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Abstract 
 

For dependability outages in distributed internet 
infrastructures, it is often not enough to detect a 
failure, but it is also required to diagnose it, i.e., to 
identify its source. Complex applications deployed in 
multi-tier environments make diagnosis challenging 
because of fast error propagation, black-box 
applications, high diagnosis delay, the amount of states 
that can be maintained, and imperfect diagnostic tests. 
Here, we propose a probabilistic diagnosis model for 
arbitrary failures in components of a distributed 
application. The monitoring system (the Monitor) 
passively observes the message exchanges between the 
components and, at runtime, performs a probabilistic 
diagnosis of the component that was the root cause of 
a failure. We demonstrate the approach by applying it 
to the Pet Store J2EE application, and we compare it 
with Pinpoint by quantifying latency and accuracy in 
both systems. The Monitor outperforms Pinpoint by 
achieving comparably accurate diagnosis with higher 
precision in shorter time. 

 

1. Introduction 
The connected society of today has come to rely 

heavily on distributed computer infrastructure, be it an 
ATM network, or the distributed multi-tier applications 
behind e-commerce sites. The consequences of 
downtime of distributed systems may be catastrophic. 
They range from customer dissatisfaction to financial 
losses to loss of human lives [1][2]. There is an 
increased reliance on Internet services supported by 
multi-tier applications where the typical three tiers are 
the web, middleware and database tier. In distributed 
systems, especially multi-tier applications, the fault in 
a component may manifest itself as an error, and then 
propagate to multiple services through the normal 
communication between the services. The error may 
remain undetected for an arbitrary length of time 
causing long error propagation chains. The error can 
propagate from one component to another and finally 

manifest itself as a failure. The failure might be 
detected at a component distant from the originally 
faulty component. The availability of a system can be 
quantified as MTTF/(MTTF+MTTR) (MTTF: Mean 
time to failure, MTTR: Mean time to recovery). There 
is enormous effort in the fault tolerance community to 
increase the reliability of components in a distributed 
system, thus increasing MTTF. There are also a 
growing number of efforts aimed at reducing MTTR 
[3]. An important requirement for this is to know 
which components to recover. This requires tracing 
back through the chain of errors to determine the 
component that originated the failure. This serves as 
the goal for our diagnosis protocol.  

For the application and diagnosis model, consider 
that the application is comprised of multiple services 
communicating through standard protocols and 
externally observable messages. Example of such 
application services are web services and 
authentication services. The services themselves are 
comprised of multiple components, e.g. Enterprise Java 
Beans (EJBs) or servlets, and the interactions between 
these components are also externally visible. Separate 
from the application system, we have a monitoring 
system (the Monitor) that can observe the external 
interactions of the components but not their internal 
states. The Monitor initiates diagnosis when a failure is 
detected through an existing detection system. In this 
paper we use the existing detection system from our 
previous work [4].  

In practical deployments, the Monitor may not 
observe the interaction between components of the 
application perfectly because of congestion or their 
relative network placement. This is particularly likely 
because the application as well as the Monitor is 
distributed with components spread out among 
possibly distant hosts. Next, any Monitor will have 
limited resources and may drop some message 
interactions from consideration due to exhaustion of its 
resources (e.g., buffers) during periods of peak load. 
Third, any diagnostic tests used by the Monitor might 
not be perfect. Finally, several parameters of the 
environment are not known deterministically and have 



 

to be estimated at runtime. These include the ability of 
a component to stop the cascade of error propagation 
(error masking ability) and the unreliability of links 
between the application components and the Monitor.  
All these factors necessitate the design of a 
probabilistic diagnosis protocol, in which the root 
cause of the failure cannot be deterministically 
identified. 

Our solution implemented in the Monitor rests on 
three basic techniques. First, the messages between the 
components are used to build a causal dependency 
structure between the components. Second, when a 
failure is detected, the causal structure is traversed (till 
a well-defined bound) and each component is tested 
using diagnostic tests. These diagnostic tests are not 
executed on the components directly but on the 
component state that had been deduced and stored at 
the Monitor. We decide against direct tests on the 
components because the state of the component may 
have changed since the time it propagated the error and 
the probing introduces additional stress on the 
component at a time when failures are already 
occurring in the system. Third, runtime observations 
are used to continually estimate the parameters that 
bear on the possibility of error propagation, such as 
unreliability of links and error masking capabilities. In 
our approach, the end goal of the probabilistic 
diagnosis process is to produce a vector of values 
called the Path Probability of Error Propagation 
(PPEP). For the diagnosis executed due to a failure 
detected at component n, PPEP of a component i is the 
conditional probability that component i is the faulty 
component that originated the cascaded chain of errors 
culminating in n. 

The basic structuring of an observer and an 
observed system is not new [4][5]. The problem of 
diagnosis of failures in networked environments 
comprised of black-box entities has also been studied 
by numerous researchers [6][7][8]. Some of these 
efforts however are aimed at easing the task of 
distributed debugging rather than accurate diagnosis of 
the faulty entity, some are offline approaches, some 
require accurate prior dependency information between 
the entities, and yet others need help from the 
application system through event generation. Our work 
aims to provide diagnosis of the faulty entities at 
runtime in a non-intrusive manner to the application.  

