
1

Analysis and Evaluation of SECOS, a Protocol for Energy Efficient and Secure
Communication in Sensor Networks

Issa Khalil, Saurabh Bagchi, Ness Shroff1,

Dependable Computing Systems Lab
School of Electrical and Computer Engineering

Purdue University.
Emails: {ikhalil, sbagchi, shroff}@purdue.edu

Contact Info for Corresponding Author: 465 Northwestern Avenue, West Lafayette, Indiana 47907.
USA.

Phone: 765-494-3362 Fax: 765-494-2706

Abstract
Wireless sensor networks are increasingly being used in applications where the communication between nodes needs to be
protected from eavesdropping and tampering. Such protection is typically provided using techniques from symmetric key
cryptography. The protocols in this domain suffer from one or more of the following problems weak security guarantees
if some nodes are compromised, lack of scalability, high energy overhead for key management, and increased end-to-end
data latency. In this paper, we propose a protocol called SECOS that mitigates these problems in static sensor networks.
SECOS divides the sensor field into control groups each with a control node. Data exchange between nodes within a control
group happens through the mediation of the control head which provides the common key. The keys are refreshed
periodically and the control nodes are changed periodically to enhance security. SECOS enhances the survivability of the
network by handling compromise and failures of control nodes. It provides the guarantee that the communication between
any two sensor nodes remains secure despite the compromise of any number of other nodes in the network. The
experiments based on a simulation model show a seven time reduction in energy overhead and a 50% reduction in latency
compared to SPINS, which is one of the state-of-the-art protocols for key management in sensor networks.
Keywords: sensor network security, key management, symmetric cryptography, energy efficient key distribution, key
refreshment.

1 Corresponding author

2

1 Introduction
Sensor networks are being deployed in situations where it is important to protect the message communication from

eavesdropping or tampering. The deployments in military situations in hostile territory have strict security requirements for
message communication. Some deployments in civilian situations have security requirements as well. Consider a patient
monitoring system that uses biological sensors placed in situ in the patient. The communication should be secured for
privacy reasons. A sensor network used for monitoring environmental conditions in public places (such as, concentration of
toxins in the air, biometric sensors in airports) should have its inter-node communication protected against tampering as a
guard against possible terrorist attacks directed to critical civilian infrastructures. These networks must also continue to
function correctly in the event of certain nodes being taken over by an adversary.

Cryptography is the foundational technology used for protecting and securing the communication in sensor networks.
This technology relies on keys as the centerpieces, and many attacks focus on disclosing these keys. This makes the
management of the keys (the process by which keys are generated, stored, protected, distributed, used, and destroyed) in a
large-scale network of up to hundreds of thousands of sensor nodes a very important and challenging problem. Sensor
nodes are constrained in their energy availability, memory and computational resources, and communication bandwidth.
These constraints make it impractical to use asymmetric algorithms for key management. These algorithms are very
computationally intensive, and consequently, energy intensive since at their heart they involve exponentiation and modulus
operations of large numbers. The common approach, therefore, is to use symmetric key cryptography where the two end-
points of a communication share a secret key. The challenge is to manage the keys for symmetric cryptography in a
scalable manner. The scalability goal implies that the end-to-end communication delay, energy overhead for key
management, and the dollar cost of deployment should increase gradually with increasing size of the sensor network. Since
the sensor nodes may be placed in hostile environments, we must also design for the possibility that some nodes may be
taken over or compromised. The sensor nodes are inherently less reliable than wired platforms and therefore, a protocol
must be designed to function in the face of some nodes being unavailable. Radio communication is recognized as more
energy consuming than computation by several orders of magnitude[48]. Consequently, the key management protocol
should minimize the number of overhead control messages and the overhead number of bytes added to data messages.

Some symmetric key management protocols rely on a common shared secret key between all the nodes in the network
leading to a highly insecure deployment. At the other end of the spectrum, some protocols have a separate shared key for
each pair of nodes, which leads to a large amount of key storage that grows as the square of the number of nodes, and is
therefore not scalable. The requirement to minimize communication overhead makes most of the proposed purely
symmetric algorithms impractical since they add a fixed size overhead number of bytes to the payload and sensor networks
typically have small sized packets.

In this paper, we propose and analyze a protocol called SECOS (Scalable & Energy-Efficient Secure Communication On
Sensors) for key management in static sensor networks that uses symmetric cryptography. Our high-level design goals in
SECOS are to (i) provide a scalable and secure key distribution channel for any-to-any communication in a large-scale
sensor network, (ii) minimize the adverse fallout of compromising any sensor node, (iii) make key management energy
efficient, and (iv) reduce the end-to-end delay of secure data communication.

Using the well-known approach of node clustering [41]-[44], SECOS divides the sensor field into multiple control groups
and assigns a rotating control node to each group. Communication within a group occurs through the use of keys exchanged
with the help of the control node, while inter-group communication involves establishing a secure channel between the
respective control nodes through the involvement of the base station. Effectively, SECOS imposes a three-level hierarchy of
the nodes – a single base station, multiple control nodes, and a large number of sensing nodes. Of these, only the base
station is fixed, assumed to be secure and assumed not to have any resource constraints, while all the rest, including the
control nodes, are generic sensor nodes. Although node clustering is a well-known technique, it has to be used with special
care for key distribution to protect the network against the compromised nodes that play a special role in node clustering.
The control nodes are assumed to be susceptible to compromise and are monitored and can be removed from their
privileged role. SECOS also provides techniques for secure initial deployment and revocation of suspect nodes.

A key decision choice in SECOS is the control group size. We present a simple mathematical analysis to determine an
upper bound on the control group size, due to the resource constraints on the control node and the allowable security. We
then present an equation that quantifies the energy cost of key management in terms of several factors, including the control
group size, and derive the optimal control group size for the most energy-efficient key management.
A promising approach for sensor key management has been proposed in a system called SPINS [1]. SPINS uses the base
station as an intermediary for secure communication between any two nodes. We create a simulation model for comparing
SECOS and SPINS with respect to end-to-end data latency and energy overhead of key management. For a fair comparison,
we make the key caches also available to SPINS, though the original work does not mention caches. The simulation results

3

show that SECOS reduces the energy consumption by a factor ranging from 1.2 to 7 and the end-to-end data latency by a
factor of 1.05 to 1.50 depending on the communication pattern and the cache size. A large cache means keys are available
locally and then SECOS performs comparably to SPINS. However, this also implies additional storage requirement and the
deployment is less secure to nodes being compromised. We provide a mathematical analysis to quantify the probability of
exposing the communication between two legitimate nodes as a function of the number of compromised nodes. This is
done for SECOS, SPINS [1], and a key pre-distribution protocol due to Du [19] and SECOS is shown to perform better for
large operating regions.

Many key management protocols for ad-hoc networks have been proposed in the literature. They suffer from one or
more of the problems of weak security guarantees if some nodes are compromised, lack of scalability, high energy
overhead for key management, and increased end-to-end data latency. In general, the key pre-distribution protocols
[2],[11],[15]-[19],[21]-[24],[29] expose the security of the whole network when a certain fraction of nodes is compromised.
Kerberos-like protocols (such as, [1]) divide the network into several sections with privileged nodes for key management in
each section. If the privileged node fails or is compromised, secure communication in the entire section becomes
impossible. A detailed comparison with existing schemes is presented in Section 6.

Our paper makes the following contributions.
1. It provides a scalable protocol for key management that is sensitive to the sensor node’s resource constraints, including

computation, communication, and bandwidth. We believe that current technology trends may remove some of the
resource constraints, such as memory and processing power, in the foreseeable future, while the constraints of
bandwidth and energy are expected to remain for some time to come.

2. It presents an energy efficient method for key management and substantial energy savings are demonstrated without
introducing specialized high cost nodes in the network.

3. The protocol is resilient to some nodes being compromised due to attacks. In fact, it guarantees that, under a given set
of assumptions, the communication between two uncompromised nodes cannot be exposed, irrespective of the number
of other nodes that are compromised. Similarly, the protocol can tolerate some nodes being unavailable due to natural
failures.

SECOS uses several techniques well-known in the network security domain, such as node clustering, key refreshment, and
neighbor watch. Its contribution lies in synthesizing the different techniques into a cohesive protocol and applying that to
the sensor network environment, with its distinctive constraints, chiefly, energy and susceptibility of the nodes to being
physically compromised. We show that SECOS performs better with respect to existing state-of-the-art protocols for large
parts of the normal operating region of sensor networks. In this paper, we do not describe the design in SECOS to address all
forms of ID spoofing attacks and secure node addition to the existing network.

The rest of the paper is organized as follows. Section 2 presents the design of SECOS. Section 3 discusses how SECOS
handles different classes of attacks. Section 4 presents a mathematical analysis for the maximum control group size and the
energy-wise optimal control group size. Section 5 describes the experiments and the results. Section 6 refers to related
research. Section 7 concludes the paper.

2 Description of SECOS
We use a few basic well-known techniques in the design of SECOS.

1. Refreshing the keys and purging the caches. The keys are periodically refreshed and the key caches are purged
regularly for two important security goals. The first is to minimize the adverse fallout of compromising some nodes in
terms of the number of old messages that are exposed. The second goal is to defeat possible cryptanalysis attacks by
analyzing plaintext and ciphertext pairs processed with the same encryption key.

2. Changing the nodes which play a privileged role. We do not wish to assume a large number of specialized well-
protected nodes in our environment. Therefore, we design for the possibility of the nodes with special key management
functionality being compromised and provide for them to be changed either on a time schedule, or when triggered by
anomalous events. Another important goal of the control role rotation among the members of the control group is to
achieve load balancing and even energy drain since the control node’s activities are more demanding.

3. Neighbor watch. Each node maintains a list of its immediate neighbors and can overhear neighborhood traffic in order
to detect compromised nodes.

2.1 System Assumptions and Attack Model
System assumptions: We assume that the links are bi-directional, which means that if a node A can hear node B then B can
hear A. Also, we assume that the network has a static topology, though the functional roles a node plays (e.g., cluster head,
data aggregator, etc.) may change. Also we assume that the sensor nodes are distributed uniformly on the sensor field.
We assume that the base station in SECOS is secure, not prone to failures, and does not have any resource constraints
(bandwidth, energy, etc.). Protection against failures can be achieved by fault tolerant techniques such as redundancy for

4

natural failures, or through a variety of possibly expensive security mechanisms, such as tamper proof hardware, for
malicious failures. We assume that there is a certain amount of time from a node’s deployment, called the compromise
threshold time (TComp), that is minimally required to compromise the node. We believe as in [24], [49], [50], that a sensor
node deployed in a security critical environment must be designed to sustain possible break-in attacks at least for a short
interval (say several seconds) when captured by the adversary; otherwise, the adversary could easily compromise all the
nodes and thus take over the network. Therefore, instead of assuming that sensor nodes are tamper resistant which often
turns out not to be true and very expensive, we assume there exists a lower bound on the time interval Tcomp that is
necessary for an adversary to compromise a sensor node, and that the time TND for a newly deployed sensor node to
discover its immediate neighbors is smaller than Tcomp. In practice, we expect TND to be of the order of several seconds, so
we believe it is a reasonable assumption that Tcomp > TND. The current generation of sensor nodes can transmit at the rate of
40 Kbps [51] whereas the size of an ID announcement message is very small (12 bytes if an ID is 4 bytes and the hardware
address size is 8 bytes).The probability of collision is quite small when a non-persistent CSMA protocol is used for medium
access control [52]. Moreover, a node can broadcast its ID multiple times to increase the probability that it is received by all
its neighbors. Furthermore, we assume that no external node exists in the network during the neighbor discovery.
Attack model: A malicious node can be either an external node that does not know the cryptographic keys, or an insider
node, that possesses the keys. An insider node may be created, for example, by compromising a legitimate node. All these
malicious nodes can exhibit Byzantine behavior and can collude amongst themselves. Any malicious node can for example
eavesdrop on the traffic, inject new messages, replay and change old messages, spoof other identities, or pass traffic from one location of
the network to a colluding node in another location (wormhole attack).
2.2 Keys in SECOS

 SECOS uses five types of keys: the master key, the volatile secret key, the session key, the authentication key (MAC
key), and the pseudo random number generator key (seed).
Some notations. We will use the following notations for keys in the paper. KAB (=KBA) refers to any secret key shared
between A and B. The five kinds of keys – the master key, the volatile secret key, the session key, the Authentication
(MAC) key, and the random number generator key, will be denoted respectively as MKAB, VKAB, SKAB, AKAB, and RKAB.
E(K,X) denotes the encryption of a message X using key K. MAC(K,Z⊕X||Y) refers to the application of the MAC algorithm,
keyed by key K, to the result of the concatenation of Y with the result of Z xor-ed with X. H(X) is the hash value of X.
Any symmetric key encryption algorithm suitable for sensor networks may be used for encryption and decryption. It is
desirable that the cipher text be the same length as the plaintext in order to reduce the message transmission overhead. An
example of such a protocol is the counter mode (CTR) of block ciphers [14],[16]. Any underlying block cipher algorithm
could be used with the CTR mode, e.g. DES [36] and its variants 3DES and DES-X, Rijindael [37], AES [37], TEA [38],
and RC5 [39].

{MKMA, MKMB, MKMC}, {VKMA, VKMB, VKMC}
{CounterMA, CounterMB, CounterMC}

(a)

{JKMA, JKMB, JKMC}, J=M,S,A

{H(VKMA), H(VKMB), H(VKMC)}

MKBM

SKBM

AKBM

RKBM

H(VKBM)

MKCM

SKCM

AKCM

RKCM

H(VKCM)

MKAM

SKAM

AKAM

RKAM

H(VKAM)

SKXY = MAC(MKXY,SC(X,Y)⊕ VKXY|| 1); AKXY = MAC(MKXY, SC(X,Y)⊕ VKXY|| 2); Secure Session
RKXY = MAC(MKXY,SC(X,Y)⊕ VKXY|| 3); New VKXY = H(VKXY), the hash value of VKXY.

