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Abstract 

Providing automated responses to security incidents in a distributed computing environment has been an 
important area of research. This is due to the inherent complexity of such systems that makes it difficult to 
eliminate all vulnerabilities before deployment and costly to rely on humans for responding to incidents in real time. 
Earlier works [9], [10] have shed the light on automated responses. They pick the best local response that stops an 
attack propagation from its current step to the next step.  

Here we propose a new approach where the optimality of responses is considered from a global point of view on 
“What’s the eventual outcome on the whole system from using a response?”. We formalize the process of providing 
automated responses and the criterion for asserting global optimality of the set of deployed responses. We show 
that reaching the globally optimal solution is an NP-hard problem. Therefore we design a genetic algorithm 
framework for searching for good solutions. In real world, good solutions can change as the problem structure 
changes. Here the problem structure involves the protected target system and the attacks, both of which can change 
over time. Our framework constantly adapts itself to the changing environment based on short term history and also 
tracks the patterns of attacks in a long-term history. We demonstrate the solution on a distributed e-commerce 
application called Pet Store with injection of real attacks and show that it improves the survivability of the system 
over previous works [9], [10]. 
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survivability 
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1 Introduction 

Distributed systems comprising multiple services interacting among themselves to provide end-user functions are 

becoming an increasingly important platform. Many of the platforms, such as distributed e-commerce systems, 

have huge financial stakes involved in them. This has long led to interest in securing distributed systems through 

detection of intrusions and of late, through automated responses to intrusions. The rudimentary response 

mechanisms often bundled with anti-virus or intrusion detection system (IDS) products overwhelmingly consider 

only immediate local responses that are directly suggested by the detected symptom. For example, anti-virus 

software can restrict access to virus infected files. Also, most modern web browsers can automatically block 

connections to potential phishing websites. These are applicable in stand-alone systems due to their simplicity. For 

distributed systems with nearly exponentially large number of interaction effects among multiple components, pre-

configuring these static pairs of detector alarm and response is laborious and can be shown to have inferior runtime 

performance due to the dynamic workload on the system and the changing nature of attacks. 

The few available dedicated IRSs (Intrusion Response Systems) for distributed systems [1]-[6] have one or more 

of the following characteristics—they have a static mapping of symptoms from the detector to the response, do not 

take feedback into account for determining future responses, assume perfect detectors with no missed and no false 

alarms, or assume perfect success rate for a deployed response. The complex interactions among the complex 

software running the distributed applications, the non-determinism in the execution environment, and the reality of 

new forms of intrusions surfacing would make any one of the above characteristics undesirable. Importantly, the 

existing work does not present a method for reasoning about or evaluating the optimality of a chosen set of 

responses. The presented protocols, including earlier work in a system called ADEPTS [9][10], take a greedy 

approach and do not give a globally optimal solution. How far each solution is from the optimal is also not clear. 

Optimality is an important metric because it allows a system designer to reason about how well a given set of 

responses with which the IRS is populated can work for the target attack scenarios. This may point to modification 

of the response repository in the IRS. We address the problem of optimal response selection in this paper. 

Our model for the target attack is an external multi-stage attack which first compromises the services that have 

external interfaces and subsequently compromises internal services with the goal of disrupting some transactions 
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supported in the system or violating some of the security goals in the system. This is the model commonly used in 

the literature for distributed intrusion response systems (IRSs) [1][9].  

We present a framework called SWIFT to reason about the global optimality of a chosen set of responses in a 

distributed system of interacting services. The optimality criterion takes into account the impact of a deployed 

response to the services in the system and the impact of not deploying a response to the services which could result 

in further spread of the attack. This framework is probabilistic since the future spread of the attack and the 

effectiveness of a response are unknowns and can only be estimated. The optimality of a response set is a global or 

system-wide property and thus optimizing the response choice on each compromised service individually as seen in 

[9], [10] may not be sufficient. The global optimal solution must account for the fact that there exist dependencies 

between responses available at the different services. For example, blocking all traffic from a specific subnet at the 

ingress point will make it redundant to impose restrictions at an internal service on traffic from a host within the 

subnet. Also the effectiveness of a response depends on the time to deploy the response. 

