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_____________________________________________________________________________________________ 
As sensor networks operate over long periods of deployment in difficult to reach places, their requirements may 
change or new code may need to be uploaded to them. The current state of the art protocols (Deluge and MNP) for 
network reprogramming perform the code dissemination in a multi-hop manner using a three way handshake 
whereby meta-data is exchanged prior to code exchange to suppress redundant transmissions. The code image is also 
pipelined through the network at the granularity of pages. In this paper we propose a protocol called Freshet for 
optimizing the energy for code upload and speeding up the dissemination if multiple sources of code are available. 
The energy optimization is achieved by equipping each node with limited non-local topology information, which it 
uses to determine the time when it can go to sleep since code is not being distributed in its vicinity. The protocol to 
handle multiple sources provides a loose coupling of nodes to a source and disseminates code in waves each 
originating at a source, with mechanism to handle collisions when the waves meet. The protocol’s performance with 
respect to reliability, delay, and energy consumed, is demonstrated through analysis, simulation, and implementation 
on the Berkeley mote platform.  
Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design— Network communications, Wireless communication. 
General Terms: Algorithm, Design, Performance, Reliability 
Keywords: Wireless communication, Sensor networks, Network reprogramming, Deluge, Three way handshake. 
_____________________________________________________________________________________________ 
 

1 Introduction 
Large scale sensor networks may be deployed for long periods of time during which the 

requirements from the network or the environment in which the nodes are deployed may change. 

The change may necessitate uploading a new version of existing code or retasking the existing 

code with different sets of parameters. We use the term code upload for referring to both. A 

primary requirement is that the reprogramming be done while the nodes are in situ, embedded in 

their sensing environment. This has spurred interest in remote multihop reprogramming 

protocols over the wireless link. For such reprogramming, it is essential that the code update be 

100% reliable and reaches all the nodes that it is destined for. The code upload should be fast 
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since the network’s functionality is likely degraded, if not reduced to zero, during the period 

when the nodes are being reprogrammed. It is also important to minimize the resource cost of the 

reprogramming and querying for availability of new code. It is conceivable that code upload will 

be infrequent for many deployments and it may appear resource consumption is a non-issue. 

However, as has been noted in [1], while the cost of transmitting code is high, the cost of 

periodically transmitting code meta-data (e.g., for querying current version of code) also be high. 

Applications such as Tiny Diffusion [2], Maté [3], and TinyDB [4], use concise, high-level 

virtual code representations to give programs that are 20-400 bytes long. The sensor network 

environment has inherent unreliability in the network links due to interference, fading, as well as 

mobility and unreliability in the nodes which may have transient failures. Also new nodes may 

join the network and need code updates. The code dissemination therefore must be a continuous 

rather than a one shot process. Due to these reasons, resource consumption, mainly bandwidth 

and communication energy, becomes an important issue. There is also resource cost for a node to 

query for new code that may be injected into the network at any given time. This resource cost 

incurred during the steady state of the network must be optimized since that is the dominant 

phase in the network lifetime.  

The underlying model for the class of network reprogramming protocols is that the binary 

image to be transmitted to the nodes has monotonically increasing version numbers. The image 

is segmented into pages (typical size 1104 Bytes) and each page is sent using multiple packets 

(typical size 36 Bytes). To start off, there are only a few sources of the binary image, e.g., base 

stations located in the sensor field. The code progressively ripples through the network with the 

exchange happening between neighbors through a three way handshake of advertisement, 

request, and actual code transfer. The advertisement and the request will collectively be referred 
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to as meta-data. The meta-data is typically much smaller in size than the data (the code) and is 

used to suppress redundant data transmission. The advertisement indicates availability of code at 

the sender, the request indicates that some or all of the advertised pages are needed at the sender, 

following which the actual code transfer takes place in units of pages which are sent as packets.  

In this paper, we present a protocol called Freshet1, which fits in this genre of protocols. The 

first realization is that a brute force flooding method is not feasible due to the enormous 

bandwidth overheads. In view of limited bandwidth resources and the energy consumption due to 

communication, it is important to suppress redundant transmissions of the data and the meta-

data. The suppression uses the shared nature of the wireless medium and the capacity of a node 

to overhear its neighbors’ communication. For example, if a node A in the network has version v 

and a neighbor node B requests pages of version v′ (< v) from a node C, then A can proactively 

send the more recent code to B. This will cause a suppression of the transmission from C to B if 

C and A are neighbors. Next, we use pipelining of the different pages in a binary image to 

expedite the code upload. Each interested node may initiate the process of forwarding the code in 

units of a page as it receives the pages and aggregates them to create its own complete binary 

image. This is in contrast to the approach in Mote Over the Air Programming (MOAP) [5] where 

the forwarding happens only when the entire code has been assembled at a node. Since a binary 

image may consist of many pages and the wireless links are failure prone, the MOAP approach 

may lead to excessive retransmissions and therefore bandwidth overheads. Freshet can also 

speed up the process when multiple sources of code are available. The key insight to enable this 

                                                 

1 OED: Freshet – (i) A small stream of fresh water (Obs. exc. poet.); (ii) A stream or rush of fresh water flowing into the sea; (iii) 
A flood or overflowing of a river caused by heavy rains or melted snow. 
Used by Bowen in Virgil as “A cave … sweet fountain freshets within it.” 
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is to allow nodes to receive pages out of sequence for streams from different sources. This leads 

to somewhat more state maintenance at the node but substantially speeds up the process.  

Freshet has the design goal of reducing the energy consumption due to code upload. For this, it 

attacks the single biggest source of energy drain – idle listening energy. A fundamental insight 

used in Freshet is that nodes can be put to sleep by making the advertisement-request-data 

handshake happen only at certain points in time. When new code is introduced into the network, 

Freshet has an initial phase, the blitzkrieg phase, when information about the code propagates 

through the network rapidly along with some topology information. The topology information is 

used by each node to estimate when the code will arrive in its vicinity and the three way 

handshake will be initiated – the distribution phase. Each node can go to sleep in between the 

blitzkrieg phase and the distribution phase thereby saving energy. The potential for energy 

savings grows with the size of the network. Freshet also optimizes the energy consumption by 

exponentially reducing the meta-data rate during conditions of stability in the network (the 

quiescent phase) when no new code is being introduced.  

In order to demonstrate the behavior of Freshet, we build simulation models in TOSSIM, which 

is a discrete event network simulator that compiles directly from unmodified TinyOS application 

code [22]. TOSSIM captures the behavior of the entire TinyOS network stack in a detailed 

manner and is used to solve the problem of scaling of our actual sensor network testbed. 

TOSSIM does not represent actual real-world performance of a sensor network, but its primary 

use in this paper is to compare the performance of Freshet and Deluge, so with both protocols 

running TOSSIM any simulation discrepancies should affect each protocol similarly. We also 

present performance results from a small sized implementation testbed illustrating the 
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advantages of Freshet over the state-of-the-art Deluge in terms of energy and that Freshet does 

not significantly increase the reprogramming time. 

It must be noted that in some of the high level goals and design approach, Freshet has 

similarities with two recent protocols – Deluge [6] and MNP [7]. However, there are substantial 

differences in the protocol design which lead Freshet to make the following novel contributions. 

1. Freshet shows that adding limited network topology information to local information 

provides energy benefits while preserving scalability. 

2. Freshet addresses the problem of code upload from multiple original sources. It shows the 

benefit of using interleaved transmission of pages to speed up the code upload process in the 

multiple source situation. 

3. Freshet shows a method for energy optimization in the quiescent phase while preserving the 

reliability guarantee of other protocols.  

The rest of the paper is organized as follows. Section 2 presents a survey of related work. Section 

3 presents the basic design of Freshet and Section 4 three extensions. Section 5 discusses 

coordinating the Freshet sleep schedule with user applications. Section 6 presents the analysis 

and Section 7 the experimental results. Section 8 concludes the paper. 

2 Related Work  
The field of network reprogramming in the large scale wired distributed systems has focused on 

the problem of reliability and efficient utilization of bandwidth. For example, [8] provides 

methods for efficiently computing increments to the update. They have not dealt with resource 

constraints on the nodes themselves. Due to the wired environment, the solutions do not have the 

ability to leverage overhearing neighbor communication.  
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In a large scale wireless network, data dissemination through unregulated flooding using 

broadcast by each node is known to cause a broadcast storm [9], thereby limiting the scalability 

of such a solution. Hence, researchers have proposed randomized tree based multicast protocols 

with the source at the root of the tree, receivers at the leaves, and intermediate nodes responsible 

for local recovery at the intervening levels of the tree. Scalable Reliable Multicast (SRM) [10] is 

an important protocol in this class. In SRM, when a member detects a message loss, it initiates a 

recovery procedure by multicasting a retransmission request in the local region. Any member 

having the desired message in its cache responds by multicasting the message, with a back off 

mechanism being used to prevent redundant requests and replies. The idea of suppression 

through deferred messages in Freshet comes from SRM. Further scalability in unreliable 

environments, such as ad-hoc networks, can be achieved by epidemic multicast protocols based 

on each node gossiping the message it received to a subset of neighbors [11]. The probability of 

the update reaching all the group members is monotonically increasing with the fanout of each 

node (the number of neighbors to gossip to) and the quiescence threshold (the time after which a 

node will stop gossiping to its neighbors). By increasing the quiescence threshold, the reliability 

can be made to approach 1, which is the basic premise behind all the epidemic based code update 

protocols in sensor networks, including Freshet.  

