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Abstract— Fine-Grained Cycle Sharing (FGCS) systems aim at time rather than throughput is the primary performance imetr
utilizing the large amount of computational resources available for such compute-bound jobs.
on the Internet. In FGCS, host computers allowguest jobs to |3, FGCS systems, resource failures have multiple causes

utilize the CPU cycles if the jobs do not significantly impact . .
the local host users. A characteristic of such resources is that and have to be expected frequently. First, as in a normal-mult

they are generally provided voluntarily and their availability —Process environment, guest and host processes are running
fluctuates highly. Guest jobs may incur resource failures be- concurrently and competing for compute resources, such as
cause of unexpected resource unavailability. Checkpointing and CPU, memory, and 1/O bandwidth, on the same machine.

migration technigues help overcome such failures. However, these Host processes can be decelerated significantly by a guest

techniques, if oblivious to future failures, may cause signifi- D ina th iority of th t
cant overhead and thus undesirable job response times. This process. Decreasing the priority of the guest process cgn on

paper presents a method to predict resource failures in FGCS alleviate the deceleration in few situations [29]. To coetely
systems. The prediction method enables proactive managementremove the impact on host processes, the guest processenust b
with greatly improved job response times. It applies a semi- killed or migrated off the machine, which represents a resou
Markov Process and is based on a novel failure model, combining aiyre  In this paper, we refer to such resource failures as
generic hardware-software failures with domain-specific failures FRC (Failures caused biResourceContention). Another type
in FGCS. We describe the failure prediction framework and its . : . : e
implementation in a production FGCS system named iShare. Of resource failures in FGCS is the sudden unavailability of
Through the experiments on an iShare testbed, we demonstrate machine —FRR (Failures caused biResourceRevocation).
that the prediction achieves accuracy abov&6% on average and FRR happens when a machine owner suspends resource con-
outperforms linear time series models, while the computational i, tion without notice, or when arbitrary hardware-saite
cost is ne_gllglble. Our experimental (esults also show that the failures occur
prediction is robust in the presence of irregular resource failures X : . .
To achieve fault tolerance in remote program execution,
|. INTRODUCTION prevalent systems [13], [32] deploy checkpointing and mi-
The opportunity of harvesting cycles on idle PCs ovegration. However, such mechanisms cause nontrivial oeerhe
the Internet has long been recognized, since the majonithich offset their benefits in improving the response time
of compute cycles go unused [23]. Distributed cycle-sharirof guest jobs [37]. With the assumption of knowing future
systems have shown success through popular projects stedource failures, proactive approaches, such as schgduli
as SETI@home [16], which have attracted a large number giiest jobs to the machines least likely to fail and turning on
participants donating time on their home PCs to a scientifiheckpointing adaptively, are able to improve job response
effort. The PC owners voluntarily share the CPU cycles ohlyfime effectively [24]. Successful failure prediction isykéo
they incur no significant inconvenience from letting a fgrei these proactive approaches. However, there have been few
job (guest processgsun on their own machines. To exploitstudies on resource failure prediction in large-scalaibigied
available idle cycles under this restriction, fine-grairegdle systems, especially in FGCS systems. Although several pre-
sharing FGCS systems [29] allow a guest process to rumious contributions have measured the distribution of gane
concurrently with local jobsHost processg@swhenever the machine availability in networked environment [4], [2025],
guest process does not impact the performance of the latterthe temporal structure of CPU availability in Grids [19],
noticeably. For guest users, the free compute resources cdg8], [34], no work targets predicting resource failuresised
at the cost of highly fluctuating availability with the incad by both resource contention and resource revocation in FGCS
resource failuresleading to undesirable completion time ofsystems.
guest jobs. The primary victims of such resource failures The main contributions of this paper are the design and
are large compute-bound guest jobs. Most of these jobs armaluation of an approach for predicting resource failunes
batch programs. They are either sequential, or composedF@CS systems. We develop a multi-state failure model and
multiple related jobs that are submitted as a unit and mugbply a semi-Markov Process (SMP) to predict tamporal
all complete before the results being used (e.g., simulgtioreliability, which is the probability that no resource failure
containing several computation steps [2]). Thereforearse will occur on a machine in a future time window. The failure



model integrates the two classes of failures, FRC and FCC tion [30], [31] in large-scale dedicated computing comniyni

a multi-state space which is derived from the observed galuglusters). In order to anticipate when a system is in dan§er
of host resource usagéhat is the resource usage of all the hostrashing due to software aging, the authors of [33] proposed
processes on a machine, upon the occurrences of failures. @rsemi-Markov reward model based on system workload and
prediction does not require any training phase or modehdjiti resource usage to estimate the time of failure of a system.
as is commonly needed in linear regression techniques. Hiowever, the data they collected tend to fluctuate a gredt dea
compute the temporal reliability on a given time window, th&om the supposed linear trends, resulting in prohibitiwgide
parameters of the SMP are calculated from the host resoucomfidence intervals. The work in [30], [31] predicted the
usage during the same time window on previous days. A kegcurrences of general error events within a specified time
observation leading to our approach is that the daily padterwindow in the future. The analysis and prediction technique
of host users’ workloads are comparable to those in the mgsesented in these work are not well suited for failures
recent days [23]. Deviations from these regular patteres ayccurring in FGCS, where resources are non-dedicated and
accommodated in our approach by the statistic method thlagir availability change dynamically.

calculates the SMP.