We prove that solving the optimal response determination problem is NP-hard. This is fundamentally because of 

the dependencies that exist between responses and between services in a distributed system. Both the number of 

responses and the number of services (including replicas) can grow large with increasing system size and 

complexity. Since it is imperative to deploy prompt responses at runtime to counteract automated attacks, we 

design an approximate solution. To boost the quality of the populated responses, the approximate solution can use 

history of the attacks seen in the system and the paths they have taken, and estimates of the effectiveness of 

responses deployed earlier so that the search space can be restricted. To solve the approximate problem, we use 

genetic algorithm (GA) [23] based search through the universe of possible responses. As multiple attack instances 

of an attack type or its variants are seen, SWIFT updates the effectiveness of the deployed responses and the quality 

of the chromosome pool used to initiate the GA-based search. Thus, SWIFT adapts to provide better responses as 

history builds up in the system. SWIFT can respond to attack variants through an approximate graph matching 

algorithm and population of chromosomes from the approximate match. Attack variants are particularly relevant 

for distributed applications where different order of observing alerts from different machines may give the 

impression of an attack variant.  
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The SWIFT system is demonstrated on a distributed three tier e-commerce application called Pet Store that uses 

the J2EE platform. The output metric is survivability, a high-level metric that is based on the transactions that are 

supported and the system goals that are maintained in the application once the attack is injected and the responses 

are deployed. The experiments show the improved survivability with SWIFT compared to baseline ADEPTS, the 

ability of SWIFT to adapt its responses as increasing numbers of attack instances are seen, and its ability to handle 

attack variants. 

The rest of the paper is organized as follows. Section 2 presents the design of the optimality framework. Section 3 

describes the algorithms used to search for the optimal responses. Section 4 describes the e-commerce testbed and 

the attack scenarios. Section 5 presents the experiments and the results. Section 6 discusses some subtle aspects of 

the presented solution. Section 7 surveys related work and Section 8 concludes the paper.  

2 Framework for Global Optimal Response 

2.1 Adversary and Attack Model 

A representation called Intrusion Graph (I-GRAPH) [9] 

is used for modeling the spread of the attack, which is 

similar in concept to attack graphs [25]. The final goal 

of the adversary may be disrupting some high level 

system functionality, such as “Permanently change 

grades record” in Figure 1. This final goal is achieved 

through multiple intermediate intrusion goals (attack 

steps) and each is represented as an I-GRAPH node.  
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Figure 1. An example I-GRAPH 

Definition of I-GRAPH G(N,E):  

N := {nodes in G} := {{NA: specific attack manifestation} ∪ {NB: generic attack manifestation} ∪ {NC:high level 

parameterized manifestation} ∪ {ND:logical inference pseudonodes }} 

E := {edges in G} := {(n1,n2) | if n2 is casually dependent on n1 for n1,n2∈N} 

NA : These nodes are constructed directly out of the detector alerts for specific attack manifestations. These 

manifestations carry specific detector signatures. For example, the Snort rule for detecting Apache chunked 
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encoding memory corruption exploits or some AntiVirus software detecting the binary code of some virus 

in an infected file. 

NB : These nodes are constructed out of the detector alerts that correspond to attack manifestations which are 

generic in nature. These manifestations usually span across multiple different attacks, some of which can 

be potentially of unknown attack types. For example, stack buffer overflow detectors such as LIBSAFE 

should generate alerts out of any attack attempts which result in stack buffer overflow, irrespective of the 

specific attack signature used to achieve the overflow.  

NC : These node corresponds to high level manifestation which usually do not have a corresponding detector alert. 

However, the manifestation is hypothesized since it directly impacts a system functionality or violates a 

system goal. For example, “losing customer credit card numbers” could form a node of type NC.  

ND : These are intermediate nodes used for providing OR/AND/Quorum logics in the I-GRAPH. 

In many deployments, the systems may have unknown vulnerabilities and therefore the I-GRAPH is mainly 

composed of NB nodes, which can be automatically created based on the available detectors and the knowledge of 

the interactions among the servers in the target system [26],[28]. It is not dependent on knowledge about specific 

attacks or vulnerabilities. For example, if we have an I-GRAPH node corresponding to “Root password on machine 

M is changed”, this does not mean we know a priori that the operating system on machine M has the vulnerability 

which can be used to change the root password. However, it is actually one of SWIFT’s key roles to deal with the 

uncertainty by constantly adapting to the actual situation, to provide continuous protection to the system.  

When alerts are received by SWIFT for a node in the I-GRAPH, SWIFT calculates a Compromised Confidence 

Index (CCI) value for all the nodes. This scheme is identical to that in baseline ADEPTS [9],[10]. Through this paper, 

we use the CCI as the estimate for the probability P(n) that a node n has been achieved. In general, P(n) is assumed 

to be provided by the underlying the I-GRAPH model. We can also use alternative choices such as Hidden Markov 

Model or Bayesian Network based attack graph [27] and the rest of the discussion will remain unchanged. 
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2.2 Response Model for Multi-Stage Attack 
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Figure 2. Three different snapshots for a given attack 
scenario. Responses RX, RY, RZ are deployed between 

snapshots 
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Figure 3. Transformation to map set covering problem 

to optimal response determination (ORD). 
The Effectiveness Index (EI) of a response indicates the likelihood of success of the response, which is 

determined by SWIFT through observation of alerts. Conceptually for a response deployed on an edge, if attack 

propagation (based on incoming detector alerts) is observed, the EI value of the response will be decreased. 

