
Resource Failure Prediction in Fine-Grained Cycle
Sharing Systems

Xiaojuan Ren Seyong Lee Rudolf Eigenmann Saurabh Bagchi
School of ECE, Purdue University

West Lafayette, IN, 47907
Email: {xren,lee222,eigenman,sbagchi}@purdue.edu

Abstract— Fine-Grained Cycle Sharing (FGCS) systems aim at
utilizing the large amount of computational resources available
on the Internet. In FGCS, host computers allow guest jobs to
utilize the CPU cycles if the jobs do not significantly impact
the local host users. A characteristic of such resources is that
they are generally provided voluntarily and their availability
fluctuates highly. Guest jobs may incur resource failures be-
cause of unexpected resource unavailability. Checkpointing and
migration techniques help overcome such failures. However, these
techniques, if oblivious to future failures, may cause signifi-
cant overhead and thus undesirable job response times. This
paper presents a method to predict resource failures in FGCS
systems. The prediction method enables proactive management
with greatly improved job response times. It applies a semi-
Markov Process and is based on a novel failure model, combining
generic hardware-software failures with domain-specific failures
in FGCS. We describe the failure prediction framework and its
implementation in a production FGCS system named iShare.
Through the experiments on an iShare testbed, we demonstrate
that the prediction achieves accuracy above86% on average and
outperforms linear time series models, while the computational
cost is negligible. Our experimental results also show that the
prediction is robust in the presence of irregular resource failures.

I. I NTRODUCTION

The opportunity of harvesting cycles on idle PCs over
the Internet has long been recognized, since the majority
of compute cycles go unused [23]. Distributed cycle-sharing
systems have shown success through popular projects such
as SETI@home [16], which have attracted a large number of
participants donating time on their home PCs to a scientific
effort. The PC owners voluntarily share the CPU cycles only if
they incur no significant inconvenience from letting a foreign
job (guest processes) run on their own machines. To exploit
available idle cycles under this restriction, fine-grainedcycle
sharing (FGCS) systems [29] allow a guest process to run
concurrently with local jobs (host processes) whenever the
guest process does not impact the performance of the latter
noticeably. For guest users, the free compute resources come
at the cost of highly fluctuating availability with the incurred
resource failuresleading to undesirable completion time of
guest jobs. The primary victims of such resource failures
are large compute-bound guest jobs. Most of these jobs are
batch programs. They are either sequential, or composed of
multiple related jobs that are submitted as a unit and must
all complete before the results being used (e.g., simulations
containing several computation steps [2]). Therefore response

time rather than throughput is the primary performance metric
for such compute-bound jobs.

In FGCS systems, resource failures have multiple causes
and have to be expected frequently. First, as in a normal multi-
process environment, guest and host processes are running
concurrently and competing for compute resources, such as
CPU, memory, and I/O bandwidth, on the same machine.
Host processes can be decelerated significantly by a guest
process. Decreasing the priority of the guest process can only
alleviate the deceleration in few situations [29]. To completely
remove the impact on host processes, the guest process must be
killed or migrated off the machine, which represents a resource
failure. In this paper, we refer to such resource failures as
FRC (Failures caused byResourceContention). Another type
of resource failures in FGCS is the sudden unavailability ofa
machine —FRR, (Failures caused byResourceRevocation).
FRR happens when a machine owner suspends resource con-
tribution without notice, or when arbitrary hardware-software
failures occur.

To achieve fault tolerance in remote program execution,
prevalent systems [13], [32] deploy checkpointing and mi-
gration. However, such mechanisms cause nontrivial overhead
which offset their benefits in improving the response time
of guest jobs [37]. With the assumption of knowing future
resource failures, proactive approaches, such as scheduling
guest jobs to the machines least likely to fail and turning on
checkpointing adaptively, are able to improve job response
time effectively [24]. Successful failure prediction is key to
these proactive approaches. However, there have been few
studies on resource failure prediction in large-scale distributed
systems, especially in FGCS systems. Although several pre-
vious contributions have measured the distribution of general
machine availability in networked environment [4], [20], [25],
or the temporal structure of CPU availability in Grids [19],
[23], [34], no work targets predicting resource failures caused
by both resource contention and resource revocation in FGCS
systems.

The main contributions of this paper are the design and
evaluation of an approach for predicting resource failuresin
FGCS systems. We develop a multi-state failure model and
apply a semi-Markov Process (SMP) to predict thetemporal
reliability, which is the probability that no resource failure
will occur on a machine in a future time window. The failure

model integrates the two classes of failures, FRC and FCC, in
a multi-state space which is derived from the observed values
of host resource usage, that is the resource usage of all the host
processes on a machine, upon the occurrences of failures. The
prediction does not require any training phase or model fitting,
as is commonly needed in linear regression techniques. To
compute the temporal reliability on a given time window, the
parameters of the SMP are calculated from the host resource
usage during the same time window on previous days. A key
observation leading to our approach is that the daily patterns
of host users’ workloads are comparable to those in the most
recent days [23]. Deviations from these regular patterns are
accommodated in our approach by the statistic method that
calculates the SMP.

We will show how the prediction can be implemented and
utilized in a system, iShare [27], that supports FGCS. Our
implementation targets at the low computational overhead as
well as the effectiveness of the failure prediction. To evaluate
our prediction method, we monitored the host resource usage
on a collection of machines from a computer lab at Purdue
University over a period of 3 months. Host users on these
machines generated highly diverse workloads, which are suit-
able for evaluating the accuracy of our prediction approach.
The experimental results show that the prediction achieves
the accuracy above86.5% on average and above73.3% in
the worst case, which outperforms the prediction accuracy of
linear time series models [11]. The SMP-based prediction is
also efficient and robust in that, it increases the completion
time of a guest job of less than0.006% and the intensive
noise in host workloads disturbs the prediction results by less
than6%.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents the multi-state
failure model and its derivation from empirical studies. The
background and application of the semi-Markov Process are
described in Section IV. In Section V, implementation issues
of the failure prediction in iShare are discussed. Experimental
approaches and results are described in Section VI and Sec-
tion VII respectively.

II. RELATED WORK

The concept of fine-grained cycle sharing was introduced
in [29], where a strict priority scheduling system was devel-
oped and added to the OS kernel to ensure that host processes
always receive priority in accessing local resources. However,
deploying such a system involves an OS upgrade, which can
be unacceptable for resource providers. In FGCS systems,
available OS facilities (e.g.,renice) are utilized to limit guest
processes’ priority. Resource failures happen if these facilities
fail to prevent guest processes from impacting host processes
significantly. Instead of the focus on maintaining priorityof
host processes in [29], our work targets at resource failure
prediction, so that guest jobs can be scheduled proactively
with improved response times.

