
The Search for Efficiency in Automated Intrusion Response for Distributed
Applications

Authors: Yu-Sung Wu (Purdue University)

Gaspar Modelo-Howard (Purdue University)

Bingrui Foo (Purdue University)

Saurabh Bagchi (Purdue University)

Eugene Spafford (Purdue University)

Contact Author: Yu-Sung Wu (E-mail: yswu@purdue.edu)

Abstract

Providing automated responses to security incidents in a distributed computing environment has been an
important area of research. This is due to the inherent complexity of such systems that makes it difficult to
eliminate all vulnerabilities before deployment and costly to rely on humans for responding to incidents in real time.
Earlier works [9], [10] have shed the light on automated responses. They pick the best local response that stops an
attack propagation from its current step to the next step.

Here we propose a new approach where the optimality of responses is considered from a global point of view on
“What’s the eventual outcome on the whole system from using a response?”. We formalize the process of providing
automated responses and the criterion for asserting global optimality of the set of deployed responses. We show
that reaching the globally optimal solution is an NP-hard problem. Therefore we design a genetic algorithm
framework for searching for good solutions. In real world, good solutions can change as the problem structure
changes. Here the problem structure involves the protected target system and the attacks, both of which can change
over time. Our framework constantly adapts itself to the changing environment based on short term history and also
tracks the patterns of attacks in a long-term history. We demonstrate the solution on a distributed e-commerce
application called Pet Store with injection of real attacks and show that it improves the survivability of the system
over previous works [9], [10].

Keywords: automated intrusion response, intrusion containment, optimal response, distributed e-commerce system,
survivability

Submission Category: Regular Paper

1 Introduction

Distributed systems comprising multiple services interacting among themselves to provide end-user functions are

becoming an increasingly important platform. Many of the platforms, such as distributed e-commerce systems,

have huge financial stakes involved in them. This has long led to interest in securing distributed systems through

detection of intrusions and of late, through automated responses to intrusions. The rudimentary response

mechanisms often bundled with anti-virus or intrusion detection system (IDS) products overwhelmingly consider

only immediate local responses that are directly suggested by the detected symptom. For example, anti-virus

software can restrict access to virus infected files. Also, most modern web browsers can automatically block

connections to potential phishing websites. These are applicable in stand-alone systems due to their simplicity. For

distributed systems with nearly exponentially large number of interaction effects among multiple components, pre-

configuring these static pairs of detector alarm and response is laborious and can be shown to have inferior runtime

performance due to the dynamic workload on the system and the changing nature of attacks.

The few available dedicated IRSs (Intrusion Response Systems) for distributed systems [1]-[6] have one or more

of the following characteristics—they have a static mapping of symptoms from the detector to the response, do not

take feedback into account for determining future responses, assume perfect detectors with no missed and no false

alarms, or assume perfect success rate for a deployed response. The complex interactions among the complex

software running the distributed applications, the non-determinism in the execution environment, and the reality of

new forms of intrusions surfacing would make any one of the above characteristics undesirable. Importantly, the

existing work does not present a method for reasoning about or evaluating the optimality of a chosen set of

responses. The presented protocols, including earlier work in a system called ADEPTS [9][10], take a greedy

approach and do not give a globally optimal solution. How far each solution is from the optimal is also not clear.

Optimality is an important metric because it allows a system designer to reason about how well a given set of

responses with which the IRS is populated can work for the target attack scenarios. This may point to modification

of the response repository in the IRS. We address the problem of optimal response selection in this paper.

Our model for the target attack is an external multi-stage attack which first compromises the services that have

external interfaces and subsequently compromises internal services with the goal of disrupting some transactions

1

supported in the system or violating some of the security goals in the system. This is the model commonly used in

the literature for distributed intrusion response systems (IRSs) [1][9].

We present a framework called SWIFT to reason about the global optimality of a chosen set of responses in a

distributed system of interacting services. The optimality criterion takes into account the impact of a deployed

response to the services in the system and the impact of not deploying a response to the services which could result

in further spread of the attack. This framework is probabilistic since the future spread of the attack and the

effectiveness of a response are unknowns and can only be estimated. The optimality of a response set is a global or

system-wide property and thus optimizing the response choice on each compromised service individually as seen in

[9], [10] may not be sufficient. The global optimal solution must account for the fact that there exist dependencies

between responses available at the different services. For example, blocking all traffic from a specific subnet at the

ingress point will make it redundant to impose restrictions at an internal service on traffic from a host within the

subnet. Also the effectiveness of a response depends on the time to deploy the response.