The push-pull method for data dissemination through the three way handshake of 

advertisement-request-code has been used previously in sensor networks with sensed data taking 

the place of code. Protocols such as SPIN [12] and SPMS [13] rely on the advertisement and the 

request packets being much smaller than the data packets and the redundancy in the network 

deployments which make several nodes disinterested in any given advertisement. However, in 

the data dissemination protocols, there is only suppression of the requests and the data sizes are 
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much smaller than the entire binary code images. Freshet borrows the idea of hop-by-hop NACK 

based error recovery present in many protocols proposed for wireless sensor networks (WSNs), 

such as Garuda [14].  

There are four major sensor network reprogramming approaches that have appeared in the 

literature. TinyOS [15] includes limited support for network programming via XNP [16]. 

However, XNP only operates over a single hop and does not provide incremental updates of the 

code image. The Multihop Over the Air Programming (MOAP) protocol extends this to operate 

over multiple hops [5]. MOAP introduced several concepts which are used by later protocols, 

including Freshet, namely, local recovery using unicast NACKs and broadcast of the code. 

However, MOAP does not leverage the pipelining effect with segments of the code image. The 

two protocols that are substantially more sophisticated than the rest are Deluge [6]and MNP [7]. 

Both use the three way handshake and the segmentation into pages and packets. Deluge builds on 

top of Trickle [1], a protocol for a node to determine when to propagate code in a one hop case. 

Deluge leverages overheard advertisements or requests to decide when to create a new 

advertisement or send a new code update.  MNP is a more recent protocol whose design goal is 

to choose a local source of the code which can satisfy the maximum number of nodes. The 

authors provide a detailed algorithm for sender selection using the number of requests seen by a 

sender as the key parameter for the selection. They provide energy savings by turning off the 

radio of all the nodes that are not selected as the sender. While this protocol does provide 

advantages, in [23] it was shown that MNP downloaded code significantly more slowly than 

Deluge. Therefore, this paper will focus on comparing Freshet to Deluge’s performance. 

Freshet, while it shares most of the design goals and some design features of Deluge and MNP, 

is different in many important aspects. To elaborate and paraphrase the key differences 



8 

mentioned in Section 1, Freshet optimizes the energy consumption more aggressively through 

turning off the nodes between the blitzkrieg phase and the distribution phase using limited 

topology information. It also trades off the responsiveness of the protocol to newly joining nodes 

for saving further energy during the steady state. It also uses out of order paging to speed up the 

code update with multiple sources of the code.  

More recently, our protocol called Stream [28] optimizes the energy of wireless reprogramming 

by limiting what is sent wirelessly across the network. Rather than sending the reprogramming 

protocol image together with the application image, it sends only the application image together 

with a small control protocol image, while it pre-installs the bulk of the reprogramming protocol 

in the node before deployment.  

3 Design of Freshet 
3.1 System Model 

For a quick reference of the meanings of important parameters used in Sections 3 and 4, please 

see Table 1.  

Parameter Meaning 
v Version number of the code 
p Current page of the code 

pmax Maximum (total) page number of the code 
w If a node hears more than w warning messages, it does not send the warning message. 
toff Time for the three way handshake between two neighbor nodes 
bn Number of neighbors of a given node 
τ In quiescent phase, each node listens for a period of τ/2 and then decides with probability 1-1/bn 

that is should sleep for the next τ/2 period  
numSrc Number of originators 

 Table 1 : Meanings of some important parameters 
Initially, a few specialized nodes, such as base stations, have the entire code image. These 

nodes are called originators, to distinguish them from sources of the code, since any node can 

act as a source as soon as it has received a subset of the code image. The binary code image is 

segmented into equal sized pages and each page is split into multiple packets. The code is 

transferred through the links in units of a packet while the three-way handshake happens in units 
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of a page. Each new image injected into the network has a version number attached to it, which 

increases monotonically. A node obtains code through monotonically increasing page numbers. 

When a node hears of code for a later version, it suspends any transfers for the code of the earlier 

version. Each node maintains local state of tuples of (v, p, pmax) where v gives the version 

number, p the current page with the node, and pmax is the maximum page number. Thus looking 

at a code image transfer packet, a node can uniquely determine if it needs the packet.  

Freshet uses spatial multiplexing to transfer the code. This implies that a node can transfer the 

code to a neighbor before it has received all the pages for a given version. In effect, the node can 

initiate transfer once it has the first page for the version. This makes the delay proportional to the 

sum of the network diameter and the code size rather than the product of the two.  

Now we describe the three phases in Freshet that each node goes through. 

3.2 Blitzkrieg Phase 

In the blitzkrieg phase, Freshet propagates information about the nature of the new code to all 

nodes in the network. This is accomplished through a fourth type of message, a warning 

message, apart from the advertisement, request, and broadcast data messages. This message 

contains information about the new code in the form of the version number, the number of pages, 

and how far the sending node is from the data source, in terms of hop counts. The blitzkrieg 

phase enables energy optimization since each node can use the hop count information to 

determine when it will enter the distribution phase.  

The pseudo-code showing the operation of the blitzkrieg phase is shown in the Appendix in 

Figure 27. The hop count is incremented by each intermediate node routing the warning 

message. Every time a node hears a unique warning message with code information more recent 

than its own, it starts a short, randomized timer. Once this timer fires, and the node has not heard 
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more than w warning messages with the same code version as its own, it sends out the warning 

message. The node sends the exact same message as the one it first received, except that it 

increments the hop count from the original message. This information therefore gives the 

receiver an estimate of how many intervening nodes from the node have the data and have seen 

and propagated the warning message. Based on empirical results of time to propagate code over 

one hop, Freshet estimates when the hop count is sufficiently large that energy savings are 

possible by stopping advertising and turning the node’s antenna off. In this exposition, we will 

use the term a node going off to sleep to mean its antenna being turned off. If the node has some 

sensing task, for which it needs to stay awake, without communicating, it can continue to do so. 

On getting the hop count information, the node starts a timer for how long to cease 

advertisements and go to sleep. 

Given that the sleeping will happen for a 

source to node distance beyond h hops, a node 

ha hops away sleeps for time toff*(ha-(h-1)), 

where ha > h and toff is the time for the three 

way handshake between two neighbor nodes. 

This parameter is estimated empirically in the 

sensor network test bed. The additive nature of 

this formula stems from the result from Deluge 

that the time to propagate a page is linear in the 

number of hops for a fixed object size [6]. With 

further accurate information about the 

topology, it may be possible for each node to 

estimate the timeout more accurately.  
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Figure 1. State machine in blitzkrieg phase. 
The labels on the edges are of the form a/b 
where a is the input that triggers the state 

transition and b is the output that is generated 
as part of the state transition.

We discuss in Section 4.1 an extension to Freshet where accurate location information is 

available. 

The blitzkrieg phase causes each node to relay the warning message a fixed number of times, 

the redundancy being used to guard against losses. The blitzkrieg phase does not require any 

synchronization between the nodes and each node terminates its blitzkrieg phase when it has sent 

out the fixed number of warning messages. The state machine representations for an originator 

node and a general node in the blitzkrieg phase are shown in Figure 1(a) and (b) respectively. 

Figure 1(a) shows the process at the beginning of a code update to transmit warning messages. 

Once a node either hears newer code or a warning message from another source, it sends 

warning messages until it has sent and heard τ messages. 

In Figure 1(b), we see that once a node has heard a warning message, it verifies that the 

metadata is an update to its current code image. If this is determined to be the case, the node 

starts sending out warning messages. Once finished, the node sleeps if it is more than 3 hops 

from code update, and stays awake otherwise. There are tradeoffs in determining how far away a 

node may be before it sleeps after the blitzkrieg phase. 

Freshet uses 3 hops as the cutoff point because it balances energy savings with code proximity. 

Consider the nodes, say belonging to a set called A, that receive the blitzkrieg message directly 

from the originating node, call it node B. However, there may be other nodes, say belonging to a 

set called C, within range of the originator for which the blitzkrieg packet directly from the 

originator was dropped. But when the actual code transfer occurs, nodes in set C receive enough 

packets from node B to successfully download the code, as if they had originally been in set A. 

Since some nodes for each blitzkrieg message may fall into set C, there needs to be some 
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concession to incorporate these nodes. This is done by allowing a threshold for hop count for 

sleeping that is greater than 1. On the other hand, to allow for more energy savings Freshet 

would like to turn the radio off for as many nodes as possible. This factor pushes the value of the 

threshold lower. Empirically, 3 hops was determined as a suitable value; 2 typically was too 

restrictive on the nodes that could receive code updates and 4 typically saved less energy without 

significantly altering the download time. 

As [17] shows, the major energy expenditure for the radio is the idle receive time and not the 

transmission energy level or number of messages sent. Therefore, Freshet seeks to turn off the 

radio between the blitzkrieg and the distribution phases.  MNP in [7] turns off the radio of nodes 

which are not selected as senders of code (during their counterpart of the distribution phase), but 

does not address radio usage in the long time periods before and after code updates. Since a node 

can go to sleep between the time that code is injected into the network and when it arrives in the 

node’s vicinity, a large network that needs to disseminate a large data object can save substantial 

amounts of energy in Freshet.  