(b)

MKAM

CounterAM

VKAM

MKBM

CounterBM

VKBM

MKCM

CounterCM

VKCM

M

A B C

M

A B C

M

A B C

M

A B C

Figure 1: Initial key setup between base station and three sensing nodes

The master key is burnt into each sensor node at manufacture time and is shared with the base station. It is not used for
encrypting message communication channels, but instead to generate other keys to be used for encryption and
authentication. Compromising the communication channel does not reveal the master key since it is not used in any channel
communication. The volatile secret key is also shared between the node and the base station. It is used, along with the

5

master key, to generate the session and MAC keys. After each generation of session and MAC keys, a new volatile secret
key is generated by applying a hash function to the current volatile secret key, after which the current one is deleted and
replaced by the new one. This provides SECOS with forward secrecy; if a node gets compromised, previous communications
of the node are not exposed. This is due to the fact that the attacker is not able to generate the old keys since the earlier
volatile secret keys are not available at the time of compromise, even though the master key is. As in the case of the master
key, crypt-analyzing the communication does not reveal the volatile secret key since it is not used in any channel
communication.

The base station also shares two counters with each sensing node, one for each direction (sending and receiving) of
communication SC(M,S) and RC(M,S). These counters are kept synchronized by incrementing them on messages sent or
received between the sensor and the base station. During synchronization, the receive-counter value at one party is matched
with the send-counter value at the other party. However, the counters need not to be exactly synchronized; they can be off
by some known number Sync_diff. When the counters are not synchronized, the key generated at the base station using
SC(M,S) may not match the one generated at the sensor node using RC(S,M). Therefore, the sensor node adjusts
(increments/decrements) RC(S,M), generates the key, and compares the key with that generated by M. The sensor node
continues to do that until the keys are either matched or the number of adjustments to RC(S,M) equals Sync_diff. In the
latter case the sensor nodes initiate counter synchronization with the base station. In addition to the conventional use of
counters to achieve semantic security, they are used in SECOS as a variable input for key generation. The semantic security
prevents a malicious node from replaying old, properly authenticated messages that was used to establish keys between
legitimate nodes. The use as the variable input is required in the key generation process to introduce randomness. These
counters are used to replace the job of a nonce or a sequence number that ordinarily would be attached to every message to
prevent the replay of old messages. However, due to the fact that communication is far more energy consuming than
computation [58], we use the shared synchronized counters to minimize the transmission overhead of the sequence number
or the nonce with every message. Figure 2 presents an algorithm that is used to synchronize the counters during key
refreshment. Therefore, for most of the time, the counter synchronization does not incur any overhead and comes as a by-
product of key refreshment. For example during the course of our simulations no counter synchronization is required
beyond that with the key refreshment. New keys are generated by applying MAC and hash functions over data that includes
these counters. Figure 1(a) shows the initial keying material that includes the master key, the volatile secret key, and the
counters.

1. M generates a new session key: SKMS = MAC(MKMS, SC(M,S) VKMS || 1).

2. M generates a new Authentication key: AKMS = MAC(MKMS, SC(M,S) VKMS || 2).

3. M S: CounterMS, Change, MAC (AKMS, CounterMS || Change).

4. S generates a new session key: new (SKSM) = MAC(MKSM, RC(S,M) VKSM || 1).

5. S generates a new Authentication key: new (AKSM) = MAC(MKSM, RC(S,M) VKSM || 2).

6. S generates the next volatile secret key: VKSM = H(VKSM).

7. S M: CounterSM, MAC(AKSM, CounterSM).

8. M generates the new volatile secret key: new (VKMS) = H(VKMS).

9. After the key refreshment is completed, all the old keys are purged. 4,5,6,8&9

37

1,2&9

SS

MM

Figure 2: Key Refreshment and Counter Synchronization Procedure

The rest of the keys are derived from the previous two keys with the help of MAC (e.g. HMAC) and hash (e.g. MD5)
functions that are preloaded on the base station and the sensors. The session key between the base station and a sensor node
is generated by the base station, by applying a MAC function over the result of concatenating the binary representation of
the number 1 with the result of the SC(M,S) XOR-ed with the volatile secret key. The same session key is generated by the
sensor node by applying a MAC function over the result of concatenating the binary representation of the number 1 with the
result of the RC(S,M) XOR-ed with the volatile secret key. The MAC function is keyed by the master key as shown in the
bottom of Figure 1 for SKXY. The purpose of the session key is to provide data confidentiality for communication between
two nodes. A similar mechanism is used to generate a shared authentication key between the base station and the sensing
node with concatenation of the binary representation of the number 2 instead of the number 1, as shown in the bottom of
Figure 1 for AKXY. SECOS uses independent keys for encryption and authentication since it prevents any potential interaction
between the primitives that might introduce a weakness and is therefore a good security design principle. SECOS uses the
standard key refreshment procedure for the session key and the authentication key. The session key and the authentication
key are refreshed periodically or when triggered by a certain event, such as the detection of an attack. The pseudo random
key is generated by each entity by applying a MAC function over the same parameters as for the session key with

6

concatenation of the binary representation of the number 3. This key is used as a seed for the pseudo random number
generator (e.g. RC4), which is used to produce the stream cipher such as in the CTR mode of DES [16]. This key is
refreshed only when the pseudo random string it generates is exhausted, which depends on the pseudo random number
generator algorithm used.

Sometimes a packet sent from a source may not reach its final destination either due to a malicious event such as a
compromised node in the path dropping the packet or due to natural node or link failure. As a result, the shared counters
between these two parties may become unsynchronized, and a procedure has to be invoked to resynchronize them. Key
refreshment is accompanied by shared counter synchronization between the two parties. However, the counter
synchronization could be launched without the need to refresh any key. Figure 2 shows the key refreshment procedure
between, the base station, M, and a regular sensor node, S. The one-bit flag, Change, is used if the counter synchronization
is accompanied by key refreshment.
2.3 SECOS Structure

A flat layout with a powerful base station and sensing nodes distributed through the sensor field and the base station
being responsible for key management is clearly not scalable to a large number of nodes. This motivates the hierarchical
structure of SECOS. The hierarchical structure we propose for SECOS has clusters of sensor nodes based on geographical
proximity. Each cluster has a specially designated node called the Control Node, which plays a privileged role for key
management. The cluster is called a Control Group. SECOS does not impose any special requirements on the control node,
and it can be any ordinary sensor node in the cluster. This has the advantage of reducing the possibility of targeted DOS
attacks to the specialized nodes. The control node acts as the intermediary for key management. It is periodically changed
for the purpose of security (the control node may get compromised), and for more even energy drain (the control node and
its neighboring relay nodes drain energy faster). This hierarchical structure shown in Figure 3 consists of three levels of
nodes. The root is the base station that is assumed to have powerful resources and is well protected. The internal nodes are
regular sensor nodes selected to play the role of control nodes. The leaves are regular sensor nodes.

MM

C1 C2 CB
. . .C1C1 C2C2 CBCB
. . .

S S. . .SS SS. . . S SS. . . S S. . .SS SS.
S : Sensing Node Ci : Control Node M: Base Station

Figure 3: Three level hierarchy for key management in SECOS

An important parameter in SECOS is the size of the control group. The size has two sets of determining factors, which
exert opposing effects. The size has to be bounded within a maximum due to three factors ― the resource constraints of the
control node, such as the communication bandwidth and the computation capacity; the security concerns of not exposing
too many nodes if the control node is compromised; and limiting the energy overhead of intra-group key management by
bounding the distance between a sensor node and its control node. However, the size has to be kept above a threshold so
that most communication occurs within a control group rather than involving multiple control groups since intra-group
communication is more energy efficient than inter-group communication. Section 4 provides a detailed mathematical
analysis of the control group size.
2.4 Topology Building and Maintenance

It is necessary for the base station to have information about the topology of the network and for each node to have
some local topology information. Here, we discuss how such information is initially obtained and subsequently how it is
updated and maintained.

As mentioned earlier in Section 2.2, each sensor shares a master key, a volatile secret key, and two counters with the
base station from which each sensor node, upon deployment, computes shared session and MAC keys with the base station.
As a result, a secure session is established between each node in the network and the base station. Also, in the initial
deployment phase of the network, each node builds a list of its neighbors and communicates this list to the base station. We
assume that a node cannot be compromised and no external malicious nodes exist within the time it takes to build this list,

7

thus implying that the base station gets a correct view of the neighbor information. We say that two nodes, X and Y, are
neighbors if X can hear the transmission of Y. Since we only consider bi-directional links, this implies that Y can also hear
the transmission of X. The list of neighbors at each sensor node is built by locally broadcasting a HELLO message, which is
a small packet holding the ID of the sender, and then receiving a reply message, which is also a small packet holding the ID
of the sender from each node that heard the HELLO message. As soon as the sensor nodes are spread in the sensor field,
each node S broadcasts the HELLO message. For each reply received, S adds the sender ID to its neighbor list. Then S
sends the full list to the base station authenticated using the authentication key shared between S and M (AKMS). Note that
neighbor discovery is secure based on our assumption that no malicious nodes exist in the network during the neighbor
discovery. Also note that neighbor discovery incurs a relatively negligible overhead since it is performed only once during
the deployment of the network which is assumed to be static. This process is shown in Figure 4. The base station uses these
lists to build a connectivity graph that represents the initial network topology and from that the control groups. The
connectivity graph is built using an N×N connectivity matrix that is initialized to 0. For every member i in the neighbor list
of S that M receives, M sets the entry (S,i) of the connectivity matrix to 1. Using the connectivity matrix with the
knowledge of the limits on the control group size and the maximum number of hops in the control group, the base station
generates the control groups. For example, to generate the first control group, M adds node number 1 to the group, then the
neighbors of node 1 are added, then the neighbors of each neighbor are added, and so on until the full control group is
generated.

1. S one hop broadcast: HELLO.

2. X S: HELLO reply.

3. S: adds the ID of X to its neighbor list (Snl).

4. S: repeats 2 and 3 for every HELLO reply.

5. S M: MAC(AKSM, Snl || SC(S,M)).

M

5

S

X
1

2
The communication range of S.

A neighbor of S (e.g. X).

3&4

1
1 1

1

Figure 4 : Building the Topology

Alternately, a secure routing protocol such as INSENS [27] can be used to build the topology information and
communicate it to the base station during the routing table construction.

The base station has a global view of the entire network connectivity. When a compromised node is detected, its
neighbors are informed, possibly through authenticated multicast [26].
2.5 Assigning and Changing the Control Node

The base station divides the network, based on the topology it built during the setup phase, into control groups
consisting of geographically proximal nodes. For each control group, it then designates a node as a control node, say C, and
sends it a list of session keys that the base station generates for each node in the group. The list of keys is sent in a message
that is encrypted using the shared session key between the control node and the base station (SKMC). The session key is not
sent to the sensing nodes in the group. Each sensing node generates that key on its own by applying a MAC function over
the result of concatenating the binary representation of 1 with the result of the RC(S,M) XOR-ed with the volatile secret key
shared between the sensor node and the base station. The MAC function is keyed by the master key. This process is exactly
identical to how the shared session key between the sensor node and the base station is generated independently by both
parties as shown in the lower part of Figure 1 for SKXY.

When a sensor node serves as a control node, it does not perform any sensing and uses all its available storage to store
the keys. The motivation for this is to restrict the functionality of the control node to key management to facilitate control
node monitoring by its neighbors. If the control node were to also send sensory data, it would be impossible for the
neighbors to distinguish between control and data traffic since both are encrypted. Also, the key management functionality
drains more energy than the regular sensing functionality and we wish to have as even a drain among the different nodes as
possible. Finally, the control node requires memory resources to store the keys and does more computations to facilitate
key management and we wish to reserve as much resource as possible for the control node to serve its control role.
Typically sensor networks have redundant deployments whereby an event can be detected by multiple sensors. This leads
us to believe that a reasonable number of nodes (the control nodes) may be exempted from the sensing functionality
without adversely affecting the coverage on the sensor field.

8

After the control node, C, receives the list of nodes in the control group, it broadcasts to the group members a message
claiming that it is the new control node for the group. This message includes the list of neighbors of the control node that
was built during the initial topology discovery phase. When a group member receives the claim, it buffers the claim. When
the member needs to use C, it challenges C. The heart of the challenge lies in generating a random number using the
random number generation key introduced earlier, authenticating it with the MAC key that should be available at the
legitimate control node, asking C to do some processing on the number, and send it back authenticated. During this
challenge the two nodes establish two shared counters between them. These two counters provide the same functionality as
the SC(M,S) and RC(M,S) that are shared between each node and the base station. If the new control node successfully
passes the challenge, the sensor node replaces its current control node with the new one and if it is a neighbor node to the
control node, it stores the list of neighbors of the new control node for the purpose of control node monitoring (Section
2.9). Note that now the node has a shared session key with the control node, which is different from the shared session key
with the base station. The initial control node set up is shown in Figure 6. Figure 5 shows how a node, S, challenge a new
control node, say C, in addition to the establishment of the shared counters between them.

1. S hears the claim of C as a control node and buffers that claim.

2. If S needs to use C, it generates two keys, SKSC and AKSC.

3. S selects a random value using the pseudo-random number generator to be used as its SC(S,C).

4. S C: SC(S,C), MAC(AKSC, SC(S,C)).

5. C sets its RC(C,S) = SC(S,C).

6. C selects a random value using the pseudo-random number generator to be used as its SC(C,S).

7. C S: SC(C,S), MACKSC(3)(AKCS, SC(C,S) SC(S,C)).

8. S sets its RC(S,C) = SC(C,S).

SS

CC

2&3

1

5

64

Broadcasting

Figure 5: Challenging the Control Node

As mentioned in Section 2, we want to minimize the adverse fall out of a control node being compromised and provide
tolerance against control node failures by regularly changing the control node. The control node is changed by the base
station based on a certain time schedule, or when some anomalous events are detected, e.g., a compromised control node is
detected. When the base station decides to initiate the change, it follows the same procedure as outlined above in this
section for a new control node being assigned. In response to the announcement from the new control node, the previous
control node, after challenging the new control node and being satisfied, flushes all the cryptographic data in its cache and
returns to its normal sensing mode.