Otherwise it will be increased. For better understanding, Figure 4 shows a simple example on how response r on an 

edge e affects the CCI values on the parent and the child node on the edge. Here detector alert values are assumed 

to be a real number between 0 and 1, with 1 indicating the full confidence from the detector that the corresponding 

node is compromised and with 0 indicated the node is not compromised. The CCI values are then used as the 

estimates of the probabilities of nodes being achieved P(x) and P(y).  This mechanism is the same as in baseline 

ADEPTS . Further details are thus omitted here.  

In general, a multi-stage attack consists of multiple attack 

snapshots. Each snapshot contains the detector alerts which 

have been generated thus far, and the fragment of the I-

GRAPH with nodes for which alerts have been received. 

Figure 2 shows three snapshots X, Y, and Z of an attack. In 

practice, we find that there are groups of alerts that arrive in a 

batch, corresponding to several closely spaced attack steps of 

a fast-moving attack and SWIFT cannot deploy a response 

within a batch of alerts. This batch creates a snapshot.  
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Figure 4. Effect of response and EPF in I-
Graph inference. 

Generally, for a multi-stage attack consisting of k snapshots {s1,s2,..sk}, the response mechanism is formally 

described by RCi = Respond(si, Hi), where si is the ith snapshot, Hi is the history information and RCi is the response 

combination decided by SWIFT. Therefore, in Figure 2, we have RX=Respond(sX,HX), RY=Respond(sY,HY), and 

RZ=Respond(sZ,HZ). 
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2.3 Impact Vector Metric 

We use a metric called Impact Vector for evaluating the favorableness of a response combination. Firstly, we 

assume that the protected target system has a set of transactions and security goals that should be satisfied during 

its operation. The impact vector Iv used in a system of n transactions and m security goals is an (n+m) element 

vector, with each element representing the impact value on the corresponding transaction or security goal. The 

higher the value is, the more severe the impact is.  

The absolute value of Iv is defined as 

|Iv| = |[a1 a2 … an]| = ∑i=1,nai, ai ∈ (0, ∞). 

The summation of two impact vectors is also an impact vector and is defined as follows: 

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), ..., max(Iv1,n,Iv2,n)] 

The dimensions may not all be independent, in which case assigning the Iv values has to be done carefully taking 

the dependence into account. The notion of impact vectors is found in the security domain in several different 

forms, e.g., as the result of risk analysis. For each response r, there is an associated impact vector Iv(r) which 

indicates the impact on the system as a result of deploying the response. This may be specified by the system 

administrator or determined automatically by calculating the services affected by the response and computing 

which transactions and security goals are violated as a result as in [1]. For each I-GRAPH node n, there is an 

associated impact vector Iv(n) which gives the impact as a result of this node being achieved by an adversary. 

2.4 Intractability of Optimal Response Determination 

Let us assume an attack has resulted in i snapshots s1,s2,..,si. Let us assume the I-GRAPH has m nodes n1,n2,..nm. 

Now we want to evaluate the cost of the response combination RCi = f(si,H), which consists of n responses 

{r1,r2,..,rn}. Assume the probability of each node being achieved in the attack considering the responses in RCi is 

P(n1), P(n2),…, P(nm). Then the cost of RCi is defined by Eqn. (1). Under this metric, the optimal response 

combination to a given attack at a specific snapshot (corresponding to a specific point in time) is the one which 

yields the minimum value of cost. 

 , arg min cos ( )
i

i opt i
RC

RC t RC=                    (2)

1 1

( ) | ( ) | ( ) P( ) (
m n

i i k k
k k

Cost RC Iv RC Iv n n Iv r
= =

= = +∑ ∑ )k  (1) 
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Consider the small I-GRAPH in Figure 3. Let E = {e1, …, et}. Each edge in E has a set of possibly overlapping 

responses. Each response has the same probability of success and identical Iv’s. The Iv of each node N1, …, Nt is ∞. 

Thus ORD will deploy a response on each edge in E. By definition of ORD, it will generate a response 

combination R such that the cost is minimized, which for the special settings implies that the number of responses 

is minimized. Thus the responses in R cover the set E. This is the solution to the set covering problem. The 

reduction is obviously polynomial. Hence, ORD is an NP-hard problem in terms of the input size of number of 

responses and number of nodes. 