We prove that solving the optimal response determination problem is NP-hard. This is fundamentally because of

the dependencies that exist between responses and between services in a distributed system. Both the number of

responses and the number of services (including replicas) can grow large with increasing system size and

complexity. Since it is imperative to deploy prompt responses at runtime to counteract automated attacks, we

design an approximate solution. To boost the quality of the populated responses, the approximate solution can use

history of the attacks seen in the system and the paths they have taken, and estimates of the effectiveness of

responses deployed earlier so that the search space can be restricted. To solve the approximate problem, we use

genetic algorithm (GA) [23] based search through the universe of possible responses. As multiple attack instances

of an attack type or its variants are seen, SWIFT updates the effectiveness of the deployed responses and the quality

of the chromosome pool used to initiate the GA-based search. Thus, SWIFT adapts to provide better responses as

history builds up in the system. SWIFT can respond to attack variants through an approximate graph matching

algorithm and population of chromosomes from the approximate match. Attack variants are particularly relevant

for distributed applications where different order of observing alerts from different machines may give the

impression of an attack variant.

2

The SWIFT system is demonstrated on a distributed three tier e-commerce application called Pet Store that uses

the J2EE platform. The output metric is survivability, a high-level metric that is based on the transactions that are

supported and the system goals that are maintained in the application once the attack is injected and the responses

are deployed. The experiments show the improved survivability with SWIFT compared to baseline ADEPTS, the

ability of SWIFT to adapt its responses as increasing numbers of attack instances are seen, and its ability to handle

attack variants.

The rest of the paper is organized as follows. Section 2 presents the design of the optimality framework. Section 3

describes the algorithms used to search for the optimal responses. Section 4 describes the e-commerce testbed and

the attack scenarios. Section 5 presents the experiments and the results. Section 6 discusses some subtle aspects of

the presented solution. Section 7 surveys related work and Section 8 concludes the paper.

2 Framework for Global Optimal Response

2.1 Adversary and Attack Model

A representation called Intrusion Graph (I-GRAPH) [9]

is used for modeling the spread of the attack, which is

similar in concept to attack graphs [25]. The final goal

of the adversary may be disrupting some high level

system functionality, such as “Permanently change

grades record” in Figure 1. This final goal is achieved

through multiple intermediate intrusion goals (attack

steps) and each is represented as an I-GRAPH node.

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1
r2

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3

OR

AND

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1
r2

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3

OR

AND

A. Malware
downloaded to

secretary’s
computer

B. Password
keystroke
recorded

D. Change
grades
record

Detector
DA

r1r1
r2

E. Connect to a
workstation on

campus

E. Connect to a
workstation on

campus

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

F. Exploit NFS
rpc.mound and

install rootkit on
storage server

G. Erase backup
copy of grades

record file

G. Erase backup
copy of grades

record file

I. Permanently
changed grades

record

I. Permanently
changed grades

record

C. Sniff packet
to get the grade

system
login/password

C. Sniff packet
to get the grade

system
login/password

H. Manipulate
data file contents

Detector
DE

Detector
DD

Detector
DH

Detector
DG

r3r3

OR

AND

Figure 1. An example I-GRAPH

Definition of I-GRAPH G(N,E):

N := {nodes in G} := {{NA: specific attack manifestation} ∪ {NB: generic attack manifestation} ∪ {NC:high level

parameterized manifestation} ∪ {ND:logical inference pseudonodes }}

E := {edges in G} := {(n1,n2) | if n2 is casually dependent on n1 for n1,n2∈N}

NA : These nodes are constructed directly out of the detector alerts for specific attack manifestations. These

manifestations carry specific detector signatures. For example, the Snort rule for detecting Apache chunked

3

encoding memory corruption exploits or some AntiVirus software detecting the binary code of some virus

in an infected file.

NB : These nodes are constructed out of the detector alerts that correspond to attack manifestations which are

generic in nature. These manifestations usually span across multiple different attacks, some of which can

be potentially of unknown attack types. For example, stack buffer overflow detectors such as LIBSAFE

should generate alerts out of any attack attempts which result in stack buffer overflow, irrespective of the

specific attack signature used to achieve the overflow.