3.3 Distribution Phase 
The distribution phase of Deluge achieves efficient and robust dissemination of code pages. 

Thus, Freshet leaves this phase unchanged and chooses to optimize aspects of Deluge not 

associated with the active distribution of code, while still maintaining the same performance. 

This phase is described in brief here for the sake of completeness.  

The pseudo-code showing the operation of 

the distribution phase is shown in the 

Appendix in Figure 27. The state machine 

representation for a general node in the 

distribution phase is shown in Figure 2. 
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Figure 2. State machine in distribution phase

The distribution phase does not need any synchronization between the nodes. It begins once a 

node wakes up from the sleep induced by the warning message of the blitzkrieg phase, or, if it 

was determined that the node need not go to sleep, then right after the completion of the 

blitzkrieg phase. The distribution phase functions through a three-way handshake protocol of 

advertisement, request, and broadcast code. The operation of each node is periodic according to a 

fixed size time window. The first part of the window is for listening to advertisements and 

requests and sending advertisements. The second part of the window is for transmitting or 

receiving code corresponding to the received requests. Within the first part of the time window, a 

node randomly selects a time at which to send an advertisement with meta-data containing the 

version number, the number of complete pages it has, and the total number of pages in the image 

of this version. When the time to transmit the advertisement comes, the node sees whether it has 

heard sa advertisements with identical meta-data, and if so, it suppresses the advertisement. 

When a node hears code that is newer than its own, it sends a request for that code and the lowest 

number page it needs, to the node that advertised the new code. In the second part of the periodic 

window, the node transmits packets with the code image, corresponding to the pages for which it 

received requests. Since a node only fills its pages in monotonically increasing order, it 

eliminates the need for maintaining large state for missing holes in the code. For receiving the 
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code, each node uses the shared broadcast medium that allows overhearing and can fill in a page 

requested by a neighbor, subject to the monotonicity constraint mentioned above.

In addition to the advertisement suppression mentioned above, Freshet uses several 

mechanisms for message suppression. The first is sender selection. When a node needs new 

code, it designates the node to send the new code image. This sender is selected by the most 

recently heard advertisement and the other senders are thus quieted. The second mechanism is 

request suppression. When a node overhears a request for the same code it needs, then it 

suppresses its request, unless it does not receive the new code within some time interval.  

3.4 Quiescent phase 
A node enters the quiescent phase once code has been disseminated completely within the 

transmission range of the node. Thus, it no longer hears requests and it has itself acquired the 

complete code image. Since there will be no further code transfers for the immediate future, the 

node does not need to advertise at all. The two distinct scenarios that are to be handled in the 

quiescent phase are when a new node enters the network and when new code is injected into an 

existing network. 

In Trickle [1], a scheme is proposed for sending an advertisement every so often to ensure that 

if a new node is added to the network, it is aware of the current code status. However, since the 

quiescent phase is typically the most long-lasting phase, Freshet optimizes the energy 

consumption further by switching to a complete pull-based mechanism to service new nodes. If 

any new node enters the network, it will advertise its old data and thus will alert the already 

present nodes that they need to start transmitting again. As it is difficult to decide 

deterministically when a node may safely shut off its radio, the quiescent phase operates by 

ensuring that all nodes in the network are awake at least half the time. Since this new node may 
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enter the network at any location and new code may be injected at any time, only a portion of the 

network can sleep and the nodes that sleep must probabilistically ensure that the network will 

still respond to any new events. The means of accomplishing this is through recording how many 

neighbors, bn, are within each node’s vicinity. Consider a time slot of length τ. Each node listens 

for a period τ/2 and then decides with probability 1-1/bn that it should sleep for the next τ/2 

period. This design is a tradeoff between energy saving and responsiveness of the network to 

new code or new nodes. The decision to have the node sleep half the time was modeled off of 

Trickle’s methodology of equally dividing the time period into a listen and a send window. 

Further experimentation is required to determine the optimal sleep period for a given network. 

In the case where new code enters the network, nodes that are awake will propagate the 

warning message throughout. Therefore all nodes awake when this occurs will be prepared for 

the new update. However, the portion of the network that was sleeping may have problems being 

prepared for the next update. However, note that it is very unlikely that the node will miss the 

code update completely, as it will be awake for half the time. Consequently, it will either have 

heard the initial warning messages or be aware when the code reaches a few hops away, as the 

nodes that received warning messages will have awakened by then and be sending 

advertisements to the surrounding nodes. 

Freshet can function in either a dynamic or a static network. The dynamic nature may be a 

result of failures, which will cause new routes to be discovered that Freshet will use in the 

propagation of code. For a mobile network, two cases have to be considered. One is the node 

which wishes to upgrade its code is moving, in which case the node disregards any network 

topology information obtained earlier and stays awake for the code transfer. Since the energy 

expended due to motion is significantly higher than that due to listening energy, this appears to 
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be a reasonable choice. An exception would be the case where the transportation was provided 

by a host, such as a walking person. This case would rarely be practical since a fairly large 

network would require either many persons to move all the nodes in a synchronized manner and 

the network’s environment is often not suitable to human intervention. The second case is the 

originator is mobile. It executes the blitzkrieg phase twice – once at the old location canceling 

the hop count information and again at the new location to update the nodes with the correct hop 

information. Note that a mobile originator that cancels its original warning message could 

negatively affect the network performance. Nodes more than h hops from the originator, where h 

is the number of hops beyond which nodes sleep before entering the distribution phase, may be 

asleep when the originator sends out the cancellation message. In this case, if the new location of 

the originator is closer to those nodes, then the distribution of code will be delayed. The speed of 

the mobile originator would also affect network performance. A slow-moving originator that 

moves across a large portion of the network may reach its new location at a much later time, 

such that the network has re-entered the quiescent phase while waiting for the code update. In 

this case, there would be a small impact on performance since it would be akin to have a newer 

version of the code appear in a neighborhood when nodes are in the quiescent phase. On the 

other hand, a fast-moving originator could reach parts of the network that are sleeping. In this 

case, code upload would take longer waiting for the nodes to awake.    

The pseudo-code for the quiescent phase is shown in the Appendix in Figure 28. 

4 Extensions to Freshet 
In this section, we discuss three additional features of Freshet, augmenting the basic design.  

4.1 Freshet with Location Information 
In this extension, we equip Freshet with precise location information for the nodes. In the basic 

version of Freshet, the only network information available to a node is the number of hops it is 



17 

distant from the source of the data. However, due to the variability of the wireless channel, not 

all hops are made equal. Simply put, a single hop channel between two nodes 50 ft apart may be 

substantially more unreliable than one between nodes 10 ft apart. The unit time to transfer code 

of multiple packets over the lower reliability link will be higher since all the packets of a page 

must be received for the page to be successful. The wireless channel characteristic is dynamic 

and therefore, the number of hops traversed by the warning message may not be representative of 

the number of hops traversed during the actual code upload. The hypothesis is that given richer 

information on network topology, a node may improve its knowledge of how far it is from an 

injected code image and thus improve the estimate of the time to sleep. In the basic version, the 

design is motivated by energy savings and therefore each node picks a conservatively high value 

of time to sleep, giving an operating point of low energy consumption and high delay. The 

information that we choose for refining this estimate is the location information. Each node is 

aware of its location and disseminates this with the warning message during the blitzkrieg phase. 

In this system model, each node either knows its own location with special hardware, such as a 

GPS receiver, or may obtain it through a network protocol using nodes with location 

information, such as our protocol in [18]. The mapping of distance from code source to delay can 

be made through analysis, provided the constituent delays can be represented using closed form 

formulae. In the case of our experimental testbed, this appears not to be the case due to the nature 

of the MAC layer protocol called B-MAC [19], which is a variant of the 802.11 CSMA/CA 

MAC protocol. The determination of the time to propagate code is thus from a pre-determined 

equation based on empirical results. The empirical result depends on the size and density of 

nodes in the network and thus, this is additional information pre-loaded into each node. In the 

current design, the nodes make a lower bound estimate on the code propagation time to optimize 
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for latency. Figure 3 and Figure 4 demonstrate the correlation between the distance from the 

code source and the time to disseminate code using the TOSSIM simulations. Both figures 

represent the time for complete download of the first page.  
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Figure 3. Time for dissemination of one page 

for a 400 node network 
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Figure 4. Time for dissemination of one page 

for a 100 node network 

These figures are generated by running Freshet without any sleeping nodes and thus give an 

estimate of the best case performance, i.e., lowest delay for code propagation. The behavior of 

this characteristic is approximately linear with distance (correlation of line is 0.83 and 0.82 

respectively for the 400 and 100 node networks), so we can approximate the time for a node to 

sleep through linear regression analysis for a given network size. 