M

A

B

C

1&2
3

4

M

A

B

C

1&2
3

4

1- The base station, M, selects a new control node, C, for the control group, G.

2- M generates a new session key for each node, i, in G.

SKiC = MAC(MAMi, SC(M,i) ⊕ VKMi || 1)

3- M sends to C a list of these generated session values

M C: E(SKMC, {SKiC, IDi}), MAC(AKMC, E(SKMC, {SKiC, IDi}) || SC(M,C))

4- C announces its presence

C G members: I am a control node for group G

Figure 6: Control node refreshment

2.6 Key Caches
Each sensor node has two types of caches: (i) Regular cache: stores the session keys used to encrypt data in message

communication between itself and any other node. (ii) Key request cache: When a node initiates a data exchange and it
does not have the session key for the receiver, it initiates a key establishment process. Subsequently, it may generate more
data packets for the same receiver, before the key has been established. The key request cache stores the IDs of such
receivers.

9

 In addition, a control node has two types of cache: (i) Ring cache: It stores the session keys between itself and each
node in its control group. (ii) Control cache: It stores the session keys with other control nodes, which are used for inter-
group communication.
2.7 Node to Node Communication within Control Group

When a node, say A, needs to communicate with another node within its control group, say B, it first checks in its
regular cache for the session key. If present, it uses the cached key. If not present, A generates two random keys K and K
and encrypts one of them (K) using the other (K) as a key. Let us call K the Envelop. Node A sends the encrypted message
E(K, K) to B. Node A encrypts the key (K) and sends it to the control node C as E(SKAC,K). The control node recovers the
key K, encrypts it E(SKBC,K), and forwards it to the destination B. When B receives the key K from the control node, it can
decrypt and obtain the key K that will be used as the shared session key between A and B. When B receives the message
that A sent, it stores the message temporarily for the key to arrive from the control node. If B does not receive the key from
the control node within a specified time, it drops the packet. Nodes A and B store the session key in their regular cache and
continue to use it till the control node is changed, or the key is evicted due to cache replacement. The intra-group
communication is shown schematically in Figure 7(a), and the detailed message communication is shown below:

1- A B: A, B, E(K, K)
2- A C: A, B, E(SKAC,K), H(K), MAC(AKAC, A || B || E(SKAC,K) || H(K) ||SC(A,C)).
3- C B: A, B, E(SKBC,K), H(K), MAC(AKBC, A || B || E(SKBC,K) || H(K) || SC(C,B)).

The MAC function is taken over the encrypted value of the Envelop. This has the advantage that the receiver doesn’t
have to decrypt the Envelop if the MAC authentication fails, which saves some computation.
2.8 Node to Node Communication across Control Groups

If node A wishes to communicate with a node that lies in a different control group, then two control nodes are involved.
Say A lies in group G1 and B in G2 and the respective control nodes are C1 and C2. If A does not have the session key with
B cached, A generates two random keys (K and K) and sends the encrypted message E(K, K) directly to B. Node A
encrypts the key (K) and sends it to C1 as E(SKAC1, K). Node C1 checks its control cache for the session key between itself
and C2. If not present, C1 generates a key, say U, and sends it encrypted to the base station as E(SKC1M, U). The base station
forwards the key encrypted to C2 as E(SMC2, U). Notice that there is no need to send a direct packet from the source control
node to the destination control node as in the communication between two nodes within a control group, since the base
station is assumed to be trusted. After the session key between C1 and C2 is established (SKC1C2 = U), C1 sends the key K
to C2 as E(SKC1C2, K), and C2 forwards the key to B as E(SKC2B, K). Node B now has the key K and the message E(K, K)
from A and proceeds as in the intra-group communication to extract K and use it as the session key.

H(K):The hash value of K; SKxy: Session key between X & Y; M: Base Station;
A,B: Sensing Nodes; C: Control Node; (K,) : the Envelop and the key between A
and B; U : the session key between C1 and C2.

: A secure session

M

A

B

C

(1) E(K,)
(2) E(SKAC, K),H(K)
(3) E(SKCB, K),H(K)
(4) New secure session

2

31

M

BA

C1 C2

1

2
3

4

6
7

(1) E(K,); E(SKAC1, K), H(K)
(2) E(SKC1M, U)
(3) E(SKMC2, U)
(4) Secure Session (C1,C2)

(5) E(KC1C2, K), H(K)
(6) E(K C2B, K), H(K)
(7) Secure Session (A,B)

(a) (b)

4

1

5

~

K

~

K
~

K

Figure 7: (a) Intra-group communication; (b) Inter-group communication using two control nodes. The two

control nodes do not have a secure session when the process starts.

10

The inter-group communication is shown schematically in Figure 7(b), and the detailed message exchange is shown in
the following steps:

1- A B: A, B, E(K, K).
2- A C1: A, B, E(SKAC1, K), H(K), MAC(AKAC1, A || B || E(SKAC1, K) || H(K) ||SC(A,C1)).
3- C1 checks its control cache for C2, if an entry exists go to step 6.
4- C1 M: C1, C2, E(SKC1M, U), MAC(AKC1M, C1 || C2 || E(SKC1M, U) || SC(C1,M)).

5- M C2: C1, C2, E(SMC2, U), MAC(AKMC2, C1 || C2 || E(SMC2, U) || SC(M,C2)).

6- C1 C2: A, B, E(SKC1C2, K), H(K), MAC(AKC1C2, A || B || E(SKC1C2, K) || H(K) ||SC(C1,C2)).

7- C2 B : A, B, E(SKC2B, K), H(K), MAC(AKC2B, A || B || E(SKC2B, K)|| H(K) ||SC(C2,B)).

2.9 Monitoring Neighbor Nodes and the Control Node
The control node plays a privileged role in key management and a compromised control node can affect the energy

overhead of the network. If the selected control node happens to be compromised, it can launch a DoS attack by refusing to
exchange key material among the nodes in its control group. This causes the nodes in the control group to invoke the base
station, which fulfils the key request; however this increases the energy consumption since the average number of hops to
the base station is higher than that to the control node. Therefore, if the number of key management requests from the same
control group goes beyond a threshold, the base station infers that the current control node is misbehaving and assigns a
different control node. Hence if the sensor nodes can help the base station choose a probable good node as a control node,
then the need to rotate the control nodes prematurely and the number of direct key exchange requests to the base station are
reduced. Therefore, SECOS gives each sensor node the option of performing a neighbor watch, whereby it observes the
source field of the packets going in and out of a neighbor control node. The neighbor watch may be performed by a node at
random on a fraction of the packets going in and out of a neighbor control node or with a random periodicity. This fraction
or periodicity is determined by the resources and the load at the node. Watching the control node helps in verifying that the
control node’s behavior does not deviate drastically from the expected functionality for key management. Occasional
deviation is expected due to naturally occurring failures. However, one disadvantage of the neighbor watch is blackmailing
in which a malicious node falsely accuses a good control node. Therefore, the monitoring is performed cooperatively by all
the neighbors of the control node and the nodes in the control group. Our work in [56], [57] presents energy efficient
schemes for neighbor watch in sensor networks. Moreover, note that SECOS exchanged keys are secure even if the control
node itself is compromised as will be shown in Section 3.1.

Local monitoring is an extension to the watchdog [46] concept, which was used to negate the effect on throughput of
misbehaving nodes that agree to forward packets but do not. Local monitoring helps detect ID spoofing and Sybil attacks in
which an attacker presents one (ID spoofing) or more (Sybil attack [54],[55]) spoofed identities to the network. These
identities could either be new fabricated identities or stolen identities from legitimate nodes. Our detailed protocol called
DICAS is described in [57], however we provide here a sketch of the detection mechanism. If a malicious node X
masquerades as one of its neighbors Y, then the neighbor watch by Y detects this. However, if X masquerades as non-
neighbor nodes O, then all the neighbors of X who are not neighbors of O detect the attack since each node knows its
neighbors. For example, in Figure 8, if the malicious node X tries to impersonate the non-neighbor node O, then all the
neighbors of X, i.e., C, D, Q, P, and Y, will overhear the packet and D, P, and Q, which do not have O in their neighbor lists
detect the masquerade and reject the packet.

An opinion about the control node is formed by observing its behavior in response to invocations of its key management
routines. Initially, when a node C is assigned the role of a control node, it broadcasts a list of its neighbors. Each neighbor
of the new control node sends this list to the base station and also compares the list with its own list of neighbors and marks
the common nodes. The base station checks if the control node announced the right list, using its knowledge of the
connectivity graph. Figure 8 shows the list of neighbors of the control node C (O, P, Q, X, Y, Z) and some other nodes in
the sensor field.

An 8-bit malicious counter (MalC) is used to quantify an observer’s opinion of a node, with a higher value indicating
greater suspicion. After the initial phase when C is assigned as a control node, each neighbor α of the control node starts the
monitoring phase by setting MalC(α,C) to zero. A node α is called the guard node of a node of C over the link from µ to C
if (i) α is a neighbor of C and (ii) µ is a neighbor of both C and α. A guard of C over the link from µ to C monitors the
response of C to the key exchange traffic going over that link. For example, in Figure 8, nodes P and Q are neighbors of X
as well as C, therefore, they are the guard nodes of the link from X to C. Node X is the guard node for link from P, Q, or
itself to C. If node A needs to establish a new session key with node B, according to the protocol in Section 2.7, it sends the
Envelop key to C. Node C receives the Envelop through one of its neighbors, say P. The guard nodes of the link from P to
C (X and Y) overhear the Envelop that P forwards to C and buffers it to monitor what C does with it. If a guard node, say X,
does not hear C forwarding the packet to the appropriate next hop within a certain time interval, it degrades its opinion of C

11

by incrementing MalC(X,C). The receiver collision [46], which occurs when the receiving node does not receive the packet
due to collision, is alleviated using MAC layer acknowledgment. The ambiguous collision [46], which prevents a node A
from hearing if a node B has forwarded a packet, due to a collision at A, is alleviated by employing multiple guards.

It is more involved to detect if C forwards a garbage packet instead of the Envelop. Since the communication from A to
C and C to B are both encrypted, the guards cannot observe the traffic. To solve the problem, A appends the hash of the
Envelop to the packet. The hash is compared by C and if correct, re-appended to the packet before forwarding to B. The
guards can observe the hash values coming in and out of C and suspect C if the incoming and the outgoing hash values are
different. If, however, the values are identical and the destination B detects a mismatch, then C is considered suspicious by
B. This enables nodes other than the guards of the control node to share in monitoring the control node. When the
MalC(X,C) reaches a pre-determined threshold value, Tcounter_threshold, it sends an alert to the base station. Tcounter_threshold, is
calculated to account for natural failures, such as node and link failure errors. The calculation of the threshold Tcounter_threshold
needs further investigation and is not within the scope of this paper. A separate publication [47] explores this issue.

A B

Y

X

P
Z

O

C

Q

D

A B

Q

Neighborhood of C

E(SKAC, K), H(K) E(SKCB, K), H(K)

Multi-hop path

Figure 8: Example for Detection of Masquerading Nodes

 We now analyze the protocol to update the malicious counter. To do that we use a scheme inspired by the idea of
degree of attack guilt [40]. Each monitor may detect an event with a certain level of assurance, Lassurance, which lies between
zero and one. A value of zero implies that the event is not considered suspect by the observer, while a value of one indicates
that the observer is convinced that the event is a malicious event. The exact value is a function of the event and the observer
(a guard node or a destination node). For example, if the control node modifies the Envelop but keeps the same hash value,
then this does not appear as a malicious event to a guard node, but is a definite malicious event to the destination since the
hash value does not match the packet content. Thus, the Lassurance value at the guard node is zero, while that at the
destination is one. For each event detected, the monitor α increments its MalC(α,C) by the result of multiplying Lassurance by
the maximum value of the counter MalCmax (255 for an 8-bit counter). This implies that if the α is not certain (Lassurance = 0)
about the ongoing monitored event, it does not increment MalC(α,C) and therefore does not degrade its opinion of node C.
If however, node α is almost definite, then the increment will be close to Tcounter_threshold, thus taking the MalC(α,C) value
above the threshold with a high likelihood. This in turn leads to detection of the malicious node.

When the MalC(α,C) crosses the threshold value Tcounter_threshold, α sends a message to the base station carrying the
counter value and the malicious node’s ID. However, in sensor networks where nodes may be compromised easily, it is
clearly undesirable to base a decision on the input of only one other node. Therefore, the base station waits for a short time,
Tsuspect_collection, to allow other nodes that should have noticed the same malicious event to send in their opinions. If the base
station does not receive these alerts, it polls the corresponding nodes directly to send their MalC values. The base station
considers the node to be malicious if a weighted majority of the polled nodes agree. This majority reduces the likelihood of
blackmailing in which a compromised node falsely accuses a good node to degrade its trust level. The trust level, Ltrust, of
each node is a value between zero and one, where zero represents a mistrusted node and one represents a fully trusted node.
The trust level is initialized to one. This is used as the weight in the calculations at the base station. The trust level for a
node, say B, is calculated as

() (,)

() = 1 -
()

trust
trust

J m max

L J MalC J B
L B

N B MalC
 ⋅

⋅
∑ (1)

Where Ltrust(J) is the trust level of node J and Nm(B) is the number of monitors of node B that report their MalC values to
the base station. The sum is taken over each observer, J, of node B that reports its malicious counter value to the base
station. This formula computes the weighted average of the malicious counter values. The weights in calculating the
average are the trust levels of the nodes that report their malicious counter values.

 The base station decides whether the node under investigation is malicious or not based on the trust level of the node. If
the trust level goes under a pre-determined threshold value, Ttrust_level, the base station declares the node as a compromised

12

node. Each neighbor of the malicious node is informed of the event. In response, each neighbor drops the malicious node
from its neighbor list and ceases to forward its packets.

If a certain fraction of nodes erroneously report a control node to be suspicious, the base station may degrade their trust
level through a mechanism such as shown by us in [47]. A table summarizing the timers and the threshold values used in
SECOS and their effects on the protocol is presented in the Appendix.