Related contributions include work in estimation of resource
exhaustion in software systems [33] and critical event predic-

tion [30], [31] in large-scale dedicated computing community
(clusters). In order to anticipate when a system is in dangerof
crashing due to software aging, the authors of [33] proposed
a semi-Markov reward model based on system workload and
resource usage to estimate the time of failure of a system.
However, the data they collected tend to fluctuate a great deal
from the supposed linear trends, resulting in prohibitively wide
confidence intervals. The work in [30], [31] predicted the
occurrences of general error events within a specified time
window in the future. The analysis and prediction techniques
presented in these work are not well suited for failures
occurring in FGCS, where resources are non-dedicated and
their availability change dynamically.

Emerging platforms that support Grids [12] and global net-
worked computing [8] motivated the work to provide accurate
forecasts of dynamically changing performance characteris-
tics [11], [35] of distributed compute resources. Our work
will complement the existing performance monitoring and
prediction schemes with new algorithms to predict failures
caused by resource contention and resource revocation in the
environment of fine-grained cycle sharing. In this paper, we
compare the commonly used linear time series algorithms
which are related work to our SMP-based algorithm and
show that our algorithm achieves higher prediction accuracy,
especially for long-term prediction.

There have been some research efforts in measuring and
analyzing machine availability in enterprise systems [4],[25],
or large Peer-to-Peer networks [3], [5] (where machine avail-
ability is defined as the machine being reachable for P2P ser-
vices). While these results were meaningful for the considered
application domain, they do not show how to relate machine
up-times to actual available resources that could be effectively
exploited by a guest program in cycle-sharing systems. On
the other hand, our approach integrates machine availability
into a multi-state failure model, representing different levels
of availability of compute resources.

A few other studies have been conducted on percentages
of CPU cycles available for large collections of machines in
Grid systems [19], [23], [36]. In [23], the author predicted
the amount of time-varying capacity available in a cluster of
privately owned workstations by simply averaging the amount
of available capacity over a long period. The work in [36]
applied the one-step-ahead forecasting to predict available
CPU performance on Unix time-shared systems. This approach
is applicable to short-term predictions within the order of
several minutes. By contrast, our SMP-based technique aims
at predicting over future time windows with arbitrary lengths.
The authors of [19] studied both machine and CPU availability
in a desktop Grid environment. However, they focused solely
on measuring and characterizing CPU availability during pe-
riods of machine availability. Instead, we target at predicting
the availability of both machines and their compute resources
in FGCS systems.

2

III. M ULTI -STATE RESOURCEFAILURE MODEL

A failure model that represents the two types of resource
failures, FRC and FRR, is the basis for detecting and pre-
dicting these failures. To define such a model, we study the
level of observability to detect resource failures and how the
observability can be related to a rigorous mathematical model.

FRR happen when machines are removed from the FGCS
system by the owners or fail due to hardware-software faults.
FRR can be detected by the termination of FGCS services,
such as gateway for job submission. This detection method
indicates a two-state failure model for FRR: a machine is either
available or unavailable; there are no other observable states in
between. For FRC, the failures happen when host processes
incur noticeable slowdown due to resource contention from
guest processes. Before terminating the guest processes, a
FGCS system will first decrease their priority or suspend them,
with the expectation that the impact on host processes will
disappear. These actions need to be modeled and the modeling
requires the ability to detect “noticeable slowdown” of host
processes. However, because we do not know the original
performance of host processes isolated from guest processes, it
is practically difficult to measure the slowdown. To avoid this
problem, we use observable parameters, specificallymeasured
host resource usage, as indicators for “noticeable slowdown”.

To study the connections between host resource usage and
occurrences of FRC, we conducted a set of experiments to
simulate resource contention among general guest and host
processes in FGCS. We measured the values of host resource
usage upon the occurrences of FRC. The experimental results
indicate that, based on the measured host resource usage w/ or
w/o guest processes running concurrently, it is able to detect
the occurrences of FRC. The results also identify the existence
of a set of thresholds for host resource usage, based on which
a multi-state failure model for FRC can be developed.

In this section, our empirical studies on resource contention
and the derived failure model are presented. To explain the
generality of our experiments, the section first introducesthe
resource usage patterns of typical guest applications in FGCS.

A. Resource Usages of Guest Applications in FGCS

In FGCS systems, guest applications are normally CPU-
bound batch programs, which are sequential or composed
of multiple tasks with little or no inter-task communication.
Such applications arise in many scientific and engineering
domains. Common examples include Monte-Carlo simulations
and parameter-space searches. Because these applicationsuse
files solely for input and output, file I/O operations usually
happen at the start and the end of a guest job; file transfers can
be scheduled accordingly to avoid peak I/O activities on host
systems. Therefore, CPU and memory are the major resources
contended by guest and host processes. For example, memory
thrashing happens if a guest process’s resident size exceeds the
amount of free memory on a machine. In this case, resource
failure happens and the guest process has to be terminated.

To avoid any adverse contention among multiple guest
processes, in our FGCS system, no more than one guest

process are allowed to run concurrently on the same machine.
The priority of a running guest process is minimized (using
renice) whenever it causes noticeable slowdown on the host
processes. If this does not alleviate the resource contention, the
reniced guest process is suspended. The guest process resumes
if the resource contention diminishes after a certain duration,
otherwise it is terminated. The “noticeable slowdown” in our
system is quantified by the slowdown of host processes going
above an application specific threshold (we chose a threshold
of > 5%).

B. Experiments on Resource Contention

We conducted a set of experiments by running host pro-
cesses with various resource usages together as an aggregated
host-group. We measured the slowdown of the host-group as
the reduction of its CPU utilization when a compute-intensive
guest process is running concurrently. We experimented on
CPU contention using a set of synthetic programs. Real
benchmark applications were applied to study the contention
on both CPU and memory.

Because the empirical studies are not the focus of this
paper, we only present the experimental approaches and the
observations drawn from the experiments here. We concentrate
on how our resource failure model can be derived from the
observations. Detailed experimental results are presented in a
separate paper [26].
Experiments on CPU Contention

To study the contention on CPU cycles, we created a set
of synthetic programs. To isolate the impacts of memory
contention, all the programs have very small resident sets.
The host programs haveisolated CPU usage(CPU usage of a
program when it runs alone) ranging from10% to 100%. The
guest process is a CPU-bound program. In the experiments,
these programs were ran on a 1.7 GHz Redhat Linux machine.

