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Abstract

Fine-Grained Cycle Sharing (FGCS) systems aim at uti-
lizing the large amount of idle computational resources
available on the Internet. Such systems allowguest jobs
to run on a host if they do not significantly impact the lo-
cal users of the host. Since the hosts are typically provided
voluntarily, their availability fluctuates greatly. To provide
fault tolerance to guest jobs without adding significant com-
putational overhead, we propose failure-aware checkpoint-
ing techniques that apply the knowledge of resource avail-
ability to select checkpoint repositories and to determine
checkpoint intervals. We present the schemes of selecting
reliable and efficient repositories from the non-dedicated
hosts that contribute their disk storage. These schemes are
formulated as 0/1 programming problems to optimize the
network overhead of transferring checkpoints and the work
lost due to unavailability of a storage host when needed to
recover a guest job. We determine the checkpoint interval
by comparing the cost of checkpointing immediately and the
cost of delaying that to a later time, which is a function
of the resource availability. We evaluate the failure-aware
techniques on an FGCS system callediShare, using trace-
based simulation. The results show that our techniques
achieve better application performance than the prevalent
methods which use checkpointing with a fixed periodicity
on dedicated checkpoint servers.

1 Introduction

The opportunity of harvesting cycles on idle PCs over
the Internet has long been recognized [11]. Distributed
cycle-sharing systems have shown success through popu-
lar projects such as SETI@home [9], which have attracted
a large number of participants donating time on their home
PCs to a scientific effort. The PC owners voluntarily share
the CPU cycles only if they incur no significant inconve-
nience from letting a foreign job (guest process) run on their
own machines. To exploit available idle cycles under this

restriction, fine-grained cycle sharing (FGCS) systems [23]
allow a guest process to run concurrently with local jobs
(host processes) whenever the guest process does not impact
the performance of the latter noticeably. For guest users, the
free compute resources come at the cost of fluctuating avail-
ability due to either failures of the host machine, its removal
from the FGCS system, or the eviction of a guest process
causing resource contention. The primary victims of such
resource volatility are large compute-bound guest programs
that favor fast response times rather than high throughput.
Most of these programs are either sequential or composed
of several tasks with little communication in between. The
numbers of tasks are relatively small, and the tasks are sub-
mitted as a group and must all complete before the results
being used (e.g., simulations containing several computa-
tion steps [2]). Therefore, response time is the primary per-
formance metric for such compute-bound jobs.

To achieve high performance in the presence of resource
volatility, checkpointingandrollback have been widely ap-
plied [15]. These techniques enable an application to pe-
riodically save a checkpoint—a copy of the application’s
state— onto a stable storage that is connected to the compu-
tation node(s) through a network. The application recovers
from a failure by rolling back to the latest checkpoint and
continues execution on other computation node(s). While
these techniques can also be applied to FGCS systems, a
number of performance and feasibility issues must be con-
sidered.

First of all, general FGCS systems do not provide dedi-
cated storage facilities [18, 23, 22]. While some hosts are
willing to contribute their disk storage as well as CPU cy-
cles, the storage also presents fluctuating availability. This
leads to the possible loss of checkpoints, thereby causing
the application to roll further back either to the last available
valid checkpoints or the beginning of execution. Moreover,
FGCS systems do not include a dedicated network that can
efficiently handle the load of transferring checkpoints be-
tween thecomputation hosts(the host on which the guest
process is executing) and thestorage hosts(the hosts that
have contributed storage for checkpointing). The high uti-
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lization of a shared network will negatively impact the per-
formance of the overall system. A third issue is that gener-
ating a checkpoint and rolling back to the recent checkpoint
both hurt application performance. While the penalty of
rolling back decreases as an application checkpoints more
frequently, the application suffers from the overhead of gen-
erating more checkpoints. To find a good tradeoff, one must
determine a suitablecheckpoint interval, which is the dura-
tion between the creation of two consecutive checkpoints.
This issue is broader than for FGCS systems; however it
assumes additional significance here due to the concern for
availability of a set of checkpoints.

The main contributions of this paper are novel tech-
niques that apply the knowledge of resource availability to
address the above issues. (1) For storing checkpoints, we
selectcheckpoint repositoriesamong a set of storage hosts
by considering both their future availability and their net-
work performance. The selected repositories are used to
save a set of redundant, small fragments generated by en-
coding the original checkpoint with erasure codes [1]. We
formulate the problem of selecting checkpoint repositories
as 0/1 programming models and apply a fast greedy algo-
rithm to solve these models. This approach of dynamically
selecting non-dedicated checkpoint storage distinguishes
our work from the prevalent solution of using pre-installed
checkpoint servers. (2) To determine the checkpoint inter-
val, we design aone-step look aheadheuristic. It compares
the cost of checkpointing immediately with the cost of de-
laying that to a later time. The costs are functions of the re-
source availability of the computation host and the storage
hosts. The heuristic is different from the analytical methods
proposed in related work, which computes the ideal check-
point interval by assuming an arbitrary distribution function
of failure arrivals [10, 12, 26]. We will show that our heuris-
tic is more efficient in terms of the impacts of checkpointing
on application performance.

We show how the failure-aware checkpointing tech-
niques can be built upon our previous work on resource
availability prediction in FGCS systems [22]. While these
techniques can be applied to general compute-bound pro-
grams, we focus onsequentialscientific programs as a rep-
resentative case in this paper. We choose the overall execu-
tion time, ormakespan, of these programs as the metric for
examining the efficiency of our techniques. To obtain such
metric, we collected traces of resource availability and host
workloads from a production FGCS testbed over a period
of 3 months, and tested the failure-aware techniques using
trace-based simulation. We also compared with the meth-
ods that store checkpoints on pre-installed servers and per-
form checkpointing at a user-specified periodicity. These
methods are widely applied in production systems such as
Condor [25]. Our results show that the failure-aware check-
pointing techniques achieve better application performance,

while they do not rely on dedicated hardware resources,
which are infeasible to be installed in FGCS systems.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents a summary of our
previous work on resource availability prediction. Our tech-
niques of failure-aware checkpointing are described in Sec-
tion 4 and Section 5. Section 6 discusses the issues of realiz-
ing these techniques in an FGCS system, called iShare [18].
Experimental approaches and results are described in Sec-
tion 7.