NC : These node corresponds to high level manifestation which usually do not have a corresponding detector alert.

However, the manifestation is hypothesized since it directly impacts a system functionality or violates a

system goal. For example, “losing customer credit card numbers” could form a node of type NC.

ND : These are intermediate nodes used for providing OR/AND/Quorum logics in the I-GRAPH.

In many deployments, the systems may have unknown vulnerabilities and therefore the I-GRAPH is mainly

composed of NB nodes, which can be automatically created based on the available detectors and the knowledge of

the interactions among the servers in the target system [26],[28]. It is not dependent on knowledge about specific

attacks or vulnerabilities. For example, if we have an I-GRAPH node corresponding to “Root password on machine

M is changed”, this does not mean we know a priori that the operating system on machine M has the vulnerability

which can be used to change the root password. However, it is actually one of SWIFT’s key roles to deal with the

uncertainty by constantly adapting to the actual situation, to provide continuous protection to the system.

When alerts are received by SWIFT for a node in the I-GRAPH, SWIFT calculates a Compromised Confidence

Index (CCI) value for all the nodes. This scheme is identical to that in baseline ADEPTS [9],[10]. Through this paper,

we use the CCI as the estimate for the probability P(n) that a node n has been achieved. In general, P(n) is assumed

to be provided by the underlying the I-GRAPH model. We can also use alternative choices such as Hidden Markov

Model or Bayesian Network based attack graph [27] and the rest of the discussion will remain unchanged.

4

2.2 Response Model for Multi-Stage Attack

a

b c
d

a

b

RX RY RZ

X Y

a

b c
d

Z

ce
f

Figure 2. Three different snapshots for a given attack
scenario. Responses RX, RY, RZ are deployed between

snapshots

N0

N1 Nt….

Edge e1 with possible
set of response R1 Node is already

compromised

|Iv|= ∞ |Iv|= ∞

N0N0

N1N1 NtNt….

Edge e1 with possible
set of response R1 Node is already

compromised

|Iv|= ∞|Iv|= ∞ |Iv|= ∞|Iv|= ∞

Figure 3. Transformation to map set covering problem

to optimal response determination (ORD).
The Effectiveness Index (EI) of a response indicates the likelihood of success of the response, which is

determined by SWIFT through observation of alerts. Conceptually for a response deployed on an edge, if attack

propagation (based on incoming detector alerts) is observed, the EI value of the response will be decreased.

Otherwise it will be increased. For better understanding, Figure 4 shows a simple example on how response r on an

edge e affects the CCI values on the parent and the child node on the edge. Here detector alert values are assumed

to be a real number between 0 and 1, with 1 indicating the full confidence from the detector that the corresponding

node is compromised and with 0 indicated the node is not compromised. The CCI values are then used as the

estimates of the probabilities of nodes being achieved P(x) and P(y). This mechanism is the same as in baseline

ADEPTS . Further details are thus omitted here.

In general, a multi-stage attack consists of multiple attack

snapshots. Each snapshot contains the detector alerts which

have been generated thus far, and the fragment of the I-

GRAPH with nodes for which alerts have been received.

Figure 2 shows three snapshots X, Y, and Z of an attack. In

practice, we find that there are groups of alerts that arrive in a

batch, corresponding to several closely spaced attack steps of

a fast-moving attack and SWIFT cannot deploy a response

within a batch of alerts. This batch creates a snapshot.

yx
e

r

Dx Dy

yx
e

r

Dx Dy

()

. : detector alert value from Dx

. : detector alert value from Dy
P() . .

. . . 1 . .

P() .

x AV
y AV

x x cci x AV

y cci x cci e EPF r EI y AV

y y cci

← ←

← × × − + / 2⎡ ⎤⎣ ⎦
←

Figure 4. Effect of response and EPF in I-
Graph inference.

Generally, for a multi-stage attack consisting of k snapshots {s1,s2,..sk}, the response mechanism is formally

described by RCi = Respond(si, Hi), where si is the ith snapshot, Hi is the history information and RCi is the response

combination decided by SWIFT. Therefore, in Figure 2, we have RX=Respond(sX,HX), RY=Respond(sY,HY), and

RZ=Respond(sZ,HZ).