We measured the reduction rate ofhost CPU usage, that is
the total CPU usage of all the processes in a host-group, when
resource contention happens between a guest process (G)
and the host-group (H). We tested on host-groups containing
different numbers of host processes with isolated CPU usage
randomly distributed between10% and100%. The same host-
group settings were used when G’s priority was set to 19
(lowest) and 0 respectively while H’s priority was 0. The
measured reduction rates were plotted as a funtion of isolated
host CPU usage,LH . There is no need to experiment on host-
groups with exhaustive number of processes. This is because
that, in a time-sharing system, the chances that a guest process
can steal CPU cycles decrease when there are more host
processes running. Therefore, for host-groups with the same
LH , the reduction rate of host CPU usage decreases as the
number of processes increases.

The experimental results indicate the existence of two
thresholds,Th1 and Th2, for LH , that can be used as
indicators of noticeable slowdown of host processes.Th1 and
Th2 are the lowest values ofLH where the guest process needs
to be reniced and suspended respectively to keep the slowdown
below 5%. Because we experimented on randomly-generated

3

host-groups without relying on any specifics in OS scheduling,
we can conclude that the existence of the two thresholds are
ubiquitous. Exact values of the two thresholds may change on
OS systems with different CPU scheduling policies.

Based on the two thresholds, a 3-state failure model for
CPU contention can be derived, where the guest process is
running at default priority (S1), is running at lowest priority
(S2), or is terminated (S3). More specifically, the three states
are:

• S1: when the host CPU usage is low (LH < Th1), the
resource contention due to a guest process can be ignored
(slowdown of host processes is below5%);

• S2: when the host CPU usage is heavy (Th1 ≤ LH ≤
Th2), the guest process’s priority has to be minimized
to make the slowdown of host processes unnoticeable (≤
5%);

• S3: when the host workload is higher thanTh2, any
running guest process (with default or lowest priority)
has to be paused or terminated to relieve the resource
contention.

Note that, under the first two states,LH is approximately the
same as themeasuredhost CPU usage when a guest process
running concurrently. Therefore, it is able to decide when a
guest job is to be reniced or terminated by simply monitoring
if the host CPU usage exceedsTh1 or Th2.

In practical FGCS systems, resource contention can be
controlled in different ways. The two alternatives are, grad-
ually decreasing the guest priority from0 to 19 under heavy
host workload, or minimizing the guest priority whenever
it starts [8]. In the first alternative,S2 is divided into fine-
grained states indicating different guest priorities. Relating to
the second alternative,S1 and S2 would be combined into
one state. We have done a set of experiments to test if these
two alternatives deliver a better model of CPU availability
than the 3-state model discussed above. The details of the
experiment settings and results are presented in [26]. From
these results, we arrived at the conclusion that, gradually
decreasing the guest priority introduces redundant states, while
always taking the lowest guest priority slows down the guest
process unnecessarily under light host workload (LH < Th1).
The fine-grained states introduced by the first alternative are
redundant, because they are basically the same asS2 in terms
of the CPU availability for guest processes. These experiments
further prove that the choice for the three states is not arbitrary.
The 3-state model reflects the levels of CPU availability accu-
rately without adding redundant resource states or conservative
restriction on guest processes.
Experiments on CPU and Memory Contention

To test the more complicated resource contention on both
CPU and memory, we experimented with a set of real ap-
plications. For guest processes, we chose four applications
from the SPEC CPU2000 benchmark suite [17]. All of the
four applications are CPU-bound. Their working set sizes rang
from 29 Mb to 193 Mb, which represent the range of memory
usages of typical scientific and engineering applications.To

simulate the behaviors of actual interactive host users on text-
based terminals, we used the Musbus interactive Unix bench-
mark suite [22] to create various host workloads. The created
workloads contain host processes for simulating interactive
editing, Unix command line utilities, and compiler invocations.
We varied the size of the file being edited and compiled by
the “host users” and created six host workloads with different
usages of memory and CPU.

We ran a guest process concurrently with each host work-
load on a Solaris Unix machine with384 Mb physical memory.
For each set of processes, we measured the reduction of the
host CPU usage caused by the guest process, when the guest
process’s priority was set to 0 and19 respectively.

Two observations can be derived from the experimental
results. First, memory thrashing happens when the total work-
ing set size of the guest and host processes exceeds the free
physical memory of the machine. The reason for the thrashing
is that one process has page faults that require another process
pages to be flushed to disk. Changing CPU priority does
little to prevent thrashing when two processes desire more
memory than the system has. Therefore the host processes
make little progress no matter what priority the guest process
takes. Second, the occurrences of the failures due to memory
contention are orthogonal to the host CPU usage. On the
other hand, when there is sufficient memory in the system,
the occurrences of resource failures caused by CPU contention
solely depend on the host CPU usage. Therefore, the impact of
host memory usage can be ignored whenever there is enough
free memory to hold a guest process. In this scenario, the two
thresholds,Th1 and Th2, can still be used to evaluate CPU
contention.

In conclusion, the memory contention and CPU contention
can be isolated in detecting FRC. The 3-state model for
CPU contention can be extended by adding a new failure
state,S4, for memory thrashing. The 4-state model represents
the different levels of resource availability due to resource
contention in FGCS.

C. Multi-State Failure Model

The resource states relating to FRR and FRC are combined
to give a five state system presented in Figure 1. In Figure 1,S3

indicates the situation where the host CPU usage has exceeded
Th2 for a duration (1 minute in our experiments) and the guest
process has to be migrated off.S4 presents resource failures
caused by memory threshing, where the guest process needs
to be terminated immediately.S5 is for all the failures caused
by resource revocation where resource immediately become
offline. The proposed prediction algorithm is to predict the
probability that a machine will never transfer toS3, S4, or S5

within a future time window.
The transitions amongS1, S2, and S3 are decided by the

measured host CPU usage. The corresponding thresholds (Th1

andTh2) are different on arbitrary OS systems. In our FGCS
testbed, consisting of Linux systems,Th1 and Th2 are 20%
and60% respectively. Transitions toS4 happen when the free
memory size is less than the working set size of a guest

4

S 3
S 1 S 2S 4 S 1 : F u l l r e s o u r c e a v a i l a b i l i t y f o r g u e s tp r o c e s sS 2 : R e s o u r c e a v a i l a b i l i t y f o r g u e s tp r o c e s s w i t h l o w e s t p r i o r i t yS 3 : C P U u n a v a i l a b i l i t yS 4 : M e m o r y t h r a s h i n gS 5 : M a c h i n e u n a v a i l a b i l i t y

S 5
Fig. 1. Multi state system for resource failures in FGCS. Thearrows present
state transitions.S3 and S4 are for failures caused by resource contention.
S5 is for failures caused by resource revocation.

process. Note that, statesS3, S4, andS5 are all unrecoverable
failure states for guest processes. Even if the CPU usage or
the memory usage of host processes drops significantly or the
host is reintegrated into the system, the guest process is already
killed or migrated off and no state is left on the host.