2 Related Work

Checkpointing is a widely studied technique for amelio-
rating the effects of resource volatility in high-performance
parallel computing and distributed systems [25, 14, 16, 6].
Related contributions include the checkpointing facilities
provided in production systems and the research efforts on
using resource availability to improve checkpointing perfor-
mance. In the following, we compare our work with these
two contributions.

Production systems that support Grids and global net-
worked computing, such as Condor [25] and Sun Grid En-
gine [8], checkpoint applications upon failures or at user-
defined intervals and store checkpoints onto a set of ded-
icated servers. We have employed their mechanisms of
checkpoint generation and checkpoint transfers [3, 24] in
our system design. However, installing dedicated check-
point servers is not feasible for FGCS systems, because re-
lying on such dedicated hardwares contradicts the objec-
tive of harvesting idle CPU cycles from existing systems.
Moreover, recent research has shown that the overheads of
checkpointing can offset its benefits if the checkpoint inter-
val is not chosen carefully [28]. These facts motivate our
work of applying resource availability prediction to select
relatively reliable, non-dedicated checkpoint storage and to
determine suitable checkpoint intervals, which will comple-
ment the existing facilities of checkpointing.

Some recent efforts in checkpointing research have used
erasure coding for storage in distributed systems [6, 1, 5].
The relevant property of erasure codes that we use is that
they are resilient to losses of some fragments of the check-
point. Th previous work analyzed the performance of era-
sure coding in the systems with fast network and dedicated
storage servers. By contrast, we target loosely coupled envi-
ronments consisting of non-dedicated resources. We solve
the problem of selecting checkpoint repositories among un-
stable storage resources.

Research has been done in solving the problem of op-
timal checkpoint interval selection [26, 10, 12]. Work in
this area is typically predicated on simplifying assumptions.
Most authors have assumed that the distribution of avail-
ability times conforms to an arbitrary function such as Pois-
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son [26], allowing closed-form calculation of the optimal
checkpoint intervals. In order to produce expressions that
are analytically tractable, another common assumption is
that failures do not occur during storing a checkpoint or
during recovery [10]. These assumptions restrict general-
ity, especially in FGCS systems, where the availability of
resources fluctuates highly.

A few other studies have been conducted on using
temporal or spatial information of resource availability in
checkpointing [28, 29]. While these studies also considered
the awareness of failures, none of them solve the problem
of selecting reliable and efficient checkpoint repositories.
The work in [28] considered turning on checkpointing only
when failures were expected. Different from our work, they
determined which jobs to checkpoint. To achieve fast turn
around time in desktop Grid systems, the authors of [29]
used checkpointing to migrate jobs to hosts located in night-
time zones around the globe. The proposed heuristics solely
focused on the issue of when and where to migrate the job.

3 Background of Resource Availability Pre-
diction

Failure-aware checkpointing requires successful mecha-
nisms for availability prediction. We have developed pre-
diction methods that achieve high accuracy as well as effi-
ciency appropriate for online uses. In our prediction tech-
niques [22, 21], we applied a semi-Markov Process (SMP)
to predict thetemporal reliability, TR, of a computation
host. This is the probability that the host will be available
(i.e., not fail) throughout a given future time window. Solv-
ing the SMP gives us a value ofTR(x), the probability that
there will be no failure between now and timex in the fu-
ture. This algorithm does not require any model fitting, as is
commonly needed in linear regression techniques. To com-
pute the temporal reliability on a given time window, the pa-
rameters of the SMP are calculated from the host resource
usages during the same time window on previous days. A
key observation leading to our approach is that the daily pat-
terns of host workloads are comparable to those in the most
recent days [19, 11]. Deviations from these regular patterns
are handled in our approach by the statistical method that
calculates the SMP parameters.

The SMP-based prediction has been implemented in a
system, iShare [18], that supports FGCS. In previous work,
we focused on the specific resource of CPU cycles and eval-
uated our prediction techniques in terms of accuracy, effi-
ciency, and robustness to noise (irregular occurrences of re-
source unavailability). The experimental results show that
the prediction achieves an accuracy above86.5% on aver-
age and above73.3% in the worst case, and outperforms the
prediction accuracy of linear time series models [7], which
are widely used prediction techniques. The SMP-based pre-

diction is also efficient and robust in that it increases the
completion time of a guest job of less than0.006% and the
intensive noise in host workloads disturbs the prediction re-
sults by less than6%.

In the following sections, we will show how the predic-
tion techniques can be applied to optimize checkpointing
efficiency.

4 Selecting Checkpoint Repositories

In our FGCS system, a guest application is checkpointed
during its execution on a computation host. A checkpoint
contains the entire memory state of the application and is
used when the application fails and needs to continue on
a new host. Application checkpoints cannot be generated
right before job preemption or be stored locally on the com-
putation host, because the host can be reclaimed unexpect-
edly without leaving enough time to migrate the checkpoint
off. Therefore, we need to checkpoint applications during
their execution and keep the checkpoints on networked stor-
age.

Due to the lack of dedicated storage servers in FGCS sys-
tems, we store checkpoints on non-dedicated storage hosts
– host machines that provide disk storage for guest users.
Given that the number of storage hosts is usually larger than
the number of checkpoint repositories required, we need
to determine the selection of repositories. The goal is to
minimize the network overhead (N ) of transferring check-
points, as well as the re-execution cost (R) caused by los-
ing a checkpoint that is needed to recover a guest job. The
two parameters present different performance concerns in
FGCS systems. While the network overhead measures how
a guest application would impact the hosts that share their
network channels with the guest, the re-execution cost af-
fects the guest application performance itself.