We will show how the prediction can be implemented and Emerging platforms that support Grids [12] and global net-
utilized in a system, iShare [27], that supports FGCS. Oworked computing [8] motivated the work to provide accurate
implementation targets at the low computational overhesad farecasts of dynamically changing performance charasteri
well as the effectiveness of the failure prediction. To eatd tics [11], [35] of distributed compute resources. Our work
our prediction method, we monitored the host resource usagdl complement the existing performance monitoring and
on a collection of machines from a computer lab at Purdyeediction schemes with new algorithms to predict failures
University over a period of 3 months. Host users on thesaused by resource contention and resource revocatiorein th
machines generated highly diverse workloads, which arte sienvironment of fine-grained cycle sharing. In this paper, we
able for evaluating the accuracy of our prediction approactompare the commonly used linear time series algorithms
The experimental results show that the prediction achiewabich are related work to our SMP-based algorithm and
the accuracy abov86.5% on average and above3.3% in show that our algorithm achieves higher prediction acgyrac
the worst case, which outperforms the prediction accurdcy @specially for long-term prediction.
linear time series models [11]. The SMP-based prediction is
also efficient and robust in that, it increases the completio There have been some research efforts in measuring and
time of a guest job of less tha®006% and the intensive analyzing machine availability in enterprise systems [2}],
noise in host workloads disturbs the prediction resultsdsg | or large Peer-to-Peer networks [3], [5] (where machinelavai
than 6%. ability is defined as the machine being reachable for P2P ser-

The rest of the paper is organized as follows. Section Vlces). While these results were meaningful for the considler
reviews related work. Section Il presents the multi-statgpplication domain, they do not show how to relate machine
failure model and its derivation from empirical studies.eThup-times to actual available resources that could be éfédygt
background and application of the semi-Markov Process a®ploited by a guest program in cycle-sharing systems. On
described in Section IV. In Section V, implementation issughe other hand, our approach integrates machine avaiiabili
of the failure prediction in iShare are discussed. Expemiale into a multi-state failure model, representing differesdls
approaches and results are described in Section VI and Sefcavailability of compute resources.
tion VIl respectively.

A few other studies have been conducted on percentages
of CPU cycles available for large collections of machines in

The concept of fine-grained cycle sharing was introducégkid systems [19], [23], [36]. In [23], the author predicted
in [29], where a strict priority scheduling system was devethe amount of time-varying capacity available in a cluster o
oped and added to the OS kernel to ensure that host procegsestely owned workstations by simply averaging the antoun
always receive priority in accessing local resources. Hewe of available capacity over a long period. The work in [36]
deploying such a system involves an OS upgrade, which capplied the one-step-ahead forecasting to predict availab
be unacceptable for resource providers. In FGCS syster@®U performance on Unix time-shared systems. This approach
available OS facilities (e.grenicg are utilized to limit guest is applicable to short-term predictions within the order of
processes’ priority. Resource failures happen if theséitfas several minutes. By contrast, our SMP-based technique aims
fail to prevent guest processes from impacting host presessat predicting over future time windows with arbitrary lehgt
significantly. Instead of the focus on maintaining priord§ The authors of [19] studied both machine and CPU availgbilit
host processes in [29], our work targets at resource failurea desktop Grid environment. However, they focused solely
prediction, so that guest jobs can be scheduled proactively measuring and characterizing CPU availability during pe
with improved response times. riods of machine availability. Instead, we target at predi

Related contributions include work in estimation of reseur the availability of both machines and their compute resesirc
exhaustion in software systems [33] and critical event ipredin FGCS systems.

Il. RELATED WORK



I1l. M ULTI-STATE RESOURCEFAILURE MODEL process are allowed to run concurrently on the same machine.

A failure model that represents the two types of resourdd'® Priority of a running guest process is minimized (using
failures, FRC and FRR, is the basis for detecting and pr@_nice whenever it causes noticeable slowdown on the host
dicting these failures. To define such a model, we study tREOCESSES. If this does not alleviate the resource cooteritie
level of observability to detect resource failures and hbev t Feniced guest process is suspended. The guest procesegesum
observability can be related to a rigorous mathematicalehodif the resource contention diminishes after a certain domat

FRR happen when machines are removed from the FGeterwise it is terminated. The “noticeable slowdown” irr ou
system by the owners or fail due to hardware-software faul&ystem is quantified by the slowdown of host processes going
FRR can be detected by the termination of FGCS servicé®ove an application specific threshold (we chose a thréshol
such as gateway for job submission. This detection meth8H> 5%).
indig:ates atwo-state failure model for FRR: a machine feeeit o Experiments on Resource Contention
available or unavailable; there are no other observablessia i ]
between. For FRC, the failures happen when host processe¥/e conducted a set of experiments by running host pro-
incur noticeable slowdown due to resource contention frof$SS€s With various resource usages together as an aggregat
guest processes. Before terminating the guest processeS0%-group We measured the slowdown of the host-group as
FGCS system will first decrease their priority or suspendﬂ;hethe reduction of. its CPQ utilization when a comput(_e—mteem
with the expectation that the impact on host processes wiif€St Process is running concurrently. We experimented on
disappear. These actions need to be modeled and the modelig? contention using a set of synthetic programs. Real
requires the ability to detect “noticeable slowdown” of hod&nchmark applications were applied to study the contentio
processes. However, because we do not know the origi® Poth CPU and memory. .
performance of host processes isolated from guest pragédsse Because the empirical studles'are not the focus of this
is practically difficult to measure the slowdown. To avoidsth Paper, we only present the experimental approaches and the
problem, we use observable parameters, specifinadigsured OPservations drawn from the experiments here. We condentra
host resource usage, as indicators for “noticeable slowitiow©n how our resource failure model can be derived from the