We apply the diagnosis protocol to a three tier e-
commerce system consisting of the Pet Store 
application deployed on the JBoss application server 
with the Tomcat web server as the front end and the 
MySQL database server at the backend. The 
application supports multiple kinds of browse-and-buy 
transactions that involve interactions between many 
components, where components are defined as servlets 

and EJBs. Through a modification to the JBoss 
containers, messages between the components are 
trapped and forwarded to the Monitor. We compare our 
approach to Pinpoint [7] in terms of accuracy and 
precision of diagnosis. Pinpoint uses statistical 
clustering of components with failed transactions to 
identify the faulty components. We inject errors in the 
application, where the errors may be due to a single 
component or interactions between multiple 
components. Our approach outperforms Pinpoint with 
the accuracy of the diagnosis improving from 20% to 
100% over the Pinpoint algorithm for comparable 
precision values.  

The rest of the paper is organized as follows. 
Section 2 presents the system model. Section 3 
presents the probabilistic diagnosis approach. Section 4 
presents the implementation and experimental test bed. 
Section 5 presents the experimental results. Section 6 
reviews related work and section 7 concludes the paper. 
Table 1 provides a list of acronyms used in this paper. 

 
Table 1. Table of acronyms 

Acronym Description 
PPEP Path Probability of Error Propagation 
LC Logical Clock 
CG Causal Graph 
DT Diagnostic Tree 
STD State Transition Diagram 
EMC Error Masking Capability 
AG Aggregate Graph 

2. System Model and Background 
There are two distinct systems—the Monitor and 

the application system. The Monitor obtains the 
protocol messages either through modification to the 
application’s middleware layer to forward the 
messages or by a passive snooping mechanism by the 
Monitor (see Figure 1). In either scenario the internal 
state of the components is not visible to the Monitor 
and they are treated as black-box for the diagnostic 

 
Figure 1. A monitoring system, (the 

Monitor) verifying the interactions between the 
service components 



 

process. The diagnostic process is triggered when a 
failure is detected. 

2.1. Assumptions 
We assume that components can fail arbitrarily, as 

long as the failures are observable in the message 
interaction between components. These failures could 
be caused by incorrect deployment, software bug, 
security vulnerability or performance problems to 
name a few. We follow the classical definition of faults 
being underlying defects that are triggered to become 
errors and some errors causing end-user visible failures. 
Errors can propagate from one component to another 
through the message exchanges between them.  

The communication between the components can 
be asynchronous but the jitter on any given link 
between the components and the Monitor is bounded. 
This allows the Monitor to assign a temporal order in 
which messages occur in the application. For a non-
zero jitter value there can be messages that the Monitor 
will determine to have occurred simultaneously. We 
assume that the Monitor maintains a logical clock for 
each observed component and it is incremented for 
each event – a send or receive message. The 
assumption required by the diagnosis protocol is that 
for an S(ender)-R(eceiver) communication, the 
variation in the latency on the S-M(onitor) channel as 
well as the variation in the sum of the latency in the S-
R and R-M channels is less than a constant ∆t, called 
the phase. If messages M1 and M2, corresponding to 
two send events at S, are received at the Monitor at 
(logical) times t1 and t2, it is guaranteed that the send 
event M1 happened before M2 if t2 ≥ t1+∆t. The 
communication channel is considered to be unreliable 
where message duplication, loss or conversion to 
another correct protocol message may happen. 

2.2. Dependency Information 
The Monitor performing diagnosis maintains a 

causal graph during the times that it is verifying the 
operation of the application protocol. Let us denote the 
Causal Graph (CG) at Monitor m by CGm which is a 
graph (V, E) where (i) the set V contains all the 
components verified by m; (ii) an edge or link e 
contained in E, between vertices v1 and v2 (which 
represent components) indicates interaction between v1 
and v2 and contains state information about all 
observed message exchanges between v1 and v2 
including the logical clock (LC) at each end. The state 
information includes a type of interaction and any 
arguments associated with that interaction. The links in 
the CG are also time-stamped with the local (physical) 
time at the Monitor where the link is created. An 
example of a CG created at the Monitor is given in 

Figure 2 for the sequence of message exchange events 
shown with components A, B, C, and D. The number 
denotes the sequence of the messages. For example, for 
message ‘6’, the logical clock time at the sender is 
B.LC4. Since message ‘2’ is assigned a logical time 
value of B.LC2, it causally precedes message ‘6’. The 
LC time stamps helps obtain a partial order over the 
messages and hence causality. The order of the 
messages is the order seen by the Monitor which may 
be different from the order in the application because 
the communication links are asynchronous.  

For a link to be completed in the CG, a matching is 
required between the sending and the receiving 
component’s messages. The link A→B will be matched 
once both the message sent by A and the corresponding 
message received by B is seen at the Monitor. The 
Monitor initially stores the messages in a Temporary 
Links table and moves the matched links to the CG 
when some trigger is met. As many links as can be 
matched are transferred to the CG while those that are 
not matched, but are within the phase from the latest 
message, are kept in the temporary links. Remaining 
links in the temporary links table are moved to the CG 
as unmatched links.  

