting on that hypervisor. Since an Intermediate Monitor

would be verifying these inter-hypervisor messages, it can

correlate the alarms from Local Monitors. This is also an

example where the Monitor(s) correlate the information

from the system metrics with the application state. Another

example could be where a temporal rule consists of the

number of customer requests in WAS and its CPU

utilization like

),(

),(10

l+∀≤≤⇒

+∀≤≤

TTtUWASL

TTtCCCIf

CPUCPUCPU

W

ε

δε

Here the Monitor is using the system level information

(CPU) with the application data (Customers) to perform

problem detection.

D. Addressing Challenges

We will briefly discuss why the Monitor architecture is

able to handle the challenges raised by the virtual server

scenarios.

1. Local Monitor sitting on each hypervisor collects the

system level metrics of the physical machine and the

virtualized server(s) hosting the application(s).

Monitor performs local aggregation of this

information and detects resource contentions.

Combinatorial rules such as ⌐(S1 Λ S2 ΛS3)

(explained before) can detect if there is resource

contention at the applications. Further Local Monitor

can also detect if a particular application needs more

resources by correlating the system metrics with the

monitored messages. For e.g., if a WAS application is

requesting for a lot of DB2 connections, or the number

of customers have increased, which is causing the

resource contention (monitored as system metrics). A

temporal rule

),(.. 10 ∆+∀≤≤⇒==∃ TTtCCCtrueStsTt Wk ε

where Cw represents the number of simultaneous

customer requests at WAS, for detection.

2. Due to the hierarchical architecture the Monitor(s)

verifies the local interaction at the Local Monitor and

filters these messages. Only aggregate information

about messages which are inter-hypervisor are passed

to higher level Monitor (like IM in Figure 5) for

verification. Local filtering and load sharing between

the Monitors, ensures the scalability of the framework.

Because the Monitor(s) only views the external

messages and system metrics, it requires no change to

the application or the hypervisor. The Monitor can

perform the rule matchings efficiently making it an

online detection framework (see [13]).

3. As part of ongoing work, we are exploring diagnosis

by the Monitor. Due to the capability of correlation,

the Monitor can perform some diagnosis through

observing the causal order of events (messages in this

context). Causal trace back of these events and their

verification could aid in diagnosis of the faulty

application.

IV. CONCLUSIONS

In this paper we show how the hierarchical Monitor

architecture can be used to solve specific application

problems in virtualized server scenarios. As a part of

current ongoing research we are investigating how to

extend this architecture for performing diagnosis. The big

question is how to identify the applications that are causing

the resource contention, without putting intrusive

instrumentation in the applications. We have proposed a

generic diagnosis framework [15] and it will be applied to

the application scenario described here.

REFERENCES
[1] C.A. Waldspurger, “Memory resource management in

VMware ESX server,” Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation

(OSDI'02), 2002.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the

art of virtualization,” Symposium of Operating Systems

Principles, 2003.

[3] http://www.vmware.com/

[4] R. J. Figueredo, P. A. Dinda, and J. A. B. Fortes, “A case for

Grid Computing on Virtual Machines” Proceedings of the

23rd International Conference on Distributed Computing

Systems, 2003.

[5] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum,

“Cellular Disco: resource management using virtual

machines on shared memory multiprocessors”, 17th ACM

Symposium on Operating Systems Designs and Principles

(SOSP’99), 1999.

[6] http://www-306.ibm.com/software/tivoli/.

[7] http://www.vm.ibm.com/overview/zvm52sum.html.

[8] http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv.

[9] http://www-1.ibm.com/servers/eserver/iseries/scon.

[10] http://www-1.ibm.com/servers/eserver/xseries/

systems_management/director_4.html.

[11] Sven Graupner, Ralf König, Vijay Machiraju, Jim Pruyne,

Akhil Sahai, and Aad van Moorsel “Impact of Virtualization

on Management Systems”, Tech. Report HP Labs, HPL

2003-125.

[12] G. Khanna, P. Varadarajan, S. Bagchi, "Automated Online

Monitoring of Distributed Applications Through External

Monitors," accepted for publication in IEEE Transactions on

Dependable and Secure Computing (TDSC), 2006.

[13] G. Khanna, P. Varadarajan, and S. Bagchi, "Self Checking

Network Protocol: Monitor Based Approach,", published in

Symposium on Reliable and Distributed Systems, (SRDS),

pp. 18-30, , 2004.

[14] G. Khanna, K. Beaty, A. Kochut, and G. Kar, “Dynamic

Application Management to address SLAs in a Virtualized

Server Environment,", accepted in Network Operations and

Management (NOMS), 2006.

[15] G. Khanna, P. Varadharajan, M. Cheng, and S. Bagchi,

“Automated Monitor Based Diagnosis in Distributed

Systems,” Purdue ECE Technical Report 05-13, August

2005.

[16] http://www.managementsoftware.hp.com/