To study the connections between host resource usage 8Rgervations. Detailed experimental results are predenta
occurrences of FRC, we conducted a set of experimentsSgParate paper [26]. _
simulate resource contention among general guest and He¥periments on CPU Contention
processes in FGCS. We measured the values of host resource® Study the contention on CPU cycles, we created a set
usage upon the occurrences of FRC. The experimental res@fsSynthetic programs. To isolate the impacts of memory
indicate that, based on the measured host resource usage vgogtention, all the programs have very small resident sets.
w/o guest processes running concurrently, it is able tootietd he host programs havsolated CPU usagéCPU usage of a
the occurrences of FRC. The results also identify the exigte Program when it runs alone) ranging frori% to 100%. The

of a set of thresholds for host resource usage, based on wHik§St process is a CPU-bound program. In the experiments,
a multi-state failure model for FRC can be developed. these programs were ran on a 1.7 GHz Redhat Linux machine.

In this section, our empirical studies on resource corgenti We measured the reduction ratetafst CPU usagethat is

and the derived failure model are presented. To explain tH total CPU usage of all the processes in a host-group, when
generality of our experiments, the section first introduthes fesource contention happens between a guest process (

resource usage patterns of typical guest applications @G and the host-groupH{). We tested on host-groups containing
different numbers of host processes with isolated CPU usage

A. Resource Usages of Guest Applications in FGCS randomly distributed betweerd% and100%. The same host-

In FGCS systems, guest applications are normally CPgroup settings were used when G's priority was set to 19
bound batch programs, which are sequential or compoggalvest) and 0 respectively while H's priority was 0. The
of multiple tasks with little or no inter-task communicatio measured reduction rates were plotted as a funtion of eablat
Such applications arise in many scientific and engineerihgst CPU usagd, ;. There is no need to experiment on host-
domains. Common examples include Monte-Carlo simulatiogsoups with exhaustive number of processes. This is because
and parameter-space searches. Because these applics@nthat, in a time-sharing system, the chances that a guestgsoc
files solely for input and output, file I/O operations usuallgan steal CPU cycles decrease when there are more host
happen at the start and the end of a guest job; file transfars paocesses running. Therefore, for host-groups with theesam
be scheduled accordingly to avoid peak I/O activities ort hoky, the reduction rate of host CPU usage decreases as the
systems. Therefore, CPU and memory are the major resournamber of processes increases.
contended by guest and host processes. For example, memoiyhe experimental results indicate the existence of two
thrashing happens if a guest process’s resident size extieed thresholds, Th,; and The, for Ly, that can be used as
amount of free memory on a machine. In this case, resouindicators of noticeable slowdown of host proces§&s, and
failure happens and the guest process has to be terminate@h, are the lowest values dfy; where the guest process needs

To avoid any adverse contention among multiple guetd be reniced and suspended respectively to keep the slawdow
processes, in our FGCS system, no more than one guesiow 5%. Because we experimented on randomly-generated



host-groups without relying on any specifics in OS schedulinsimulate the behaviors of actual interactive host userexia t

we can conclude that the existence of the two thresholds &a&sed terminals, we used the Musbus interactive Unix bench-

ubiquitous. Exact values of the two thresholds may change orark suite [22] to create various host workloads. The crkate

OS systems with different CPU scheduling policies. workloads contain host processes for simulating interacti
Based on the two thresholds, a 3-state failure model fegiting, Unix command line utilities, and compiler invoicaus.

CPU contention can be derived, where the guest processNe varied the size of the file being edited and compiled by

running at default priority §;), is running at lowest priority the “host users” and created six host workloads with differe

(S2), or is terminated §3). More specifically, the three statesusages of memory and CPU.

are: We ran a guest process concurrently with each host work-

« S,: when the host CPU usage is loil§ < Thy), the load on a Solaris Unix machine wi@t84 Mb physical memory.

resource contention due to a guest process can be igno'?ga each set of processes, we measured the reduction of the