It is imperative to avoid the CG growing in an 
unbounded manner since this would lead to long delays 
in traversing the CG during diagnosis leading to high 
latency in diagnosis. However, complete purging of the 
information in the CG can cause inaccuracies during 
the diagnosis process. We aggregate the state 
information in the CG at specified time points and 
store it in an Aggregate Graph (AG). The AG contains 
aggregate information about the protocol behavior 
averaged over the past. The AG is similar to CG in the 
structure i.e. a node represents a component and a link 
represents a communication channel. Unlike the CG, 
there is a single directed link between A and B for all 
the messages which are sent from A to B. The AG 
contains some node level information (such as, the 
node reliability) and some link level information (such 
as, the reliability of the link in the application system).  

2.3. Diagnosis Tree 
When a failure occurs, a Diagnosis Tree (DT) is 

constructed using the state information stored in CG. 
The DT formed for failure F at node D is denoted as 
DTFD.  The tree is rooted at node D and the nodes 
which have directly sent messages to node D are 
present at depth 1. Recursively, depth i consists of all 
the components which have sent messages to nodes at 
depth (i-1). Since the CG is finite size, the tree is 
terminated when no causally preceding message is 
available in the CG after some depth k. The same 
component might appear several times in the tree at 



 

various depths because it might have exchanged 
messages with various components at different points 
during the application run.  Specifically, a component 
is represented as many number of times as the number 
of different states it has been in, while exchanging 
messages.  

2.4. Diagnostic Tests 
We assume the existence of diagnostic tests which 

operate on a component and are specific to that 
component and its state. We impose that the tests 
should only operate on the information already stored 
at the Monitor. These tests could be probabilistic in 
nature, implying that they may not be perfect. The 
specifics of these tests do not affect our probabilistic 
model. However, for our implementation, we employ a 
kind of tests called causal tests. A causal test has the 
format: <Type> <State1> <Event1> <Count1> 
<State2> <Event2> <Count2>, where, Type could be 
one of {incoming, outgoing, hybrid} depending on the 
kind of messages being tested. The (State1, Event1, 
Count1) forms the pre-condition to be matched, while 
(State2, Event2, Count2) forms the post-condition that 
should be satisfied for the node to be deemed correct. 
The examination of Event2 is done in an interval of 
time ∆t (a phase) from Event1. The tuple (S, E, C) 
refers to the fact that the event E should have been 
detected in the state S at least counts C number of 
times. 

The correctness rules can be created by examining 
the state transition diagram (STD) of the component 
and verifying the transitions or by observing some 
traces of the correct protocol operation. Additionally, 
rules corresponding to QoS requirements (such as, the 
number of accesses to the SignOnEJB in Pet Store 
must be restricted to 20 within a 1 sec time window) 
can be framed by the system administrators. Finally, 
rules for verifying security properties in the system 
(such as, the number of logins to Pet Store bounded by 
a threshold) can be set by security administrators. 
Rules therefore can be framed through a mix of 
automated and manual means. This is similar to the 
situation in all rule based systems, such as intrusion 
detection systems [9][10]. 

3. Probabilistic Diagnosis 
The operation of the diagnosis protocol has two 

logical phases: (1) The diagnostic process that results 
in a set of nodes being diagnosed as the root cause of 
failure; (2) Information from the diagnostic process 
being used to update the parameters used later for 
diagnosis. The overall process is depicted in Figure 4. 
Let us first look at the diagnostic process. The goal of 
the diagnostic process is to calculate the probability of 
each node in the distributed system being faulty.  

3.1. Path Probability of Error Propagation 
The DT forms the basic structure on which the 

algorithm operates. The path from any node ni to the 
root of the DT constitutes a possible path for error 
propagation, i.e. a fault present in ni could have caused 
the root node to fail during operation. The probability 
of a path being the chain of error propagation is termed 
as the Path Probability of Error Propagation (PPEP). 

  A sample DT created from the sample CG in 
Figure 2 is shown in Figure 3. Here the failure was 
manifested at node D. The numbers at the links 
correspond to the message IDs. The root of the tree is 
the failure node, i.e., D. Depth 1 consists of nodes C 
and B which have sent messages to D causally before 
the failure was detected. Here node B is repeated twice 
because the states of B in which B→C and B→D 
communication take place are different.    

Definition: PPEP(ni, nj), where ni ≠ nj, is defined 
as the probability of node ni being faulty and causing 
this error to propagate on the path from ni to nj, leading 
to a failure at nj. The probability that the error is caused 
by the component where the failure is detected is 
denoted as P(nj) = PPEP(ni, nj), where ni= nj and it is 
the root of DT. The relation between PPEP and P(nj) is 

 
)(1),( j

Nn
ji nPnnPPEP

i

−<∑
∈

 

Message ID Sender.LogicalClock, 
Receiver.LogicalClock

1 A.LC1, B.LC1
8 A.LC4, D.LC3
2 B.LC2, C.LC1
6 B.LC4, A.LC3
7 B.LC5, D.LC2
3 C.LC2, B.LC3
4 C.LC3, A.LC2
5 C.LC4, D.LC1  

 
Figure 2. A sample causal graph. A, B, C 

and D exchange messages 1-8 among each 
other. The message ID indicates the causal 
order, i.e., message 1 precedes the rest of 

messages 

 
 