In our FGCS system, we split and encode a checkpoint
of sizen into m+k fragments of sizen/m. The checkpoint
fragments are then stored onm + k different storage hosts.
We use erasure coding for this purpose, which guarantees
that the checkpoint can be recovered even if up tok storage
hosts fail. We will discuss the techniques to generate and
encode checkpoints in Section 6. In the following, we show
how to select them + k repositories from a set of, say,V
storage hosts, given thatV is much larger thanm + k.

4.1 Network Overhead of Transferring
Checkpoints

The network overhead of transferring a checkpoint frag-
ment to or from a storage host can be quantified by the la-
tency, that is the fragment size,n/m, divided by the effec-
tive end-to-end bandwidth (between the computation host
and the storage host),bw. This latency represents how long
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a fragment uses the network. It is relevant in an FGCS sys-
tem since a checkpoint is not to be considered permanent
till it has been transferred over the network and saved to the
remote storage.

A fine-grained modeling of the network overhead would
consider how loaded a shared network channel is: the queu-
ing at network routers/cards and the number of active net-
work sessions. However, it is infeasible to collect such in-
formation in a large network consisting of non-dedicated re-
sources. The effective end-to-end bandwidth, on the other
hand, can be monitored and forecast by using facilities of
the Network Weather Service (NWS) [27] that are publicly
available. Therefore, it is a reasonable metric for evalu-
ating the impacts of transferring checkpoints over shared
network channels. Based on this metric, the total net-
work overhead for transferring a checkpoint is the sum-
mation of the latencies incurred by each fragment, that is,
N =

∑V
i=1 Ci ∗

n
m

/bwi. This computation ofN is with
respect to the current computation host on which the guest
job is executing. In the formula,bwi is the end-to-end band-
width of the storage hosti; Ci is 1 if storagei is selected as
a repository, otherwise it is 0.

4.2 Availability of Checkpoint Reposito-
ries

Similar to other resources in FGCS systems, checkpoint
repositories are volatile. For example, to preserve the non-
intrusiveness to host users, guest data are stored and re-
trieved only when there is nointensiveI/O activities on
a host. Therefore, an FGCS system needs to monitor the
host I/Os and preempt the checkpoint read/write if neces-
sary. In our FGCS system, if more thank repositories are
unavailable for retrieving the checkpoint fragments, the ap-
plication to be recovered will lose all the computation and
restart. The incurred re-execution cost, thus, can be formu-
lated as the total CPU time spent on the previous computa-
tion nodes.

We have applied the same semi-Markov Process (SMP)
method for predicting the availability of both CPU cycles
and disk storage, although the underlying availability mod-
els for the two types of resources are different. The dif-
ference comes from the diverse behaviors of resource con-
tention. While the contention on CPU cycles is tightly re-
lated to the actual CPU usages of host applications [19], the
contention on disk I/O bandwidth is related to both the I/O
loads (i.e., the amount of data to read or write) and the lo-
cality of data accesses issued by the contended processes,
indicating the needs of monitoring both parameters in the
host system. However, it is not feasible for an FGCS sys-
tem to measure the data locality of disk I/Os. To provide a
practical way for detecting and predicting the availability of
disk storage, we modeled disk I/Os as on/off events. More

specifically, the operation of a checkpoint read/write needs
to be paused if the rate of host disk I/Os is larger than a
small threshold (e.g., 100 blocks per second) regardless of
the data access locality. This threshold accounts for the I/Os
of system daemons such assyslogd, which can be handled
concurrently with checkpoint I/Os. In this way we can mon-
itor the availability of a storage host using system facilities
of iostatandvmstat.

The validity of such availability model has been veri-
fied through experiments [20]. Using this model, the SMP-
based prediction achieves an accuracy higher than93.7% on
average and above78.3% in the worst case. More details
about the modeling and prediction methods can be found
in [20]. In the rest of the paper, we refer to the predicted
temporal reliability of storage asTRS. Recall that tempo-
ral reliability is the probability that the resource will never
fail during a given time window.

4.3 The 0/1 Programming Models

We develop two schemes to select the checkpoint reposi-
tories: an optimistic scheme and a pessimistic scheme. The
optimistic scheme assumes that most storage hosts present
high availability. A set of checkpoint repositories is selected
before a job starts on a computation host and is used during
the entire execution on this host. A new set of repositories
will be selected when the job continues on another computa-
tion host. A job may execute partially on a host and then be
migrated for several reasons, including load balancing and
data nearness. The pessimistic scheme, on the other hand,
expects the storage hosts to fail frequently and updates the
selection of repositories at each checkpoint interval. While
the optimistic scheme is more efficient when the availabil-
ity of storage hosts does not fluctuate greatly during the ex-
ecution time of an application, it may lead to undesirable
re-execution cost in highly volatile environments. Thus we
need to choose from the two schemes for different levels
of resource availability. In the following, we describe how
these two schemes can be mathematically formulated into
different 0/1 programming models.

In the optimistic scheme, the mean time to failure of
the computation host,MTTFcmp, is used as the expected
time when the guest job fails and needs to be recovered
from a recent checkpoint. If no more thank reposito-
ries fail within MTTFcmp, the guest job can be contin-
ued. Otherwise, all the previous execution before starting
on the current computation host, which is referred to as
Tcurr (the time units spent on performing useful compu-
tation for the guest job so far), and the execution on this
host will be lost. We includeTcurr to the re-execution cost
because all the old checkpoints are discarded once the job
moves to the current computation host, making the previ-
ous checkpoint repositories available for other guest appli-
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cations. Thus, the expected re-execution cost can be es-
timated as,R = (Tcurr + MTTFcmp)*Pr{ more thank
storage hosts fail withinMTTFcmp}. The probability of
more thank storage hosts failing is the summation of a se-
ries of values, each of which is the probability of an arbi-
trary number (larger thank) of storage hosts failing. To
obtain a closed-form expression, we consider the probabil-
ity that at least one host fails within the time ofMTTFcmp,
that is1 −

∏V

i=1 TRS′

i(MTTFcmp), whereTRS′

i is 1 if
hosti is not selected, otherwise it is equal toTRSi. This
simplification leads to a larger expected value ofR, but it
does not conflict with our goal of selecting the most reliable
storage hosts.