(slowdown of host processes is belai); host CP’U usage caused by the guest process, when the guest
. S, when the host CPU usage is hea®jhf < L < Processs priority was set to 0 aq@ respectively. -
Ths), the guest process's priority has to be minimized Two ot_)servatlons can be_ derived from the experimental
to make the slowdown of host processes unnoticeable [;:‘sults. Elrst, memory thrashing happens when the totakwor
5%); ing s_et size of the guest and_ host processes exceeds the_free
« S5 when the host workload is higher thafh,, any phy5|cal memory of the machine. The reason for the thrashing
running guest process (with default or lowest priorityg that one process has page faults thqt require anqthgespsroc
has to be paused or terminated to relieve the resou %ges to be flushed t_o disk. Changing CPU prlor!ty does
contention. little to prevent thrashing when two processes desire more
. ) . memory than the system has. Therefore the host processes
Note that, under the first two state'sy is approximately the make little progress no matter what priority the guest pssce
same as theneasuredhost CPU usage when a guest procesgkes. Second, the occurrences of the failures due to memory
running concurrently. Therefore, it is able to decide when &ntention are orthogonal to the host CPU usage. On the
guest job is to be reniced or terminated by simply monitoringner hand, when there is sufficient memory in the system,
if the host CPU usage exceed%, or T'h,. the occurrences of resource failures caused by CPU contenti
In practical FGCS systems, resource contention can 8glely depend on the host CPU usage. Therefore, the impact of
controlled in different ways. The two alternatives are,djra host memory usage can be ignored whenever there is enough
ually decreasing the guest priority fromto 19 under heavy free memory to hold a guest process. In this scenario, the two
host workload, or minimizing the guest priority whenevethresholdsI'h; and Th,, can still be used to evaluate CPU
it starts [8]. In the first alternativeS; is divided into fine- contention.
grained states indicating different guest priorities.afab to  |n conclusion, the memory contention and CPU contention
the second alternative§; and S; would be combined into can be isolated in detecting FRC. The 3-state model for
one state. We have done a set of experiments to test if thegey contention can be extended by adding a new failure
two alternatives deliver a better model of CPU availabilitgtate,&, for memory thrashing_ The 4-state model represents
than the 3-state model discussed above. The details of thg different levels of resource availability due to reseur
experiment settings and results are presented in [26]. Fregnhtention in FGCS.
these results, we arrived at the conclusion that, gradually
decreasing the guest priority introduces redundant statele  C. Multi-State Failure Model
always taking the lowest guest priority slows down the guestThe resource states relating to FRR and FRC are combined
process unnecessarily under light host worklokg (< T'h1).  to give a five state system presented in Figure 1. In Figusg 1,
The fine-grained states introduced by the first alternatree andicates the situation where the host CPU usage has exteede
redundant, because they are basically the sante @sterms 7, for a duration { minute in our experiments) and the guest
of the CPU availability for guest processes. These experisneprocess has to be migrated off; presents resource failures
further prove that the choice for the three states is notrargi caused by memory threshing, where the guest process needs
The 3-state model reflects the levels of CPU availabilityyaccto be terminated immediately; is for all the failures caused
rately without adding redundant resource states or coaeev by resource revocation where resource immediately become
restriction on guest processes. offline. The proposed prediction algorithm is to predict the
Experiments on CPU and Memory Contention probability that a machine will never transfer $g, S4, or Ss
To test the more complicated resource contention on batlithin a future time window.
CPU and memory, we experimented with a set of real ap-The transitions among,, Sz, and Ss are decided by the
plications. For guest processes, we chose four appliGationeasured host CPU usage. The corresponding thresiiolds (
from the SPEC CPU2000 benchmark suite [17]. All of thandTh,) are different on arbitrary OS systems. In our FGCS
four applications are CPU-bound. Their working set sizegratestbed, consisting of Linux systeniBh; andTh, are 20%
from 29 Mb to 193 Mb, which represent the range of memomnd60% respectively. Transitions t64 happen when the free
usages of typical scientific and engineering applicatidits. memory size is less than the working set size of a guest

4



these equation include numerical methods [9] and phase
approximation [21]. Numerical methods solve the Kolmogoro
integration equations with particular mathematical téghes,
such as Laplace-transform inversion. Phase approximétn

S;: Full resource availability for guest
process

S.: Resource availability for guest the holding time distribution to commonly used distribatio
process with lowest priority functions, such as a Weibull or a Log-normal distribution.
S5t CPU unavailability While these solutions are able to achieve accurate results in
Si: Memory thrashing certain situations, they are not applicable to general SMP

§: Machine unavailability models and the worst performance may be affected adversely

Fig. 1. Multi state system for resource failures in FGCS. @trews present if an SMP can go through eXponentla"y many transitions for

state transitionsSs and S4 are for failures caused by resource contentiond SPecific time interval [9]. In real applications [1], a disie-
Ss is for failures caused by resource revocation. time SMP model is often utilized to achieve simplificatiordan

general applicability under dynamic system behaviorssThi

simplification delivers high computational efficiency a¢ tost
process. Note that, staté§, S, and.S; are all unrecoverable o hotentially low accuracy. We argue that the loss of acoura
failure states for guest processes. Even if the CPU usage-Qh pe compensated by tuning the time unit of discrete time
the memory usage of host processes drops significantly or {h&vals to adapt to the system dynamism.
hpst is rein_tegrated into the system,_the guest proceseiiyl In this paper, we develop a discrete-time SMP model,
killed or migrated off and no state is left on the host. as described in Equation 3. In our design, the time unit

IV. SEMI-MARKOV PROCESSM ODEL of discretization can be adjusted adaptively based on the

temporal characteristics of resource state variationail®efor

In the multi-state failure model presented above, trammsiti the adaptive approach are discussed in Section V.

between the states fit a semi-Markov ProceSsIP) model,
where the next transition only depends on the current st@e Semi-Markov Process Model for Resource Availability

and how long the syst'e.m has stayed'at this state. In €SSENCy,is section discusses how the SMP model can be applied
the SMP model quantifies the dynamic structure of the Sta&%sthe failure model presented in Figure 1. The goal of the

for resource availability. More importantly, for our objee, . o -

. iy . .. ' SMP model is to compute a machine’s temporal reliability,
it enables the efficient prediction of temporal reliabilifyhis TR which is the probability of never transferring &, S
section presents the background on SMP and how a SMP_|s P y 9 ', o,

. ; o . 0r'Ss within an arbitrary time window}¥’, given the initial
applled. for.the resource failure prediction based on tHarai system stateS;,;;. The time windowW is specified by a
model in Figure 1.