IV. SEMI-MARKOV PROCESSMODEL

In the multi-state failure model presented above, transitions
between the states fit a semi-Markov Process (SMP) model,
where the next transition only depends on the current state
and how long the system has stayed at this state. In essence,
the SMP model quantifies the dynamic structure of the states
for resource availability. More importantly, for our objective,
it enables the efficient prediction of temporal reliability. This
section presents the background on SMP and how a SMP is
applied for the resource failure prediction based on the failure
model in Figure 1.

A. Background on Semi-Markov Process Models

Semi-Markov Process models are probabilistic models use-
ful in analyzing dynamic systems [1]. A semi-Markov Process
(SMP) extends Markov process models to time-dependent
stochastic behaviors [21]. An SMP is similar to a Markov
process except that its transition probabilities depend onthe
amount of time elapsed since the last change in the state. More
formally, an SMP can be defined by a tuple, (S, Q, H), where
S is a finite set of states,Q is the state transition matrix, and
H is the holding time mass function matrix.

Qi(j) = Pr{the process that has enteredSi will enter
Sj on its next transition};

Hi,j(m) = Pr{the process that has enteredSi remains at
Si for m time units before the next transition
to Sj}

(1)
The most important statistics of the SMP are the interval

transition probabilities,P .

Pi,j(t1, t2) = Pr{S(t2) = j|S(t1) = i} (2)

To calculate the interval transition probabilities for a
continuous-time SMP, a set of backward Kolmogorov inte-
gral equations [21] are developed. Basic approaches to solve

these equation include numerical methods [9] and phase
approximation [21]. Numerical methods solve the Kolmogorov
integration equations with particular mathematical techniques,
such as Laplace-transform inversion. Phase approximationfits
the holding time distribution to commonly used distribution
functions, such as a Weibull or a Log-normal distribution.
While these solutions are able to achieve accurate results in
certain situations, they are not applicable to general SMP
models and the worst performance may be affected adversely
if an SMP can go through exponentially many transitions for
a specific time interval [9]. In real applications [1], a discrete-
time SMP model is often utilized to achieve simplification and
general applicability under dynamic system behaviors. This
simplification delivers high computational efficiency at the cost
of potentially low accuracy. We argue that the loss of accuracy
can be compensated by tuning the time unit of discrete time
intervals to adapt to the system dynamism.

In this paper, we develop a discrete-time SMP model,
as described in Equation 3. In our design, the time unit
of discretization can be adjusted adaptively based on the
temporal characteristics of resource state variation. Details for
the adaptive approach are discussed in Section V.

B. Semi-Markov Process Model for Resource Availability

This section discusses how the SMP model can be applied
to the failure model presented in Figure 1. The goal of the
SMP model is to compute a machine’s temporal reliability,
TR, which is the probability of never transferring toS3, S4,
or S5 within an arbitrary time window,W , given the initial
system state,Sinit. The time windowW is specified by a
start time,Winit, and a length,T . Equation 3 presents how
to computeTR by solving the equations in terms ofQ and
H. The derivation of the equation can be found in [1]. In
Equation 3,Pi,j(m) is equal toPi,j(Winit, Winit+m), P 1

i,k(l)
is the interval transition probabilities for a one-step transition,
andd is the time unit of a discretization interval.δij is 1 when
i = j and 0 otherwise.

TR(W) = 1 −

3∑

j=1

Pinit,j(T/d)

Pi,j(m) =
m∑

l=0

∑

k∈S

P 1

i,k(l) × Pk,j(m − l)

=
m−1∑

l=1

∑

k∈S

Hi,k(l) × Qi(k) × Pk,j(m − l)

Pi,j(0) = δij j = 3, 4, 5
i = 1, 2, 3, 4, 5

(3)
The matricesQ andH are essential for solving Equation 3.

In our design, these two parameters are calculated via the
statistics on history logs collected by monitoring the hostre-
source usage on a machine. The details on resource monitoring
are explained in Section V. To computeQ and H within
an arbitrary time window on a weekday (a weekend), we
derive the statistics from the data within the corresponding

5

time windows of the most recentN weekdays (weekends).
The rationale behind this is the observation that the daily load
patterns are comparable over the corresponding time windows
over a weekday (a weekend) [23].

V. SYSTEM DESIGN AND IMPLEMENTATION

The proposed prediction approach is implemented within an
Internet-sharing system callediShare [15], [27]. iShare is an
open environment for sharing both HPC resources from the
Grid community, such as the TeraGrid facility [6], and idle
compute cycles available from any Internet-connected host.
This section introduces the fine-grained cycle sharing in iShare
and shows how the resource failure prediction is implemented
and utilized in the system.

A. Fine-Grained Cycle Sharing in iShare

In iShare, a Peer-to-Peer (P2P) network is employed for
resource dissemination among providers and consumers of
resources [28]. The cycle-sharing happens when resource
consumers submit guest jobs to the machines published and
owned by the resource providers. Existing techniques can be
utilized to estimate the execution time [18] and the memory
usage [14] of the job. A job scheduler would usea priori
knowledge of the estimated characteristics of the guest job
and its arrival time to fit to our temporal reliability prediction.
The predicted result can be used by the scheduler to select the
machines with relatively high availability or to manage thejob
adaptively during its execution.

i S h a r eG a t e w a yC l i e n t S t a t eM a n a g e rG u e s tP r o c e s s R e s o u r c eM o n i t o r H o s t n o d e
Fig. 2. The system framework of resource failure prediction in iShare. The
four circles on host node depict processes created on the host. The arrows
among them are for inter-process communication with Unix domainsockets.

Figure 2 shows the framework of resource failure prediction
in iShare. TheHost Nodeand theClient show examples of
a provider and a consumer respectively. The prediction is
invoked on the host node upon a request of job submission
from the client. There are four entities on the host node,
an iShare Gatewayfor communicating with remote clients
and controlling local guest processes; aResource Monitor
for monitoring host resource usage, i.e., the total CPU usage
and memory usage of host processes; aState Managerfor
storing history logs and predicting resource failures; anda
guest process launched for a job submitted by the client. The
first three entities exist on each host machine as daemons.
They are started automatically when the providers turn on the

iShare software to enable resource contribution. Therefore, the
termination of the daemons indicates resource revocation and
can be utilized for detecting FRR.