3 Security Analysis
In this section, we discuss the ability of SECOS to deal with the three major classes of security attacks – confidentiality

violation, denial of service attacks, and authentication violation.
3.1 Confidentiality Attacks

The key exchange protocol between two end points of a communication is described in Sections 2.7 and 2.8. We now
show that this key exchange protocol does not reveal the shared key between two legitimate nodes irrespective of the
number of compromised nodes if either of the following features is used. Note that these features are individually sufficient
but not necessary for the proposition to hold.
1. The initial message E(K, K) sent by the initiator of the key exchange, A, to the destination, B, cannot be obtained by

the control node, or
2. The two parties involved in the key exchange, A and B, share an old session key in addition to K and use a combination

of the new and previous session key for the communication. For example, if the previous session key was K , then A
uses K ⊕ K as the current session key for communication with B. In case a previous shared session key is not
available, nodes A and B must establish the session through the secure base station and not through the control node.

Proposition: Under feature 1 or 2 above, it follows that compromising any number of nodes other than the two end-points
does not reveal the shared key between them. This proposition holds even if the control node for the two end points is
compromised.
Proof:
Case1: If feature number 1 is valid, then B is the only node in possession of the encrypted packet holding the key E(K, K).
Thus, the control node, C, does not have it and though it has K, it can never obtain the shared key K .
Case2: If feature number 2 holds, the proposition can be proved using mathematical induction as follows.

Base case: Let the number of compromised nodes in the network be NC. If NC = 0, there is no compromised node and the
claim is trivially satisfied. If NC =1, this compromised node could be either the control node of A and B or any
other node. If it is not the control node then the session can not be disclosed since only the control node, other than
A, can decrypt the packet holding the Envelop. Consider that the single compromised node is the control node.
Two cases are possible. (1) Nodes A and B have a previous shared key using an old control node. The current
compromised control node does not know this key because the old control node was not compromised since the
current control node is the only compromised node in the network by assumption. (2) Nodes A and B do not have
a previous shared old key so they use the secure base station to start up the shared key and not the compromised
control node. In both cases 1 and 2, the compromised control node cannot disclose the secure session between A
and B.

Inductive step: Assume that the session between A and B is secure under (NC -1) compromised nodes, we want to show
that it will be secure when a new node gets compromised for a total of NC compromised nodes.

Inductive proof: If the NC
th compromised node is not the control node, the claim is trivially satisfied. If the NC

th node is
the control node, then as in the base case, two cases are possible. (1) Nodes A and B share an old key (Kold), or (2)
nodes A and B do not share an old key. In case (1), by the induction hypothesis, none of the (NC -1) compromised
nodes know the key, Kold. The new compromised node does not know Kold since the key was exchanged before the
node got compromised. So if the new key exchanged through the compromised control node is Knew , then the new
session key will be (Kold ⊕ Knew). While the compromised node can know Knew, it cannot know Kold. In case (2),
nodes A and B do not share an old key and hence obtain their key directly from the secure base station. This
exchange is done using the shared session key with the base station and therefore the key is unknown to the
control node. This completes the proof of the proposition.

Comments: The proof excludes the following cryptanalysis scenario. Assume the two nodes A and B have the startup
key Kold from the main base station and then they use the Knew1

 from control node C1, Knew2
 from control node C2,

…, Knewm
 from control node Cm. An attacker may capture the packet holding Kold and crypt-analyze it to obtain

Kold. By the time this is done, the control node is Cm. Then the session key at that time will be
Kold⊕Knew1

⊕Knew2
⊕…⊕Knewm

. To know this key, the attacker must either compromise all the control nodes C1 up

13

through Cm or crypt-analyze all the packets holding the keys Knew1
 up through Knewm

 . It is expected that m will be a
large number due to the small number of cipher packets the adversary has to crypt-analyze a key. It will be
practically infeasible to compromise selectively all the control nodes C1, …, Cm, especially considering that
control nodes are pseudo-randomly chosen from among the ordinary sensor nodes. Alternatively, it will be
practically infeasible to crypt-analyze all the keys Knew1

, …, Knewm
.

However, it is possible, though difficult, that neither of the features mentioned above is satisfied. In feature 1, the
control node may be able to buffer all packets between A and B, either directly or with the help of a malicious colluding
nodes, decrypts them and thus acquires K . Even if the communication of the initial message and the Envelop are
randomized in time and order, it is possible that C buffers all messages within a window. Feature 2 is violated if the two
parties do not share an old key and are unwilling to initiate key exchange using the main base station, possibly because it is
far from either party. Section 3.1.1 presents a mathematical analysis of the probability of disclosing the secure session
between A and B under certain number of compromised nodes if neither of the above features is used.
3.1.1 Probability of Secure Session Disclosure

In this subsection we provide a mathematical analysis of the probability of compromising the link between two arbitrary
nodes A and B lying in the same control group with the number of compromised nodes in the network being a parameter.
For the purpose of comparison with other key management protocols, we assume in this analysis that only compromised
nodes may exist in the network (no external malicious nodes). We perform the analysis for SECOS, SPINS (a representative
Kerberos like protocol), and a protocol by Du et al. [19] (a representative key pre-distribution protocol), and compare the
results. We assume that SPINS has as many base stations as the number of control groups in SECOS (NB) and that the nodes
are uniformly distributed in the sensor field.

For the mathematical analysis, we use a restricted version of SECOS which does not use the two features mentioned in
Section 3.1, i.e., the node does not use the multiple keys from previous control nodes or the communication with the base
station and the control node may overhear communication between the two nodes in its control group. This serves as a
plausible operating region for the protocol where resources are constrained, the control group size is small, or the control
node colludes with a neighbor of the source-destination pair. The restriction on SECOS also serves to shed light on the
advantages obtained by a specific feature of SECOS, namely using two packets – K(K) and the Envelop for key exchange
between two arbitrary nodes. Note that if we use the unrestricted version of SECOS, the analysis would become trivial since
the probability of compromising the link between an uncompromised source-destination pair would be zero.

To disclose the session key between A and B, an attacker must obtain both the Envelop (K) and the packet that is sent
directly from A to B (E(K, K)). To obtain the Envelop, the control node for A and B must be compromised. To analyze the
probability of capture of E(K, K), we create a bounding path between A and B which is the rectangular bounding box
containing nodes that may overhear the communication from A to B. This is shown by the dotted box in Figure 9. This is an
overestimate since we use a square that circumscribes the circular transmission range of a node. To capture E(K, K), there
must be at least one node in the bounding path from A to B that is compromised (we assume no compromised nodes exist in
the network). Let the average number of hops between a pair of nodes in the control group be Hctrl, the density of nodes in
the sensor field be D, and the communication range be R. The probability of capturing E(K, K)is less than or equal to the
probability of having at least one compromised node in the bounding path. Let N be the total number of nodes in the sensor
field and SGctrl=N/NB is the size of a control group. Let the number of compromised nodes in the network be NC and assume
that the compromised nodes are uniformly distributed in the field. Let E2 represent the event that there is at least one
compromised node in the bounding path.

The identity of the current control node in a control group can be easily deduced by an attacker. However, as mentioned
in the assumptions, it takes a finite amount of time Tcomp to compromise a node. The period of rotation of the control node is
smaller than Tcomp. Thus, starting from an uncompromised network, it will be impossible for an attacker to compromise the
control node after identifying it. So the attack model for the analysis is that the attacker randomly picks a node to
compromise. Let E1 be the event that this randomly chosen node is a control node, for some arbitrary source-destination
pair A and B.

 ()1
#

#
CNCompromised NodesP E

Nodes in Network N
= = (2)

The probability of compromising the link between A and B (PC(A-B)) is
 () () ()() 1 2 2 1 1|C A BP P E E P E E P E− = = (3)

The number of nodes within the bounding path Nbp is given by its area times the density of nodes in the network.
 () 21 2 2(1)bp ctrl ctrlN H R R D H R D= + ⋅ ⋅ = + (4)

14

Let E3 be the event that the control node lies in the bounding path. Then the probability of E3 is

 ()3
bp

ctrl

N
P E

SG
= (5)

Note that in the previous formula we consider the size of the control group since A and B lie within the same control group.
 2 1 2 1 3 3 2 1 3 3(|) (|) () (|) ()P E E P E E E P E P E E E P E= + (6)

Let NG = N-NC represents the number of uncompromised (good) nodes in the network. The number of ways in which we
can choose Nbp good nodes is

2
2

G

bp

N
N

−
 −

 (7)

The total number of ways in which we can choose Nbp nodes is

2
2bp

N
N

−
 −

 (8)

 Since A and B both are assumed to be non-compromised nodes, they are subtracted from Nbp, NG, and N.

 2 1 3

2
2

(|) 1 2
2

G

bp

bp

N
N

P E E E N
N

 −
 − = − −
 −

 (9)

() ()

()

2

() 3 3

2

22
2 2 1 2

1 1 () 1. () 1 1 (2 2
2 2 1 2

CG

bpC C ctrl
C A B

bp ctrl

N NN
NN N R D H

P P E P E PN NN N
N R D H

−

 − − −
 − + − = − − + = − − − − − + −

()3 3) ()E P E

 +

 (10)

In SPINS [1], which represents an example of the Kerberos-like protocols, the base stations are fixed. In order to make the
sensor network economical, the authors assume that the base stations are not equipped with any specialized mechanisms or
hardware to prevent compromise. They only assume that the base station has sufficient battery power to surpass the lifetime
of all sensor nodes, sufficient memory to store cryptographic keys, and means for communicating with outside networks.
Therefore the base stations in SPINS are equally likely to be compromised as any other sensor nodes. The model for the
adversary is that it can target the base stations for compromising them. The attacker can identify the base stations and they
are fixed so the adversary has enough time to try to compromise them. Thus

 ()

 if

1 if

C
C B

BC A B

C B

N
N N

NP
N N

−

 <=
 ≥

 (11)

A B
R2R

(H+1)R

R

Communication rangeA sensor node A-B Bounding path

A B
R2R

(H+1)R

R

Communication rangeCommunication rangeA sensor nodeA sensor node A-B Bounding pathA-B Bounding path

Figure 9: The Bounding Path between A and B
 The protocol by Du et al. [19] represents an example of a key-pre-distribution scheme and is summarized by us in

Section 6. The authors present a corresponding calculation of PC(A-B) as

15

 ()
1

1
CCN

C
C A B

i

N iN
P

iδ

τ τ
ω ω−

= +

− = −

∑ (12)

Where δ is the key space threshold, i.e. compromising (δ+1) nodes will compromise the whole key space. ω is the size of
the key space’s pool, i.e. there are ω key spaces for each node to pick from. τ is the number of different key spaces that
each node holds. The memory requirement at each node is mem = (δ+1)×τ . Also, they provide the formula for the
probability that any two neighboring nodes can establish a secure session between them as

()()

()

2
!

1
2 ! !actualP

ω τ
ω τ ω

−
= −

−
 (13)

0.00

0.20

0.40

0.60

0.80

1.00

30 80 130 180 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930

Number of Compromised Nodes

Pr
ob

ab
ili

ty
 o

f
Li

nk
 D

is
cl

os
ur

e

SECOS
SPINS
DU

Figure 10: Probability of compromising a randomly selected link between two uncompromised nodes as a

function of the number of compromised nodes in the network.

Figure 10 shows the comparison among these three schemes (SECOS, SPINS, Du) using: ω = 50, mem = 200, τ=5, and
Pactual=0.42 as parameters for Du’s scheme (δ is calculated as 39 based on the memory constraint mem), NB = 20 for
SPINS, and. N = 2000, R = 30, D = 15 neighbors for each node, and Hctrl = 10 as parameters for SECOS. Notice that Du’s
scheme has only 0.42 for Pactual while SECOS and SPINS both have 100% probability for any two nodes to establish a secure
session between them. According to Figure 10, SECOS has lower probability of compromising a link than the other two
protocols over a large range of the operating region. The probability goes to one for SPINS when the number of
compromised nodes is greater than the number of base stations. Also, the link disclosure probability goes to one for Du’s
scheme when the number of compromised nodes is greater than the δ threshold. However, for a small number of
compromised nodes, Du’s scheme is the most robust.
3.2 Denial of Service (DoS) attack
1. DOS attack against a control node. This may be launched through a compromised node when it repeatedly asks the

control node for forwarding a key. This kind of attack is handled by keeping a state vector at the control node for the
currently active nodes that have recently requested key forwarding, and ignoring and sending feedback to the base
station if a node behaves abnormally, e.g., asking for keys to communicate more than the feasible data rate. The
feasible data rate is determined using a running window of the last m key requests and considers the communication
bandwidth and the key cache size.

2. DOS attacks by a compromised control node: We reduce the probability of the presence of a compromised control
node by a judicious selection of the control node based on trust level by periodically changing the control node.
However, for the time period when a compromised node serves as a control node, it can prevent two legitimate nodes,
A and B, from establishing a common key between them. In such a situation when the initiator cannot establish the
secure session using the control node, it can perform the key exchange using the base station as an intermediary. Each
of A and B share a session key with the base station, which is distinct from the shared session key with the control
node, and this can be used to establish a secure channel. This solution is also valid when control node is unavailable
due to a natural failure. The base station verifies that the requests for Envelop forwarding are coming from a legitimate
node in the network and if it finds the control node is non-existent, installs a new control node. This scheme is identical
to that used in SPINS in the general no-attack case.