4.2 Multiple Page Transfer 
The second extension is to optimize the number of control messages using knowledge of the 

pattern of code dissemination. The authors of [6] show that even with aggressive advertisement 

suppression in Deluge 18% of all packets are control packets. In particular, when a new code 

image enters the network, handshakes for each page – the cycle of advertisement, request, and 

code – delay progress in pushing code through the network. We target this source of overhead in 

Freshet to increase the utilization of the channel bandwidth. The underlying intuition is that if a 

large fraction of the neighbors of a node need several pages, the node can send these pages 

without repeated iterations of the handshake cycle. We call this mode the multi-page mode. 
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This trigger for the multi-page mode is reached by listening to advertisement messages. When a 

code sender only hears advertisements for older code images, then this sender is aware that its 

new update will be needed by all nodes within its immediate range. In this case, it is beneficial to 

optimize channel use by sending the multiple requested pages as quickly as possible without 

sending advertisements for each individual page. A node needing code assumes that the sender 

will send the appropriate pages without continuing to request those pages. If a node doesn’t 

successfully receive all the packets of a page, then it sends a request for a retransmission. This is 

the only source of control packets in the multi-page mode. Following a given wait period, the 

sender transmits the next page without having had to advertise it, and without having had it 

requested. This reduces the code upload delay and improves channel utilization.

Figure 5 shows the state transition diagram for this handshake scenario – the upper half 

corresponds to the sending node and the lower half to the receiving node. 

Code Transfer 
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Wait for missed
pkts

Send Next 
Page

Request missed
pkts

Code 
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Timer
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/ Keep sending until done

Code transfer complete/
/More pages, keep receiving

/Receive code

Code transfer complete/  

Figure 5. State transition diagram for multi-page mode 

4.3 Multiple Originators 
This component of the design of Freshet deals with situations where a network may have 

multiple identical code sources in different locations. In many cases with a deployed sensor 

network it is hard to access nodes inside the mesh of the network, but easy to access the outside 



20 

edges of the network.  A user may deploy additional sources with the goal of reducing the time 

to propagate code through the network. Recollect that the term originator refers to one of the 

original sources that initiated the code propagation.  

In Freshet, the use of multiple data originators would effectively partition the network into 

smaller portions. We propose a scheme to distribute pages out of order to improve dissemination 

in the network as a whole. Through out of order dissemination of pages it is possible that when 

pages distributed from different originators meet, they may fill in the “gaps” in each node’s code 

image. This allows us to create fresh sources from which code can be disseminated. In this 

design, it is fundamentally important to design negotiation scheme so that collisions between 

multiple nodes trying to push code can be handled.  

Thus, we propose the concept of node parity, where the parity of a node is determined by 

which set of pages it chooses to disseminate first when it already knows that there are other 

originators in the network sending pages with different parity. In particular, Freshet has numSrc 

originators sending code of size pmax pages into the network. For a given originator sj, said to 

have parity j (0≤ j<numSrc), it will first send out pages numbered i such that i mod numSrc = j. 

After distributing these pmax/numSrc pages, it will then distribute pages numbered i such that i 

mod numSrc =j-1, j-2, …,0 and then numSrc-1,…,j+1. It is assumed that the deployment of the 

originators is done with some thought – they are relatively evenly spread and are assigned non 

overlapping parities.  

The next problem is how to resolve conflicts between nodes with pages of different parity. For 

a node with an incomplete image there is the concept of cycles, one for each parity in the 

network, with the node switching through the different cycles.  Consider Figure 6 which depicts 

node behavior in a network with two parities. It goes through an even cycle and an odd cycle. 
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Figure 6. Cycles for 2 originators 
Each cycle has one slot for listening and one for advertising and requesting. The cycle is 

dedicated to the particular parity when activity pertaining to both parities is happening around 

the node. However, if the node hears a consecutive advertisements of one parity, where a is a 

user-defined parameter, then it will use all available cycles for that parity. This is to ensure that 

cycles are not idled for pages of a given parity that are still far off from a node. As in Deluge, 

pages may only be downloaded sequentially within that parity. Thus, with two parities, the motes 

must download page 5 before page 7. 

An optimization in Freshet for interleaved pages is that if a node’s radio is idle in a given cycle 

and data is available, the node will utilize the cycle to get the data. What is sacrosanct is that a 

node does not transmit meta-data outside the turn. This is important to prevent the protocol from 

thrashing in which only meta-data exchanges happen and the network’s throughput goes to zero.  

5 Coordination with user application’s sleep/awake scheme 
We have to be aware that Freshet does not execute in isolation at the sensor nodes. The nodes 

run some user application which generally causes the node to operate with a low duty cycle, i.e., 

the node sleeps for most of the time and wakes up for short time interval to perform its tasks 

(like sensing, sending data to base station, etc.). This helps the node to reduce the power 

consumption due to idle listening and thus to lengthen the lifetime of the node. In our discussion 

of Freshet so far, we have assumed that Freshet can put the node to sleep according to its own 

calculation, disregarding the fact that the user application may require the node to be in the 

awake state to perform its tasks during this interval. In reality, Freshet cannot make this 
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unilateral decision. Here we discuss the simple change to Freshet so that it can co-exist with low 

duty cycle user applications.  

We address this issue by mandating that Freshet is informed of the sleep-awake schedule of the 

user application. The condition for putting a node to the sleep state becomes: 

1. User application puts the node to the sleep state AND 

2. Freshet puts the node to the sleep state either between the blitzkrieg and the distribution 

phases (according to Section 3.2) or during the quiescent phase (according to Section 3.4). 

The pseudo-code for managing the sleep/awake schedule is shown in Figure 8. Freshet uses 4 

timers: Freshet_sleep_timer, Freshet_awake_timer, UA_sleep_timer, and UA_awake_timer. If 

these are hardware timers (there are 4 for the Mica2 platform), then the microcontroller can also 

be in the sleep state when the node is put to sleep. UA_sleep_interval and UA_awake_interval 

are the user application defined awake and sleep intervals respectively.  

1. UA_awake_timer.fired() 
UA_sleep=FALSE 
UA_sleep_timer.start(UA_awake_interval) 

2.  UA_sleep_timer.fired() 
UA_sleep=TRUE 
UA_awake_timer.start(UA_sleep_interval) 
Put the node to sleep 

3. Freshet decides to put a node to the sleep state (either between blitzkrieg phase and distribution phase or
during quiescent phase) 

t1 = Duration for which Freshet decides to put the node to the sleep state  
if(UA_sleep= =FALSE) 

t2=UA_awake_interval-(time elapsed since UA_awake_timer fired) 
Freshet_sleep_timer.start(t2) 

else 
Freshet_sleep_timer.start(0) 

4. Freshet_sleep_timer.fired() 
t3=UA_sleep_interval-(time elapsed since UA_sleep_timer fired) 
if(t3<t1) 

Freshet_awake_timer.start(t3) 
else 

Freshet_awake_timer.start(t1) 
  Put the node to sleep 

5. Freshet_awake_timer.fired() 
Wake up the node  
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 Figure 7. Pseudo-code for Freshet co-existing with an application that has its intrinsic 
sleep-wake schedule for energy conservation 

6 Analysis 
6.1 Analysis 1: Number of redundant advertisements 

First we analyze the number of redundant advertisements that are needed to achieve a given 

reliability of reaching a node in the network which is relatively isolated. This is defined as the 

reliability of the code update protocol. Let the number of nodes in the network be n, the size of 

the sensor field be A, and the radius of transmission be r0. We assume for the analysis that the 

nodes are uniformly distributed in the sensor field. The density of the sensor field is ρ = n
A

and 

the average number of nodes in the transmission range of a given node is λ = πr0
2ρ. The 

probability that the number of neighbors of a node (d) is n0 is given by a Poisson distribution. 

P(d = n0) = 
0

0 !

n

e
n

λλ − , n0=1,…,n, assuming n>>n0. Let us consider an arbitrarily isolated node α 

that is a fraction τ of the SD away from the mean. Thus, the number of neighbors of the isolated 

node is bα = E(d)- τS(d) = √λ(√λ-τ), τ<1.  

Now, consider the probability of successful transmission of an advertisement from one of the 

neighbors of α to node α. Note that we only need to consider a successful transmission of the 

advertisement and not the subsequent request and code packets since if node α is made aware of 

the presence of new code, it will continue to request arbitrarily long till successful transmission 

of the code is achieved. Of course, realistically collisions will cease on the channel to node α and 

the transmission will be successful within a few attempts. In order to estimate the probability of 

successful transmission of the advertisement, we use the analysis of the 802.11 CSMA/CA 

protocol given in [20]. Note that the Berkeley Mica motes do not use 802.11; the default MAC 

layer is B-MAC. Like 802.11 analyzed here, B-MAC uses CSMA/CA, but it does not use slots or 
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binary exponential backoff as 802.11 does. Instead, it uses continuous time and uniform backoff 

as the default (the user application may override the default though). Thus, our analysis is an 

approximation of the performance that can be seen with B-MAC. However, to the best of our 

knowledge, there does not exist an exact analysis of the B-MAC protocol.  

For our analysis, binary exponential backoff is being used with minimum size of the contention 

window CWmin = 2mW and the maximum size CWmax = 2m′W. We assume that any contention for 

the wireless channel comes from the neighbors of node α. The number of retries by a given node 

for transmitting the advertisement is then M = m′-m+1. The probability of successful 

transmission in one time slot is Ps = PtrPs|1, where Ptr is the probability that there is transmission 

and Ps|1 is the probability of successful transmission in a slot, given there is a transmission. We 

obtain using equations (10) and (11) in [20], Ptr = 1-(1-Pt)bα and Ps|1 = 
1

t t
1

t

P (1 P )
1 (1 P )

b

b

b α

α

α
−

−

−

− −
, where Pt is 

the probability that a station chooses to transmit at a randomly chosen slot time and is given by 

equation (7).  