Given these terms, the optimistic scheme for selecting
storage hosts can be presented by a 0/1 integer program-
ming model shown in Equation 1.

min{
MTTFcmp

CI
∗

∑V
i=1(Ci ∗

n
m

/bwi) −

(Tcurr + MTTFcmp) ∗
∏V

i=1 TRS′

i(MTTFcmp) }
∑V

i=1 Ci = m + k

TRS′

i(t) = max[1 − Ci, TRSi(t)]

(1)
In the above equation, the value ofMTTFcmp

CI
(CI is the

length of the next checkpoint interval) is an approximation
of how many checkpoints are generated withinMTTFcmp.

Different from the optimistic model, the pessimistic
scheme selects the repositories at each checkpoint interval
right before the checkpoint is committed. The loss of more
thank checkpoint fragments only matters if the guest job
fails within the next interval. Thus the expectedR can
be calculated as,R = Tcurr ∗ [1 −

∏V

i=1 TRS′(CI)] ∗
1−TR(t+CI)

TR(t) . In this formula,Tcurr, TRS′ andCI have
the same definitions as in Equation 1;t is the time when the
decision of repository selection is made. The expression of
1−TR(t+CI)

TR(t) represents the probability of the guest job not
failing on the computation host beforet + CI given that it
has survived till timet. The whole optimization model for
the pessimistic scheme is described in Equation 2.

min{
∑V

i=1(Ci ∗
n
m

/bwi) −

Tcurr ∗
∏V

i=1 TRS′(CI) ∗ 1−TR(t+CI)
TR(t) }

∑V

i=1 Ci = m + k

TRS′

i(t) = max[1 − Ci, TRSi(t)]

(2)

In Equation 2, the weight on selecting reliable storage
hosts increases asTcurr. The intuition is that, as more job
gets done, it is more critical to keep the checkpoint on re-
liable storage. The weight also increases as the computa-
tion host is expected to fail with a high probability, that is

TR(t + CI) is close to 0. WhenTR(t + CI) is large, we
can actually bypass the computation ofR in Equation 2.
This way, we ignore the penalty of losing checkpoint frag-
ments since the guest job is expected to be alive at the next
checkpoint interval.

4.4 Greedy Algorithm to Solve the Mod-
els

As with general 0/1 integer programming models, Equa-
tion 1 and Equation 2 can both be solved by the methods
of branch and bound [13]. However, these methods usu-
ally introduce nontrivial computation overhead, which im-
pacts the application performance. To solve this problem,
we propose an efficient greedy algorithm that iteratively in-
cludes the storage host causing minimum increment to the
objective function in Equation 1 or Equation 2. The greedy
algorithm has three steps:

• Initialization: For each storage host, computeTRSi

andNi (calculated asn
m

/bwi). The objective function
is initialized to 0.

• Bootstrap: Rank the storage hosts byNi (in increasing
order) andTRSi (in decreasing order), respectively.
This results in two sorted arrays,AN andATRS . If
a storage host appears in the firstm + k elements of
bothAN andATRS , it is selected. Based on the cur-
rently selected storage hosts, the objective function is
updated according to Equation 1 or Equation 2.

• Iteration: If the number of selected storage hosts is less
thanm + k, calculate the objective function by includ-
ing one unselected host at a time. The host causing the
minimum increase to the objective function is selected.
If the number of the selected hosts ism + k, terminate
the iteration.

Note that the relative ordering of the different hosts may
change from one iteration to the next and therefore the ob-
jective function has to be evaluated forall the unselected
hosts at each iteration. This observation arises from the
nature of the objective function — the summation for the
first term and the product for the second term. Thus, practi-
cally, if a number of hosts have been selected and the com-
bined probability of all of them staying up is low, then in
the following selection, network performance will be more
emphasized. In the above algorithm, each iteration tra-
verses all the unselected hosts and the number of iterations
is m + k in the worst case, resulting in the complexity of
O(V (m + k) + V logV ). Given thatV is usually much
larger thanm + k, the greedy algorithm is more efficient
than the branch and bound methods whose complexity is
O( V !

(m+k)!(V −m−k)! ).
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5 Checkpoint Intervals

The optimal interval between checkpoints in an applica-
tion execution balances the cost of generating checkpoints
with the cost of recovering from a failure by rolling back
to the latest checkpoint. While many analytical solutions
to this problem have been proposed, we develop a heuris-
tic that is more effective since it does not rely on the fail-
ures following a certain distribution. By simply looking at
the future availability, the heuristic decides if checkpoint-
ing should be performed at each “step” during an applica-
tion execution. The heuristic causes trivial computational
overhead by reusing the availability predicted upon a job
submission or recovery. We next discuss the details of this
heuristic.

We refer to our method of deciding checkpoint intervals
as aone-step look ahead heuristic: we divide a job exe-
cution into multiple steps of a fixed length which we will
explain below. At the beginning of each step, we decide if
the job needs to be checkpointed by comparing the cost of
checkpointing at that moment and the cost of delaying it to
the next step. The former cost is thecheckpoint overhead
(the delay required to generate a checkpoint) plus the roll-
back overhead resulted from the job failing before the next
step. The latter cost is solely a rollback overhead. Note
that rollback overhead is generally the cost of re-execution
from the recently checkpointed job state to the state right
before the job failed. Thus it is approximately the length
of time from the recent checkpointing to the failure occur-
rence. While the checkpoint overhead can be measured of-
fline and can be assumed, typically, as a constant which we
refer to asC, the rollback overhead is a random variable
given that the job may fail at any moment between the cur-
rent step att and the next step att + δt. Therefore, we
present the rollback overhead as an expected value derived
from the temporal reliability of the computation host, i.e.,
TR. In short, the one-step look ahead heuristic can be for-
mulated as a yes-or-no decision: the job is checkpointed at
t if the condition in Equation 3 is true; it repeats checking
the condition at the next step oft + δt.