16

Control node monitoring results in detecting the control node if it launches a DoS attack. To see this, consider the
following two possible DoS attacks that a malicious control node could launch. In the first DoS attack, the control node
refuses to forward the Envelop it received from the source to the intended destination. This is an easy attack to detect
and can be detected by both the guards and the destination. The guards see a packet entering the control node but no
corresponding packet sent out. The destination detects the attack since it does not get the Envelop though it receives the
communication from the source. However, the assurance value of the guards is higher than that of the destination. At
the destination there is a possibility that the Envelop is lost in the path from the source to the control node or from the
control node to the destination. So the opinion counter at a guard is incremented by a value greater than that at the
destination. The determination by the guard is still not full-proof since it is possible that the error is in the last hop to
the control node or first hop out of the control node. Let PLerr represent the probability of natural error in a packet on
one link. Let the number of hops the Envelop traverses from the control node to the destination be Hcom, and the
average number of hops in the same control group be Hctrl (the number of hops between the source and the control
node), then the probability of incorrect reception at the destination is

 ()()21 1 com ctrlN N
natural LerrDrop P + −= − − (14)

 Let PCD represents the probability that a node is compromised and dropping packets. The probability that the packet
will not reach the destination due to a malicious node other than the control node is

 ()()21 1 com ctrlN N
malicious CDDrop P + −= − − (15)

Then assurance value of this malicious event at a guard is Lassurance = 1-2PLerr, and at the destination is

 () ()() ()()2 21 1 1 1com ctrl com ctrlN N N N
assurance natural malicious Lerr CDL Drop Drop P P+ − + −= − + = − + − − (16)

In the second DOS attack, the control node forwards a modified Envelop, either by modifying the Envelop while
keeping the same hash value associated with it, or by modifying both the Envelop and the hash value. The technique to
circumvent the two types of DoS attacks are discussed in detail in Section 2.9.

3. DoS attacks against regular nodes: It is relevant to talk of only those DoS attacks against regular nodes that are
enabled by mechanisms in SECOS. One possible DoS attack that may be launched against a legitimate node, B, is
storage exhaustion by sending garbage packets to B, which buffers it in the expectation that the key needed to decrypt
the packet is forthcoming from the control node. Requiring B to limit the number of unencrypted packets received from
a specific source, accompanied by the inability of that source to launch an ID spoofing attack due to the neighbor
watch (Section 3.3) alleviates this attack.

3.3 Authentication Attack
Another possible class of attacks is The ID spoofing and Sybil attacks in which a node impersonates other nodes [54]

[55]. Through this attack, a compromised node can obtain knowledge of shared keys between other nodes. This class of
attacks may be launched by a compromised control node, a regular node, or multiple nodes in collusion. SECOS handles the
problem of regular nodes trying to masquerade as the control node by providing the control node challenge mechanism
(Section 2.5) and for control nodes trying to masquerade as a different sensing node by using local monitoring (Section
2.9). The two kinds of authentication attack whereby a node impersonates a neighboring node or a non-neighboring node
are detected by the neighbor watch mechanism by the neighbors of the compromised node according to the scheme
described in Section 2.9. Note also that many key management protocols (e.g. [1],[11]) do not address the authentication
problem. Key management protocols in [17] and [19] are examples which address authentication as an inherent property of
their protocol.

If the control node, C, is compromised, it may launch the following attack to uncover the key between two nodes in its
control group, A and B. Node C sends to B a key K encrypted using the Envelop K claiming that it is from A. Node C
performs the same communication with A, claiming it is from B. Then C sends the Envelop K to both A and B after
encrypting it with the respective session keys. The communication between A and B is now under the control of C. In
SECOS, this attack is prevented through two mechanisms – local monitoring. First, if C tries to impersonate B and sends a
packet, any of its neighbors, which does not have B in its neighbor list detects this while A itself will not be able to detect
the impersonation. So Lassurance value for the guards will be one and it will be zero for the destination. Second, if C
generates the spurious messages and claims it is forwarding the message from B through a neighbor, O in Figure 8 , this is
detected by the nodes Y and Z, which are acting as the guard nodes for the communication through O, while it can not be
detected by the destination, A. So Lassurance value for the guards is one and it is zero for the destination.

We quantify the overhead in terms of control messages for each of the operations in SECOS, such as key establishment
within and across control groups, neighbor watch, and control node monitoring. The analysis is presented in the Appendix.

17

4 Determining Control Group Size
In this section, we perform mathematical analysis to determine the optimal control group size in SECOS based on the

constraints of the sensor network and the desired level of security. We introduce some notations for this analysis. The
regular cache size at each node is SC, the hit rate in the cache αC, and the miss rate βC =1-αC. The control cache size is SCC,
and its hit and miss rates are αCC and βCC, respectively. The hit rate is the probability that an item is found in the cache
while the miss rate is the probability that an item is missed from the cache. The control group size that is to be optimized is
SGctrl, and the communication group size is SGcom. We introduce the communication group for a node as the neighborhood
of that node, with which it predominantly communicates. The quantitative meaning of predominant is made clear in the
particular discussion. For the analysis in this section, we assume that the communication happens completely within the
communication group. Each node generates packets according to a Poisson process with rate 1/λ. The destination is chosen
at random from the communication group. The destination is changed once every µ seconds on an average, again using an
exponential distribution. The control node has an average lifetime of Tctrl. S(Pkt) gives the size of the Pkt packet. Hcom,
Hctrl, and Hall are the average number of hops between nodes within the same communication group, between a node and
the control node, and between a node and the base station. Energy gives the energy for transmission and reception of one bit.
The summary and notations for some of the control packets used in SECOS are given in Table 1.

Packet Notation Description Packet Notation Description
K_req The Envelop from the source to the

control node or from the control
node to the destination.

K_repf Relay the Envelop from one control
node to another, used in inter-group
key establishment

Data Data packet K_rep The encrypted key from the source to
the destination

Table 1: Summary of relevant SECOS packet types

4.1 Maximum Control Group Size
The maximum allowable size of the control group is determined by three factors–computational capabilities of the

control node, bandwidth available around the control node, and the storage capacity for keys in the control node. These
factors are discussed below. Here, GCOMP is the maximum control group size under the computational limitation only, GBW is
the maximum control group size under the bandwidth limitation only, and GSTORE is the maximum control group size under
the storage limitation only.
1. Computational Capabilities (GCOMP). The computational capability of the control node to service key requests from

nodes in its group is one of the factors that bound the control group size. Assume that the computational capability of
the control node allows it to process IP instructions per second and the encryption algorithm for the Envelop encryption
and decryption, the hash function computation, and the MAC encryption and decryption according to the steps shown
in Figure 7(a) require IK instructions. The maximum number of keys that can be serviced is IP/IK keys per second. So
if the node changes a destination every µ seconds and the miss rate in the regular cache is βC, a request is generated by
a single node once every µ/βC seconds.

 COPM
C

IPG
IK

µ
β
⋅

≤
⋅

 (17)

2. Channel Bandwidth (GBW). On average the available bandwidth for each node given channel bandwidth BW is BW/Nnbr
where Nnbr is the number of one-hop neighbors of the node. Given the range of wireless transmission (r) and the
density of nodes (ρ): D = Л r2 ρ. Part of this traffic bandwidth is consumed by data. Thus the available BW for control
communication (BWc) is the total bandwidth per node minus the amount of data traffic

 2 ()
c

nbr

BW S DataBW
N λ

⋅
= − (18)

Each new session key served generates 2S(K_req) amount of traffic. Taking into account the regular cache misses
and the key request rate this term is multiplied by (βC.1/µ).

 (2 (_))(/) /(2 (_)(/))c BW C BW c CBW G S K req G BW S K reqβ µ β µ≥ ⋅ ⇒ ≤ ⋅ (19)
3. Storage Capacity (GSTORE).The storage refers to the ring cache in the control node which stores the keys of nodes in the

control group. If the storage requirement of each key is SKey and the available flash memory for the ring cache is FM,
then the storage upper bound is given by

 /STORE KeyG FM S≤ (20)
The maximum size of the control group is the minimum of those calculated from equations (21),(22), and (23) above.

18

 min(, ,)max COMP BW STOREG G G G= (21)
The previous three factors came from resource constraints. A fourth factor arises from the security requirement.

This is the security tolerance (GSEC) when a control node gets compromised. GSEC represents the maximum size of the
control group under a certain acceptable number of compromised sessions or exposed messages. It is assumed that all
the sessions that are established after the control node is compromised are disclosed.
4. Security tolerance (GSEC). We want to limit the amount of communication that will become exposed due to the control

node being compromised. Let N(s) be the acceptable number of message communications that can be exposed. Let the
rate at which nodes are compromised be λSEC. Consider a round as the time a control node maintains its privileged
position. The length of a round is Tctrl. Consider an infinitesimally small time slice dt, after time t has elapsed in a
round. The number of nodes that can be compromised in this time slice is λSECdt. In the worst case, all the
compromised nodes are control nodes. As a result of compromising these control nodes, the number of communication
sessions that will become exposed are GSEC.((Tctrl-t)/µ)×βC. Integrating over the entire round, we have

() 2

0

()
2

ctrlT
SEC SEC C ctrl SEC SEC C

ctrl

G T t G
dt T N S

λ β λ β
µ µ

−
= ≤∫ (22)

 2

2 ()
SEC

SEC C ctrl

N SG
T

µ
λ β

≤ (23)

The maximum size of the control group becomes,
 min(, , ,)max COMP BW STORE SECG G G G G= (24)

4.2 Energy-wise Optimal Control Group Size
Here we wish to find the optimal control group size based on security and energy concerns. For this analysis, we

consider the energy consumed in the entire network per unit time, which is equivalent to the power requirement of the
network. We want to increase the security by minimizing the time between control node refreshments and we want to
decrease the overhead energy of the protocol. The security requirement favors decreasing the time to refresh the control
nodes and the smallest is the best while a larger period is more optimal energy wise. So we will proceed to optimize the
energy overhead. In doing so, we face two conflicting factors. The first is the number of nodes that can be served by the
same control node, and the second is the average number of hops to the control node. The first factor favors increasing the
control group size, since that will reduce the occurrence of the energy expensive inter-control group key setup
communication. The second factor favors decreasing the control group size, since that will reduce the number of hops
between a sensing node and the control node.

Three factors are to be considered for the overhead energy consumption of SECOS: the destination of the packet to be
sent (whether within the same control group or outside), the probability of regular cache hit, and the probability of control
cache hit. In the following derivation, we assume that the average number of hops between nodes is proportional to the
number of nodes under the same density and traffic conditions, such that: Hctrl = max (Hcom× SGctrl /SGcom,,1). From these
we derive the following four cases:
Case 1: Hit in the regular cache. This occurs with probability αC that can be calculated as follows:

1

0

1 1 11 1
1 1

C
k N kS

C
C

kcom

NS
KSG N N

λ λα
µ µ

− −

=

 −× = + − − × − −
∑ (25)

The term (SC×λ)/(SGcom×µ) represents the probability that the key is found in the regular cache during the send of the
first packet and the subsequent terms represent the probability that the second, the third, the fourth, etc packets hit. We
assume that the size of the regular cache is greater than the number of packets sent in µ seconds. However, αC = 1 if the
cache size is greater than the communication group size (SC > SGcom). If there is a hit in the regular cache, no overhead
energy is spent.
Weighted energy overhead = Energy overhead per miss. Probability = 0.
Case 2: Miss in the regular cache and the destination is in the same control group. The probability of regular cache miss is
βC = 1- αC. The probability of communication within one control group is SGctrl/SGcom. If SGctrl>SGcom, i.e., the control
group is larger than the communication group, then the communication is always within one control group and the
probability is one.
Weighted energy overhead = Energy overhead per miss. Probability =

 ()2 (_) (_) ctrl
ctrl nergy c

com

SG
S k req S k rep H E

SG
β

× + × × × ×

 (26)

19

Case 3: Miss in the regular cache, the destination is outside the control group and hit in the control cache. The probability
of control cache hit, given that the number of control groups within the communication group is NBC=SGcom/SGctrl, is given
by: αCC = SCC/(N(SGcom)-1) = SCC/((SGcom/SGctrl)-1) = SGctrl×SCC/(SGcom-SGctrl). However, if SGctrl > SGcom/(SCC+1), αCC = 1.
Weighted energy overhead =Energy overhead per miss. Probability =

 (){ }2 (_) (_) (_) 1 ctrl ctrl com
ctrl com nergy C

com com ctrl

SG SG SG
S K req S K rep H S K repf H E

SG SG SG
β

 ×
× + + × × − −

 (27)

Case 4: Miss in the regular cache, the destination is outside the control group, and miss in the control cache .The
probability of control cache miss βCC = 1 - αCC = 1 - SGctrl×SCC /(SGcom-SGctrl) = (SGcom-SGctrl-SGctrl×SGcom)/(SGcom-SGctrl)
Weighted energy overhead = Energy overhead per miss. Probability

(){ }2 (_) (_) (_) 2 (_) 1 1ctrl CC ctrl
ctrl com all nergy C

com ctrl com

SG S SG
S K req S K rep H S k repf H S K req H E

SG SG SG
β

 ×
× + × + × + × × − − −

(28)

The total overhead energy of the protocol equals the sum of the contributions of the above four cases. Let the size of the
key reply be SR, i.e. S(K_rep)= SR. And since the size of key request equals the size of key reply forward which is
approximately three times the size of the key reply, we have S(K_req) = S(K_repf) = 3SR. The total overhead energy TE is
written as several separate equations each for a region bounded by discontinuities:
If SGctrl > SGcom then

 7E R ctrl nergy CT S H E β= × × × × (29)

If SGctrl < SGcom and SGcom < SGctrl (SCC+1) then

 7 (7 3) 1ctrl ctrl
E R ctrl nergy C R ctrl R com nergy C

com com

SG SG
T S H E S H S H E

SG SG
β β

 = × × × × + × × + × × × −

 (30)

If SGcom > SGctrl (SCC+1) then

()

7 (7 3) 1

7 3 6 1

ctrl ctrl ctrl CC
E R ctrl nergy C R ctrl R com nergy C

com com com ctrl

ctrl ctrl CC
R ctrl R com R all nergy C

com

SG SG SG S
T S H E S H S H E

SG SG SG SG

SG SG S
S H S H S H E

SG S

β β

β

 × = × × × × + × × + × × × × − −
 ×

+ × × + × × + × × × −
 com ctrlG SG

 −

 (31)

We substitute Hctrl = 1 when SGctrl ×Hcom <SGcom and Hctrl = SGctrl ×Hcom / SGcom when SGctrl ×Hcom ≥ SGcom in the above
set of equations.