start time,W,,.;+, and a length;I". Equation 3 presents how

A. Background on Semi-Markov Process Models to computeTR by solving the equations in terms ¢§ and

Semi-Markov Process models are probabilistic models ugé: 1€ derivation of the equation can be found in [1]. In
(m) is equal toP; ;(Winit, Wini+m), Py, (1)

ful in analyzing dynamic systems [1]. A semi-Markov Proces,1::‘>quat'_on 3L > J\] K
(SMP extends Markov process models to time-dependéritth® interval transition probabilities for a one-stemsigion,
stochastic behaviors [21]. An SMP is similar to a MarkO\?ndfl's the time unit of a discretization interv; is 1 when
process except that its transition probabilities dependhen ¢ = J @nd 0 otherwise.

amount of time elapsed since the last change in the statee Mor
formally, an SMP can be defined by a tupl§, (0, H), where

S is a finite set of states) is the state transition matrix, and 1 R(W)

3
1= Pinir ;(T/d)

H is the holding time mass function matrix. =
Pij(m) = Y 3 PL()x Pj(m—1)
Q:(4) = Pr{the process that has enter8dwill enter =0 kes
S; on its next transitiog; m-l
H;;(m) = Pr{the process that has enter§dremains at = Z Z H; (1) x Qi(k) x Py j(m —1)
S; for m time units before the next transition =1 keS .
0 S;} 5 (0) = 6y CJ=345
! (1) 1=1,2,3,4,5
3)

The most important statistics of the SMP are the interval

transition probabilities . The matrices) and H are essential for solving Equation 3.

In our design, these two parameters are calculated via the
. ) statistics on history logs collected by monitoring the hest
P; i(t1,t2) = Pr{S(t2) = j|S(t1) = 2 . . I
gltte) = PriS(ts) = jlS(t) =} @) source usage on a machine. The details on resource mogitorin
To calculate the interval transition probabilities for are explained in Section V. To comput¢ and H within
continuous-time SMP, a set of backward Kolmogorov intean arbitrary time window on a weekday (a weekend), we
gral equations [21] are developed. Basic approaches t@ sotierive the statistics from the data within the correspogdin



time windows of the most recenV weekdays (weekends).iShare software to enable resource contribution. Theeetbe
The rationale behind this is the observation that the daiyl termination of the daemons indicates resource revocation a
patterns are comparable over the corresponding time wisdogan be utilized for detecting FRR.

over a weekday (a weekend) [23]. Upon the request of a job submission on a client, the client’s
job scheduler queries the gateways on the available machine
for their temporary reliability and decides on which ma&t(s)

The proposed prediction approach is implemented within @me job would be executed. If a machine is selected, a guest
Internet-sharing system callé8hare[15], [27]. iShare is an process is launched on the machine and the corresponding
open environment for sharing both HPC resources from thesource monitor is notified of the new process id. During
Grid community, such as the TeraGrid facility [6], and idlehe job execution, the monitor detects any state transéiuh
compute cycles available from any Internet-connected. hosignals the gateway of a new transition. The gateway then
This section introduces the fine-grained cycle sharing i€ renices or kills the guest process accordingly, when tti@msi
and shows how the resource failure prediction is implementen stateS;, S or Sy is detected. Checkpointing can also be
and utilized in the system. used to migrate the guest process off the machine if resource

failure happens.
i ) L There are two main design challenges to implement the
A. Fine-Grained Cycle Sharing in iShare framework shown in Figuregz. First, tghe resouch):e monitor

In iShare, a Peer-to-Peer (P2P) network is employed faeeds to be non-intrusive to the host machine where the
resource dissemination among providers and consumersp®nitoring takes place periodically. Second, becauseureso
resources [28]. The cycle-sharing happens when resoufgiure prediction happens in the critical path upon theusey
consumers submit guest jobs to the machines published @i job submission, the computational cost of the predictio
owned by the resource providers. Existing techniques can i@st be negligible. Our solutions to the two challenges are
utilized to estimate the execution time [18] and the memogescribed in the next two sections.
usage [14] of the job. A job scheduler would uaepriori
knowledge of the estimated characteristics of the guest jBp Non-intrusive Resource Monitoring
and its arrival time to fit to our temporal reliability pretdan. As discussed in Section lll, state transitions amohg .Sy
The predicted result can be used by the scheduler to sekectdhd S; can be detected by monitoring the total CPU load of
machines with relatively high availability or to manage jble all the host processes on a machine; transitionSt@an be
adaptively during its execution. detected by monitoring the free memory size on the machine.

The resource monitor shown in Figure 2 uses system utilities

such asymstatandprstaton Unix andtop on Linux, which are

77777777777777777777777777777777777777777777777777777777777777 light-weight operations in most OS implementations, idahg
State ! Redhat Linux that we used for our experiments. The monitor-
<>\ Manager | ing period can be set dynamically based on the frequency of

iShare
\ /’ | the change of resource usage level by the host processes. The

; dynamic setting is done using an exponential increase in the
f:/clsm}rcc | period. Starting from a periodp{) of 1 sec, the period is
| "™ Host node | doubled if for a threshold amount of time, no state change

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : happens within the periopd. Once the monitoring period has
, , o stabilized, the reasoning is that no state change happenis wi
Fig. 2. The system framework of resource failure predictioiShare. The L . . .
four circles on host node depict processes created on the Tos arrows a monitoring interval. However, random sampling is alsoelon
among them are for inter-process communication with Unix dorsakets. outside of the regular monitoring period to determine if the
period has to be decreased.