C +
∫ t+δt

t
(s − t) f(s)

TR(t)ds ≤
∫ t+δt

t
(s − t0)

f(s)
TR(t)ds

C ≤ (t − t0)
TR(t)−TR(t+δt)

TR(t)

(3)
In the above equation,f(s) is the failure pdf for the com-

putation host; f(s)
TR(t) is the conditional probability of failing

at s (s ≥ t) given that the job has survived till timet. t0
is the time of the previous checkpointing, andδt is the step
length. Ideally, we would chooseδt as small as possible
so that the rollback overhead is minimized. However, there

are a number of factors that prevent us from doing so. First,
for a typical computation host, its temporal reliability rarely
changes between very short time intervals. Thus, for most
steps, the condition in Equation 3 remains false untilt − t0
gets large enough orTR(t) gets close to 0. Another is-
sue is that the checkpoint interval should be no shorter than
the checkpoint latency: a new checkpoint can be generated
only when the previous checkpointing has completed. Note
that the checkpoint latency is composed of the checkpoint
overhead and the latency of transferring checkpoint frag-
ments over the network. It is typically several minutes in
our FGCS system. In this work, we choose the step length
as the checkpoint latency, which is the minimum we can
use.

6 System Design and Implementation

In this section, we describe how the techniques of
failure-aware checkpointing are implemented in our FGCS
system, called iShare [18]. The process of checkpointing is
composed of two parts: (1) generating a copy of the state of
a guest job; (2) encoding the checkpointed state into frag-
ments and storing them on a set of storage hosts. When a
failure occurs, the guest job recovers in the following man-
ner. First, a new computation host is chosen to take place
of the failed host. Next, the new host collects data from the
checkpoint repositories and decodes the data to regenerate
the recent checkpoint. Finally, the guest job continues from
the checkpoint. To implement these facilities of checkpoint-
ing and recovery, there are several design choices that need
to be made. We discuss these design choices in the follow-
ing.

6.1 Creating the Checkpoints

A program can be checkpointed either by the OS or by
the program itself. We adopted user-level checkpointing
because it does not require any modification to the OS or
the guest program. This is essential for FGCS systems,
where resource sharing happens among unknown, and pos-
sibly untrusted entities. In our FGCS system, we apply the
user-level checkpointing library from Condor [25]. Guest
programs only need to be re-linked to include this library.
Checkpointing is invoked by signaling a guest process, and
at recovery time, it appears to the process that it has just
returned from the signal handler. The created checkpoint
is first saved to the local disk of the computation host, and
then is encoded using Erasure coding, as described in the
next section, and written to the sockets that transfer the en-
coded fragments to the storage hosts. The original guest
process is continued once the encoding is done. Its com-
putation is overlapped with the network I/O of transferring
the checkpoints. Thus the checkpoint overhead contains the
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time of creating checkpoint, writing to the local disk and
encoding. The checkpoint latency includes both this over-
head and the latency of transferring checkpoints. We will
discuss the measure of checkpoint overheads in Section 7.

6.2 Encoding and Storing the Check-
points

As discussed in Section 4.2, storage hosts are volatile,
implying the need of redundancy in storing the checkpoints.
To this end, we break a checkpoint into several fragments,
adding some redundancy to enable recovery from a sub-
set of the fragments. Two common techniques for splitting
data into redundant fragments are the use oferasure coding,
such asinformation dispersal algorithms[6], and the addi-
tion of parity information [16]. We apply Michael Rabin’s
classic information dispersal algorithm (IDA) [17] in our
FGCS system, because it provides different fault tolerance
levels by merely tuning certain parameters. More specifi-
cally, it allows coding a vector of sizen into m + k vectors
of sizen/m, such that regenerating the vector is possible
using onlym encoded vectors [6]. Thus, it is possible to
toleratek failures with a storage overhead of onlykn/m
elements. The encoding and decoding both happen on the
computation hosts, adding to the overheads of the guest ap-
plication. Our measurements show that this overhead is less
than 20 seconds for the checkpoint size of 200 MB, which
is acceptable for typical guest applications.

We implemented the above IDA scheme with the values
of parametersm andk provided by guest users. These pa-
rameters affect both the data redundancy and the computa-
tion overhead of IDA. We leave the decision of choosing the
tradeoff between reliability and performance to the users.
We also implemented the APIs of transferring checkpoint
fragments to/from networked storage. The network trans-
fers to the different storage hosts are performed in parallel.
In Section 7.1, we will show how the parallelism helps to
reduce the network transfer latency.

6.3 Recovering from Failures

When a guest job can not continue on the computation
host, the scheduler on the job submission client will selecta
new host. The scheduler collects the set of appropriate ma-
chines along with their load and temporal reliability. Then
it invokes the resource selection algorithm. This algorithm
is slightly different from the one used for job submission,
as presented in our previous work [21]. First, the task size
is updated to reflect the portion of the job finished so far.
Second, the latency of collecting checkpoint fragments is
added to the job makespan. This makes it more favorable to
select the machine close to the previous checkpoint repos-
itories. After the resource selection, the client updates the

checkpoint repositories for the new computation host. Fi-
nally, the computation host regenerates the state from the
checkpoint fragments and continues the execution.

As with all checkpointing systems, the checkpointing in
FGCS must be made fault-tolerant itself. For example, the
computation host or a checkpoint repository may become
unavailable, while checkpointing or recovery is underway.
To this end, our system makes sure that each checkpoint
fragment remains valid until the next checkpoint has been
completed. The computation host controls this process.
After all the fragments of a checkpoint are transfered and
stored successfully, the host notifies the repositories that
they may discard the previous checkpoint fragments. This
protocol ensures that there is always a valid copy of check-
point on the repositories.