Figure 3. Sample DT for the CG in Fig. 2 



 

where nj is the root of DT, and N is the set of all nodes 
in DT except the root node. This inequality is due to 
the fact that CG is truncated (as explained in section 
2.2) and because DT is constructed from CG, it does 
not represent all the possible nodes and paths to the 
root node. PPEP depends on the following parameters: 
(1) Node reliability – The node reliability (nr) is a 
quantitative measure of the component corresponding 
to the node being correct. The PPEP for a given node 
is proportional to (1- nr). This node reliability is 
obtained by running the diagnostic tests on the state of 
the entity. A set of predetermined tests are performed, 
each of which yields a ‘0’ (test flags an error) or a ‘1’ 
(success). If the entire set of tests is denoted by R and a 
subset of tests which yield ‘1’ be denoted by R′, we 
define coverage c(n) =  |R′ |/|R|, assuming all tests 
have equal weights. For the first time the diagnosis is 
triggered, the node reliability is equal to c(n). During 
the entire execution of the application, multiple failures 
cause multiple diagnosis procedures to execute. Each 
time the diagnosis is performed, node reliabilities (in 
AG) corresponding to all of the nodes in the DT are 
updated. In [11] it is explained how node and link 
reliabilities are updated. 
(2) Link Reliability – In simple terms the link 
reliability between two nodes ni and nj denoted as lr(i,j) 
measures the number of received packets by the 
receiver over the number of packets actually sent. 
PPEP can be considered proportional or inversely 
proportional to the link reliability between nodes, 
depending on the nature of the application being 
observed. On the one hand, we can assume (as we have 
done in our current design) that a reliable link increases 
the probability of the path being used for propagating 
errors. However, we can also think an unreliable link 
as the source of unexpected inputs to subsequent 
components leading to a higher value of PPEP. In our 
framework, PPEP is proportional to link reliability 
because we consider that, in the majority of 
applications, errors are more likely to be propagated in 
the presence of reliable links. The Monitor does not 
diagnose a link as the root cause of a failure, rather it 

diagnoses application components. Thus, if in reality, 
an unreliable link initiates the cascading chain of errors, 
then the first component that is affected by the link 
error will be diagnosed. Since the Monitor does not 
detect link failures, we do not inject failures in links for 
our experiments. The link reliability is maintained for 
each edge in the AG. Note that since the Monitor is 
only observing the system, the errors within the 
Monitor in observing the messages also may 
erroneously affect the link reliability. These errors 
cannot be distinguished in our framework. The 
Monitor deduces the link reliability through observing 
the fraction of successful message transmissions over a 
particular link.  
(3) Error masking capability (EMC) – The error 
masking capability (em) quantifies the ability of a node 
to mask an error and not propagate it to the subsequent 
link on the path in the DT toward the root. The EMC of 
an entity depends on the type of error, e.g., syntactical 
or semantic errors. Additionally, a node may have 
different error masking capabilities depending on the 
type of message being processed and forwarded, e.g., if 
there is an off-by-one bug in the counter check on the 
number of simultaneous JDBC connections, it will 
mask the errors when the number of JDBC connections 
is one more than the maximum threshold. The EMC of 
node C in Figure 3 is denoted by em(C) and is a 
function of message type and error type. The PPEP for 
a given node is inversely proportional to the EMC 
values of nodes in the path since the intermediate 
nodes are less likely to have propagated the error to the 
root node.  

With the DT in Figure 3, PPEP(C, D) = (1-nr(C)) · 
lr(C,D),  PPEP(B, D) = (1-nr(B)) · lr(B,C) · (1- em(C)) · 
lr(C,D).  For a general path P consisting of nodes n1, 
n2…nk with link lr(i, j) between nodes ni and nj, the 
PPEP(n1, nk) for a failure detected at node nk (root 
node in the corresponding DT) is given by  

PPEP(n1, nk) = (1-nr(n1))·lr(1,2)·(1- em(n2))·lr(2,3)… 
·lr(i,i+1)·(1- em(ni+1))·lr(i+1,i+2)… (1- em(nk-1))·lr(k-1,k). 

We consider that all rules cannot be matched at 
runtime because that would impose unnecessary 
overhead and would not be useful in most executions 
(when there is no failure). The first component that 
failed a test does not necessarily implicate the 
component that sent it, other factors are to be 
considered, such as, how reliable were the links 
between that component and the component at which 
the failure was ultimately detected. This is because the 
distance from the root is not a matter simply of the 
number of links on the DT. Also, the tests are not 
perfect and cannot therefore be trusted to indict a 
component by themselves.   

 
Figure 4. Schematic with the overall 

process flow of the diagnostic process 



 

4. Experimental Testbed 
4.1. Application 

We use for our evaluation Pet Store (version 1.4), a 
sample J2EE application developed under the Java 
BluePrints program at Sun Microsystems [12]. It runs 
on top of the JBoss application server [13] with 
MySQL database [14] as the back-end providing an 
example of a 3-tier environment. Figure 5 depicts the 
application topology for the experiments. The Pet Store 
application is driven by a web client emulator which 
generates client transactions based on sample traces. 
The web client emulator is written in Perl using lynx as 
the web browser. For the mix of client transactions, we 
mimic the TPC-WIPSo [15] distribution with equal 
percentage of browse and buy interactions. The 
servlets and the EJBs are considered as components in 
our experiments and these serve as the granularity level 
at which diagnosis is done. This design choice is based 
partly on the fact that in JBoss a faulty servlet or an 
EJB can be switched out at runtime for a correct one. 
We identify a total of 56 components in the application. 