Figure 2 shows the framework of resource failure prediction To monitor the occurrences of resource revocation (tran-
in iShare. TheHost Nodeand theClient show examples of sitions to Ss), the timestamp of the most recent load
a provider and a consumer respectively. The prediction riseasurement,,...:o-, iS recorded in a special log file. This
invoked on the host node upon a request of job submissitmestamp is updated when the periodic resource monitoring
from the client. There are four entities on the host nodegcurs. To detect if machine unavailability has happened,
an iShare Gatewayfor communicating with remote clientsthe monitor compares the current timestamp with the saved
and controlling local guest processes;R&source Monitor t,,.,:t0- at each periodic monitoring. If the gap between the
for monitoring host resource usage, i.e., the total CPU @isagvo timestamps exceeds a threshold, it indicates that the re
and memory usage of host processesState Managerfor source monitor, and by implication the iShare system, had be
storing history logs and predicting resource failures; andturned off on the monitored machine (due to either system
guest process launched for a job submitted by the client. Tbkash or machine owner’s intentional leave). This procedur
first three entities exist on each host machine as daemoadimsms an easy-to-use and accurate means of detecting the eve
They are started automatically when the providers turn en tmdicating machine unavailability. It is a simple solutioo

V. SYSTEM DESIGN AND IMPLEMENTATION




the important problem of avoiding the need for administrato

privileges in accessing system logs that indicate shutcaeh T/d

restart of the machine. It is also more efficient and scalable, _(7/q) = Hix(l) x Qu(k) x Py (T/d—1)
1, 1,k 1 k,

compared to other techniques [3], [5], where a centralizétl u ! ; ,% !

is needed to probe all the nodes in a networked system. T/d—1

= Y [Hia(l) x Q1(2) x Poj(T/d—1)
oL X Q)+ Huy () < Qi)
SN Haywll) x Qalk) x Poy(T/d 1)

C. Minimum Computation in Solving SMP sz/g—kleS

> [Haa(l) x Qa(1) x Py j(T/d — 1)
=1

In our design, the matrix sparsity in the SMP model is +H,5(1) X Q2(5)] +H24(T/d), i%?zij%

exploited to minimize the computational cost of the reseurc J ’ ’(4)
failure prediction. Figure 3 describes the sparsity of the

matrices@, H and P in Equation 3. In this figure, all the V1. EXPERIMENTAL APPROACH

blank cells are for zero values. The sparsity relies on two\ye have developed a prototype of the system as described

facts — it takes a finite amount of time to transition from ONRy Section V. This section presents the experimental apbroa
state to another, and stat€s, S, and S; are unrecoverable for measuring the system.

failure states.

Py ;(T/d)

A. Experimental Testbed

All of our experiments were conducted on a testbed for
S1 52 5354 Ss  S; S; S3 Sy S S: S, Ss S¢ Ss . FGCS. The testbed contains a collect of 1.7 GHz Redhat Linux

Sy [ X [X |X|X 1 X [X [X |X | X| machines in a computer lab at Purdue University. Because
Sy X XXX 1 XXX | X]|X our approach predicts the resource failures happened on an
Ss 1 1 individual machine by exploring host resource usage froen th
S4 1 1 recent history, the variety of host workloads rather tham th
Ss 1 1| scale of the testbed will affect the experimental resuttour
R ’ testbed, the host users are students from different disegl
,?(g)”i’g("”'””" () (m;m>0""" They used the machines for various tasks, e.g., checking

emails, editing files, and compiling and testing class putsje
Fig. 3. The sparse pattern ¢f, H and P. The blank cells are for elements which created host workloads with totally different reswur
yar}ﬁzg) ‘ﬁ"’le(sthaerflazlﬁgoi's'\f)’_”'zem elements are labeled with atitrry 5546 patterns. Therefore, our testbed provides highighler
host workloads, which are appropriate to test our predictio
algorithm comprehensively.
On each tested machine, processes launched via the iShare
With the sparsity shown in Figure 8 and H(m) can be gateway are guest processes, and all the other processes are
stored as an 8-element vector rather than a 5 by 5 matwxewed as host processes. The resource contention between
As shown in Equation 3, the value @R is decided by the these two types of processes leads to the FRC as described in
summation of Py 3(T/d), Pinita(T/d) and Py 5(T/d), Section |. Resource revocation happens when the user with
where the value ofnit is eitherl or 2. Equation 4 shows the access to a machine’s console does not wish to share the
minimum computation needed to solve the three probalsilitienachine with remote users, and simply reboots the machine.
by exploring the sparsity of) and H. This equation shows Therefore, the resource sharing between iShare users and
that only six elements itP(m) are requiredP; 3, P14, P15, other host users on the testbed reflects the resource failure
Py 3, P4, and P, 5. In this way, the computational cost inmodel presented in Section Ill. We installed our system and
each recursive step is decreasetR5 (25 divided by 6) times started a resource monitor on each machine in the testbed.
compared to the original SMP model. The total number dte resource monitoring was performed every 6 seconds and
recursive steps i¥'/d — 1, decided by both the length of theinstantaneous resource usage (usage since the last nragjitor
time window, T, and the discretization interval, In this work, were measured. The host resource usage on these machines
we choose the discretization interval the same as the perigdre traced for 3 months.
of resource usage monitoring. The computational overhéad oWe did three sets of experiments. First, we measured
the optimized prediction algorithm is presented in Sectitin the overhead of the resource monitoring and the prediction
which proves the effectiveness of the minimum computatiaigorithm. Second, we tested the accuracy of our prediction
in solving SMP. algorithm by dividing the trace data for each machine into a