Therefore, the probability of successful transmission PS = 1-(1-Ps)M, assuming that the 

probability in each time slot is i.i.d. Therefore the probability of success of at least one 

advertisement from among the r sent by a node i which is a neighbor of node α is PS,i = 1-(1-PS)r. 

Therefore the probability of success of at least one advertisement reaching the node α, i.e., by 

definition the reliability of the protocol, is R = 1-(1-PS,i)bα. This can be made arbitrarily close to 1 

by increasing the value of r and asymptotically goes to 1 as r→∞. 

The analytical results are plotted in Figure 8 and Figure 9 for n = 15×15, A = 200×200, CWmin = 

16, CWmax = 1024 from the 802.11 standard for FHSS Physical layer, Transmission power = -

20dBm, and minimum Receive power = -85dBm giving r0 = 39.0937 m (for the Mica motes). 



25 

Figure 8 shows the non intuitive result that the number of retries is not monotonically increasing 

with increasing τ. For higher values of Pt, the increased contention due to the number of 

neighbors of the isolated node causes the number of retries to decrease with τ to a minimum 

before increasing. Figure 9 shows that the reliability asymptotically approaches 1 which puts the 

reliability claim of Freshet on the same ground as that of other epidemic based protocols. 

 
Figure 8: Variation of no. of retries to reach 

99% reliability for an isolated node 

 
Figure 9: Variation of reliability with no. of 

retries for an isolated node (τ=0.9)

6.2 Analysis 2: Time between blitzkrieg and distribution phases 
Next, we analyze the separation in time between the blitzkrieg and the distribution phases. For 

a node one hop away from the originator of the new code, this time interval is the time for a 

single round of a three way handshake. Assuming perfect pipelining of the single page of the 

code, the time interval Tdelay,h between the blitzkrieg and the distribution phases for a node h hops 

away from the originator of the new code is Tdelay,h =h.Tround where Tround is the time for a single 

round of the three way handshake. Tround  consists of following components: 

Tround = Tadv + Treq +Tdata 

where Tadv is the time used by the nodes in advertising their metadata before the node requiring 

the new code decides to send the request. Treq is the time used for requesting the data and Tdata is 

the time required to send one page of data.  
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To calculate Tadv, Treq and Tdata, we need to find the expected number of transmissions required 

for a successful transmission of a packet. Let Ps be the probability of a successful transmission of 

a packet over a single hop. Assuming that the retransmissions of a packet are independent, the 

probability that the number of transmissions of a packet, Ntx, equals k is given by 

P(Ntx=k)=(1-Ps)k-1Ps 

The expected number of transmissions for a given packet is  

sk
s

k
stx

P
PPkNE 1)1(][

1

1 =−= ∑
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=

−  

Tadv can be approximated as follows: 

Tadv=E[Ntx] (tl + GX2 + Tx + Tproc) 

where tl is the approximate time interval between two advertisements. Note that reprogramming 

protocols like Deluge divide time into intervals [tl,th] and each node decides whether to advertise 

or not in a given interval based on the number of similar advertisements it has heard in the 

previous interval. We take the lower value tl because once the originator gets the new version of 

the code, it sets its advertisement period to tl and the nodes hearing the advertisement from the 

originator also set their advertisement periods to tl. We also assume that there were not enough 

similar advertisements in the previous interval to prevent the node from advertising in the current 

interval. GX2 is the MAC delay for a single packet, where X is the number of contending nodes. 

The MAC delay is difficult to compute analytically for 802.11 and no closed form solutions 

exist. The curve shown in [21] indicates that for the region of interest (low contention) the delay 

is approximately proportional to the square of the number of contending nodes. Here G is the 

proportionality constant and X is the number of contending nodes. Tx is the transmission time for 

a single packet. Tproc is the processing time required by a node after receiving the packet. 
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Treq can be calculated as follows: 

Treq=E[Ntx] E[Nreqs] (E[tr] + GX2 + Tx + Tproc) 

where E[Nreqs] is the expected number of requests a node makes to complete a given page and 

E[tr] is the expected time between two requests. 

Tdata can be calculated approximately as follows: 

Tdata=E[Ntx] N (GX2 + Tx + Tproc) 

where N is the number of packets in a page. 
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Figure 10 Time between blitzkrieg and 
distribution phases 

Figure 10 shows the time interval between the 

blitzkrieg and the distribution phases as a 

function of hop count for a grid network with 

δ=10 ft separation between adjacent nodes. 

Probability of successful transmission of a 

packet Ps is taken as 0.9. For Deluge, tl=2 

seconds, tr=0.5 seconds and N=48 packets.  

From [6], we take E[Nreqs]=5.4. For mica2 node, transmission rate is 19.2 Kbps and hence 

Tx=0.015 seconds. We take Tproc=0.001 seconds. To calculate MAC delay GX2, we take G=1 

[13]. For a given node, the number of contending nodes varies with the location of the node in 

the network. For example, for the grid network, the nodes along the diagonal of the grid have 

higher number of contending nodes while those at the periphery have less contending nodes. We 

assume that the network is large and hence the average number of contending nodes is 9/4δ2 

(eliminating boundary effects) and the number of contending nodes is 9/4δ2× πr2 where r is the 

transmission range. The interference range of a node may be different from its transmission 

range. The difference can be easily accommodated in our analysis by replacing the 
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communication range with the given interference range. Figure 10 shows that the time between 

the blitzkrieg and the distribution phases is quite large for the nodes distant from the originator of 

the code. Under Freshet the nodes can sleep for this duration, and thus Freshet can conserve the 

energy for network reprogramming which increases with the network size.  

6.3 Analysis 3: Effect of hop estimation on code propagation 
In this analysis we will inspect the effect of hop estimation on saving energy and delaying 

download of a code update. Let us assume a square network of arbitrarily large size. The code 

source is node A, and we will investigate the propagation time to a node B h hops away from A. 

Let the expected propagation time of one page between two nodes one hop away be D and the 

variance be V. The propagation delay between any two nodes is assumed independent of that 

between the next set of nodes. Let X be the random variable for the time to propagate one page 

from node A to node B. Using the central limit theorem, X follows a Normal distribution with 

mean Dagg = h*D and variance σ2 = h*V, for reasonably large h, say greater than 10. Given these 

parameters, we wish to select a sleep period for node B that ensures high energy savings and 

guarantees with high probability that the code update reaches node B while B is awake. 

Therefore we wish to select the time to sleep, Tsleep, as some value Dagg+f*σ, where f is in the set 

of real numbers, greater or less than zero. Since X is normally distributed, we can calculate the 

probability for a given f that B will be awake when it sees the code update; we can also calculate 

the expected energy savings for a given value of f. Since Deluge does not turn off its radio at all, 

the energy savings of Freshet corresponds to the entire time that the radio is turned off. 

Therefore, the expected energy savings for parameter f is (3 V)(7.03 mA)(Dagg+f σ) (using 

parameters for the Mica2 mote). Assuming that D is 50 s and V is 225 s2 (reasonable values as 

seen from the experiments – the high value of D is explained by the fact that each page has 48 

packets, each of which needs to be received at the end of the link), this expression is graphed in 
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Figure 11 for h = 30. This figure shows the energy savings increasing linearly with f. However, 

there is a significant tradeoff for high f values. For instance, at f=0 there is 0.5 probability that 

node B will be asleep when the code update reaches it. This naturally seems problematic and will 

prevent a fast dissemination of the update. 
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Figure 11. Energy savings with changing 

values of f 
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Figure 12. Average delay from sleeping in 

seconds for varying values of f 

To determine the expected additional delay due to sleeping (conditional expectation, 

conditioned on the fact that there is additional delay due to sleeping), we subtract from the 

sleeping time, the expected time when the code reaches the node. For a given f the expected 

delay will be 
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This expression is evaluated for f from -4 to 4 and is shown in Figure 12. It increases super-

linearly with increasing f.  

We extend our analysis to see what the effect is when the network experiences multiple delays 

due to nodes sleeping when the code reaches them. Let us consider a square network and a node 

A as the code source and a set S of nodes equidistant from A. While nodes in S are sleeping, the 
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network is partitioned. Each set of nodes after S will be labeled S+k, where k = 1,…,∞ is the 

number of hops between S and the set S+k. We again assume that there is no additional delay 

due to sleeping2 at S due to nodes closer to A than S sleeping.  