In practice, for a reasonable-sized distributed system, there are many possible attack steps and therefore many 

possible response steps. For example, there are several research efforts aimed at scalable generation of attack 

graphs with tens of thousands of nodes [28]. Also, there are many possible services and therefore attack graph 

nodes. Again, notice the significant research efforts aimed at diagnosing root cause problem in services which aim 

at scalability to a large number of services [29][30]. The intractability is observed in practice not just for a few 

corner cases, but in the average cases as well. This is due to the dependences between responses and attack steps. 

3 Design of Search Algorithms 

The overall execution flow in SWIFT’s search for optimal response combination is shown in Figure 5.  
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Figure 5. Overall flow for the steps in SWIFT to respond to an attack 
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3.1 Attack Template Library (ATL) and Attack Snapshots 

SWIFT seeks to adapt its responses based on previous attack snapshots. Thus it is important to store the history of 

attack snapshots and prior responses. This is maintained in the Attack Template Library (ATL).  

The ATL houses snapshots of attacks seen so far. Each snapshot entry s in the template library contains the 

following information: s.g: the sub-graph of the I-GRAPH with nodes that have been achieved at snapshot s and 

the corresponding edges; s.predict: the path prediction table used to predict the propagation trend in the I-GRAPH 

from the snapshot s (Sec. 3.2); s.rc: the most effective response combinations previously found by SWIFT for 

snapshot s, s.r: the responses used previously for this attack snapshot and their EI values. Thus, the EI value of a 

response is maintained per snapshot, rather than globally for the response. This acknowledges that a response’s 

effectiveness also depends on how far ahead of the attack front reaching the response node, i.e, on the time to 

successfully deploy a response. Also when the EI value is used by SWIFT, it picks it up from a Normal distribution 

with the mean and the variance of the EI observed so far. This design, called fuzzy EI, ensures that a response that 

falsely has a low EI value will eventually be redeemed, deployed in a response combination, and its EI reevaluated. 

When the detection framework sends attack graph gN to SWIFT, SWIFT will check in the ATL if there is an 

existing attack snapshot se with se.g = gN. If it does, se is loaded from the ATL as sN (step 2, Figure 5) for 

subsequent SWIFT operations. Otherwise a new snapshot is created. If space is a constraint, SWIFT deletes snapshots 

from the ATL by various criteria—by time of creation or time of last access, frequency of access, or the snapshot 

with the lowest cumulative |Iv| of its nodes. 

3.2 Attack Snapshot Prediction Table and Edge Propagation Factor (EPF) Tuning 

Given an attack snapshot s, while there are many possible 

follow-on attack steps, in practice, some are much more likely. 

SWIFT attempts to estimate the likely follow-on steps so that the 

search space is restricted and unnecessary responses are not 

deployed. The attack snapshot prediction table and the edge 

propagation factor tuning algorithms are used for this purpose. 

To track the likelihood of follow-on steps, SWIFT maintains a 

prediction table s.predict for each snapshot s. The table entry s.predict[e], which is called edge propagation factor 
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for edge e (e.EPF), tracks the likelihood of an attack propagating on the edge e.EPF is a real number in the range [0, 

1] and is used in the creation of the so called Domain Graph (Sec. 3.3), which defines the search space explored by 

SWIFT in making the response decision. SWIFT increases EPF on an edge if attack propagation is perceived on the 

edge and decreases EPF otherwise. For example, in , assuming response r is not deployed and detector Dx 

fires, e.EPF will be increased if detector Dy fires subsequently. Otherwise, it will be decreased. EPF on edge e is 

used to tone down the contribution to the probability P(y) from node x. Therefore, if the EPF value e.EPF is low, 

this would decrease the likelihood of SWIFT deploying responses around y.  

Figure 4

3.3 Domain Graph 

The Domain Graph D(s) ⊇ s.g and is a subgraph of I-GRAPH, which provides an approximate bound on the nodes 

that may be reached by an adversary from a snapshot s (Figure 6). In Eq. (1), when we calculate the expected 

impact vectors due to the nodes in the I-GRAPH, we consider all the nodes in the I-GRAPH. Practically, this will 

adversely impact the performance since the I-GRAPH is likely a large structure for any large real-world distributed 

systems and many nodes in it will have vanishingly low probability of being achieved based on the current 

snapshot. The Domain Graph subsets the nodes to be considered so that a more timely and more accurate reaction 

to the attack can be deployed.  

Given the I-GRAPH I and a snapshot s, the Domain Graph D(s) = (V, E) where V = {{node n∈I such that P(n) × 

|n.Iv| is greater than a given threshold T}  {node n∪ ∈I such that n is on the path from nx to ny in I where nx, 

ny∈V }} and E={e|e∈edges(I) and e: (u, v) , where u, v∈V} . This is computed in step 4 of Figure 5. 