We consider a web interaction to be a complete 
cycle of communication between the client emulator 
and the application, as it is defined by the TPC 
Benchmark WIPSo specification [15]. Examples of 
web interactions could be entering the Welcome page 
or executing a Search. A transaction is a sequence of 
web interactions. An example of a transaction by a user 
who is searching and viewing information about a 
particular product is: Welcome page  Search  View 
Item details. For our experiments we created a total of 
55 different transactions. A round is a permutation of 
these 55 transactions modeling different user activities 
that occur on the web store. Within a round, 
transactions are executed one at a time. Two 
transactions are considered to be non-unique if they 
use exactly the same components, neglecting the order 
in which the components are used. Thus, a transaction 
that comprises: Welcome, Search, Search is not unique 

with respect to another that comprises: Welcome, 
Search. There are 41 unique transactions in the set of 
55 transactions that we use. Although 55 is not an 
exhaustive set of possible transactions in the 
application, the chosen set exercised a wide variety of 
web-interactions and between them, touched all the 
components of Pet Store. We note that the results 
presented here depend on the exact set of transactions 
used to exercise the system.    

4.2. Monitor configuration 
The Monitor is provided an input of state transition 

diagrams for the verified components and causal tests 
used during calculation of PPEP values. The size of 
the causal graph is bounded at 100 links. Figure 6 
shows an example STD for CreditCardEJB used by the 
Monitor in our experiments. A start state S0 signifies a 
no request state. If a request for processing is received 
from another component, the state of the EJB moves 
from S0 accordingly. With the STD, we have some 
simple causal tests which can be derived from the STD 
itself. As explained in section 2.4, causal tests are 
dependent on the state and event of the component. 
The exhaustive list of STDs and rules used for the 
experiments here is provided in [16]. 

4.3. Pinpoint Implementation  
 Pinpoint serves as a valid point of comparison with 

the Monitor since both systems have the same focused 
goal (diagnosis, as opposed to say performance 
debugging as in [6] with diagnosis being a side issue) 
and have the same target application model (black-box 
or gray-box application and passive observation of the 
application for diagnosis). Importantly, Pinpoint 
represents a recent state-of-the-art development 
([7][17]) and has been well explained and 
demonstrated on an open source application (compare 

 
 

Figure 5. Logical Topology of the Client 
and Server for the Experiments 

 
Figure 6. An example STD for 

CreditCardEJB and  some Causal Tests 



 

to Magpie [18] where the application is not available to 
us), and its algorithms are not dependent on a large set 
of parameters (compare to the machine learning 
approach in [19][20] where several statistical 
distributions would have to be assumed). 

We implement the Pinpoint algorithm (as explained 
in [7]) for comparison with the Monitor’s diagnosis 
approach. Pinpoint diagnosis algorithm requires as 
input a dependency table—a mapping of which 
components each transaction depends on. This is in 
contrast to the Monitor approach, where such 
dependency information does not have to be 
determined a priori and fed into the system before 
execution. Instead the Monitor deduces the 
dependencies through runtime observations as 
described in section 2.2. For Pinpoint, when 
transactions are executed, their failure status is 
determined by the failure detectors. A table (called the 
input matrix) is then created with the rows being the 
transactions, the first column being the failure status, 
and the other columns being the different components. 
If a cell T(i, 1) is 1, it indicates transaction i has failed. 
If a cell T(i, j) (j≠1) is 1, it indicates transaction i uses 
the component j. Pinpoint correlates the failures of 
transactions to the components that are most likely to 
be the cause of the failure. 

A crucial point for the accurate operation of 
Pinpoint is that the transactions should be diverse 
enough, i.e., use distinct non-overlapping components. 
Two transactions T1 and T2 are called distinct with 
respect to a set of components {C1, C2, …, Ck} if there 
is no overlap between these columns for T1 and T2, i.e., 
when T1’s row has a 1 in any of these columns, T2’s 
row has a zero, and vice-versa. Pinpoint as described 
by the authors in [7] is an offline approach. For 
comparison with the Monitor, we convert it into an 
online protocol. We incrementally feed the transactions 
and their corresponding failure status as they occur in 
the application, rather than waiting for all the 
transactions in a round to be completed before 
executing Pinpoint. To provide a comparable platform 
between the Monitor and Pinpoint, we keep the testbed 
identical to that in [7]—same client, web server, 
application server (with identical components), and 
database server. Pinpoint is sensitive to the transactions 
used; however, [7] is silent on the list of used 
transactions and we were unable to obtain them. 

We created an internal and an external failure 
detector as in [7] to provide failure status of 
transactions to Pinpoint and the Monitor. 

4.4. Fault Injection 
We perform fault injection into the components of 

the Pet Store application (i.e., Servlets and EJBs). We 

choose a set of 9 components called target components 
(see Figure 12) consisting of six EJBs and three 
servlets for fault injection. We use four different kinds 
of fault injection as in [7], i.e., declared exception, 
undeclared exception, endless call and null call. The 
injected faults affect node reliability and EMC for the 
PPEP calculations.  