By minimizing TE with respect to SGctrl, we get a value of SGctrl = Genergy_opt that minimizes the overhead energy of
SECOS. This does not give a closed form solution since there are discontinuities due to αC, αCC, and Hctrl. The equation can
be solved numerically as shown below.

If the above analysis gives a control group size that is smaller than the maximum size calculated in Section 4.1, then we
choose that. Else, we are bounded by the maximum control group size. Mathematically, the chosen control group size is
SGctrl = min (Genergy_opt, Gmax).

Figure 11 presents a numerical solution for the optimal control group size for optimizing the total power consumption
for a network of 2000 nodes with Hall = 100, Hcom = 10, SGcom = 200, βc = 0.2, Energy = 100 pJ, SR = 128 bit, and three
different values for SCC 1, 4, and 9. As Figure 11 shows, the optimal group size occurs when SGctrl = SGcom/(SCC+1). The
consumed power starts very high for small control group sizes relative to the communication group size because a large
portion of the communication goes through the costly inter-group communication. As the control group size increases, the
power decreases due to the decrease in the inter-group communication to the point where the number of control groups
within the communication group equals the size of the control cache. Thus, decreasing the number of control groups, by
increasing the control group size beyond this point does not provide any additional gains since all inter-group
communication hits in the control cache. Increasing the control group size after this point starts increasing the power
linearly due to the increase in the average number of hops to the control node within the same control group. In our
analysis, the increase in the number of hops is assumed to be linear with the size of the control group.

20

Optimal Control Group Size

0.0

0.4

0.8

1.2

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Control Group Size/Communication Group Size

To
ta

l P
ow

er
 (m

W
)

Scc = 1
Scc = 4
Scc = 9

Figure 11: Total power consumed in SECOS with varying control group size.

5 Experiments & Results
We build simulation models for SECOS and SPINS using the network simulator, ns-2. We generate a grid topology for the
sensor field and distribute the nodes randomly on it. We distribute the nodes into control groups based on geographical
location and place the base station at the top right corner of the field. We simulate 9 different communication patterns by
changing the communication group size and the average percentage of communications that go within that group, for
example 90/10 communication means that 90% of the destinations are chosen from within the communication group while
the rest are picked randomly from the whole network. Four different values of the relative size of the communication and
control group are chosen for the experiment – 0.5, 1, 2, and 4. The simulation parameters used are shown in Table 2.

Bandwidth 40 Kbps Control group size (SGctrl) 10
Transmission range in meters 50 Ring cache size 20
Number of nodes in the sensor field 200 Regular cache size (SC) 0,5,10
The topology in square meters 120X600 Simulation Time 105 s
Frequency of destination change (µ) 20 s Frequency of control node change (Tctrl) 200 s
Frequency of packet generation (λ) 5 s Frequency of session key refreshment 200 s
Number of control groups 20 Control cache size 5

Table 2: Simulation Parameters for Evaluation

We measure two parameters for both SECOS and SPINS: the total overhead energy due to key management and the
average end-to-end delay of data packets. The end-to-end delay of a data packet is the sum of the delay of key management
and data transmission delay. For the plots, we use the ratio of the SPINS value to the SECOS value. A higher value on the
plot implies better performance by SECOS with a value of one being the crossover point.

In the first experiment, we vary the size of the regular cache at each sensing node and observe the output parameters for
4 different sizes of the communication group. The 100%:0% and 90%:10% communication patterns show identical trends
but the 90%:10% case is less favorable to SECOS because occasionally the destinations could be far, outside the control
group. Focusing on the less favorable 90%:10% case, we show the results in Figure 12(a) and (b).

Note that in these results, the two energy consuming but security enhancing parts of SECOS are simulated, namely, the
periodic refreshment of the session keys, and the periodic change of the control node. From these graphs we find that
SECOS outperforms SPINS both in terms of saving energy and reducing end-to-end delay. SECOS reduces the energy
consumption by a factor ranging from 1.2 to 5.7, depending on the communication pattern and the cache size.

21

90%/10%

0

1

2

3

4

5

6

0 5 10
Cache size (# entries)

En
er

gy
(S

PI
N

S)
/

En
er

gy
(S

EC
O

S)

SGcom/SGctrl=0.5
SGcom/SGctrl=1
SGcom/SGctrl=2
SGcom/SGctrl=4

90%/10%

1

1.1

1.2

1.3

1.4

1.5

0 5 10
Cache size (# entries)

D
el

ay
(S

PI
N

S)
/

D
el

ay
(S

EC
O

S)

SGcom/SGctrl=0.5
SGcom/SGctrl=1
SGcom/SGctrl=2
SGcom/SGctrl=4

Figure 12: Ratio of (a) overhead energy expended and (b) end-to-end data latency for SPINS and SECOS with
varying cache sizes for different communication group sizes

If the cache can store the keys of all the nodes that a node may communicate with, SPINS performs comparably in
energy to SECOS. But this is inadvisable from the point of view of forward security since a number of old sessions may be
exposed if the node gets compromised. If we use the most secure configuration with no cache, SECOS has a 2.8-5.7 fold
energy reduction. As the cache size increases, the need for key exchange decreases and thus the difference between SECOS
and SPINS decreases until the point when the cache can hold all the needed keys. For the simulation parameters here, the
maximum benefit to SECOS is when the control group size equals the communication group size. As the communication
group size increases beyond this, SECOS is favored less and less. The difference between SECOS and SPINS decreases as
more inter-group communication takes place and this process is more energy consuming in SECOS than in SPINS. However,
a reasonable sized control cache as used in these experiments still ensures that SECOS performs better than SPINS. This is
explained by the fact that the control cache eliminates the necessity of a control node to create a new secure channel with
another control node using the base station as the intermediary for every inter-group communication. It is seen that the
difference between SECOS and SPINS decreases more sharply for SGcom/SGctrl=0.5 and 1. This is due to the fact that for
these ratios, SECOS initially far outperformed SPINS with small cache sizes. The trend in delay is identical to that for the
energy overhead. The reason behind the lower energy consumption is that the number of hops to exchange the keys is
lower, which translates directly to a lower delay.

Next, we consider the communication pattern where any node can talk to any other node in the sensor field, which is
referred to as all-to-all communication. The results are shown in Figure 13(a). In all-to-all communication, the energy ratio
decreases as the cache size increases for a reason similar to that in the other communication patterns. However, it is seen
that the reduction becomes flat beyond 10 cache entries. With 20-entry control cache, which effectively mimics an infinite
cache, SECOS consumes 58% less energy and incurs 8.8% less delay. This indicates that even if the possibility of a sensing
node being compromised can be disregarded, and the cache size made arbitrarily large, SECOS outperforms SPINS. This is
explained by the fact that relative to the number of control groups in the entire network, the control cache is large enough
that SECOS does not have to resort frequently to the expensive inter-group communication. In a real-world deployment, it is
likely that the communication group of a node will not span too many control groups, since a node is unlikely to
communicate frequently with nodes geographically very distant from it. Therefore, with reasonable control cache sizes,
SECOS will perform well.

All-to-all communication

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20
Cache size (# entries)

En
er

gy
(S

PI
N

S)
/

En
er

gy
(S

EC
O

S)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
el

ay
(S

PI
N

S)
/

D
el

ay
(S

EC
O

S)

Energy ratio
Delay ratio

All-to-all communication

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Cache size (# entries)

En
er

gy
(S

EC
O

S)
 w

re

fr
es

h:
w

/o
 r

ef
re

sh

1

1.05

1.1

1.15

D
el

ay
(S

EC
O

S)
 w

/
re

fr
es

h:
w

/o
 r

ef
re

sh
Energy ratio
Delay ratio

Figure 13: Ratio of overhead energy and delay for (a) SPINS: SECOS (b) SECOS with key refreshment and

control node change: SECOS without these techniques

 Finally, we bring out the overhead SECOS incurs due to two mechanisms for improving security, namely refreshment of
session keys, and change of the control node. Figure 13(b) shows that the energy overhead of SECOS is 25% compared to
SECOS-no-refresh when there is no cache. Relative overhead of SECOS with respect to SECOS-no-refresh increases as the
cache size increases since SECOS increasingly sees the performance impact of purging the cache. At higher cache sizes,

22

93% energy may be saved if refreshment and control node change are suppressed. The reduction in delay is about 9% at
high cache sizes.

6 Related Research
SECOS uses the well-known technique of node clustering. Node clustering is a technique that has been used in different

areas in sensor networks. Secure data aggregation [25], self-assembling deployment and configuration of large number of
nodes [41], energy saving for data aggregation [42], power optimal routing [43], control and management of routing
protocols [44], and energy and communication cost optimization [45] present examples of these areas.

It is well accepted that asymmetric key cryptography is not well suited to sensor networks because of high
computational expense. Hence, asymmetric key algorithms for key management in sensor networks ([3],[4],[5] for survey)
look infeasible except under energy rich environments. Symmetric key techniques appear better suited for sensor networks.
Different flavors of symmetric key techniques have been used. Some of these flavors either rely on a common shared secret
key between all the nodes leading to a relatively insecure deployment, or have a separate shared key between each pair
leading to a large amount of key storage for the large-scale sensor networks we are targeting. Examples of these protocols
are the pre-deployed keying with variations of group-wise pre-deployed keying, secret sharing pre-deployed keying, and k-
Secure t-limited group-wise pre-deployed keying [6],[7],[11],[13]. The requirement of keeping radio communication
minimal makes many of the proposed purely symmetric algorithms impractical since they add a fixed size overhead number
of bytes to a small payload packet [8],[10].

A large number of key management protocols for sensor networks fall in the category of key pre-distribution
[2],[11],[15],[17],[18],[19],[21],[22],[23],[24],[28],[29]. Eschenauer and Gligor [11] present a key management scheme for
sensor networks based on probabilistic key pre-deployment. They use a large pool of keys from which they select m keys at
random, which are loaded into each sensor node before deployment. In order to communicate, any two nodes either use a
common key they share. If such a common key does not exist, a series of intermediate nodes, which pair-wise have a
common key, are used to exchange a key securely. However, compromising any node reveals all the keys in the node. This
may compromise communication between other nodes that may use a shared key, which happened to be within the keys of
the compromised node. Furthermore, the key establishment process is open to compromise since the identifiers are
broadcast to a receiver set that has not yet been authenticated. Chan et al. [2] extend this scheme by requiring more than
one key to be shared between any two nodes to establish a secure communication. They also use partial key exchanges on
multiple paths to ensure security from some nodes on the path being compromised. Its major drawback is that it adds
substantial overhead in finding multiple disjoint paths and a larger fraction of nodes than [2] may not be able to establish
secure sessions with each other. Zhu et al. [28] present an approach for establishing a pair-wise key that is exclusively
known to a pair of nodes with overwhelming probability, based on the combination of probabilistic key sharing and
threshold secret sharing.

In [15], Blom proposes a key pre-distribution scheme that allows any pair of nodes to find a secret pair-wise key
between them. Compared to the (N-1) pair-wise key pre-distribution scheme, Blom’s scheme only uses δ+1 memory spaces
with δ much smaller than N. The tradeoff is that, unlike the (N-1) pair-wise key scheme, Blom’s scheme is not perfectly
resilient against node capture. On one hand if (δ+1) nodes are compromised all pair-wise keys of the entire network are
compromised. On the other hand, as δ increases, the computational and storage overhead increase, which make the scheme
unscalable. Du et al. [19] extend the work done by Blom in a manner motivated by the proposed q-composite extension [2]
of the random key pre-distribution scheme [11]. In [19] the scheme uses multiple key spaces (numbering τ) and generates
with a high probability a common pair-wise key between any two nodes. This enables them to increase the network’s
resilience to node capture without increasing the memory requirements compared to [15]. While the scheme enhances the
resilience of the network against compromised nodes, the resource requirements are still nontrivial. Each node needs to
store τ(δ+1) entries each equal to the key length. For each communication, a node needs to generate two vectors each of
size δ+1, one for the source and the other for the destination and perform a dot product of the two vectors. Furthermore, the
key agreement between two nodes that don’t share a common space is done through other nodes, which expose it to
disclosure if any one of the nodes involved in the key exchange is compromised.
In [17], for each sensor i, the setup server computes a polynomial share of a bivariate t-degree symmetric polynomial f(x, y)
computed for node i and hands it to the node. Thus node i is loaded with f(i, y). For any two sensor nodes i and j, node i can
compute the polynomial f(i, j) by evaluating f(i, y) at point j. Likewise, node j can compute f(j, i), which is identical to f(i,j)
by choice of the polynomial. This serves as the common key between i and j. Again [21] extends this work in a manner
motivated by the proposed q-composite extension [2] of the random key pre-distribution scheme [11]. In a following paper
[22], the authors integrate location-based knowledge to provide higher probability to establish pair-wise keys between
neighbor sensors, better resistance against node captures, and better scalability.

Pietro e. al. [23] present an incremental update to random key pre-deployment by considering pseudo-random key
deployment based on previous work [18]. This method enhances the channel establishment procedure but adds to the

23

storage requirement at each sensor. These kinds of protocols are infeasible in situations where a node may communicate
with any other node in the network. This is because each time a new destination is considered; the entire key establishment
procedure has to be initialized unless there is a large memory to store, in addition to the initial keys and their indices, the
transformed keys with all possible destinations.

Du et al. [29] present a scheme to use pre-deployment knowledge to improve network connectivity in terms of secure
links and resilience against node capture. It was presented to improve the memory requirement compared to [11], but this
improvement can benefit any of the key pre-distribution schemes.

We note that all the key pre-distribution schemes provide either no security or probabilistic security against
compromised nodes. Probabilistic security assumes thresholds for the number of compromised nodes, beyond which the
entire network becomes exposed. The threshold may be exceeded in the event of a localized security breach that affects all
the nodes in a geographical region. Our approach, in contrast, provides deterministic security. Compromising any number
of nodes is incapable of exposing the communication channel between two uncompromised nodes.