7 Evaluation

We have developed a prototype of the system described
in Section 6. This section presents the experiments for eval-
uating the failure-aware checkpointing techniques in terms
of their effectiveness in improving job makespans. We
choose makespan out of the other metrics, such as work loss
or resource utilization, because it directly measures the job
response times observed by guest users.

We considered four sets of experiments. First, we mea-
sured the efficiency of our checkpointing and recovery im-
plementations. The experiments were conducted by check-
pointing a set of scientific programs and transferring the
checkpoints over a campus-wide WAN. Second, we tested
the effectiveness of the failure-aware schemes of checkpoint
repository selection and compared with the alternatives that
ignore resource availability in the selection. Third, we com-
pared our one-step look ahead heuristic of checkpoint inter-
val decision with the method of checkpointing at a fixed
periodicity. Finally, we applied the two failure-aware tech-
niques together. We compared with Condor’s checkpointing
mechanism of using pre-installed checkpoint servers and
checkpointing periodically.

In the last three sets of experiments, we used trace-based
simulation because the experiments need to be repeated on
diverse guest jobs for the tested techniques. For each tech-
nique, we measured the average makespans of a set of syn-
thetic guest jobs with diverse submission times,normalized
job lengths(i.e., job completion time when running on a
dedicated computation node without host workloads), and
checkpoint sizes. To ensure that a submitted job will be ex-
ecuted on the same host for different experimental settings,
we used the same job scheduling algorithm in all the experi-
ments. The details of the scheduling algorithm can be found
in a previous paper [21].

In the simulation, we set the checkpointing parameters,
e.g., checkpoint overhead and the settings ofm andk in
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IDA, based on the experimental results of checkpointing
real scientific programs. To obtain the traces of host work-
loads and resource availability, we monitored the host re-
source usages in an iShare testbed, which contains 20 1.5
GHz Redhat Linux machines in a general purpose computer
laboratory for student use at Purdue University. The local
users on these machines are students from different disci-
plines. They used the machines for various tasks, creating
highly diverse host workloads. We collected the traces for 3
months, from September 2006 to November 2006, resulting
in roughly 1800 machine-days of traces.

We used the GridSim simulator [4] in our experiments.
GridSim supports the modeling and simulation of a wide
range of heterogeneous resources in Grids. In our exper-
iments, it was applied to simulate the job execution on a
host with specific workloads and availability characteris-
tics. Using the traces collected from the iShare testbed,
we simulated a campus-wide WAN consisting of 40 hosts.
Half of the hosts were computation nodes with CPU speed
of 2.0 GHz. The other 20 1.5 GHz machines with 18 GB
disk space were used as storage hosts in our experiments.
They were connected to the computation nodes via 10 Mbps
network links. We added the failure-aware checkpointing
modules to the GridSim simulator. The process of check-
pointing and recovery was simulated by simply pausing a
guest job for the time interval that reflects the correspond-
ing overhead. GridSim simulated the network transfer of
checkpoints by increasing the system clock according to the
latency computed from the data size and the effective band-
width [4].

7.1 Efficiency of Checkpointing and Re-
covery

The metrics of checkpoint overhead and recovery over-
head present the inherent cost of checkpointing, which are
important factors that affect application performance. We
need to know their quantitative characteristics to set up our
simulation. To obtain these metrics, we tested the efficiency
of checkpointing and recovery using a set of programs in
the SPEC CPU2000 benchmark suite. We chose these pro-
grams because they present the typical checkpoint sizes of
scientific applications. These programs were linked with
Condor’s checkpointing library and the encoding was done
following the IDA scheme.

To measure the checkpoint overhead, we ran the pro-
grams on a Pentium IV 2.0 GHz machine with 1 GB of
memory. We collected the wall clock time of creating and
encoding a checkpoint, respectively. Figure 1 shows the re-
sults. Due to the space limitation, we listed the results for
the five programs with the largest checkpoint sizes among
the benchmark suite. Their checkpoint sizes are listed in
Table 1.
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Figure 1. Checkpoint overhead for five pro-
grams in the SPEC CPU2000 benchmark
suite. The x-axis shows the parameters for
the IDA encoding: m is the number of frag-
ments needed for regenerating the data and
k is the number of redundant fragments.

Table 1. Checkpoint Size
Program wupwise swim apsi applu mcf

Checkpoint
size (MB) 175.4 154.1 120.6 105.5 22.5

In Figure 1, the top of each bar shows the time of IDA en-
coding and the lower part is the time of generating a check-
point. Both times increase with the checkpoint size. The
encoding time is also affected by the parameters of IDA:
m (the number of basic fragments) andk (the number of
redundant fragments). For all five programs, checkpoint
creation constitutes more than80% of the total overhead.
Therefore, the use of IDA introduces marginal overhead
while it enables to save checkpoints onto non-dedicated
storage efficiently and reliably.

As discussed before, recovery overhead contains the
time of retrieving checkpoints from the repositories and the
time of IDA decoding. To measure the actual latency of net-
work transfer, we used machines on a campus-wide WAN.
The computation node was a Pentium IV 2.0 GHz machine.
It was connected to the repositories, a set of Pentium IV 1.5
GHz machines, via 10 Mbps network links. Figure 2 lists
the measurements of recovery overhead.

Two observations can be drawn from Figure 2. First,
using IDA leads to lower recovery overhead than sending
the whole checkpoint to a storage directly (the point corre-
sponding tom = 1, k = 0). The reason is that, while IDA
generatesk redundant fragments, the size of data needed for
recovery is always the original checkpoint size; reading the
data concurrently fromm storage nodes is more efficient
than reading from a single storage. Another observation is
that there exists a sweet spot (m = 6,k = 3) for the recovery
overhead. This can be explained by the lower granularity of
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Figure 2. Recovery overhead for five pro-
grams in the SPEC CPU2000 benchmark
suite.

parallelism in data transfer for smaller (m, k) and, on the
other hand, the higher decoding overhead caused by larger
(m, k). Because the latency of data transfer is much larger
than the decoding overhead, the latency effect dominates in
determining the sweet spot.