Essentially, domain graph gives the worst case estimate, assuming no responses are going to be deployed, on the 

extent of an attack and bounds the search space of the Genetic Algorithm that we discuss next. The estimation of 

domain graph is refined through the tuning of the EPF values (Sec. 3.2) and the EI values of the responses already 

deployed. In the ideal case, the estimated domain graph should coincide with the actual extent of an attack. (e.g. 

C=D in Figure 6) 

3.4 Genetic Algorithm (GA)-based Response Mechanism 

As the problem of deciding the optimal response combination for an attack snapshot has been proved to be NP-

hard, we focus on an approximate solution using a GA framework [23]. Following Figure 5 step 6, this corresponds 

to designing a response mechanism Respond(.) (algorithm shown in Figure 7), which takes the snapshot sN 
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from Step 2 and generates the approximate optimal response combination RCN. The history information used here 

is embedded in sN and Rdeployed, the responses deployed thus far.  

Within this framework, we map each response combination onto a chromosome, and the problem of searching for 

the best response for an attack snapshot is then translated into looking for the best chromosome from the 

chromosome pool over multiple evolutions. Often using genetic algorithm to perform optimization is an expensive 

process [20] due to the requirement of search through a huge chromosome pool over many evolution cycles to get a 

good solution. We reduce the execution time by selectively initializing the chromosome pool.  

SWIFT only considers the responses within the Domain Graph that have not been deployed yet. This set of 

applicable responses is given by RA. The encoding scheme is that each chromosome c is an |RA|-sized bit vector, 

with each bit uniquely mapped to a response r∈RA. 

To populate the chromosome pool (Step 5 in Figure 5), first, SWIFT relies on the history information from the 

snapshot, namely sN.rc and sN.r (i.e., the best response combination found so far for this snapshot and responses 

deployed and their EIs). Second, SWIFT relies on this same information from past similar attacks. Third, SWIFT 

populates the chromosome pool with greedy locally optimal responses from baseline ADEPTS and fourth, with a set 

of randomly filled chromosomes.  

The fitness of a chromosome c, is determined by the response combination RC for c. The fitness of chromosome c 

is defined as | ( )|/ dimension( )( ) 10 Iv RC Ivfitness c −= . This fitness function satisfies some desirable properties – high |Iv| 

translates to low fitness and |Iv| of zero or infinity are handled. A Genetic Algorithm Solver (Step 6 in Figure 5) is 

then invoked to systematically probe through the space of response combination RC through the typical GA 

evolution process [23]. The high-level concept here is those response combinations that yield low cost values (Eq. 

(1)) will be returned by the GA Solver in the end. 

Algorithm: Respond 
Input: latest attack snapshot sN 
Output: approximated optimal response combination RCN 
Pre-defined Constants:  

chromosome_pool_size: a constant on the chromosome pool size. 
v% : the percentage of top chromosomes to be kept in the history. 
max_evolutions: maximum number of evolutions per iteration for the GA. 
rc_size: the maximum size of the set sN.rc of best response combinations previously found. 

Method: 
1. Create Domain Graph DN=D(sN). 
2. Derive RA from Rdeployed and DN. 
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3. Initialize GA chromosome pool  through four sources defined in Sec. 3.4. 
pool = GA_PopulateChromosomePool (ATL, sN, DN, chromosome_pool_size). 

4. Perform GA evolution cycles 
for i=1 to max_evolutions { 

pool = GA_NextChromosomeGeneration(pool). 
}  

5. Update the best response combinations 
best_chromosomes = {the top v% of chromosomes in pool (wrt fitness)}. 
sN.rc = the top rc_size chromosomes from (sN.rc best_chromosomes).    ∪

6. Find chromosome RCN∈sN.rc with highest fitness. 
7. Return RCN. 

Figure 7. GA based response mechanism 

4 Experimental Testbed 

The experimental testbed deployed for evaluating 

SWIFT is an e-commerce system (Figure 8), where 

users interact through a web browser with a three-tier 

server structure. The application is Sun Microsystem’s 

Java Pet Store (version 1.4). In the backend, a MySQL 

database server runs as a repository of information, 

including customer accounts, product catalog and 

inventory, and order history. The testbed emulates the common features of many service-oriented e-commerce 

systems, including mis-configurations and weak security policies on the networks. The SWIFT implementation is 

tested against a set of attack scenarios based on vulnerabilities published by the electronic payment industry [21], 

the web security community [22], and in the CVE dictionary [24]. The I-GRAPH has 55 nodes, 96 edges, 5 nodes 

with no detectors, and 72 responses (all containment focused responses). The max, min, and average in-degree and 

out-degree are (7, 0, 1.7) and (5, 0, 1.7). A subset of the nodes have associated detectors, such as Snort, Libsafe, 

Process and File access monitor, Brute-force password cracking detector, and EJB monitor.  