There are two cases to be considered for analyzing the delay of the set of nodes S+n − the case 

where there is no prior sleeping and the case where there is prior sleeping. Let the total sleep 

delay at S+n be represented by R[S+n] and D(S+n) be the expected value of delay due to sleep of 

S+n under the condition that there is no delay due to sleeping prior to S+n. Let Pasleep represent 

the probability that x≤Dagg+fσ at a given node S+i. Therefore, probability that all nodes prior to 

S+n are awake when they receive the code update is (1-Pasleep)n-1. For small enough n, Pasleep can 

reasonably be taken to remain constant since the time to sleep is proportional to the number of 

hops. Thus, the expected delay at S+n given that there is no prior sleeping is D(S+n)*(1- Pasleep)n, 

where D(S+n) is from equation (1) but with the modification to Dagg and σ according to the 

number of hops. The second component is the delay due to previous nodes. The delay at node S 

is R[S]=D(S). The delay at nodes S+1 is broken into two cases – one where S is awake and 

another where S is asleep, giving the expectation expression Pasleep*D(S+1)*(1-Pasleep)+ 

Pasleep*Pasleep*X. X is the expected delay due to sleeping at S+1 given sleeping at S. The sleeping 

delay at S is R[S], but this sleep is time that S+1 may still sleep without any sleeping delay 

incurred. Therefore, the quantity X is the difference between the expected sleep at S+1 and the 

total sleep at S = D(S+1)Pasleep-R[S]. To force X to be positive, we define X = 

max(D(S+1)Pasleep-R[S], 0). Extending this analysis to nodes S+n, X becomes the difference 

between D(S+n) and the sum of all R[S+i] from i=0 to n-1. R[S+n] becomes (1-

                                                 

2 Henceforth in the discussion, we will abbreviate additional delay due to sleeping by simply delay, where there is no scope for 
confusion. The implicit understanding is that normal delays due to propagation will be added to get the total delay. 
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Pasleep)n*Pasleep*D(S+n)+(1-(1-Pasleep)n)*(D(S+n)Pasleep-∑R[S+i)], which simplifies to 

(Pasleep*D(S+n)-(1-(1- Pasleep)n)* ∑R[S+i]). 
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Figure 13. Sleeping delay with # hops f=-1.0  
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Figure 14. Sleeping delay with # hops  f=-2.0 

Figure 13 and Figure 14 show the delay from sleeping as hops from the source are increased, 

with the set S at hop 15 for f=-1 and f=-2. It is noteworthy that as the number of hops increases, 

the delay due to excess sleeping will disappear. Thus beyond a certain number of hops (35 for f=-

1, 25 for f=-2), the nodes will always be awake when the code arrives. The accumulation of delay 

shows that if the code reaches some part of the network that is asleep and must wait, the delay 

due to sleeping incurred at that point has progressively less effect as the code goes away from 

that part of the network. 

7 Experiments and Results 
We simulate Deluge (from TinyOS release 1.1.11) and Freshet (built on top of this release of 

Deluge) using TOSSIM. While TOSSIM does not imitate hardware precisely, its purpose in 

these experiments is to compare Deluge’s performance to that of Freshet in larger networks. Any 

changes in code dissemination time or behavior a real-world environment due to the 

approximations of the simulator would apply equally to Deluge and Freshet. This argument for 

interpreting trends and comparative evaluation using TOSSIM has been made by countless 

researchers in the field, such as in [6, 7]. The TOSSIM code runs directly on hardware and 

closely mimics the trend in the network behavior, though the measurements do not give accurate 
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absolute numbers. Work presented in [25], [26], and [27] discusses some of the more important 

differences between simulators and real-world wireless sensor network implementations. The 

gains of Freshet are evident for network sizes of the order of tens to hundreds of nodes and 

therefore TOSSIM rather than the actual motes were used for the results showing the 

comparative gains of Freshet. This approach is valid because of the accuracy of the simulation 

infrastructure and has been used by other researchers [6, 7]. The code is fragmented into pages 

each consisting of 48 packets of 36 bytes. The nodes are arranged in a rectangular grid with 

constant 15 ft. spacing between adjacent grid points. A square placement of nodes on the grid is 

used to give N×N nodes, where N is varied for the experiments. Henceforth, the term “N nodes 

square” will imply a total of N2 nodes in the network. The amount of sleep time for a node h 

hops away from the warning message is 8(h-1) for h ≥ 4. This equation was found empirically 

and generally yielded adequate responsiveness in the network while still guaranteeing some 

period of sleeping for nodes far from the source of the code. For experiments with location 

information, we independently found the best fit for each network size. This helped create the 

most reasonable estimate of code propagation speed in a given network. The BER was set for 

each link through use of the TinyOS LossyBuilder tool. We used the default communication 

range of 50 ft for the simulations. We acknowledge that this loss model is specific to the 

empirical setting of TOSSIM’s LossyBuilder and is used as a reference model for comparison 

with Deluge. The authors of Deluge had also used this model for link losses. 

TOSSIM does not have built in simulation for energy computation, nor does it have a radio 

model with power management features. To work around this problem, we used PowerTOSSIM 

[17] to track energy usage. For energy consumption we used the Mica-2 hardware model with 

the parameters as in Table 7.1. As shown in [6], the completion time in Deluge scales linearly 
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with object size. Through our Freshet experiments we found that energy use followed a linear 

increase with object size as well, and hence we do not discuss results with varying object size. 

7.1.1 Single Originator Results 
We run our first set of experiments with code image consisting of 5 pages in networks of sizes 

of 6-20 motes square. The simulations are run 3 times for each network size. They are started 

with all the nodes being active, and at 10 seconds into the simulation the originator starts 

transmitting the code pages. The simulations are run until all the nodes receive all the pages, 

which is the time presented in the results as the time for code upload. 

Table 7.1: Energy model used for experiments 

Radio idle or receive  7.03 mA EEPROM Write current 18.4 mA 
Radio transmission (max transmit 

only) 
21.5 mA EEPROM Write time 12.9 ms 

CPU Active, Idle 8.0 mA, 
3.2 mA 

EEPROM Read current 6.2 mA 

Radio sleep 1 µA EEPROM Read time 565 µs 

In all cases we are evaluating the radio energy usage of Deluge and Freshet. We also track the 

CPU energy usage and energy from EEPROM writes and reads, but we found that the 

differences in this energy use due to these heads between Deluge and Freshet were negligible. 
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Figure 15. Radio energy usage of the entire network 
for a given number of nodes 

Figure 15 shows that as the number of 

nodes increases in the network Freshet 

saves more energy compared to Deluge. 

The energy gains of Freshet increase 

with network size since the energy 

spent per node is lower in Freshet.  

These plots give the total energy spent in the network and therefore scale based on the energy 

used per node. Clearly, a larger network uses more energy due to more nodes, but since there is 



34 

also more time for code to propagate, each node will need to spend more time waiting for code, 

which is used in Freshet for sleeping. This figure shows two main characteristics. First, the 

smaller networks use much less energy than the middle-sized networks. This is primarily due to 

the increase in the average hop distance between the originator and the nodesin the 8x8 

network the diameter of the network is 2-3 hops while in the 11x11 network it is 4-5 hops. Each 

hop increases download time and therefore increases energy use. However, as the network size 

continues to increase, the energy use begins to level off. We found that for up to a 10×10 

network the propagation time is proportional to the product of the network diameter and the code 

size. Beyond that size it is proportional to the sum of the diameter and code size as shown in 

Figure 15 and in accordance with the result reported in [6]. Thus the total energy plot is 

approximately linear as the network size increases and the energy consumption per node levels 

off. Figure 15 also shows that Freshet with location information does not save as much energy as 

baseline Freshet, although it outperforms Deluge by a sizable margin. The location information 

“penalizes” Freshet because it causes nodes to turn their radios on earlier to minimize latency.  

As far as time to completion, the location information grants greater granularity in estimating 

the time it will take code to reach the node. Let us consider nodes A, B, C, and D, where A is the 

code source, B is 15 feet from the code source, C is 30 feet, and D is 45 feet. The blitzkrieg 

phase working without location information propagates hop estimates through broadcast 

messages that if received properly will give the same hop count to node C and node B (and in 

some cases D). However, based on packet loss rates node C is less likely to receive that warning 

message at the same time as B, and therefore will probably be labeled as two hops from the 

sending node A. However, C is still within range of A when A starts transmitting the code update 



35 

and will likely receive some packets directly from A. Thus, the hop based model gives a higher 

estimate of time for code to reach a node compared to the accurate location based estimate. 

Our simulations found that on average a data message propagates 19 feet in a network with 15 

foot spacing between nodes. This implies that approximately once every three hops the data 

message propagates to one node 15 feet away and another 30 feet away. So in practical terms the 

situation outlined above occurs about 7 times in a linear network of 1 by 20 nodes, and naturally 

more frequently in a 20 by 20 network. This jumping beyond the nearest hop is less likely during 

the transmission of the warning message because of the higher level of congestion in the 

network. This leads to the result that the blitzkrieg phase overestimates the number of hops a 

node is away from the source.  

As would be indicated by the design, the energy savings happen for two reasons. The nodes far 

from the originator node use the blitzkrieg phase to turn off their radios for the appropriate 

period of time before they must start transferring pages. The second reason is that nodes near the 

source that complete their code transfers first will have lower duty cycles for their radios as they 

enter the quiescent phase. 
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Figure 16. Average energy saved per node 
grouped by distance from code source 

Figure 16 shows the average energy saved per 

node with distance from the code source for a 

20x20 network. The energy saving is calculated 

as the difference between the idle radio power 

consumption and the node sleeping power 

consumption, multiplied by the time. The time 

is the time for the entire network to download 

the code completely.   
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The nodes closer to the originator are able to save energy through the quiescent phase by 

turning off their radios once they have acquired all of the code. Similarly, nodes far from the 

code source can save energy through the blitzkrieg phase but must still spend more time with 

their radios on to acquire the code updates. 
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Figure 17. Time to complete code upload 

Figure 17 shows the relative completion times 

for code upload of the three protocols. In all 

cases Deluge outperforms Freshet though 

Freshet with location information performs 

almost identically to Deluge. The location 

information helps Freshet minimize cases 

where the update reaches a sleeping node. 