Based on the above results, we choose the parameter set-
tings (m, k) as (6, 3) in the remaining experiments. We set
the checkpoint size,n, to be between 100 MB and 500 MB.
The corresponding overheads can be calculated by the lin-
ear models derived from the results in Figure 1 and Figure 2.
Table 2 summarizes the parameters. These parameters re-
flect the system-specific performance of our checkpointing
implementations. They are appropriate to use in our simu-
lation, which has similar settings to the tested system. Note
that the actual latencies of checkpoint transfer depend on
the host workload traces used in the simulation. Thus we
do not include the parameters of checkpoint latency and re-
covery overhead in the following table.

Table 2. Checkpointing Parameters
Checkpoint size,n (100, 500) MB
IDA m = 6, k = 3
Checkpoint overhead (s) 0.43 ∗ n + 5.63
Decoding overhead (s) 0.06 ∗ n − 0.29

7.2 Evaluation on Checkpoint Repository
Selection

This section presents the evaluation on the two schemes
of checkpoint repository selection described in Section 4.
These schemes aim to choose reliable repositories via con-
sidering storage availability. By analyzing the traces col-
lected from the iShare testbed, we found that the storage
hosts are available for about70% of the time on average
and failures happen more frequently during 11 AM and 10
PM, when the host workloads are relatively high. To specif-
ically examine the benefits of applying the knowledge of

0

2

4

6

8

10

12

14

5 6 7 8 9 10

Normalized job length (hr)

A
ve

ra
ge

 jo
b 

m
ak

es
pa

n 
(h

r)
  

Random

Optimistic

Pessimistic

 
(a) Average makespans of the jobs running under low resource availability 

 
 
 
 
 
 
 
 
 
 
 
 

(b) Average makespans of all the tested jobs 
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Figure 3. Average job makespans for differ-
ent strategies of checkpoint repository se-
lection. Optimisitic and pessimistic are our
proposed strategies while random provides
the baseline. Lower bars mean better perfor-
mance.

resource availability in selecting the repositories, we com-
pared with the method of random selection. This results in
three strategies of repository selection: random, optimistic
and pessimistic. For each strategy, we measured the average
makespans over a total of 720 jobs, whose submission times
distributed uniformly between 12 AM and 10 PM. For each
submission time, we tested jobs with normalized lengths
ranging from 5 to 10 hours. We excluded the jobs taking
less than 5 hours because, by using the job scheduling algo-
rithm that considers resource availability [21], they usually
incur few failures and thus do not need to be checkpointed.

To remove the impacts of checkpoint intervals on the
repository selection, we set the jobs to be checkpointed
hourly. Figure 3 show the results for the three selection
strategies. Figure 3-(a) lists the average makespans over the
jobs executed between 11 AM and 10 PM, during which re-
source availability is relatively low [19]. Figure 3-(b) lists
the average makespans over all the 720 jobs.

Figure 3 shows that the failure-aware strategies achieve
better job makespans than the strategies oblivious to stor-
age availability. The former improves job makespans by
34.87% in the best case (for the jobs with normalized length
of 5 hours in Figure 3-(a)). On average, by considering
resource availability, the optimistic strategy and the pes-
simistic strategy achieve an improvement of13.04% and
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15.29%, respectively. We also see that, for jobs taking
less than 9 hours, the optimistic strategy is slightly better
than the pessimistic one (the difference is trivial and thus
does not show up in the figure); while it is worse for longer
jobs. The former observation comes from the computational
overhead of more selections needed by the pessimistic strat-
egy. This overhead will be pronounced for largeV andm+k
(we set the two values to be20 and9, respectively, in our
simulation). The latter is the case because the reliabilityof
storage gets close to zero for very largeMTTFcmp, indi-
cating that less thanm storage hosts can survive through the
execution on a computation host. It is worthwhile to point
out that the poor performance of the optimistic scheme on
long jobs can be ameliorated by choosing a largerk if there
are enough storage hosts in the system. We will evaluate
how the values ofm andk affect the performance of the
two failure-aware strategies in future work. According to
the above results, when running relatively small jobs (e.g.,
shorter than 9 hours in our testbed) or using high level of re-
dundancy in the IDA, it is better to use the optimistic strat-
egy. Otherwise, the pessimistic strategy is more safe to use.

7.3 Evaluation on Checkpoint Interval Se-
lection

We have conducted experiments to compare our one-
step look ahead heuristic in checkpoint interval selection
with the approach of checkpointing at a fixed periodicity.
We do not compare with the analytical method of calcu-
lating checkpoint intervals [26] because it requires expen-
sive computation to fit failures to arbitrary distribution mod-
els and to solve the optimal intervals. For example, while
hyper-exponential distributions present accurate modelsfor
resource availability, it is numerically difficult to find the
maximum likelihood estimator parameters [12]. Related
work has shown that the incurred computational overhead
leads to small positive effects on application performance
even when using more accurate distribution functions [12].

In these experiments, to remove the effects of using dif-
ferent checkpoint repositories, we simulated a set of check-
point repositories that were always available and were used
by all the guest jobs. We used the same set of 720 jobs as
described in Section 7.2 and measured the improvement of
average job makespans when using the one-step look ahead
heuristic over periodic checkpointing. We first chose the
checkpoint period as 1 hour and measured the improvement
over different checkpoint sizes. Then we set the checkpoint
sizes of all the jobs to be 300 MB and examined the im-
provement by comparing with checkpointing at different
periodicities. The results are shown in Figure 4 and Fig-
ure 5, respectively.