Upon the request of a job submission on a client, the client’s
job scheduler queries the gateways on the available machines
for their temporary reliability and decides on which machine(s)
the job would be executed. If a machine is selected, a guest
process is launched on the machine and the corresponding
resource monitor is notified of the new process id. During
the job execution, the monitor detects any state transitionand
signals the gateway of a new transition. The gateway then
renices or kills the guest process accordingly, when transition
to stateS2, S3 or S4 is detected. Checkpointing can also be
used to migrate the guest process off the machine if resource
failure happens.

There are two main design challenges to implement the
framework shown in Figure 2. First, the resource monitor
needs to be non-intrusive to the host machine where the
monitoring takes place periodically. Second, because resource
failure prediction happens in the critical path upon the request
of a job submission, the computational cost of the prediction
must be negligible. Our solutions to the two challenges are
described in the next two sections.

B. Non-intrusive Resource Monitoring

As discussed in Section III, state transitions amongS1, S2

andS3 can be detected by monitoring the total CPU load of
all the host processes on a machine; transitions toS4 can be
detected by monitoring the free memory size on the machine.
The resource monitor shown in Figure 2 uses system utilities
such asvmstatandprstaton Unix andtop on Linux, which are
light-weight operations in most OS implementations, including
Redhat Linux that we used for our experiments. The monitor-
ing period can be set dynamically based on the frequency of
the change of resource usage level by the host processes. The
dynamic setting is done using an exponential increase in the
period. Starting from a period (pd) of 1 sec, the period is
doubled if for a threshold amount of time, no state change
happens within the periodpd. Once the monitoring period has
stabilized, the reasoning is that no state change happens within
a monitoring interval. However, random sampling is also done
outside of the regular monitoring period to determine if the
period has to be decreased.

To monitor the occurrences of resource revocation (tran-
sitions to S5), the timestamp of the most recent load
measurement,tmonitor, is recorded in a special log file. This
timestamp is updated when the periodic resource monitoring
occurs. To detect if machine unavailability has happened,
the monitor compares the current timestamp with the saved
tmonitor at each periodic monitoring. If the gap between the
two timestamps exceeds a threshold, it indicates that the re-
source monitor, and by implication the iShare system, had been
turned off on the monitored machine (due to either system
crash or machine owner’s intentional leave). This procedure
forms an easy-to-use and accurate means of detecting the event
indicating machine unavailability. It is a simple solutionto

6

the important problem of avoiding the need for administrator
privileges in accessing system logs that indicate shutdownand
restart of the machine. It is also more efficient and scalable
compared to other techniques [3], [5], where a centralized unit
is needed to probe all the nodes in a networked system.

C. Minimum Computation in Solving SMP

In our design, the matrix sparsity in the SMP model is
exploited to minimize the computational cost of the resource
failure prediction. Figure 3 describes the sparsity of the
matricesQ, H and P in Equation 3. In this figure, all the
blank cells are for zero values. The sparsity relies on two
facts — it takes a finite amount of time to transition from one
state to another, and statesS3, S4 and S5 are unrecoverable
failure states.

X

 S1 S2 S3 S4 S5

 S1

 S2

 S3

 S4

 S5

X X

X X X

1

1

1

1

1

1

X

X X X X

X X X

Q and H(m), m > 0

 H(0) = 0

 P(0) P(m), m > 0

X

X

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1

X

X

Fig. 3. The sparse pattern ofQ, H andP . The blank cells are for elements
whose values are zero. Non-zero elements are labeled with a X (arbitrary
values) or 1 (the value is 1).

With the sparsity shown in Figure 3,Q andH(m) can be
stored as an 8-element vector rather than a 5 by 5 matrix.
As shown in Equation 3, the value ofTR is decided by the
summation ofPinit,3(T/d), Pinit,4(T/d) and Pinit,5(T/d),
where the value ofinit is either1 or 2. Equation 4 shows the
minimum computation needed to solve the three probabilities
by exploring the sparsity ofQ and H. This equation shows
that only six elements inP (m) are required:P1,3, P1,4, P1,5,
P2,3, P2,4, and P2,5. In this way, the computational cost in
each recursive step is decreased3.125 (25 divided by 6) times
compared to the original SMP model. The total number of
recursive steps isT/d − 1, decided by both the length of the
time window,T , and the discretization interval,d. In this work,
we choose the discretization interval the same as the period
of resource usage monitoring. The computational overhead of
the optimized prediction algorithm is presented in SectionVII,
which proves the effectiveness of the minimum computation
in solving SMP.

P1,j(T/d) =
T/d∑

l=0

∑

k∈S

H1,k(l) × Q1(k) × Pk,j(T/d − l)

=
T/d−1∑

l=1

[H1,2(l) × Q1(2) × P2,j(T/d − l)

+H1,j(l) × Q1(j)] + H1,j(T/d) × Q1(j)

P2,j(T/d) =
T/d∑

l=0

∑

k∈S

H2,k(l) × Q2(k) × Pk,j(T/d − l)

=
T/d−1∑

l=1

[H2,1(l) × Q2(1) × P1,j(T/d − l)

+H2,j(l) × Q2(j)] + H2,j(T/d) × Q2(j)
j = 3, 4, 5

(4)

VI. EXPERIMENTAL APPROACH

We have developed a prototype of the system as described
in Section V. This section presents the experimental approach
for measuring the system.

A. Experimental Testbed

All of our experiments were conducted on a testbed for
FGCS. The testbed contains a collect of 1.7 GHz Redhat Linux
machines in a computer lab at Purdue University. Because
our approach predicts the resource failures happened on an
individual machine by exploring host resource usage from the
recent history, the variety of host workloads rather than the
scale of the testbed will affect the experimental results. In our
testbed, the host users are students from different disciplines.
They used the machines for various tasks, e.g., checking
emails, editing files, and compiling and testing class projects,
which created host workloads with totally different resource
usage patterns. Therefore, our testbed provides highly variable
host workloads, which are appropriate to test our prediction
algorithm comprehensively.

On each tested machine, processes launched via the iShare
gateway are guest processes, and all the other processes are
viewed as host processes. The resource contention between
these two types of processes leads to the FRC as described in
Section I. Resource revocation happens when the user with
access to a machine’s console does not wish to share the
machine with remote users, and simply reboots the machine.
Therefore, the resource sharing between iShare users and
other host users on the testbed reflects the resource failure
model presented in Section III. We installed our system and
started a resource monitor on each machine in the testbed.
The resource monitoring was performed every 6 seconds and
instantaneous resource usage (usage since the last monitoring)
were measured. The host resource usage on these machines
were traced for 3 months.