training and a test data set. The prediction was run on ttie prediction, we measured the wall clock time of the reseur
training set and the results were compared with the obsenfadure prediction for time windows with different lengthin
values from the test set to evaluate the accuracy of tRéure 4, the computation time of calculatidg and H and
prediction. The prediction accuracy was also compared withe whole prediction algorithm (including the computatfon
that of a suite of linear time series models discussed in the H andTR) is plotted as a function of time window length.
next section. Finally, to test the robustness of our praict Recall that the prediction is to predict the probabilityttha
algorithm, we inserted noise randomly into a training sdéailures will happen during a given time window. As expected
and measured the difference between the prediction results prediction over a larger time window takes longer begaus
by using the infected training set and those by using tld the more recursive steps needed. The total computativa i
original training set. All the experiment results are préed follows a superlinear function (with exponent b85) of the
and analyzed in Section VII. number of recursive steps. For the time windowl6fhours
) i ) ) ) (the last point on the:-axis), the computation time fap and

B. Comparative Algorithm: Linear Time Series Models 7 i5 99 35 millisecond and the total computation time is about

A number of time-series and belief-network algorithms [313.1 seconds. This gives the stated overhead.@96% for the
appear in the literature for prediction in continuous CPBdlo average guest process execution time of 10 hours. We can
or discrete events. After studying various algorithms, Wwese conclude that our prediction algorithm is efficient and esus
linear time series models to compare with our SMP-basedgligible overhead on the completion time of typical guest
prediction algorithm. Other existing algorithms are notllwejobs in FGCS systems. Note that these jobs are typicallglarg
suited for use in the prediction of resource failures in FGC$8rograms with completion time of the order of at least tens of
One example is the Rule-based Classification algorithm, [3hhinutes.

which only provides the conditional probability of an event 2500 "

occurring, given the observation of other events. Mearayhil 1
time series models have been successfully applied in \@riou g 2000 //'/ / % 5
areas, including host load prediction [11] and predictidn o g 1500 —=—Total computation time || %a
throughput in wireless data networks [7]. 5 ’\./"// —+—Qand H computation timg) | & %
Linear time series models have been used for predicting 2 & 1000 15T E
CPU load in Grids [11]. The algorithms can predict for future g 500 I E
observations from a sequence of previous measurements. Bot 3 /,,/"/ ©
the measured values and the predicted values have to be I 5
changing with roughly a fixed periodicity. In our experimgnt T % e window |eﬁgth (7h,) e

we used time series models to predict the state transitions i
a future time window based on the samples from the previoﬁ_ﬁ- 4. Computation time of resource failure prediction fondi windows
. . - with different lengths. The prediction is to predict the Ipability that no
time window of the same length. The prediction accuraGyires will happen during a given time window.
is determined by the difference of the observEd on the
predicted and the measured state transitions.
We used a set of linear time series models implementedBn Accuracy of Resource Failure Prediction
the RPS toolkit [10]. The models are described in Table I. We To test the accuracy of our prediction algorithm, we created
took the same parameters for these models as used in RP& knaining and a test data set for each machine by dividing
our experiments, we focused on the prediction accuracyeof tits trace data into two equal parts and choosing the first half
time series models and compared with that of our SMP-basasl the training set. The parameters of the SMP model were
prediction. calculated by statistics of the training data set and weee th
used to predict th@R for different time windows in the test
VIl. EXPERIMENTAL RESULTS data set. The actual observations from the test data set were
This section presents the experimental results on evalyiatused to calculate thempirical T R. The predicted TR and
the efficiency, accuracy and robustness of our predictitie empirical TR were used to compute the relative error as
method. The “resource failures” mentioned in this sectéfer  abs(T Rpredicted — I Rempirical)/T Rempiricar- Figure 5 plots

to both classes of failures, FRC and FRR. the relative errors of our prediction algorithm. The curve
o ) o shows the average errors of predictions on time windows with
A. Efficiency of Resource Failure Prediction different lengths, and the bars at each point show the tklate

The overhead of the proposed resource failure predictiaminimum and maximum errors. To collect the average errors
includes the computational cost caused by both the resoufoe predictions over time windows of the same length, we
monitoring and the SMP computation. With a period of @xperimented with different start time ranging from 0:00 to
seconds, the resource monitoring consumed less than 23600 on different machines, in steps of 1 hour. As shown
CPU and 1% memory on each tested machine in our testbed Figure 5, the relative prediction error increases witk th
Therefore, our resource monitoring is non-intrusive to thi#me window length. The reason is thBR gets close td) for
tested host system. To measure the computational overlieathme time windows leading to possibly large relative esror



Prediction on small time windows performs slightly worse ois useful for the prediction on machines with highly diverse
weekends than on weekdays, which can be explained by thest workloads, which are similar to those in our testbed.
smaller training size used for prediction on weekends. Tl@r machines with relatively static host workloads, prédits
prediction achieves accuracy higher tH&n38% in the worst using training data sets of different sizes tend to achidvsec
case (maximum prediction error for time windows with lengthesults.

of 10 hours on weekdays). The average prediction accuracv
is higher than86.5% (average prediction accuracy for tim @ Max-average error over 240 time windows
windows with length of 10 hours on weekends) for all tt 3 ¥ & Maximum error over 240 time windows
studied time windows in Figure 5.
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Fig. 6. Relative prediction errors with different ratios tohining and test
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(a) Prediction on weekdays

Comparison with Linear Time Series Models

To compare with our prediction algorithm, we applied
linear time series algorithms to predict temporal reli&pil
and measured their prediction accuracy. The tested tiniesser
models are shown in Table I. They can be obtained from the
RPS toolkit implementation [10]. Figure 7 shows comparsson
of various time series models and our prediction algorithm
. 2 3 4 s o + & o 1 (SMP)in terms of prediction accuracy. As a representative

Window length (Hr) case, we present the relative errors of the predictionstover

windows starting at 8:00 am on weekdays. In this experiment,

we used the training and test set with equal size.
Fig. 5. Relative errors of predictetR Each point plots the average error
of predictions over24 time windows with different start time ranging from TABLE |
0:00 to 23:00, in steps of 1 hour. The bars on each point shewdfated
minimum and maximum prediction errors.