 
Figure 8. Layout of three-tier e-commerce testbed for 

SWIFT.  Each box runs on a separate host. (AS: 
Application Server, Tomcat: Web Server)  

5 Results 

The output metric we choose for evaluation is survivability. Qualitatively it captures the value of the system to 

the owner in terms of the transactions that can be supported and the system goals that are met when the attack and 

the responses are deployed. Quantitatively, it can be computed as : 

( )Survivability  :  | |is C Iv RC= −  (3) 
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C is a scaling constant representing the perfect survivability. Since C is application specific and in the absence of 

such an application-specified value it will represent an arbitrary scaling. Therefore, we use |Iv| instead as the 

indicator of performance. The reader should keep in mind that |Iv| and survivability have an inverse relation. Unless 

otherwise specified, SWIFT is executed with a chromosome pool of size 10 and 4 evolutions per snapshot.  

5.1 Survivability for Micro-Benchmark 

We consider as a micro-benchmark an attack scenario that 

has the form shown in Table 1. This is a regular structure 

with each node representing a unique service being affected. 

The multi-stage attack starts at svc0 and proceeds through 

all the four possible paths with the goal of achieving svc21. 

There are ‘single-node’ responses on each node which if 

successful has the effect of preventing the node and its children nodes from being achieved. The other responses 

are ‘dual-node’ responses, which can contain the attack on two nodes at a time. In general, a dual-node response 

has lower cost than the total cost from two counterpart single-node responses but has higher cost than an individual 

single-node response. Still, one has to consider the overall effectiveness and the overlapping cost from other 

responses. This is one of the key strength of SWIFT in judging the whole situation and seeking for the global 

optimal response combination. The attack scenario is injected individually into SWIFT and baseline ADEPTS at the 

root node and is executed multiple times. The initial EI values for all responses are taken to be 1, a consciously 

chosen overly optimistic decision to investigate how the system unlearns it.  

0
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40

50

0 10 20
Attack Instance

|Iv
|

ADEPTS SWIFT

Figure 9. Improvement in Survivability with 
SWIFT for Micro-benchmark. 

The survivability result from the experiment is shown in . Overall, SWIFT chooses responses which yield 

lower |Iv| than those from ADEPTS. This clearly shows the advantage from considering responses in a system-wide 

global manner in SWIFT (Eq. 

Figure 9

(2)). This is true even for the first attack instance where no history information is 

available as shown in Figure 9. With the history built up over each attack instance, we can see the decreasing of |Iv| 

from both cases due to the adaption processes employed. Over the 25 attack instances, SWIFT yields an averaged 

|Iv| of 15.9 while ADEPTS yields an averaged 21.9, a 27% improvement. 
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Attack Instance 24 
(a) SWIFT 

After attack snapshot 1 
(b) Baseline ADEPTS (|Iv|=19) 

At the end of the attack 
(C) SWIFT (|Iv|=12.6) 

At the end of the attack 

 
Table 1. Detailed attack snapshots from attack instance 24 

Table 1 shows the selected attack snapshots at different time points for SWIFT and ADEPTS for attack instance 24. 

Octagonal node means adversary has achieved the node, elliptical means it has not; solid node means response has 

been deployed. In (a), we see the response of SWIFT after only the first attack snapshot has been observed. SWIFT 

has already deployed proactive responses, as far ahead as the fourth stage of the attack. Having seen 23 previous 

attack instances for this specific attack, SWIFT has deduced that responses in the fourth stage (at nodes svc4, svc9, 

svc14, svc19) have to be deployed early enough to be successful. (b) and (c) show the cases at the end of the attack 

for ADEPTS and SWIFT respectively. The baseline selects locally optimal responses and therefore prefers the single-

node responses, deploying a total of 11 responses and effectively preventing the end goal of the adversary from 

being achieved. However, SWIFT due to the property of searching for globally optimal responses, selects 4 dual-

node responses (ID: 0x4E20, 0x4E23, 0x4E26, 0x4E27) and 1 single-node response (ID: 0xC), again preventing 

the end goal from being achieved, but at a lower cost. 
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5.2 Learning from History to Reduce Search Space Size  
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Figure 10. # of edges in the domain 

graph generated out of the 3rd 
snapshot. 
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response decision 
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Figure 12. |Iv| v.s Attack Instance 

This experiment shows the effect of EPF tuning on reducing the size of the domain graph for an attack scenario as 

SWIFT gets adapted to the attack steps (Sec. 3.2.). Here we assume a system with an I-GRAPH containing 42 nodes 

and 103 edges. We use two attack scenarios EPFAS.1, which can be potentially deterred with deployed responses, 

and EPSAS.2, which doesn’t have any applicable responses available on its attack paths and can’t be deterred. 30 

attack instances are injected into the system. Attack instances 0-9 follow attack scenario EPFAS.1, 10-19 follow 

EPFAS.2, and 20-29 revert to EPFAS.1. Here we discuss the results on the 3rd attack snapshot from a few 

representative attack instances. (In the last few attack instances, when SWIFT fully adapts itself to the attack, the 

attack is only able to populate three attack snapshots before being effectively stopped by SWIFT. Therefore, for 

presentation consistency, we use the 3rd attack snapshot even though in the first few attack instances, there do have 

more than three attack snapshots available.) 