5

2.3 Impact Vector Metric

We use a metric called Impact Vector for evaluating the favorableness of a response combination. Firstly, we

assume that the protected target system has a set of transactions and security goals that should be satisfied during

its operation. The impact vector Iv used in a system of n transactions and m security goals is an (n+m) element

vector, with each element representing the impact value on the corresponding transaction or security goal. The

higher the value is, the more severe the impact is.

The absolute value of Iv is defined as

|Iv| = |[a1 a2 … an]| = ∑i=1,nai, ai ∈ (0, ∞).

The summation of two impact vectors is also an impact vector and is defined as follows:

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), ..., max(Iv1,n,Iv2,n)]

The dimensions may not all be independent, in which case assigning the Iv values has to be done carefully taking

the dependence into account. The notion of impact vectors is found in the security domain in several different

forms, e.g., as the result of risk analysis. For each response r, there is an associated impact vector Iv(r) which

indicates the impact on the system as a result of deploying the response. This may be specified by the system

administrator or determined automatically by calculating the services affected by the response and computing

which transactions and security goals are violated as a result as in [1]. For each I-GRAPH node n, there is an

associated impact vector Iv(n) which gives the impact as a result of this node being achieved by an adversary.

2.4 Intractability of Optimal Response Determination

Let us assume an attack has resulted in i snapshots s1,s2,..,si. Let us assume the I-GRAPH has m nodes n1,n2,..nm.

Now we want to evaluate the cost of the response combination RCi = f(si,H), which consists of n responses

{r1,r2,..,rn}. Assume the probability of each node being achieved in the attack considering the responses in RCi is

P(n1), P(n2),…, P(nm). Then the cost of RCi is defined by Eqn. (1). Under this metric, the optimal response

combination to a given attack at a specific snapshot (corresponding to a specific point in time) is the one which

yields the minimum value of cost.

 , arg min cos ()
i

i opt i
RC

RC t RC= (2)

1 1

() | () | () P() (
m n

i i k k
k k

Cost RC Iv RC Iv n n Iv r
= =

= = +∑ ∑)k (1)

6

Consider the small I-GRAPH in Figure 3. Let E = {e1, …, et}. Each edge in E has a set of possibly overlapping

responses. Each response has the same probability of success and identical Iv’s. The Iv of each node N1, …, Nt is ∞.

Thus ORD will deploy a response on each edge in E. By definition of ORD, it will generate a response

combination R such that the cost is minimized, which for the special settings implies that the number of responses

is minimized. Thus the responses in R cover the set E. This is the solution to the set covering problem. The

reduction is obviously polynomial. Hence, ORD is an NP-hard problem in terms of the input size of number of

responses and number of nodes.

In practice, for a reasonable-sized distributed system, there are many possible attack steps and therefore many

possible response steps. For example, there are several research efforts aimed at scalable generation of attack

graphs with tens of thousands of nodes [28]. Also, there are many possible services and therefore attack graph

nodes. Again, notice the significant research efforts aimed at diagnosing root cause problem in services which aim

at scalability to a large number of services [29][30]. The intractability is observed in practice not just for a few

corner cases, but in the average cases as well. This is due to the dependences between responses and attack steps.

3 Design of Search Algorithms

The overall execution flow in SWIFT’s search for optimal response combination is shown in Figure 5.

Detection
framework

Attack Graph
for attack k

Create new
snapshot or load

snapshot from ATL

sN

Create Domain Graph
Identify Similar

Attack Snapshots
in ATL

Attack Snapshots for Attack k

{s0,D0} → {s1,D1} →…→ {sN-1,DN-1} → {sN,?}

sN

Prepare response
candidates

GA: Populate
Chromosome Pool

Seed good
responses
of sN in pool

{SA(sN)}
DN

GA Solver

Alerts

Attack Graph

for attack 1

…

Evaluate effectiveness of
deployed responses
{RC0,RC1,..RCN-1}.