However, based on Figure 15 we see that Freshet uses less energy without the location 

information. The tradeoff indicates a design consideration – in cases where speed takes 

precedence, then it is better to have location information, but in cases where energy is more 

important, then location information is not necessary or the scheme that calculates the sleeping 

time based on location information has to be modified. 

Figure 18 and Figure 19 demonstrate the profile of energy savings of the nodes in the network 

at two different time points of the code upload process. Figure 18 shows the distribution of node 

energy savings when 75% of the network has got the complete code. The energy savings at this 

point are due to the estimate of the time between the blitzkrieg and the distribution phases and 

sleeping for part of it. Figure 19 shows the same network 150 s after 92% of the network is 

completed. It is clear that a much larger percentage of the network has increased its energy 

savings in this time since the quiescent phase has set in. 
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Figure 18. Profile of energy savings at 
75% network completion  

 

Figure 19. Profile of energy savings 150s after 
92% of the network is completed 

7.1.2 Multiple Originator Results 

Our second set of experiments was run with two originators at the top left and bottom right 

corners and code size of 4 pages in networks consisting of 8 through 12 nodes square. We 

compare the performance of Deluge, with one and two originators and Freshet, also with one and 

two originators. In Freshet, one originator is set to prioritize distribution of even numbered pages 

and the other odd numbered pages.  
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Figure 20. Time to completion of various 
distribution techniques. From left to right the 
techniques are Freshet one source, two sources, 

Deluge one source, and two sources 

Figure 20 summarizes our results with the two 

Freshet bars to the left of the two Deluge bars. 

Multiple originators always improve 

performance in networks with  ≥100 nodes. 

Specifically, when the originators are farther 

apart due to the larger network, the interleaving 

of pages in Freshet outperforms both Deluge 

with one or two originators. 

This result occurs because of collisions in the code pages from the two originators for Freshet. 

This problem is the hidden terminal problem and limits the functionality in networks with less 
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than 100 nodes. For a sufficiently large network, however, page interleaving with proper 

contention resolution as in Freshet enables nodes near the middle of the network to complete 

downloading their code images earlier. They can then distribute code to others in the network. 

7.2 Multiple Page Transfer 
We conducted a series of experiments with different techniques for the multi-page transfer 

extension. The first experiment involved varying the number of packets sent per page, effectively 

increasing the size of the page sent per handshake and thereby reducing the control traffic. This 

network was a 2x10 network with uniform bit-error rates between adjacent nodes. The control 

parameter is the bit error rate (BER). This relationship is particularly important because it is the 

key in finding a proper page size. With a sufficiently reliable network, it is practical to send as 

many packets per page as possible. However with unreliable links, more control messages are 

used requesting packets lost in transmission. The advantage of limiting the page size is useful in 

networks with questionable reliability – a large page takes longer to download in a lossy 

network, increasing the time before the page can be propagated in a pipelined manner. In the 

experiment, packet size is constant at 36 bytes and each code image uploaded is 384 packets. The 

BER was varied till 1.5% and the effect on time to upload code measured for the two cases of 48 

packets/page and 96 packets/page. Figure 21 shows our results. For smaller BER, transmitting 

the larger sized pages is advantageous due to the reduced amount of control traffic. Once the 

BER passes 1% we see a sharp increase in the time to transmit the code image in both cases. 

Once the BER gets sufficiently large (> 1.3%), the high loss rate of packets affects the 

performance of the larger-sized pages. Beyond BER 1.5%, the network did not function properly 

due to the high packet loss rate, which made simulations excessively long (1.5% BER ≡ 11% 

packet loss rate). 
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Figure 21. Effect of bit error rate on time for 
code upload with varying page sizes 
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Figure 22. Comparison of baseline Freshet 

with multi-page Freshet

The second experiment sought to demonstrate the effect of sending multiple pages without the 

intervening handshake of advertisement and request between pages (Figure 22). The BER was 

configured through the TinyOS LossyBuilder utility, which generates network loss rates from the 

physical topology. Each page was the standard length of 48 packets. In the incremental page 

send mode, the node would continue to send pages till there was a request for retransmission due 

to packet loss. The experiment was conducted for getting the code uploaded into a node 

surrounded by 8 nodes on surrounding grid points each with the complete code. Visualize a 3×3 

sub-grid with the middle node not having any part of the code. The number of pages in the code 

image was varied from 1 to 20. The results for less than 10 pages showed no noticeable 

difference. However, after 10 pages we noticed a significant difference between the standard 

Freshet and multi-page Freshet. This trend occurs because the extra control messages that 

normally occur in Freshet become sufficient to cause a delay in transmission of code. 

7.3 Testbed Demonstration 
As we discussed earlier, the advantages of Freshet over Deluge will be pronounced only for 

large networks with tens of hops. This would entail a testbed of several hundreds of nodes (note 

that as reported in [6], 75 nodes gave a 5 hop network). We do not have access to such a large 

testbed and therefore the purpose of the first set of the experiments on a 16 node testbed is to 
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demonstrate that in small networks Freshet performs comparably to Deluge. In the second set of 

experiments, we demonstrate the energy savings achieved by Freshet for linear networks having 

up to 15 hops.  

We perform the experiments using Mica2 nodes having a 7.37 MHz, 8 bit microcontroller. 

Each Mica2 node is equipped with 128KB of program memory, 4KB of RAM and 512KB 

external flash which is used for storing multiple code images. These nodes communicate via a 

916 MHz radio transceiver. For our experiments we used 2x2, 3x3 and 4x4 square grid networks 

having a distance of 5 ft between adjacent nodes in each row and column. This creates a network 

of diameter 3 hops by setting the transmission power level to 25 (of a range of 1-255). Lower 

values of the transmission power to increase the number of hops result in poor reliability and are 

therefore not used. Experiments of network reprogramming using Freshet are carried out by 

installing Freshet and same version of application code on all nodes in the network. A new code 

image is injected into the source node (situated at one corner of the grid) via a computer attached 

to it. Then the source node starts disseminating the new application image to the network. 

Experiments with Deluge are performed similarly by having all nodes install Deluge instead of 

Freshet.  

Reliability of code upload is an important evaluation metric. Any network reprogramming 

protocol must ensure that all nodes in the network receive the application image completely in a 

short period of time without expending too much energy. A second important metric is the time 

required to reprogram the network since the network functionality is degraded during 

reprogramming. Since the sensor network consists of energy-constrained sensor nodes, the 

reprogramming protocol should use minimum energy to increase the lifetime of the network. 

Both Deluge and Freshet are 100% reliable, i.e. all nodes in the network download every byte of 
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the user application. So, in our experiments, we focus on time to reprogram the network and the 

energy consumed during reprogramming. 

Time to reprogram the network is the time interval between the instant t0 when the source node 

sends the first data packet to the instant t1 when the last node (the one which takes the longest 

time to download the new application) completes downloading the new application. Since clocks 

maintained by the nodes in the network are not synchronized, we cannot take the difference 

between the time instant t1 measured by the last node and t0 measured by the source node.  

Although a synchronization protocol can be used to solve this issue, we do not use it in our 

experiments because we do not want to add to the load in the network (due to synchronization 

messages) or the node (due to the synchronization protocol). Instead, once each node completes 

downloading the new application image, it sends a special packet to the source node saying that 

it has completed downloading the new application. The source node measures the time instant t1
’ 

when it receives such packet from each node.  If the network has n nodes including the source 

node, the computer attached to the source node receives one t0 and (n-1) t1
’s. We take 

)'(max 01

1

ttt
't

prog −=  as the reprogramming time. It should be noted that the actual reprogramming 

time is )'(max 01

1

dttt
't

−− where td is the time required to send the special packet from the last node 

to the source node. Since td is negligible compared to the reprogramming time, our formula is a 

reasonable approximation to the actual reprogramming time. Moreover, the time td is included 

for both Freshet and Deluge. 

Figure 23 shows the average time taken by Freshet and Deluge to reprogram 2x2, 3x3 and 4x4 

grid networks along with 99% confidence intervals. The reprogramming times shown in this 

figure are the averages taken over 10 experiments for each topology. For these small networks, 
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the reprogramming times of Deluge and Freshet should be equal. But we found that Freshet took 

3.98% to 4.89% more time than Deluge to reprogram these networks because the size of Freshet 

is one page more than that of Deluge.  
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Figure 23. Reprogramming times of Freshet and Deluge 

Among the various factors that contribute to the energy used in the process of reprogramming, 

two important ones are the amount of radio transmissions in the network and the number of 

flash-writes (the downloaded application is written to the external flash). Since the radio 

transmissions are the major sources of energy consumption, we take the total number of bytes 

transmitted by all nodes in the network as the measure of energy used in reprogramming. In our 

experiments, each node counts the number of bytes it transmits and logs that data to its external 

flash. By reading the external flash and taking the sum of the number of bytes transmitted by 

each node, we find the total number of bytes transmitted in the network for the purpose of 

reprogramming.  