Relative error of predicted
TR (%)

(b) Prediction on weekends

LINEAR TIME SERIESMODELS

) Model Description
We also conducted a set of experiments to analyze the AR(p) Purely autoregressive models wighcoefficients
sensitivity of the prediction accuracy to the size of tragi BM(p) Mean over the previous/ values (V < p)
sets. Intuitively, the prediction with larger training seshould MA(p) Moving average models with coefficients
. . ARMA(p,q) | Autoregressive moving average models with
perform better than that using smaller training sets. Hanev p + g coefficients
a large training set may include “older” data, which may bias [ LAST Last measured value

the most recent pattern of host resource usage on the studied
machine. We are interested in finding out if there exists a
best choice of training size and what factors constitutén suc -
choice.

Toward these goals, we divided all the trace data !
weekdays into training and test sets with different sizeosat
On each setting of the data, we ran the prediction over
same240 time windows used for the experiment in Figure
and measured the relative prediction errors which areqalott
Figure 6. “Max-average error” is measured by first averagi © 22; |
over prediction errors for the time windows of the san 1 3
length and then taking the maximum of all the average valu...

The prediction achieves the best accuracy (max-average eHig. 7. Maximum prediction errors of different algorithms otiene windows

< 7.96% and maximum error< 22.71%), when the ratio starting at 8:00 am on weekdays.

of training to test data sizes is 6:4. This observation can be

used to decide the size of the history data to be used for the=rom the results in Figure 7, we made the following
prediction given the test set. We argue that the observatiobservations. (1) Based on the relative prediction errors f

250%
225% | [oSMP
200% | |BAR(8)
175% |
150% |
125% |
100% |
75% t
50% |

TR

elative error of predicte

5
Time window length (hr)



the time windows studied, our SMP-based algorithm performgthin the corresponding time window (with the same start
better than all of the 5 time series models. (2) Linear timt@me and length) for predicting on a future time window.

series models are more adept at short-term prediction.i$his In a practical FGCS system such as iShare, most guest jobs
because these models use multiple-step-ahead for preglicare either small test programs taking less than half an hour,
on large time windows and the prediction error increasel wibr large computational jobs taking several hours. For small
the number of steps lookahead. In conclusion, our resoutest programs, they can be restarted upon the occurrences
failure prediction algorithm achieves higher accuracynthl of resource failures without causing significant delay ib jo
the 5 linear time series models, especially for predictions response time. For large jobs taking more than 2 hours,

large time windows. intensive noise (10 amounts of noise within 1 hour) causes le
_ o than6% disturbance in our prediction algorithm. Therefore we
C. Robustness of Resource Failure Prediction can conclude that our prediction algorithm is robust enough

To study the robustness of our prediction algorithm, wi®r application in practical fine-grained cycle sharingteyss.
injected different amounts of noise into the training daga s

. - - VIIl. CONCLUSION AND FUTURE WORK
and measured its impact on the prediction results. To inject hi developed ki del
one instance of noise, we manually inserted one occurrencdn this paper, we developed a multi-state model to represent

of resource failure around 8:00am (when failure is very rafd€ characteristics of resource failures in FGCS systems.
due to low resource utilization) to a training log of a weekda'Ve applied a semi-Markov Process (SMP) to predict the
in the trace data collected on a machine in the testbed. THEPability that no resource failure will happen in a futtiree
holding time of the added failure state was chosen randonji?dow, based on the host resource usage history. The SMP-

between 60 and 1800 seconds. The choice of log into whipgsed predic_tion was implemer_ned and tested in the iShare
to inject the noise does not affect the prediction results; ternet sharing system. Experimental results show that th

randomly picked one log file for all the noise studies. witRrediction algorithm adds less than 0.006% overhead to a
an arbitrary amount of noise, we measured phediction dis- 9U€St job and the prediction accuracy is higher %@53% on

crepancyby comparing the prediction results with the originafivér@ge. The effectiveness of the prediction in accomogati
predicted values without noise injection. Experimentauites the deviations of host workloads was also tested, and the

are presented in Figure 8. The prediction discrepancy bafSults show thatthe impact of the deviations on our prieufict
for large time windows T = 5, 10 hrs) are often negligible is negligible. These results in total verify that our ressur

compared to the values associated with small time window@!lUre prediction is efficient, accurate and robust.
Hence some of the bars do not show up in the figure. In future work, we study factors in the data set that further

improve the prediction accuracy. A candidate is infornmatio

100% —of the specific day of the weekday or weekend. This would
oo | BT=1hr U P W | involve a longer period of monitoring and data collectiom A
80% | oT=3hr - immediate task is to integrate our prediction frameworkwveit
0% | MIZSM proactive job scheduler in the iShare Internet sharingesyst
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