Update {s0,s1,..,sN-1} in ATL

DN

DN

Response
Combination RCN

sN: attack snapshot, DN: domain graph
Edges represent flow of information, encircled numbers in a box represent the temporal ordering in the
execution flow (3 happens before 4, while 3a and 3b are concurrent, BA implies step occurs between attacks)

sN EPF

1 2

3a

3b 4

BA
5

6

Detection
framework

Attack Graph
for attack k

Create new
snapshot or load

snapshot from ATL

sN

Create Domain Graph
Identify Similar

Attack Snapshots
in ATL

Attack Snapshots for Attack k

{s0,D0} → {s1,D1} →…→ {sN-1,DN-1} → {sN,?}

sN

Prepare response
candidates

GA: Populate
Chromosome Pool

Seed good
responses
of sN in pool

{SA(sN)}
DN

GA Solver

Alerts

Attack Graph

for attack 1

…

Evaluate effectiveness of
deployed responses
{RC0,RC1,..RCN-1}.

Update {s0,s1,..,sN-1} in ATL

DN

DN

Response
Combination RCN

sN: attack snapshot, DN: domain graph
Edges represent flow of information, encircled numbers in a box represent the temporal ordering in the
execution flow (3 happens before 4, while 3a and 3b are concurrent, BA implies step occurs between attacks)

sN EPF

1 2

3a

3b 4

BA
5

6

Figure 5. Overall flow for the steps in SWIFT to respond to an attack

7

3.1 Attack Template Library (ATL) and Attack Snapshots

SWIFT seeks to adapt its responses based on previous attack snapshots. Thus it is important to store the history of

attack snapshots and prior responses. This is maintained in the Attack Template Library (ATL).

The ATL houses snapshots of attacks seen so far. Each snapshot entry s in the template library contains the

following information: s.g: the sub-graph of the I-GRAPH with nodes that have been achieved at snapshot s and

the corresponding edges; s.predict: the path prediction table used to predict the propagation trend in the I-GRAPH

from the snapshot s (Sec. 3.2); s.rc: the most effective response combinations previously found by SWIFT for

snapshot s, s.r: the responses used previously for this attack snapshot and their EI values. Thus, the EI value of a

response is maintained per snapshot, rather than globally for the response. This acknowledges that a response’s

effectiveness also depends on how far ahead of the attack front reaching the response node, i.e, on the time to

successfully deploy a response. Also when the EI value is used by SWIFT, it picks it up from a Normal distribution

with the mean and the variance of the EI observed so far. This design, called fuzzy EI, ensures that a response that

falsely has a low EI value will eventually be redeemed, deployed in a response combination, and its EI reevaluated.

When the detection framework sends attack graph gN to SWIFT, SWIFT will check in the ATL if there is an

existing attack snapshot se with se.g = gN. If it does, se is loaded from the ATL as sN (step 2, Figure 5) for

subsequent SWIFT operations. Otherwise a new snapshot is created. If space is a constraint, SWIFT deletes snapshots

from the ATL by various criteria—by time of creation or time of last access, frequency of access, or the snapshot

with the lowest cumulative |Iv| of its nodes.

3.2 Attack Snapshot Prediction Table and Edge Propagation Factor (EPF) Tuning

Given an attack snapshot s, while there are many possible

follow-on attack steps, in practice, some are much more likely.

SWIFT attempts to estimate the likely follow-on steps so that the

search space is restricted and unnecessary responses are not

deployed. The attack snapshot prediction table and the edge

propagation factor tuning algorithms are used for this purpose.

To track the likelihood of follow-on steps, SWIFT maintains a

prediction table s.predict for each snapshot s. The table entry s.predict[e], which is called edge propagation factor

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?
(Actual extent unknown to SWIFT)

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

A

B C
D

E

[A,B]: attack snapshot

[A,C]: actual extent of the attack

[A,D]: domain graph

[A,E]: I-Graph

?
(Actual extent unknown to SWIFT)

Figure 6. Relations between attack
snapshot/domain graph/I-Graph

8

for edge e (e.EPF), tracks the likelihood of an attack propagating on the edge e.EPF is a real number in the range [0,

1] and is used in the creation of the so called Domain Graph (Sec. 3.3), which defines the search space explored by

SWIFT in making the response decision. SWIFT increases EPF on an edge if attack propagation is perceived on the

edge and decreases EPF otherwise. For example, in , assuming response r is not deployed and detector Dx

fires, e.EPF will be increased if detector Dy fires subsequently. Otherwise, it will be decreased. EPF on edge e is

used to tone down the contribution to the probability P(y) from node x. Therefore, if the EPF value e.EPF is low,

this would decrease the likelihood of SWIFT deploying responses around y.