Both data packets and control packets (request and advertisement packets for Deluge and 

request, advertisement and warning packets for Freshet) are considered while calculating the 

number of bytes. In our experiments we found that Freshet transferred only 0.37% to 0.52% 

more number of bytes than Deluge. Although Freshet has one more packet type (warning 
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packets) than Deluge, its contribution is negligible because number of warning packets is 

insignificant compared to the other packet types. Also note that we have not counted the 

advertisement packets transmitted in the network during quiescent phase. If we consider them, 

the number of bytes transmitted in the network by Freshet will be smaller than that by Deluge. 

As mentioned above, the advantage of Freshet over Deluge in terms of energy savings can be 

demonstrated only in larger networks.  To do this with the limited number of sensor nodes that 

we have, we ran the experiments on various linear topologies having up to 16 nodes. As shown 

in Figure 24 , a source node (node 0) situated at one end of the line disseminates code to all the 

nodes in the network. Let the nodes be arranged as shown in Figure 24  where the node next to 

node 0 is node 1, the node next to node 1 is node 2 and so on. To achieve maximum possible 

hops between the source node and the farthest node from the source node, we restrict the 

communication of a node i with node (i-1) and node (i+1) only. Each node logs the amount of 

time it sleeps between the blitzkrieg and distribution phases to its external Flash. This is used to 

calculate the energy savings compared to Deluge by using the formula: Savings = Voltage × 

(Current for idle radio + Current for idle CPU) × Sleeping time (as calculated from the 

experiments). The energy savings achieved by Freshet are shown in Figure 25. Note that this 

figure does not consider the energy saving because of the nodes sleeping in the quiescent phase. 

If we consider the energy savings in the quiescent phase also, the energy saving due to Freshet 

increases monotonically with time. Figure 25 shows that as the distance (number of hops) 

between the node and the source node increases, the energy saving increases linearly. This is 

because the amount of time each node sleeps increases linearly with hop-count. Due to our 

design of no sleeping for up to 4 hops, the energy saving only shows up beyond 4 hops. Note that 

we assume that both Deluge and Freshet consume the same transmission energy since the 
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numbers of packets transmitted in the network by Freshet and Deluge during reprogramming are 

almost equal (within 0.52%). It should be noted that the software control approach that we used 

to limit the communication of  a node with its adjacent nodes achieves the maximum possible 

number of hops between the two end nodes in the line. However, it ignores the low level details, 

such as (1) sometime two nodes far away hear each other, (2) sometime links become 

asymmetric. Our goal in doing the experiment is to show through real testbeds that sleep time 

between the Blitzkrieg and the Distribution phases becomes significant only in larger hop 

networks. The testbed experiments for small grid networks (up to 4x4 grid) are done without the 

software control and hence all the low level details are reflected in the experimental results. An 

identical software control approach for maintaining the required topology in sensor networks has 

been used recently in [24]. Also the software control approach does not eliminate interference 

from nodes that are more than one hop away. This leads to more collisions than in a network 

where the nodes would be spread out farther. Since Freshet uses Deluge’s approach of message 

suppression to combat such high density deployments, its effect on the overall performance is 

negligible.  

 

Figure 24.  Linear topology with nodes being reprogrammed using Freshet and Deluge 
starting with node 0 as the originator (N=1,2,…,16) 
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Figure 25. Energy saving achieved by Freshet over Deluge due to nodes sleeping between 
blitzkrieg and distribution phases 

8 Conclusions 
In this paper we have presented Freshet, a protocol for reliable code dissemination in a multi-

hop sensor network. Freshet functions in three phases for each new code image – blitzkrieg, 

distribution, and quiescent. It aggressively conserves energy by putting nodes to sleep between 

the blitzkrieg and the distribution phases as well as the quiescent phase. Freshet introduces a 

scheme to disseminate code from multiple originators, use location information, and reduce 

control message overhead. Freshet is demonstrated using the TOSSIM simulator for the Berkeley 

motes and is found to be between 20-45% more efficient in energy compared to the Deluge 

protocol, while requiring about 10% more time for propagating the code.  

In the future we plan to devise better strategies to predict the delay between the blitzkrieg and 

the distribution phases. We are looking at using better metrics to determine which node should 

be the local sender so that the maximum number of nodes can be satisfied. We are investigating 

the behavior of Freshet with faulty nodes and proposing appropriate increase in redundancy of 

the different messages that will make the network resilient to faults. The impact of different 

ratios of sleep to awake times on the performance of Freshet will be looked at in future work. 
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9 Appendix 
9.1 Visualization of Network Behavior during Code Upload 

The next part of our analysis centers on the network’s behavior over time. Figure 26 shows the 

positions of sleeping nodes in 20×20 network as time progresses. The originator node is in the 

bottom left corner of the area. The small dots represent the nodes that have at least one page, the 

bigger dots (small solid triangles) represent nodes that are asleep, and the lack of any dot at a 

grid point represents a node that is awake but does not have a page yet.  

Figure 26(a), (b), and (c) show that initially most of the network is asleep. In (d) most of the 

nodes have now turned their radios back on, and by (e) nearly all nodes in the network have at 

least one page. (f) shows the transfer of the code image to be complete, and in (g) we find that 

the nodes near the originator have now begun to sleep in the quiescent phase. By (h) a larger 

fraction of the network is sleeping in its quiescent phase. 

These figures show that Freshet can reliably predict when to turn its motes’ radios on and off, 

thereby saving substantial amounts of energy. In some cases we see that motes that are near 

those that have already obtained a complete page and should be ready for beginning the 

distribution phase, are actually asleep (some nodes to the right in (d)). However, this is the 

exception rather than the norm, implying that network coverage is generally unaffected. 
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                        (a) t=15                         (b) t=30                              Legend 

        

(c) t=75                          (d) t=150                     (e) t=300 

         

(f) t=450                       (g) t=650                            (h) t=900 

Figure 26. Nodes sleeping in the network over time. Triangles are sleeping nodes, dots have 
at least 1 page 

9.2 Pseudo-code for 3 Phases in Freshet  
The pseudo-code in Figure 27 and Figure 28 below illustrates the 3 phases of operation of 

Freshet. Some of the aspects that Freshet borrows from Deluge (like advertisement and data 

message suppressions) are not mentioned in the pseudocode. In Figure 27, line 1 discusses the 

blitzkrieg phase. In line 1a, the node has heard the warning message, so it updates its internal 

code data. It records the hopCount, code version, and number of pages in the code based on the 

warning message. In line 1b, the node then increments the hopCount and sends the message 

forward. Lines 1c through 1e show how the node determines whether it will sleep. If the node is 
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more than 3 hops away from the origin node, then the node will sleep; otherwise the node stays 

awake and participates in normal code transfer. 

Lines 3 and 4 illustrate a case where the blitzkrieg and distribution phases occur in succession 

.Lines 5 through 6 illustrate the distribution phase. Once a node is close enough to download the 

new code, line 3 may occur. The node hears the advertisement for the new code and then 

propagates that information throughout the network. The node then requests the needed code 

page and begins downloading. 

Line 5 discusses the case where the advertisement the node hears is for code it already has, in 

which case the node sends an advertisement with the code it has. It then waits for nodes to 

request the needed code. 

 

Figure 27. Pseudo-code for a node in the blitzkrieg and the distribution phases. Lines 1-2 
correspond to the blitzkrieg phase, lines 3-4 correspond to the blitzkrieg phase followed 

immediately by the distribution phase, and lines 5-6 to the distribution phase. 

Figure 28 illustrates the third phase of Freshet, the quiescent phase. The quiescent phase is 

initiated only after 6 or more redundant advertisements are heard, in which case the node 

1. if (warning message heard) 
a. Upgrade version of code, update number of pages needed, record hopCount 
b. Increment hopCount and send warning message with same code information 
c. if hopCount > 3 

i. Sleep for SleepFactor*(hopCount-3) 
d. else 

i. Stay awake for normal code transfer 
e. endif 

2. endif 
3. if (advertisement for new code heard) 

a. Upgrade version of code, update number of pages needed 
b. Propagate warning message with code version, number of pages, origin node, hopCount 0 
c. Request needed code pages and enable normal Deluge 

4. endif 
5. if (updated advertisement not heard) 

a. Send advertisement message with code version, page number 
b. Wait for code request 
c. Initiate code transfer once request is received  

6. endif 
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assumes that every node in its vicinity has the most recent download, so it is now reasonable to 

sleep. Lines 5a and 5b show that as the node has more neighbors it is more likely to sleep for a 

predefined interval τ/2. 

 
1. if (heard redundant advertisements) 

a. R++  
b. Call TestQuiescencePhase(R) 

2. endif 
3. TestQuiescencePhase(R) 
4. { 
5. if (R > 5) 

a. Choose random number from 0 to 1 
b. If Rand > 1-1/bN then Sleep for advertisement period τ/2 

6. endif 
7. } 

 

Figure 28. Pseudo-code for a node in the quiescent phase. It commences after 6 redundant 
cycles of advertisements (no new code or nodes needing code). R is the number of redundant 

advertisements heard, N is the number of neighbors. 