As we can see EPF Tuning not only reduces the size of the domain graph, which speeds up the execution time of 

SWIFT, but also improves the quality of the generated response solutions i.e., reduces the overall system |Iv|. This 

happens since SWIFT searches through follow-on attack steps which are more likely and avoids deploying 

responses on nodes that are unlikely. From Figure 10, we can see a clear decreasing trend in the size of the domain 

graph from 77 edges to 12 edges for the first 10 attack instances with EPF tuning. On the other hand, the number of 

edges without EPF tuning is significantly higher. The fluctuation of the number of edges without EPF tuning is due 

to the different responses deployed prior to the 3rd attack snapshot for each different attack instance.  

From Figure 12 we can see that for attack instances 10-19, all the responses are totally ineffective, which 

translates into the higher |Iv| values. From Figure 10, we see the sudden increase in the size of the domain graph at 

instance 10 as the unseen attack scenario EPFAS.2 emerges. With EPF tuning, SWIFT adapts itself quickly and the 
14

 



size drops to 12 edges per domain graph starting from attack instance 13 again. When the system is injected with 

EPFAS.1 again (instances 20-29), we observe that SWIFT is able to use its memory of EPFAS.1—the domain graph 

is small and the |Iv| does not shoot up. The spike in |Iv| at attack instance 22 is due to the probabilistic nature of the 

occasional failure of the response on [svcs3].  

Overall, we conclude that reducing the size of a domain graph through EPF tuning not only improves the 

efficiency in response searching but also improves the quality of the resulting responses. 

5.3 Survivability for Real Attack Scenarios 

15

Figure 13 shows the two attack scenarios AS3 and 

AS4 used in this experiment. These are real in so far 

as they are created from the publicly available 

vulnerability and attack databases by chaining 

individual attack steps. The numbers on the edges 

correspond to the response IDs which can prevent 

propagation of the attack. Some responses (R9, 

R25, R56, R57, and R66) require longer lag time 

for effective deployment. They are useful for 

SWIFT due to its ability to deploy them 

proactively, but kind of useless for the 

baseline, which considers only local optimal 

responses. Besides, we have initial EI value for R60 set erroneously low and those of the other responses set overly 

high. The goal is to see if SWIFT can recover from this situation. The end node N37 is a critical node with a high |Iv|. 

We inject 15 instances each of AS3 and AS4 and compare the achieved survivability at the end of each attack 

instance for baseline and SWIFT. Figure 14(a) shows that the baseline’s performance is widely fluctuating for AS3. 

This is primarily due to the fact that the baseline considers responses close to the nodes that have been achieved. 

For example, R71 has about 50% probability of success in deterring the propagation from node N50 to N53 when it is 

deployed by the baseline at the time when N9 is flagged. SWIFT consistently has lower |Iv| than the baseline. This is 

due primarily to SWIFT’s ability to redeem R60 through the fuzzy EI mechanism (Section 3.1) even though it had a 
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low initial value. In the baseline system R60 is not considered till the EIs of the other responses also diminish to this 

low value. For AS4 (Figure 14 (b)), while the general pattern is similar to that of AS3, the difference in the |Iv| is 

negligible for some instances. This is due to the fact that there are more available responses in AS4, and therefore 

the baseline does not suffer as much from underestimated response R60. 

5.4 Responding to Attack Variants 

In this experiment we consider AS3 and 

AS4 to be variants of each other (due to 

their shared nodes as shown in Figure 13). 

The results are shown in Figure 15. In the 

first sub-experiment, we execute AS4 15 

times and use its snapshot from the ATL 

(which includes the optimized responses 

that SWIFT had determined) in responding to AS3. In the second sub-experiment, we reverse the roles of AS3 and 

AS4. The key difference between using history and not using it expectedly lies in the first attack instance. In both 

AS3 and AS4, SWIFT is able to use the historical information from the variant and limit the damage to the system 

from the first attack instance compared to the baseline system. This would be valuable in dealing with very 

destructive attacks when they are observed for the first time. 
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6 Discussions 

This paper has presented the algorithms in SWIFT to decide on optimal responses. Several other aspects of an IRS 

are needed to support the presented algorithms, but they cannot all be described in the confines of this paper. Some 

aspects are under current investigation, and some have been presented in earlier work [9][10].  