Figure 4

3.3 Domain Graph

The Domain Graph D(s) ⊇ s.g and is a subgraph of I-GRAPH, which provides an approximate bound on the nodes

that may be reached by an adversary from a snapshot s (Figure 6). In Eq. (1), when we calculate the expected

impact vectors due to the nodes in the I-GRAPH, we consider all the nodes in the I-GRAPH. Practically, this will

adversely impact the performance since the I-GRAPH is likely a large structure for any large real-world distributed

systems and many nodes in it will have vanishingly low probability of being achieved based on the current

snapshot. The Domain Graph subsets the nodes to be considered so that a more timely and more accurate reaction

to the attack can be deployed.

Given the I-GRAPH I and a snapshot s, the Domain Graph D(s) = (V, E) where V = {{node n∈I such that P(n) ×

|n.Iv| is greater than a given threshold T} {node n∪ ∈I such that n is on the path from nx to ny in I where nx,

ny∈V }} and E={e|e∈edges(I) and e: (u, v) , where u, v∈V} . This is computed in step 4 of Figure 5.

Essentially, domain graph gives the worst case estimate, assuming no responses are going to be deployed, on the

extent of an attack and bounds the search space of the Genetic Algorithm that we discuss next. The estimation of

domain graph is refined through the tuning of the EPF values (Sec. 3.2) and the EI values of the responses already

deployed. In the ideal case, the estimated domain graph should coincide with the actual extent of an attack. (e.g.

C=D in Figure 6)

3.4 Genetic Algorithm (GA)-based Response Mechanism

As the problem of deciding the optimal response combination for an attack snapshot has been proved to be NP-

hard, we focus on an approximate solution using a GA framework [23]. Following Figure 5 step 6, this corresponds

to designing a response mechanism Respond(.) (algorithm shown in Figure 7), which takes the snapshot sN

9

from Step 2 and generates the approximate optimal response combination RCN. The history information used here

is embedded in sN and Rdeployed, the responses deployed thus far.

Within this framework, we map each response combination onto a chromosome, and the problem of searching for

the best response for an attack snapshot is then translated into looking for the best chromosome from the

chromosome pool over multiple evolutions. Often using genetic algorithm to perform optimization is an expensive

process [20] due to the requirement of search through a huge chromosome pool over many evolution cycles to get a

good solution. We reduce the execution time by selectively initializing the chromosome pool.

SWIFT only considers the responses within the Domain Graph that have not been deployed yet. This set of

applicable responses is given by RA. The encoding scheme is that each chromosome c is an |RA|-sized bit vector,

with each bit uniquely mapped to a response r∈RA.

To populate the chromosome pool (Step 5 in Figure 5), first, SWIFT relies on the history information from the

snapshot, namely sN.rc and sN.r (i.e., the best response combination found so far for this snapshot and responses

deployed and their EIs). Second, SWIFT relies on this same information from past similar attacks. Third, SWIFT

populates the chromosome pool with greedy locally optimal responses from baseline ADEPTS and fourth, with a set

of randomly filled chromosomes.

The fitness of a chromosome c, is determined by the response combination RC for c. The fitness of chromosome c

is defined as | ()|/ dimension()() 10 Iv RC Ivfitness c −= . This fitness function satisfies some desirable properties – high |Iv|

translates to low fitness and |Iv| of zero or infinity are handled. A Genetic Algorithm Solver (Step 6 in Figure 5) is

then invoked to systematically probe through the space of response combination RC through the typical GA

evolution process [23]. The high-level concept here is those response combinations that yield low cost values (Eq.

(1)) will be returned by the GA Solver in the end.

Algorithm: Respond
Input: latest attack snapshot sN
Output: approximated optimal response combination RCN
Pre-defined Constants:

chromosome_pool_size: a constant on the chromosome pool size.
v% : the percentage of top chromosomes to be kept in the history.
max_evolutions: maximum number of evolutions per iteration for the GA.
rc_size: the maximum size of the set sN.rc of best response combinations previously found.

Method:
1. Create Domain Graph DN=D(sN).
2. Derive RA from Rdeployed and DN.