The internal detector is more likely to detect the 
declared and the undeclared exceptions, and the null 
calls while the external detector is more likely to detect 
the endless call. For a given round only one target 
component is injected. We use 1-component, 2-
component and 3-component triggers. In a 1-
component trigger, every time the target component is 
touched by a transaction, the fault in injected in that 
component. In a 2-component trigger, a sequence of 2-
components is determined and whenever the sequence 
is touched during a transaction, the last component in 
the transaction is injected. This mimics an interaction 
fault between two components, and, in the correct 
operation of a diagnosis protocol, both components 
should be flagged as faulty. The 3-component fault is 
defined similarly. 

5.  Results 
5.1.  Performance Metrics 

 We use precision and accuracy as output metrics 
as in the Pinpoint work to enable a comparison. A 
result is accurate when all components causing a fault 
are correctly identified. For example, if two 
components, A and B, are interacting to cause a failure, 
identifying both would be accurate. Identifying only 
one or neither would not be accurate. However, if the 
predicted fault set (by the diagnosis algorithm) is {A, B, 
C, D, E} and the fault was in components {A, B}, then 
the accuracy is still 100%. Precision captures the non-
idealness in this case. Precision is the ratio of the 
number of faulty components to the total number of 
entities in the predicted fault set. In the above example, 
the precision is 40%. Components {C, D, E} are false 
positives. Lower precision implies high false positives. 
There is a tension between accuracy and precision in 
most diagnosis algorithms. When the algorithm is 
sensitive, it generates highly accurate results, but also 
causes a large number of false alerts reducing precision. 
Pinpoint uses the UPGMA clustering algorithm and 
varying the size of the faulty cluster varies the 
precision and accuracy. In the Monitor, after the 
diagnosis algorithm terminates, an ordered list of 
components is produced in decreasing order of PPEP. 
We define the predicted fault set as the top k 
components in the ordered output list. We vary k to 
obtain different accuracy and precision values.  



 

5.2. Single Component Faults 
 In single component faults, the fault injection 

trigger consists of a single component. If a transaction 
touches the target component then one of the four 
kinds of faults (chosen randomly) is injected and the 
injection remains permanent for the remainder of the 
round. First, let us consider the effect of varying cluster 
size on the performance of Pinpoint. The total number 
of injections for these results is 36—9 target 
components for injection and all 4 types of injection 
done on each component. The averaged results for 
accuracy and precision are plotted in Figure 7 (the bars 
show 90% confidence interval). As the size of the 
cluster increases, we see an increase in the accuracy 
which is intuitive because at some point the failure 
cluster includes all the components that are actually 
faulty. Beyond that, increase in cluster size does not 
impact the accuracy. As the cluster size increases, the 
precision increases to a maximum value and then 
decreases thereafter. The increase occurs till all the 
faulty components are included in the failure cluster. 
Thereafter, increasing the cluster size includes other 
non-faulty components and thus brings down the 
precision. The maximum value of precision occurs 
when all the faulty components are included in the 
failure cluster. However the precision is still poor (less 
than 10%). This is explained by the observation that 
for the transactions in the application, there is tight 
coupling between multiple components. Whenever the 
entire set of tightly coupled components does not 
appear together as a fault trigger, which is the 

overwhelming majority of the injections, the precision 
suffers. The amount of tight coupling between the 
components is showed in Figure 12. We emphasize 
that if we were to hand pick transactions such that they 
are distinguishable with respect to the target 
components, then the performance of Pinpoint would 
improve. Two transactions Ti and Tj are 
indistinguishable with respect to a set of components 
{C1, C2, … , Ck} if the columns of Ti in the input matrix 
corresponding to these components are identical to that 
of Tj. Figure 8 shows the variation of Accuracy with 
False Positives for Pinpoint and the Monitor. This is 
averaged across the 36 injections for the presented 
results. For 1-component faults, Pinpoint has high false 
positives rates but the accuracy eventually reaches 1. In 
contrast the Monitor has a much higher accuracy 
keeping a low false positive rate. The Monitor’s 
accuracy also reaches 1 but at a much lower value of 
false positives (0.6) as compared to Pinpoint (> 0.9). 
The latency of detection in our system is very low. 
Thus, the faulty component is often at the root of the 
DT in the Monitor. Since error propagation is 
minimized, the PPEP value for the faulty entity is high 
causing it to be diagnosed by the Monitor. This 
explains the high accuracy for the Monitor. However, 
Pinpoint’s algorithm does not take advantage of the 
temporal information—the temporal proximity 
between the component where detection occurs and the 
component that is faulty. As a consequence its 
accuracy suffers relative to that of the Monitor. Note 
that we do not have a figure corresponding to Figure 7 
for the Monitor since its performance does not depend 
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Figure 7. Single component fault injection: Variation of (a) accuracy and (b) precision with 
cluster size in Pinpoint 
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Figure 8. Single component fault injection: Performance of (a) Pinpoint and (b) Monitor. Both 
can achieve high accuracy but Pinpoint suffers from high false positive rates 



 

on cluster size. 
Notice that in Pinpoint, for a given value of false 

positives, two different accuracy values are achieved 
since a given precision value is achieved for two 
different cluster sizes (Figure 7(b)). Since accuracy is a 
monotonically increasing plot with cluster size (Figure 
7(a)), the different cluster sizes give two different 
accuracy values. For a given data point, the accuracy is 
either 100% (when the single injected component is 
included by Pinpoint in the diagnosed set) or 0%, 
which is then averaged across the total number of 
experiments. These discrete values explain the large 
confidence intervals. 