The second flavor of key management protocols is the Kerberos-like protocols [1],[13], and [25]. The idea of using
clusters of nodes for key management is suggested by the work on secure Pebble-nets [13]. The authors propose using a
single key called the group key for group membership and authentication, and another globally shared key called the Traffic
Encryption Key (TEK) to secure channel communication. A subset of nodes called the backbone nodes has the
responsibility of generating and distributing the TEK. The main disadvantage of this work is that it is totally insecure; the
compromise of even a single node renders the entire scheme vulnerable. Perrig et al. [1] present SPINS, which is based on a
master secret key shared between each node and the base station and hash functions to calculate session and MAC keys. To
establish a secure channel between any two nodes in the network, a shared session key is obtained from the base station.
SPINS guarantees data confidentiality, two-party data authentication, and data freshness as long as the base station is not
compromised. SPINS uses multiple specialized higher cost base stations with large energy, memory and communication
resources to create a tree in the network. Since these base stations are fixed, they are potential targets for security attacks.
Compromising, destroying, or jamming a base station used in SPINS renders it impossible to create new secure sessions in
the whole section controlled by that base station. Also, if the base station is compromised, the confidentiality of the
communication of any node in its group can be destroyed. Since a potentially far-away base station acts as the intermediary
for key management, key management in SPINS can be energy inefficient and can lead to high end-to-end delay. Also
SPINS does not take into account the possibility of disclosure of the master key by compromising the sensor node. This
will result in disclosing all the old communications with this node, if an adversary buffers these communications. It is
assumed that session and MAC keys are valid throughout the life time of the sensor node, which results in weak security for
networks that have a long life time. Since all the node-to-node key agreement is established through the base station, it may
result in flooding the base station and exhausting the energy of sensor nodes in the routing path.

Deng et al. [25] proposes a protocol for secure data aggregation with base station, sensing node, and aggregators, which
act as collectors of data. It establishes mutual trust between a sensor and its assigned aggregator using shared keys. The
trust model is used by the sensors to verify the commands of the aggregators and by the aggregators to verify the integrity
of the data sent by the sensors. The protocol enables secure communication to and from aggregators but does not solve the
general case of secure any-to-any communication between any two nodes.

In general, the proposed Kerberos-like protocols suffer from one or more of the following problems: lack of scalability,
high energy over head, high end-to-end delay, and vulnerability to denial of service or compromise targeted at the
specialized key management nodes.

There is a large volume of work on secure broadcast or multicast in wireless, and specifically, sensor networks
[9],[12],[20], and [26]. The problem addressed there is distinct from our problem definition since they target the secure one-
to-many and one-to-all problems, while our focus is one-to-one communication. [30], [31], [32], [33], [34], and [35] present
examples of foundational key management protocols that are indirectly related to the key management protocols in sensor
networks, presented here for further reading.

7 Conclusions
We have presented the design of a key management protocol called SECOS for resource constrained sensor networks.

SECOS divides the sensor field into control groups with a control node in each group. Key exchange between nodes within a
control group happens through the mediation of the control node while inter-group communication involves establishing a
secure channel between two control nodes with the mediation of the base station. In SECOS, the keys are refreshed and the
control nodes changed periodically to ensure higher security. Simulation runs are conducted to bring out the difference in
overhead energy expended and data delay between SECOS and SPINS. SECOS is seen to perform better under a wide variety
of communication patterns and cache sizes. A security analysis of SECOS is presented and comparison performed with
previous protocols. The analysis shows that SECOS can outperform these protocols in terms of the number of compromised
nodes that it can tolerate. A mathematical analysis is performed to determine the optimal control group-size in terms of

24

energy overhead. An upper and a lower bound are derived based on the memory, computational, and bandwidth constraints,
the level of security tolerance afforded, and the energy expended in key management.

 In the paper, we have addressed the issue of when to trigger the key refreshment and control node change. This
involves monitoring anomalous behavior in the network, such as abnormal traffic patterns, which may indicate a security
breach. A second issue discussed is the determination of the control node. It is desirable that this be a trusted entity to avoid
the energy overhead of changing a control node. We also proposed the use of collaborative monitoring of a sensor node’s
behavior by its neighbors to determine the trustworthiness of the node.

For future work, we plan to address the problem of choosing the control node according to the availability of resources
to perform its privileged function. A control algorithm needs to observe the state of the resources at the nodes in the control
group and decide on a schedule for re-selection of a control node. This should itself be a protocol, which is parsimonious in
its energy consumption.

25

References

[1] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler, SPINS: Security Protocols for Sensor Networks,
Wireless Networks, vol. 8, pp. 521-534, 2002.

[2] H. Chan, A. Perrig, and D. Song, Random Key Predistribution Schemes for Sensor Networks, At the IEEE
Symposium on Security and Privacy, pp. 197-213, May 2003.

[3] C. Boyd and A. Mathuria, Key establishment protocols for secure mobile communications: A selective survey, in
Australasian Conference on Information Security and Privacy, pages 344–355, 1998.

[4] C. Park, K. Kurosawa, T. Okamoto, and S. Tsujii, On key distribution and authentication in mobile radio networks,
in Advances in Cryptology – EuroCrypt ’93, pages 461–465, 1993. Lecture Notes in Computer Science Volume 765.

[5] M. Tatebayashi, N. Matsuzaki, and D. B. Jr. Newman, Key distribution protocol for digital mobile communication
systems, in Advances in Cryptology – Crypto ’89, pages 324–334, 1989. Lecture Notes in Computer Science
Volume 435.

[6] Y. W. Law, S. Etalle, and P. Hartel, Key Management with Group-Wise Pre-Deployed Keying and Secret Sharing
Pre-Deployed Keying, Technical Report TR-CTIT-02-20, Department of Computer Science, University of Twente,
July 2002.

[7] Y.W. Law, R. Corin, S. Etalle, and P.H. Hartel, A Formally Verified Decentralized Key Management Architecture
for Wireless Sensor Networks, Personal Wireless Communications (PWC 2003), Sep 2003. Lecture Notes of
Computer Science, Volume 2775, Springer-Verlag.

[8] R. Gennaro and P. Rohatgi, How to sign digital streams, in Cryptology – Crypto’97, Lecture Notes in Computer
Science, Vol. 1294, pp. 180-197.

[9] A. Perrig, R. Canetti, J. Tygar, and D. Song, Efficient authentication and Signing of multicast streams over lossy
channels, in IEEE Symposium on Security and Privacy, 2000.

[10] P. Rohatgi, A compact and fast hybrid signature scheme for multicast packet authentication, in ACM Conference on
Computer and Communications Security, 1999.

[11] L. Eschenauer and V.D. Gligor, A key management scheme for distributed sensor networks, in Proceedings of the
9th ACM Conference on Computer and Communication Security, pages 41–47, November 2002.

[12] D. Liu and P. Ning, Efficient Distribution of Key Chain Commitments for Broadcast Authentication in Distributed
Sensor Networks, in Proceedings of the 10th Annual Network and Distributed System Security Symposium, pages
263--276, February 2003.

[13] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, Secure pebblenets, in Proceedings of the 2001 ACM Intl. Symp. on
Mobile Ad Hoc Networking and Computing (Mobihoc ’01), pages 156-163. ACM Press, October 2001.

[14] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, John Wiley & Sons, 2nd
edition.

[15] R. Blom, An optimal class of symmetric key generation systems, Advances in Cryptology: Proceedings of
EUROCRYPT 84 (Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, eds.), Lecture Notes in Computer Science,
Springer-Verlag, pp. 209-335 and 338, 1985.

[16] W. Stallings, Cryptography and Network Security: Principles and Practices, third edition, Prentice Hall, 2003.
[17] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly-secure key distribution for

dynamic conferences, in Advances in Cryptology CRYPTO 92, LNCS 740, pages 471-486, 1993.
[18] S. Zhu, S. Setia, and S. Jajodia, A distributed group key management protocol for ad hoc networks, Unpublished

manuscript, December 2002, George Mason University, VA-USA.
[19] W. Du, J. Deng, Y. Han, and P. Varshney, A Pair-wise Key Pre-distribution Scheme for Wireless Sensor Networks,

in Proceedings of the 10th ACM conference on Computer and communication security (CCS’03), Washington D.C.,
USA. October 27-30, 2003.

[20] L. Lazos and R. Poovendran, Energy-aware secure multicast communication in ad-hoc networks using geographical
location information, ICASSP 2003, Hong Kong, China, April 2003.

[21] D. Liu and P Ning, Establishing Pair-wise Keys in Distributed Sensor Networks, in Proceedings of the 10th ACM
conference on Computer and communication security (CCS’03), Washington D.C., USA. October 27-30, 2003.

[22] D. Liu and P Ning, Location Based Key Establishment for Static Sensor Networks, in ACM Workshop of Ad hoc
and Sensor networks (SASN’03).

26

[23] R. Pietro, L. Mancini, and A. Mei, Random Key Assignment for Secure Wireless Sensor Networks, in ACM
Workshop of Ad hoc and Sensor networks (SASN’03).

[24] S. Zhu, S. Setia, and S. Jajodia, LEAP: Efficient Security Mechanisms for Large-Scale Distributed Sensor Networks,
in Proceedings of the 10th ACM conference on Computer and communication security (CCS’03), Washington D.C.,
USA. October 27-30, 2003.

[25] J. Deng, R. Han, and S. Mishra, Security Support for In-Network Processing in Wireless Sensor Networks, in ACM
Workshop of Ad hoc and Sensor networks (SASN’03).

[26] D. Bruschi and E. Rosti, Secure multicast in wireless networks of mobile hosts: protocols and issues, ACM/Baltzer
Mobile networks and applications, special issue on multipoint communication in Wireless Mobile Networks, Vol. 6,
No. 7, December 2002.

[27] J. Deng, R Han, and S. Mishra, The Performance Evaluation of Intrusion-Tolerant Routing in Wireless Sensor
Networks, in Proc. of IEEE 2nd International Workshop on Information Processing in Sensor Networks (IPSN’03),
LNCS 2634.

[28] S. Zhu, S. Xu, S. Setia, and S. Jajodia, Establishing Pair-wise Keys For Secure Communication in Ad Hoc
Networks: A Probabilistic Approach, in the 11th IEEE International Conference on Network protocols (ICNP’03),
Atlanta, Georgia, November 4-7, 2003.

[29] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, A Key Management Scheme for Wireless Sensor Networks
Using Deployment Knowledge, in IEEE INFOCOM'04, March 7-11, 2004, Hong Kong.

[30] B. C. Neuman and T. Tso, Kerberos: An authentication service for computer networks, IEEE Communications, vol.
32, no. 9, pp. 33–38, September 1994.

[31] M. Tatebayashi, N. Matsuzaki, and D.B.J. Newman, Key distribution protocol for digital mobile communication
systems, Advances in Cryptology-CRYPTO’89, LNCS Volume 435, pp. 324–334, 1989, Springer-Verlag.

[32] C. Park, K. Kurosawa, T. Okamoto, and S. Tsujii, On key distribution and authentication in mobile radio networks,
Advances in Cryptology-EuroCrypt’93, LNCS Volume 765, pp. 461–465, 1993, Springer-Verlag.

[33] M. Beller and Y. Yacobi, Fully-fledged two-way public key authentication and key agreement for low-cost
terminals, Electronics Letters, vol. 29, no. 11, pp. 999–1001, 1993.

[34] D. Wong and A. Chan, Efficient and mutually authenticated key exchange for low power computing devices, in
Proc. ASIACRYPT, December 2001.

[35] A. D. Wood and J. A. Stankovic, Denial of service in sensor networks, IEEE Computer, 35(10):54–62, October
2002.

[36] National Bureau of Standards (NBS), Specification for the data encryption standard, Federal Information processing
Standards (FIPS) Publication 46, 1977.

[37] J. Daemen and V. Rijmen, AES proposal: Rijndael, 1999.
[38] D. Wheeler and R. Needham, TEA, a Tiny Encryption Algorithm, 1994. http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-

rmn/djw-rmn-tea.html.
[39] R. L. Rivest, The RC5 encryption algorithm, in Workshop on Fast Software Encryption, pp. 86-96, 1995.
[40] S. Noel, D. Wijesekera, C. Youman, Modern Intrusion Detection, Data Mining, and Degrees of Attack Guilt, in

Applications of Data Mining in Computer Security, Daniel Barbarà and Sushil Jajodia (eds.), Kluwer, 2002.
[41] S. Banerjee and S. Khuller, A Clustering Scheme for Hierarchical Control in Multi-hop Wireless Networks, in

Proceedings of IEEE INFOCOM, April 2001.
[42] S. Bandyopadhyay and E. Coyle, An Energy-Efficient Hierarchical Clustering Algorithm for Wireless Sensor

Networks, in Proceedings of IEEE INFOCOM, April 2003.
[43] V. Kawadia and P. R. Kumar, Power Control and Clustering in Ad Hoc Networks, in Proceedings of IEEE

INFOCOM, April 2003.
[44] B. McDonald and T. Znati, Design and Performance of a Distributed Dynamic Clustering Algorithm for Ad-Hoc

Networks, in Annual Simulation Symposium, 2001.
[45] O. Younis and S. Fahmy, Distributed Clustering for Scalable, Long-Lived Sensor Networks, Purdue University,

Technical Report CSD TR-03-026, June 2003.
[46] S. Marti, T. J. Giuli, K. Lai, and M. Baker, Mitigating routing misbehavior in mobile ad hoc networks, ACM/IEEE

International Conference on Mobile Computing and Networking, 2000.

27

[47] M. Krasniewski, P. Varadharajan, B. Rabeler, S. Bagchi, and Y. C. Hu, TIBFIT: Trust Index Based Fault Tolerance
for Arbitrary Data Faults in Sensor Networks, accepted to appear in the International Conference on Dependable
Systems and Networks (DSN ’05), Yokohama, Japan, June 28 - July 1, 2005.

[48] D. Estrin, Mani Srivastava, and Akbar Sayeed, Wireless Sensors Networks, MobiCOM 2002 Tutorial no. 5. Available at:
http://nesl.ee.ucla.edu/tutorials/mobicom02.

[49] H. Chan and A. Perrig, PIKE: Peer Intermediaries for Key Establishment in Sensor Networks, IEEE INFOCOM,
2005.