We did three sets of experiments. First, we measured
the overhead of the resource monitoring and the prediction
algorithm. Second, we tested the accuracy of our prediction
algorithm by dividing the trace data for each machine into a

7

training and a test data set. The prediction was run on the
training set and the results were compared with the observed
values from the test set to evaluate the accuracy of the
prediction. The prediction accuracy was also compared with
that of a suite of linear time series models discussed in the
next section. Finally, to test the robustness of our prediction
algorithm, we inserted noise randomly into a training set
and measured the difference between the prediction results
by using the infected training set and those by using the
original training set. All the experiment results are presented
and analyzed in Section VII.

B. Comparative Algorithm: Linear Time Series Models

A number of time-series and belief-network algorithms [31]
appear in the literature for prediction in continuous CPU load
or discrete events. After studying various algorithms, we chose
linear time series models to compare with our SMP-based
prediction algorithm. Other existing algorithms are not well
suited for use in the prediction of resource failures in FGCS.
One example is the Rule-based Classification algorithm [31],
which only provides the conditional probability of an event
occurring, given the observation of other events. Meanwhile,
time series models have been successfully applied in various
areas, including host load prediction [11] and prediction of
throughput in wireless data networks [7].

Linear time series models have been used for predicting
CPU load in Grids [11]. The algorithms can predict for future
observations from a sequence of previous measurements. Both
the measured values and the predicted values have to be
changing with roughly a fixed periodicity. In our experiments,
we used time series models to predict the state transitions in
a future time window based on the samples from the previous
time window of the same length. The prediction accuracy
is determined by the difference of the observedTR on the
predicted and the measured state transitions.

We used a set of linear time series models implemented in
the RPS toolkit [10]. The models are described in Table I. We
took the same parameters for these models as used in RPS. In
our experiments, we focused on the prediction accuracy of the
time series models and compared with that of our SMP-based
prediction.

VII. E XPERIMENTAL RESULTS

This section presents the experimental results on evaluating
the efficiency, accuracy and robustness of our prediction
method. The “resource failures” mentioned in this section refer
to both classes of failures, FRC and FRR.

A. Efficiency of Resource Failure Prediction

The overhead of the proposed resource failure prediction
includes the computational cost caused by both the resource
monitoring and the SMP computation. With a period of 6
seconds, the resource monitoring consumed less than 1%
CPU and 1% memory on each tested machine in our testbed.
Therefore, our resource monitoring is non-intrusive to the
tested host system. To measure the computational overhead of

the prediction, we measured the wall clock time of the resource
failure prediction for time windows with different lengths. In
Figure 4, the computation time of calculatingQ and H and
the whole prediction algorithm (including the computationfor
Q, H andTR) is plotted as a function of time window length.
Recall that the prediction is to predict the probability that no
failures will happen during a given time window. As expected,
the prediction over a larger time window takes longer because
of the more recursive steps needed. The total computation time
follows a superlinear function (with exponent of1.85) of the
number of recursive steps. For the time window of10 hours
(the last point on thex-axis), the computation time forQ and
H is 29.35 millisecond and the total computation time is about
2.1 seconds. This gives the stated overhead of0.006% for the
average guest process execution time of 10 hours. We can
conclude that our prediction algorithm is efficient and causes
negligible overhead on the completion time of typical guest
jobs in FGCS systems. Note that these jobs are typically large
programs with completion time of the order of at least tens of
minutes.

05 0 01 0 0 01 5 0 02 0 0 02 5 0 0
0 1 2 3 4 5 6 7 8 9 1 0T i m e w i n d o w l e n g t h (h r)T ot al comput ati onti me (ms) 5 1 01 52 02 53 0

Q andH comput ati on ti me(ms)T o t a l c o m p u t a t i o n t i m eQ a n d H c o m p u t a t i o n t i m e

Fig. 4. Computation time of resource failure prediction for time windows
with different lengths. The prediction is to predict the probability that no
failures will happen during a given time window.

B. Accuracy of Resource Failure Prediction

To test the accuracy of our prediction algorithm, we created
a training and a test data set for each machine by dividing
its trace data into two equal parts and choosing the first half
as the training set. The parameters of the SMP model were
calculated by statistics of the training data set and were then
used to predict theTR for different time windows in the test
data set. The actual observations from the test data set were
used to calculate theempirical TR. The predicted TR and
the empirical TR were used to compute the relative error as
abs(TRpredicted − TRempirical)/TRempirical. Figure 5 plots
the relative errors of our prediction algorithm. The curve
shows the average errors of predictions on time windows with
different lengths, and the bars at each point show the related
minimum and maximum errors. To collect the average errors
for predictions over time windows of the same length, we
experimented with different start time ranging from 0:00 to
23:00 on different machines, in steps of 1 hour. As shown
in Figure 5, the relative prediction error increases with the
time window length. The reason is thatTR gets close to0 for
large time windows leading to possibly large relative errors.

8

Prediction on small time windows performs slightly worse on
weekends than on weekdays, which can be explained by the
smaller training size used for prediction on weekends. The
prediction achieves accuracy higher than73.38% in the worst
case (maximum prediction error for time windows with length
of 10 hours on weekdays). The average prediction accuracy
is higher than86.5% (average prediction accuracy for time
windows with length of 10 hours on weekends) for all the
studied time windows in Figure 5.

051 01 52 02 53 03 54 0
1 2 3 4 5 6 7 8 9 1 0W i n d o w l e n g t h (H r)R el ati veerrorof predi ct ed TR(%) A v e r a g e

(a) P r e d i c t i o n o n w e e k d a y s
051 01 52 02 53 03 54 0

1 2 3 4 5 6 7 8 9 1 0W i n d o w l e n g t h (H r)R el ati veerrorof predi ct ed TR(%) A v e r a g e
(b) P r e d i c t i o n o n w e e k e n d s

Fig. 5. Relative errors of predictedTR. Each point plots the average error
of predictions over24 time windows with different start time ranging from
0:00 to 23:00, in steps of 1 hour. The bars on each point show the related
minimum and maximum prediction errors.

We also conducted a set of experiments to analyze the
sensitivity of the prediction accuracy to the size of training
sets. Intuitively, the prediction with larger training sets should
perform better than that using smaller training sets. However,
a large training set may include “older” data, which may bias
the most recent pattern of host resource usage on the studied
machine. We are interested in finding out if there exists a
best choice of training size and what factors constitute such a
choice.