5.3. Two Component Faults 
The 2-component fault injection results are shown 

in Figure 9. Pinpoint results improve in terms of the 
false positives implying higher precision. This is 
attributed to the fact that Pinpoint’s clustering method 
works better if the failing transactions are better 
distinguishable from the successful transactions. 
Recollect distinguishable is discussed in the context of 
components. A 2-component fault includes two 
components as the trigger and going from one 
component to two components increases the 
distinguish-ability of transactions. Consider transaction 
T1 and T2 both of which use component C1 (i.e., the 
trigger in a single component fault injection). However, 
for a two component fault injection with trigger as {C1, 

C2}, the transactions T1 and T2 will be distinguishable 
as long as both T1 and T2 do not use C2. Thus, say T1 
uses {C1, C2} and T2 does not use C2. Then only T1 will 
fail and T2 will not, leading to the diagnosis 
(considering simplistically that these are the only 
transactions and components) of C1-C2 as the faulty 
entities. In contrast, the Monitor results although, still 
significantly better than Pinpoint, suffer in the 2-
component fault injection. One can see that accuracy 
reaches a maximum of only 0.83 compared to 1.00 in 
1-component injection. The number of times in a round 
the trigger for the 2-component fault is hit is lower 
than for the single component fault. Each detection 
causes an execution of the diagnosis process and each 
execution of the diagnosis process updates the 
parameters of the causal graph away from an arbitrary 
initial setting toward an accurate set of values. Thus, 
for the 2-component faults, the Monitor gets less 
opportunity for refining the parameter values and 
consequently the PPEP calculation is not as accurate 
as for the single component faults. This explains the 
decline in performance of the Monitor for the 2-
component faults. 

5.4.  Three Component Faults 
 The 3-component fault injections show even better 

results for Pinpoint with the maximum average 
precision value touching 27%. This is again attributed 
to the fact that more number of components causes 
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Figure 9. 2-component fault injection: Performance of (a) Pinpoint and (b) Monitor. 
Performance of the Monitor declines and Pinpoint improves from the single component fault, but 

the Monitor still outperforms Pinpoint 
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Figure 10. 3-component fault injection: Performance of (a) Pinpoint and (b) Monitor. 
Performance of the Monitor declines and Pinpoint improves from the single and two component 

faults, but the Monitor still outperforms Pinpoint 



 

selected transactions to fail leading to a better 
performance by the clustering algorithm. The Monitor 
again outperforms Pinpoint by achieving higher 
accuracy at much lower false positives (see Figure 10). 
The Monitor’s performance again declines compared 
to the 2-component faults due to the same reason 
pointed in the previous section (the number of 
diagnoses for the 3-component trigger is less than that 
for the 2-component trigger).  

5.5. Latency 
 In its online incarnation, Pinpoint takes as input 

the transactions and corresponding failure status every 
30 seconds during a round. It runs the diagnosis for 
each of these snapshots taken at 30 second intervals, 
terminating when the round is complete and Pinpoint 
executes on the entire input matrix corresponding to all 
the 55 transactions. The latency plots (see Figure 11) 
show that after 3.5 minutes the accuracy and precision 
of Pinpoint increase with latency. Pinpoint’s 
performance is only defined for the time points after 
the first failure has been injected and detected. For our 
experiments, this happens at and beyond 3 minutes. To 
the left of this point, both accuracy and precision are 
undefined since Pinpoint does not predict any 

component to be faulty before a failure is detected.  
We define the latency of diagnosis for the Monitor 

as the time delay from the receipt of the detector alert 
which marks the beginning of the diagnosis till the 
PPEP ordered list is generated. The Monitor has an 
average latency of 58.32 ms with a variance of 14.35 
ms, aggregated across all three fault injection 
campaigns.  

5.6. Behavior of Components 
The Pet Store application has some components 

which are tightly coupled (see Figure 12), i.e., they 
tend to be invoked together for the different 
transactions supported by the application. We have 
noted earlier that tight coupling negatively impacts 
Pinpoint’s clustering algorithm. For our experiments, 
we inject failures in 9 components and here we 
consider how tightly coupled these components are 
with the other components in Pet Store. AddressEJB is 
tightly coupled with 4 components implying that it 
always occurs with these 4 components in all the 55 
transactions in our experimental setup. Pinpoint cannot 
distinguish between sets of components that are tightly 
coupled and thus reports all the tightly coupled 
components as faulty even though in reality only a 
subset of these may be faulty. This is the fundamental 
reason why its precision is found to be low in all our 
experiments. To counter this problem, one can 
synthetically create transactions that independently use 
different components (as noted by the authors 
themselves in [7]). However, for an application like Pet 
Store, components are naturally tightly coupled and 
thus generating such synthetic transactions is a difficult 
task. Also even if we could devise such “unnatural” 
transactions that would make components 
distinguishable, it cannot be assumed that such 
transactions will be created by users in the system.  