[50] F. Ye, H. Luo, S. Lu, and L. Zhang, Statistical En-route Detection and Filtering of Injected False Data in Sensor
Networks, IEEE INFOCOM 2004.

[51] TinyOS. http://www.tinyos.net and http://www.xbow.com.
[52] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in Sensor Networks. MOBICOM 2001.
[53] http://www.cerias.purdue.edu/homes/crisn/courses/cs555/cs555_lect5.pdf
[54] J. Newsome, E. Shi, D. Song, and A. Perrig, The Sybil attack in Sensor Networks: Analysis & Defenses, IPSN 2004,

pp. 259-268.
[55] C. Karlof and D. Wagner, Secure Routing in Sensor Networks: Attacks and Countermeasures, SNPA 2003.
[56] I. Khalil, S. Bagchi, and N. Shroff, LiteWorp: A Lightweight Countermeasure for the Wormhole Attack in Multihop

Wireless Networks, accepted to appear in the International Conference on Dependable Systems and Networks (DSN
’05), Yokohama, Japan, June 28 - July 1,2005, available at:

 http://shay.ecn.purdue.edu/~dcsl/Publications/papers/93_Khalil_I_final.pdf.
[57] I. Khalil, S. Bagchi, and C. Nina-Rotaru, DICAS: Detection, Diagnosis and Isolation of Control Attacks in Sensor

Networks, accepted to appear at IEEE/CreateNet SecureComm 2005, Athens, Greece, 5th-9th September, 2005,
available at: http://shay.ecn.purdue.edu/~dcsl/Publications/papers/khalil_DICAS.pdf.

[58] G. Jolly, M. C. Kusçu, P. Kokate, and M. F. Younis, A Low-Energy Key Management Protocol for Wireless Sensor
Networks, ISCC 2003: 335-340.

28

Appendix

[I] Timers and Threshold Values
The following table presents a summary of the timers and the threshold values used in SECOS.

 Name Description Tradeoffs

1 Session &
authentication key
refreshment timer

When the timer expires, the session and
authentication keys are refreshed applying a
MAC function on the SC(M,S) XOR-ed with
the volatile secret key and concatenated with
1 for the session key and 2 for the
authentication key.

A higher value makes it less secure
by facilitating cryptanalysis and
allowing past communication of a
compromised node to be divulged.
A lower value makes it energy
inefficient.

2 Control node
refreshment timer
(Tctrl)

When the timer expires the control node is
changed. A new control node is selected and
delivered the list of control group members.
The old control node returns to the normal
sensing mode.

A higher value makes it less secure
in case the control node gets
compromised.
A lower value makes it energy
inefficient.

3 Opinion counter
threshold value
(Tcounter_threshold)

When the opinion counter at a node, X,
crosses the threshold for a certain monitored
node, Y, then X sends the opinion counter
value and the ID of Y to the base station

A higher value makes it less secure
since many malicious events may
not be detected because they do not
increment the opinion counter to
the threshold value.
A lower value makes it energy
inefficient.

4 Alert collection
timer
(Tsuspect_collection)

When the timer fires, the base station either
starts correlating the received alerts if they are
sufficient, or polls certain nodes to send their
opinion counters to collect sufficient alerts.

A higher value allows sufficient
alerts from most involved observer
nodes to arrive to the base station.
But it makes the network less
secure by delaying the malicious
event detection and response.

5 Trust level
threshold (Ttrust_level)

When the trust level of a node, X, in the
network goes below the threshold, the base
station declares X as a malicious node.

A higher value makes it more
secure since only highly trusted
nodes are allowed in the network.
But it may result in high node
revocation due to false alarms by
natural faults and communication
errors.

Table 3: Timers and Threshold Values in SECOS

[II] Notations

This section provides a summary of the notations used throughout the paper.

Acronym Description Acronym Description
S A generic sensor node C A generic control node
M The base station N The total number of nodes in the network
D The density of the nodes in the network R The communication range
MAC Message Authentication Code E(K,X) Encryption of message X using key K
MAC(K,Z
⊕X||Y)

The application of the MAC algorithm, keyed
by key K, to the result of the concatenation
of Y with the result of Z XOR-ed with X

H(X) The hash value of the message X

29

MKAB The master key shared between A and B VKAB The volatile secret key shared by A and B
SKAB The session (encryption/decryption) key

shared between A and B
AKAB The Authentication (MAC) key shared

between A and B
RKAB The random number generator key shared

between A and B
KAB (=KBA) Any secret key (MKAB,VKAB, SKAB, AKAB,

RKAB) shared between A and B
SGctrl The size of the control group (i.e., the number

of nodes in the control group)
S(Pkt) The size of the Pkt packet. Pkt is one of

the packets defined in Table 1
SGcom The communication group size SR Size of the key reply (i.e., SR=S(K_rep))
SKey The amount of storage required to store a

cryptographic key such as the session key
Hctrl The average number of hops between a

pair of nodes in a control group
Hcom The average number of hops between a pair

of nodes in the communication group
Hall The average number of hops between a

pair of nodes in the whole network
NBC The number of control groups within one

communication group
NG The number good (uncompromised)

nodes in the network
NC The number of compromised nodes in the

network
NB The number of control groups in the

network
MalC(i,j) The malicious counter at node i about node j MalCmax Maximum value of the malicious counter
Nm(i) The number of monitors of node i that report

their opinions to the base station
Tcounter_threshold The threshold value of the malicious

counter above which a node becomes
suspicious

Lassurance The level of detection assurance at a
monitoring node a bout a suspected event

Ltrust(i) The trust level of node i that is
maintained by the base station

Ttrust_level The trust level threshold beyond which the
base station identify a node as malicious

Sync_diff The maximum acceptable difference
between the counters shared by a pair of
nodes in the network

Tsuspect_collect

ion
The time the base station waits to collect
more opinions a bout a suspected event
starting from time of the first arrived opinion

SC(i,j) The sending counter value of node i that
is shared with node j (SC(i,j) = RC(j,i))

RC(i,j) The receiving counter of node i that is shared
with node j (RC(i,j) = SC(j,i))

Counetrij Refers to both SC(i,j) and RC(i,j)

TComp The time that is minimally required to
compromise a node

E1 The event that the control node of a
certain control group is compromised

E2 Thee event that there is at least one
compromised node in the bounding path
between a pair of nodes in the control group

E3 The event that the control node lies in the
bounding path between a pair of nodes in
the same control group

PC(A-B) The probability of compromising the link
between A and B

Nbp The number of nodes within the
bounding path between a pair of nodes in
the same control group

PLerr The probability of natural error in a packet
over a link between a pair of neighbor nodes

PCD The probability that a node is
compromised and dropping packets

SC The regular cache size at each node SCC The control cache size at each node
αC The hit rate in the regular cache (i.e., the

probability of finding an element in the
cache)

βC The miss rate in the regular cache (i.e.,
the probability of not finding an element
in the cache, βC =1-αC)

αCC The hit rate in the control cache (i.e., the
probability of finding an element in the
cache)

βCC The miss rate in the control cache (i.e.,
the probability of not finding an element
in the cache, βCC =1-αCC)

Tctrl The average time a node stays in the control
role for a single round

Energy The energy for the transmission and the
reception of a single bit

GCOMP The maximum control group size under the
computational limitation only

GBW The maximum control group size under
the bandwidth limitation only

30

GSEC The maximum control group size under an
acceptable number of compromised sessions.

GSTORE The maximum control group size under
the storage limitation only

µ The reciprocal of the rate of the Poisson
process used for changing the destination of a
packet (i.e., a new destination is selected on
average every µ time units)

λ The reciprocal of the rate of the Poisson
process used for data packet generation
(i.e., one packet is generated on average
every λ time units)

BW The channel bandwidth Nnbr The average number of one hope
neighbors of a node

TE The total overhead energy

[III] Message Overhead

In this section, we analyze the overhead in terms of control messages for each of the operations in SECOS. The overhead
is calculated as the product of the number of bytes and the number of hops.
Some Notation: Let Nnbr be the average number of neighbors of a node, Hcmax be the maximum number of hops between
any two nodes in the control group, and D be the density of nodes in the network. Further, R is the range of transmission,
and Hcom, Hctrl, and Hall are the average number of hops between nodes within the same communication group, between a
node and the control node, and between a node and the base station, respectively.
We now calculate the overhead involved in the various functions of SECOS
1. Building the neighbor list: (i) One HELLO message from a node to its neighbors, (ii) Nnbr HELLO reply messages from
the neighbors to the node, and (iii) one message containing the list of neighbors from the node to the base station. The size
of each HELLO or the HELLO reply message is 9 bytes; 8 for the IDs of the sender and the receiver, and one holding the
packet data. The size of the neighbor list packet is 4(Nnbr +2) bytes. The HELLO message travels one hop where the
neighbor list message travels Hall hops on average to the base station. The total overhead in byte-hop product equals 9 (Nnbr
+1) + 4(Nnbr +2)Hall.
2. Setting the control node: (i) One message holding the list of members of the control group from the base station to the
control node, (ii) one message for control announcement from the control node to the members of control group, and (iii)
one message for neighbor list announcement from the control node to its neighbors. The member list message travels Hall
hops on average and its size equal to 12×SGctrl bytes; 4 bytes for each member node ID and 8 bytes for the session key
between the member and the control node. The size of the control announcement is 5 bytes and it travels Hcmax hops. The
number of nodes involved in broadcasting the announcement depends on the range of transmission R and density of nodes
in the network D. This number equals to π×(R×Hcmax)2 D. The size of the neighbor list is 4 Nnbr and it travels one hop. The
total overhead in byte-hop product equals 12×SGctrl×Hall+ 5π (R×Hcmax)2 D + 4 (Nnbr +1).
3. Key establishment within the same control group: (i) One message holding the key from the initiator to the target,
(ii) one message holding the Envelop from the initiator to the control node, and (iii) one message holding the Envelop from
the control node to the target. The message holding the key travels Hctrl hops on average and its size equals to 16 bytes, 8
bytes for the ID’s of the initiator and the target and 8 bytes for the key. The message holding the Envelop also travels Hctrl
hops on average and its size equals 44 bytes, 8 bytes for the ID’s of the initiator and the target of the communication, 8
bytes for the ID’s of the intermediate sender and receiver of the message, 8 bytes for the key, 10 bytes for the hash value of
the key, and 10 bytes for the MAC value, which provides freshness to the message. The total overhead in byte-hop product
equals 104×Hctrl.
4. Key establishment across control groups with a shared key already exists between the corresponding control
nodes: (i) One message holding the key from the initiator to the target, (ii) one message holding the Envelop from the
initiator to its control node, (iii) one message holding the Envelop from the control node of the initiator to the control node
of the target, (iv) one message holding the Envelop from the target’s control node to the target. Message (i) travels Hcom
hops on average and its size equals to 16 bytes, 8 bytes for the ID’s of the initiator and the target and 8 bytes for the key.
Message (ii) or message (iv) travels Hctrl hops on average and its size equals to 44 bytes, 8 bytes for the ID’s of the initiator
and the target, 8 bytes for the ID’s of the intermediate sender and receiver of the message, 8 bytes for the key, 10 bytes for
the hash value of the key, and 10 bytes for the MAC value, which provides freshness to the message. Message (iii) travels
Hcom hops on average and its size equals to 44 bytes, 8 bytes for the ID’s of the initiator and the target, 8 bytes for the ID’s
of the intermediate sender and receiver of the message, 8 bytes for the key, 10 bytes for the hash value of the key, and 10
bytes for the MAC value, which provides freshness to the message. The total overhead in byte-hop product equals 60×Hcom
+ 88×Hctrl.

31

5. Key establishment across control groups with no shared key between the corresponding control nodes: The same
messages as in the previous case in addition to (i) one message holding a key from the initiator’s control node to the base
station and (ii) one message holding the same key from the base station to the target’s control node. The size of each of
these messages equals to 16 bytes, 8 bytes for the ID’s of the initiator and the target and 8 bytes for the key, each of them
travels Hall hops. The total overhead in byte-hop product equals 32×Hall.
6. Neighbor watch and control node monitoring: One message from a sensor to the base station holding the opinion
counter. The size of the message is 13 bytes; 8 bytes for the IDs of the sender and the base station, 4 bytes for the ID of the
monitored node, and one byte for the counter. The message travels Hall hops on average. The total overhead in byte-hop
product equals to 9×Hall. This is the overhead when a suspicious node is detected.

32

Issa Khalil received the B.Sc. degree in computer engineering from Jordan University of Science and Technology (JUST),
Jordan, in 1994, and the MS degree in computer engineering from JUST in 1996. He is currently pursuing a PhD in the
Dependable Computing Systems Lab of Prof. Bagchi S. His research interest includes key-management, secure routing
protocols, and intrusion detection in Ad Hoc and Sensor networks. He has worked as the director of computer and research
center of Alquds Open University, West Bank, for more than 6 years.
Saurabh Bagchi joined the department of Electrical and Computer Engineering at Purdue University in West Lafayette,
Indiana as an Assistant Professor in August 2002. Before that, he did his Ph.D. from the Computer Science department of
the University of Illinois at Urbana-Champaign with Prof. Ravishankar Iyer at the Coordinated Science Laboratory. His
Ph.D. dissertation was on error detection protocols in distributed systems and was implemented in a fault-tolerant
middleware system called Chameleon.
Ness B. Shroff received his Ph.D. degree from Columbia University, NY in 1994. He is currently a full Professor in the
School of Electrical and Computer Engineering at Purdue University. His research interests span the areas of wireless and
wire line communication networks, and more recently network security. Dr. Shroff is an editor for IEEE/ACM Trans. on
Networking and the Computer Networks Journal, and past editor of IEEE Communications Letters. He was the conference
chair for the 14th Annual IEEE Computer Communications Workshop in Estes Park, CO, October 1999) and program co-
chair for the symposium on high-speed networks, Globecom 2001 (San Francisco, CA, November 2000). He was the
Technical Program co-chair for IEEE INFOCOM'03 and panel co-chair for ACM Mobicom'02. He received the NSF
CAREER award in 1996 and the best paper of the year award for Computer Networks, 2003.