Toward these goals, we divided all the trace data for
weekdays into training and test sets with different size ratios.
On each setting of the data, we ran the prediction over the
same240 time windows used for the experiment in Figure 5
and measured the relative prediction errors which are plotted in
Figure 6. “Max-average error” is measured by first averaging
over prediction errors for the time windows of the same
length and then taking the maximum of all the average values.
The prediction achieves the best accuracy (max-average error
≤ 7.96% and maximum error≤ 22.71%), when the ratio
of training to test data sizes is 6:4. This observation can be
used to decide the size of the history data to be used for the
prediction given the test set. We argue that the observation

is useful for the prediction on machines with highly diverse
host workloads, which are similar to those in our testbed.
For machines with relatively static host workloads, predictions
using training data sets of different sizes tend to achieve close
results.

01 02 03 04 05 06 07 0
1 : 9 2 : 8 3 : 7 4 : 6 5 : 5 6 : 4 7 : 3 8 : 2 9 : 1R a t i o o f t h e t r a i n i n g a n d t e s t d a t a s i z e (t r a i n i n g _ s i z e : t e s t _ s i z e)R el ati veerrorof predi ct ed TR(%)

M a x ¡ a v e r a g e e r r o r o v e r 2 4 0 t i m e w i n d o w sM a x i m u m e r r o r o v e r 2 4 0 t i m e w i n d o w s

Fig. 6. Relative prediction errors with different ratios oftraining and test
data sizes for weekdays

Comparison with Linear Time Series Models
To compare with our prediction algorithm, we applied

linear time series algorithms to predict temporal reliability
and measured their prediction accuracy. The tested time series
models are shown in Table I. They can be obtained from the
RPS toolkit implementation [10]. Figure 7 shows comparisons
of various time series models and our prediction algorithm
(SMP) in terms of prediction accuracy. As a representative
case, we present the relative errors of the predictions overtime
windows starting at 8:00 am on weekdays. In this experiment,
we used the training and test set with equal size.

TABLE I

L INEAR TIME SERIESMODELS

Model Description
AR(p) Purely autoregressive models withp coefficients
BM(p) Mean over the previousN values (N ≤ p)
MA(p) Moving average models withp coefficients
ARMA(p, q) Autoregressive moving average models with

p + q coefficients
LAST Last measured value

0 %2 5 %5 0 %7 5 %1 0 0 %1 2 5 %1 5 0 %1 7 5 %2 0 0 %2 2 5 %2 5 0 %
1 3 5 7 9T i m e w i n d o w l e n g t h (h r)R el ati veerrorof predi ct ed TR S M PA R (8)B M (8)M A (8)A R M A (8 , 8)L A S T

Fig. 7. Maximum prediction errors of different algorithms over time windows
starting at 8:00 am on weekdays.

From the results in Figure 7, we made the following
observations. (1) Based on the relative prediction errors for

9

the time windows studied, our SMP-based algorithm performs
better than all of the 5 time series models. (2) Linear time
series models are more adept at short-term prediction. Thisis
because these models use multiple-step-ahead for predicting
on large time windows and the prediction error increases with
the number of steps lookahead. In conclusion, our resource
failure prediction algorithm achieves higher accuracy than all
the 5 linear time series models, especially for predictionson
large time windows.

C. Robustness of Resource Failure Prediction

To study the robustness of our prediction algorithm, we
injected different amounts of noise into the training data set
and measured its impact on the prediction results. To inject
one instance of noise, we manually inserted one occurrence
of resource failure around 8:00am (when failure is very rare
due to low resource utilization) to a training log of a weekday
in the trace data collected on a machine in the testbed. The
holding time of the added failure state was chosen randomly
between 60 and 1800 seconds. The choice of log into which
to inject the noise does not affect the prediction results; we
randomly picked one log file for all the noise studies. With
an arbitrary amount of noise, we measured theprediction dis-
crepancyby comparing the prediction results with the original
predicted values without noise injection. Experimental results
are presented in Figure 8. The prediction discrepancy bars
for large time windows (T = 5, 10 hrs) are often negligible
compared to the values associated with small time windows.
Hence some of the bars do not show up in the figure.

0 %1 0 %2 0 %3 0 %4 0 %5 0 %6 0 %7 0 %8 0 %9 0 %1 0 0 %
1 2 3 4 5 6 7 8 9 1 0N u m b e r o f i n j e c t e d n o i s e sP redi cti ondi screpancy T = 1 h rT = 2 h rT = 3 h rT = 5 h rT = 1 0 h r

1 . 0 3 6 1 . 1 6 1 1 . 2 8 6

Fig. 8. Prediction discrepancy with different amounts of noise injected to
a training log for weekdays.T is the length of the future time window for
the prediction. Prediction discrepancy is the relative difference between the
prediction results by using the training data with noise injection and those by
using the original training set.

Figure 8 shows that predictions on smaller time windows
are more sensitive to noise. As shown by the bars for “T =
1 hr”, 4 instances of noise lead to a prediction discrepancy
of more than50%. On the other hand, for the time windows
larger than 2 hrs, 10 instances of noise cause less than5.56%
(the bar for “T = 3 hr”) prediction discrepancy. The reason
behind this observation is that the negative impact of noiseon
large time windows is alleviated by taking more history datain
the prediction. Recall that our prediction utilizes history data

within the corresponding time window (with the same start
time and length) for predicting on a future time window.

In a practical FGCS system such as iShare, most guest jobs
are either small test programs taking less than half an hour,
or large computational jobs taking several hours. For small
test programs, they can be restarted upon the occurrences
of resource failures without causing significant delay in job
response time. For large jobs taking more than 2 hours,
intensive noise (10 amounts of noise within 1 hour) causes less
than6% disturbance in our prediction algorithm. Therefore we
can conclude that our prediction algorithm is robust enough
for application in practical fine-grained cycle sharing systems.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we developed a multi-state model to represent
the characteristics of resource failures in FGCS systems.
We applied a semi-Markov Process (SMP) to predict the
probability that no resource failure will happen in a futuretime
window, based on the host resource usage history. The SMP-
based prediction was implemented and tested in the iShare
Internet sharing system. Experimental results show that the
prediction algorithm adds less than 0.006% overhead to a
guest job and the prediction accuracy is higher than86.5% on
average. The effectiveness of the prediction in accomodating
the deviations of host workloads was also tested, and the
results show that the impact of the deviations on our prediction
is negligible. These results in total verify that our resource
failure prediction is efficient, accurate and robust.