6. Related Work 
 White box systems: The problem of diagnosis in 

distributed systems can be classified according to the 
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Figure 11.  Single component fault injection: Variation of (a) precision and (b) accuracy and 
precision with latency for Pinpoint in single component fault injection. Higher latency means 

higher number of transaction data points and Pinpoint’s performance improves monotonically 
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nature of the application system being monitored – 
white box where the system is observable and, 
optionally, controllable; and black box where the 
system is neither. The Monitor system falls in the latter 
class. White box diagnostic systems often use event 
correlation where every managed device is 
instrumented to emit an alarm when its state changes 
[21][22]. By correlating the received alarms, a 
centralized manager is able to diagnose the problem. 
Obviously, this depends on access to the internals of 
the application components. Also it raises the concern 
whether a failing component’s embedded detector can 
generate the alert. This model does not fit our problem 
description since the target system for the Monitor 
comprises of COTS components, which have to be 
treated as black-box. White box diagnosis systems that 
correlate alarms have been proposed also in the 
intrusion detection area [23]. 

Debugging in distributed applications: There has 
been a spurt of work in providing tools for debugging 
problems in distributed applications – performance 
problems [6][7][18], misconfigurations [24], 
unexpected behavior [24], etc. The general flavor of 
the approaches in this domain is that the tool collects 
trace information at different levels of granularity and 
the collected traces are automatically analyzed, often 
offline, to determine the possible root causes of the 
problem. For example, in [6], the debugging system 
performs analysis of message traces to determine the 
causes of long latencies. The goal of these efforts is to 
deduce dependencies in distributed applications and 
flag possible root causes to aid the programmer in the 
manual debug process, and not to produce automated 
diagnosis. 

More recent work has produced powerful tools for 
debugging of distributed applications. In [25], the 
authors present a tool called liblog that aids in 
recreating the events that occurred prior to and during 
failure. The replay can be done offline at a different 
site. The tool guarantees that the event state in its log 
will be consistent, i.e., no message is received before it 
has been sent. This work stops short of automated 
diagnosis. Some other mechanism, not described in the 
paper, is responsible for taking the replayed events and 
determining the root cause. There are several other 
offline tools that aid diagnosis, such as tools for data 
slicing [26], and backtracking, but they all require 
manual effort in diagnosing the faulty components. 

Network diagnosis: Diagnosis in IP networks is 
addressed in Shrink [28]. This tool used for root cause 
analysis of network faults models the diagnosis 
problem as a Bayesian network. It specifically 
diagnoses inaccurate mappings between IP and optical 
layers. The work in [29] studies the effectiveness and 
practicality of Tree-Augmented Naive Bayesian 

Networks (or TANs) as a basis for performing offline 
diagnosis and forecasting from system-level 
instrumentation in a three-tier network service.  The 
TAN models are studied to select combinations of 
metrics and thresholds values that correlate with 
performance states of the systems (compliance with 
Service Level Objectives).  This approach differs from 
the Monitor approach in the sense that it relies on 
monitoring performance metrics rather than diagnosing 
the origin of the problem over a set of possible 
components.  

Automated diagnosis in COTS systems: 
Automated diagnosis for black-box distributed COTS 
components is addressed in [30]. The system model 
has replicated COTS application components, whose 
outputs are voted on and the replicas which differ from 
the majority are considered suspect. This work takes 
the restricted view that all application components are 
replicated and failures manifest as divergences from 
the majority. In [31], the authors present a combined 
model for automated detection, diagnosis, and recovery 
with the goal of automating the recovery process. 
However, the failures are all fail-silent and no error 
propagation happens in the system, the results of any 
test can be instantaneously observed, and the monitor 
accuracy is predictable.  

  In none of the existing work that we are aware of 
is there a rigorous treatment of the impact of the 
Monitor’s constraints and limited observability on the 
accuracy of the diagnosis process. There are sometimes 
statements made on this without supporting reasoning 
– for example, in [6], it is mentioned that drop rates up 
to 5% do not affect accuracy of the diagnosis.  

7. Conclusion 
In this paper we presented an online diagnosis 

system called the Monitor for arbitrary failures in 
distributed applications. The Monitor passively 
observes the message exchanges between the 
components of the application and at runtime, performs 
a probabilistic diagnosis of the component that was the 
root cause of a detected failure. The Monitor is 
compared to the state-of –the-art diagnosis framework 
called Pinpoint. We tested the two systems on a 3-tier 
Java-based e-commerce system called Pet Store. 
Extensive fault injection experiments were performed 
to evaluate the accuracy and precision of the two 
schemes. The Monitor outperformed Pinpoint 
particularly in precision, though its advantage 
narrowed for interaction faults. As part of future work 
we are looking at diagnosis in high throughput network 
streams.  In these streams, the Monitor may have to 
decide to drop some parts of a stream. We are looking 
into intelligent decision making to maintain a high 



 

accuracy. We are also investigating machine learning 
based diagnosis in the presence of uncertain 
information. 
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