Figure 4 shows that the one-step look ahead heuristic im-
proves the average job makespans for different checkpoint
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Figure 4. Improvement of average job
makespans when using the one-step look
ahead heuristic instead of checkpointing
hourly. Each bar shows the results for a spe-
cific checkpoint size.
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Figure 5. Improvement of average job
makespans when using the one-step look
ahead heuristic instead of checkpointing pe-
riodically. Each bar shows the results for a
specific periodicity of checkpointing. All the
jobs have the checkpoint size of 300 MB.

sizes and job lengths. The improvement is achieved by the
adaptiveness of the heuristic to resource availability. The
heuristic determines if checkpointing is needed at the peri-
odicity of several minutes, which is the length of the check-
point latency in our experiments. Based on Equation 3,
checkpointing is performed only when the resource avail-
ability is low enough, making the cost of work loss higher
than that of checkpoint overhead. The resulting improve-
ment increases with checkpoint size, as large size indicates
high checkpoint overhead. Furthermore, it also increases
with normalized job length because longer jobs tend to in-
cur more failures, meaning that the periodic checkpointing
leads to higher work loss than checkpointing adaptively.

There exists a sweet spot for the checkpoint periodici-
ties in Figure 5: checkpointing every 3 hours. This can be
explained by the fact that most availability intervals of the
computation hosts are within 2 and 4 hours in the traced

10



testbed [19]. Therefore, for small jobs that are subject to
fewer failures, checkpointing every 3 hours obtains bet-
ter performance than checkpointing at a higher frequency.
Meanwhile, for long jobs that suffer from relatively fre-
quent failures, the results are similar to those of checkpoint-
ing hourly. Checkpointing at a lower frequency, e.g., ev-
ery 4 hours, leads to poor performance because of the large
penalty caused by rolling back to the recent checkpointed
state.

From the results in Figure 4 and Figure 5, we can con-
clude that the one-step look ahead heuristic is able to adapt
to different levels of resource availability and thus achieves
better application performance than checkpointing at static
periodicities.

7.4 Overall Evaluation

In this section, we show the performance of applying the
two failure-aware techniques together. We collected the av-
erage job makespans over the total 720 jobs and compared
them among three strategies: “optimistic storage + adap-
tive interval”, “ pessimistic storage + adaptive interval”,
and “dedicated storage + periodic interval”. The first two
strategies present the different combinations of our failure-
aware techniques. The third one uses a dedicated check-
point server and checkpoints guest jobs at a pre-defined pe-
riodicity, which are mechanisms applied in production sys-
tems such as Condor [25].

In all the experiments, the checkpoint sizes of the tested
jobs were randomly chosen between 100 MB and 500 MB.
We set the checkpoint periodicity to be 3 hours, which
achieved the best performance among all periodic check-
pointing schemes shown in Figure 4. In production sys-
tems, this value is provided by guest users that usually do
not have in-depth knowledge about the behaviors of com-
putation hosts. Thus we are comparing to the best case
that periodic checkpointing can get. To simulate a dedicated
checkpoint server, we added a machine with unlimited disk
space and connected with all the computation hosts via 10
Mbps network links. The checkpoint server was available
98% of the time, representing a higher level of availability
than the non-dedicated resources.

Figure 6 shows the results for the three checkpointing
strategies. In addition to average makespans, we also plot
the 95% confidence intervals for the average values. All
the confidence intervals are smaller than 1 hour, meaning
that the size of the samples used in our experiments is large
enough to obtain statistically meaningful results.

In Figure 6, the scheme of using the optimistic reposi-
tory selection and the adaptive checkpoint interval achieves
the best performance for jobs shorter than 9 hours. How-
ever, the difference between the two failure-aware schemes
(optimistic and pessimistic) is trivial, which is also shown
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Figure 6. Overall evaluation of the failure-
aware checkpointing techniques. Each bar
shows the average makespan of the jobs
submitted at different times. The interval on
top of a bar is the 95% confidence interval for
the average value.

in Figure 3. The periodic checkpointing leads to higher fre-
quency of checkpointing and thus worse makespans. For
jobs longer than 9 hours, the failure-aware scheme of us-
ing pessimistic repository selection performs best since fail-
ures become more frequent. The assumption of the opti-
mistic scheme that the failure characteristic at the begin-
ning of the execution is representative all through the exe-
cution becomes less true toward the end of the long guest
jobs. Again, the performance of the optimistic scheme can
be improved by encoding checkpoints to more redundant
fragments.

In conclusion, our failure-aware checkpointing tech-
niques outperform or come close to the methods that rely
on dedicated hardware resources and checkpoint with the
best fixed periodicity. It is worthwhile to mention that in
practical FGCS systems, it is unlikely to have a dedicated
storage server with availability as high as high as98%. In
that case, our proposed scheme will have a higher perfor-
mance improvement.

8 Conclusion

We presented new failure-aware checkpointing tech-
niques that improve the performance of guest applications
in fine-grained cycle sharing (FGCS) systems. These tech-
niques apply the predictive knowledge of resource avail-
ability to select reliable checkpoint repositories out of non-
dedicated failure prone storage hosts and to determine suit-
able checkpoint intervals. We have evaluated our tech-
niques on an FGCS system via trace-based simulation. Ex-
perimental results show that the schemes of selecting re-
liable checkpoint repositories improve job makespans up
to 15.3% when compared to the method of random selec-
tion. We have also found that our heuristic of determin-
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ing checkpoint intervals adapts to the dynamism of resource
availability and thus outperforms checkpointing with a fixed
periodicity. Moreover, by comparing to Condor’s mecha-
nisms that use dedicated checkpoint servers and pre-defined
checkpoint periodicity, our techniques improve the applica-
tion performance by up to9.4%.

In future work, we plan to examine our checkpointing
techniques in two more aspects. First, we will measure the
effectiveness of the repository selection schemes by encod-
ing checkpoints into different numbers of basic and redun-
dant fragments. Second, we will use a production testbed
to measure the impacts of transferring checkpoints over a
shared network. In such a network, multiple transfers will
be dependent and will affect the network latency incurred
by each. We can use runtime network bandwidth measure-
ments between pairs of hosts to adapt our scheme to this
reality.
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