In future work, we study factors in the data set that further
improve the prediction accuracy. A candidate is information
of the specific day of the weekday or weekend. This would
involve a longer period of monitoring and data collection. An
immediate task is to integrate our prediction framework with a
proactive job scheduler in the iShare Internet sharing system.

REFERENCES

[1] Y. Altinok and D. Kolcak. An application of the semi-markovmodel for
earthquake occurrences in north anatolia, turkey.Journal of the Balkan
Geophysical Society, 2(4):90–99, 1999.

[2] B. Armstrong and R. Eigenmann. A methodology for scientific bench-
marking with large-scale application.Performance Evaluation and
Benchmarking with Realistic Applications, pages 109–127, 2001.

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a
serverless distributed file system deployed on an existing set of desktop
pcs. InACM SIGMETRICS Performance Evaluation Review, pages 34–
43, June 2000.

[4] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for predicting
machine availability in desktop grid and peer-to-peer systems. In
CCGrid’04, pages 190–199, April 2004.

[5] F. E. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and
its role in p2p protocols. InInternational Workshop on Web Content
Caching and Distribution ’03, September 2003.

[6] Charlie Catlett. The philosophy of TeraGrid: Building an open, exten-
sible, distributed terascale facility. InProc. CCGRID, 2002.

[7] L. Cheng and I. Marsic. Modeling and prediction of session throughput
of constant bit rate streams in wireless data networks. InWCNC’03,
March 2003.

[8] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and
performance of an enterprise desktop grid system.Journal of Parallel
and Distributed Computing, 63(5):597–610, 2003.

[9] G. Ciardo, R. Marie, B. Sericola, and K. S. Trivedi. Performability
analysis using semi-markov reward processes.IEEE Trans. Comput.,
C-39(10):1251–1264, 1990.

10

[10] P. Dinda and D. O’Hallaron. An extensible toolkit for resource prediction
in distributed systems. Technical Report CMU-CS-99-138, School of
Computer Science, Carnegie Mellon University, July 1999.

[11] P. A. Dinda and D. R. O’Halaron. An evaluation of linear models for
host load prediction. InHPDC’99, page 10, August 1999.

[12] I. Foster and C. Lesselmann. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11:115–128, 1997.

[13] W. Gentzsh. Sun Grid Engine: towards creating a compute power grid.
In Int. Symposium on Cluster Computing and the Grid, 2001.

[14] M. Hofmann and S. Jost. Static prediction of heap space usage for first-
order functional programs. InProc. of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 185–197,
2003.

[15] http://peak.ecn.purdue.edu/ParaMount/iShare/. The ishare project.
[16] http://setiathome.ssl.berkeley.edu/. SETI@home: Search for extraterres-

trial intelligence at home.
[17] http://www.spec.org/osg/cpu2000. Spec cpu2000 benchmark.
[18] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive application-

performance modeling in a computational grid environment. InProc.
HPDC, pages 47–54, 1999.

[19] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A. Chien.
Characterizing and evaluating desktop grids: An empirical study. In
IPDPS’04, April 2004.

[20] D. Long, A. Muri, and R. Golding. A longitudinal survey of internet
host reliability. In 14th Symposium on Reliable Distributed Systems,
pages 2–9, September 1995.

[21] M. Malhotra and A. Reibman. Selecting and implementing phase
approximations for semi-markov models.Commun. Statist. -Stochastic
Models, 9(4):473–506, 1993.

[22] K.J. McDonell. Taking performance evaluation out of the’stone age’.
In Proc. Summer USENIX Conference, pages 8–12, 1987.

[23] M. W. Mutka. Estimating capacity for sharing in a privately owned
workstation environment. IEEE Trans. On Software Engineering,
18(4):319–328, 1992.

[24] A. J. Oliner, R.K. Sahoo, J.E. Moreira, M. Gupta, and A. Sivasubra-
maniam. Fault-aware job scheduling for bluegene/l systems. InIPDPS
’04, pages 64–73, April 2004.

[25] J. Plank and W. Elwasif. Experimental assessment of workstation
failures and their impact on checkpointing systems. In28th International
Symposium on Fault-Tolerant Computing, pages 48–57, June 1998.

[26] X. Ren and R. Eigenmann. An empirical study of resource behavior in
fine-grained cycle sharing systems. Technical Report ECE-HPCLab-
05202, High-Performance Computing Lab, ECE, Purdue University,
December 2005.

[27] X. Ren and R. Eigenmann. ishare - open internet sharing built on p2p
and web. InEuropean Grid Conference, pages 1117–1127, February
2005.

[28] X. Ren, Z. Pan, R. Eigenmann, and Y. Charlie Hu. Decentralized and
hierarchical discovery of software applications in the ishare internet
sharing system. InProc. PDCS, 2004.

[29] K. D. Ryu and J. Hollingsworth. Resource policing to support fine-
grain cycle stealing in networks of workstations.IEEE Transactions on
Parallel and Distributed Systems, 15(9):878–891, 2004.

[30] R.K. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma, et al. Providing
persistent and consistent resources through event log analysis and
predictions for large-scale computing systems. InWorkshop on Self-
Healing, Adaptive, and Self-Managed Systems, June 2002.

[31] R.K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, et al. Critical event
prediction for proactive management in large-scale computingclusters.
In Proceedings of the ACM SIGKDD, pages 426–435, August 2003.

[32] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in prac-
tice: The condor experience.Concurrency - Practice and Experience,
17(2-4), 2004.

[33] K. Trivedi and K. Vaidyanathan. A measurement-based modelfor
estimation of resource exhaustion in operational software systems. In
Proceedings of the 10th International Symposium on Software Reliability
Engineering, pages 84–93, November 1999.

[34] R. Wolski. Experiences with predicting resource performance on-
line in computational grid settings.ACM SIGMETRICS Performance
Evaluation Review, 30(4):41–49, 2003.

[35] R. Wolski, N. Spring, and J. Hayes. The network weather service: A
distributed resource performance forecasting service for metacomputing.

Journal of Future Generation Computing Systems, 15(5-6):757–768,
1999.

[36] R. Wolski, N. Spring, and J. Hayes. Predicting the cpu availability of
time-shared unix systems on the computational grid.Cluster Computing,
3(4):293–301, 2000.

[37] Y. Y. Zhang, M.S. Squillante, A. Sivasubramaniam, and R. K. Sahoo.
Performance implications of failures in large-scale cluster scheduling.
In 10th Workshop on Job Scheduling Strategies for Parallel Processing,
June 2004.

11