16

A question arises as to whether it is reasonable to assume an attack can occur multiple times such that the 

adaption process can work. First, we found that the adaption process in our experiments takes only 4-5 attack 

instances to get adequately adapted. We can consider the possibility of sharing attack history information across 

systems which share similar configurations (e.g. companies using the same three tier configuration), as this is 

commonly done with anti-virus signatures. Also, with automated multi-stage attacks, multiple instances of an 

attack are also seen for a single system. An administrator may not have the ability to patch the system right after 

 



the first instance of an attack. This is particularly true for third-party software where availability of patches is 

outside the control of the system administrator. A common drawback for a solution that relies on history of attacks 

is that it is unable to handle a hitherto unseen attack of devastating impact. For SWIFT, history helps the GA to 

converge faster but is not strictly necessary. By setting the Iv of a node to a high value, SWIFT can deploy a 

response, even if drastic, to prevent the node from being achieved. This shows up in our experiments in the better 

performance of SWIFT compared to the baseline. 

The I-GRAPH structure used here is implicitly assumed to be complete with respect to the NB-type nodes. One can 

leverage existing work [26],[28] to automatically generate the I-GRAPH from a given system configuration and set 

of available detectors. A level of non-determinism is introduced by concurrent attacks since the response to one 

attack may suffice to contain both attacks. The presented framework can be extended to discriminate between 

distinct attacks as in [8] and handle them at the expense of expanding the GA search space.  

7 Related Research 

With increasing complexity and ubiquity of distributed systems, IRSs for such systems are gaining interest. They 

can broadly be classified into four categories. Static decision making. This class of IRS [11]-[13] provides a static 

mapping of the alert from the detector to the response to be deployed. The IRS includes basically a look-up table 

where the admin has anticipated all alerts possible in the system and an expert indicated responses to take for each. 

Dynamic decision making. This class of IRS reasons about an ongoing attack based on the observed alerts and 

determines an appropriate response to take. A wide variety is discernible in this class based on the sophistication of 

the algorithms. The systems in [1]-[6] fall in this category. Intrusion tolerance through diverse replicas. This class 

of IRS implicitly provides the response to an attack by masking the effect of the attack. The approach is to employ 

a diverse set of replicas to implement any service. The fault model is that the replicas are unlikely to share the same 

vulnerabilities and therefore not all will be compromised by a single attack. An advantage is that the system can 

continue operation without a disruption as in the active replication technique. The systems in [14]-[16] fall in this 

category. However, in practice, it’s challenging to assume diverse implementations of all the critical services are 

available to be set up as replicas. Responses to specific kinds of attacks. This class of IRS is customized to respond 

to specific kinds of attacks, most commonly, DDoS attacks. The approach is to trace back as close to the source of 
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the attack as possible and then limit the resources available to the potentially adversarial network flows. The 

system reported in [7] fall in this category.  

The work presented here differs from previous IRS work in that it lays down a framework to reason about the 

optimality of the response choices made by these systems. The approach here can be applied to evaluate any 

available IRS. The baseline ADEPTS system does not have the design to choose globally optimal responses.  

There have been some efforts at using genetic algorithms for intrusion detection [18]-[20] and search for 

vulnerabilities [17]. The results have been promising, but only after careful definition of the syntax of the 

chromosomes and tuning of the fitness measure. We have not found prior application of GA to intrusion response.  

8 Conclusion 

In this paper, we introduced the notion of global optimality of responses deployed by an intrusion response 

system. The optimality criterion takes into account the impact on the whole system from a deployed response in 

reducing functionality and from the spread of the attack. We proved that the optimal response determination 

problem for multi-stage attacks is NP-hard, fundamentally because responses at different services are inter-

dependent. Hence, we proposed using a Genetic Algorithm (GA) based framework. The initial chromosome pool 

and the design of carry over of chromosomes from one generation to the next are designed to improve the solution 

quality over the locally optimal responses of the state-of-the-art ADEPTS system. The proposed GA framework also 

enables the use of history information from past attacks that are similar to the current one through seeding the 

initial chromosome pool with the learnt effective response combinations from those similar attacks. The IRS 

performance was evaluated on a three tier e-Commerce system through injection of multi-stage attacks. The 

evaluation brings out the fact that survivability improves with the global response determination process of SWIFT 

over a greedy local response determination (e.g. 27% improvement based on experiment in Sec. 5.1). In our 

experiments, on average it takes only about 4~5 attack instances for SWIFT to adequately adapt to an attack. This 

number can be further decreased if the history information of attacks can be shared across systems which have 

similar configurations.  
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