10

3. Initialize GA chromosome pool through four sources defined in Sec. 3.4.
pool = GA_PopulateChromosomePool (ATL, sN, DN, chromosome_pool_size).

4. Perform GA evolution cycles
for i=1 to max_evolutions {

pool = GA_NextChromosomeGeneration(pool).
}

5. Update the best response combinations
best_chromosomes = {the top v% of chromosomes in pool (wrt fitness)}.
sN.rc = the top rc_size chromosomes from (sN.rc best_chromosomes). ∪

6. Find chromosome RCN∈sN.rc with highest fitness.
7. Return RCN.

Figure 7. GA based response mechanism

4 Experimental Testbed

The experimental testbed deployed for evaluating

SWIFT is an e-commerce system (Figure 8), where

users interact through a web browser with a three-tier

server structure. The application is Sun Microsystem’s

Java Pet Store (version 1.4). In the backend, a MySQL

database server runs as a repository of information,

including customer accounts, product catalog and

inventory, and order history. The testbed emulates the common features of many service-oriented e-commerce

systems, including mis-configurations and weak security policies on the networks. The SWIFT implementation is

tested against a set of attack scenarios based on vulnerabilities published by the electronic payment industry [21],

the web security community [22], and in the CVE dictionary [24]. The I-GRAPH has 55 nodes, 96 edges, 5 nodes

with no detectors, and 72 responses (all containment focused responses). The max, min, and average in-degree and

out-degree are (7, 0, 1.7) and (5, 0, 1.7). A subset of the nodes have associated detectors, such as Snort, Libsafe,

Process and File access monitor, Brute-force password cracking detector, and EJB monitor.

Figure 8. Layout of three-tier e-commerce testbed for

SWIFT. Each box runs on a separate host. (AS:
Application Server, Tomcat: Web Server)

5 Results

The output metric we choose for evaluation is survivability. Qualitatively it captures the value of the system to

the owner in terms of the transactions that can be supported and the system goals that are met when the attack and

the responses are deployed. Quantitatively, it can be computed as :

()Survivability : | |is C Iv RC= − (3)

11

C is a scaling constant representing the perfect survivability. Since C is application specific and in the absence of

such an application-specified value it will represent an arbitrary scaling. Therefore, we use |Iv| instead as the

indicator of performance. The reader should keep in mind that |Iv| and survivability have an inverse relation. Unless

otherwise specified, SWIFT is executed with a chromosome pool of size 10 and 4 evolutions per snapshot.

5.1 Survivability for Micro-Benchmark

We consider as a micro-benchmark an attack scenario that

has the form shown in Table 1. This is a regular structure

with each node representing a unique service being affected.

The multi-stage attack starts at svc0 and proceeds through

all the four possible paths with the goal of achieving svc21.

There are ‘single-node’ responses on each node which if

successful has the effect of preventing the node and its children nodes from being achieved. The other responses

are ‘dual-node’ responses, which can contain the attack on two nodes at a time. In general, a dual-node response

has lower cost than the total cost from two counterpart single-node responses but has higher cost than an individual

single-node response. Still, one has to consider the overall effectiveness and the overlapping cost from other

responses. This is one of the key strength of SWIFT in judging the whole situation and seeking for the global

optimal response combination. The attack scenario is injected individually into SWIFT and baseline ADEPTS at the

root node and is executed multiple times. The initial EI values for all responses are taken to be 1, a consciously

chosen overly optimistic decision to investigate how the system unlearns it.

0

10

20

30

40

50

0 10 20
Attack Instance

|Iv
|

ADEPTS SWIFT

Figure 9. Improvement in Survivability with
SWIFT for Micro-benchmark.

The survivability result from the experiment is shown in . Overall, SWIFT chooses responses which yield

lower |Iv| than those from ADEPTS. This clearly shows the advantage from considering responses in a system-wide

global manner in SWIFT (Eq.

Figure 9

(2)). This is true even for the first attack instance where no history information is

available as shown in Figure 9. With the history built up over each attack instance, we can see the decreasing of |Iv|

from both cases due to the adaption processes employed. Over the 25 attack instances, SWIFT yields an averaged

|Iv| of 15.9 while ADEPTS yields an averaged 21.9, a 27% improvement.

12

Attack Instance 24
(a) SWIFT

After attack snapshot 1
(b) Baseline ADEPTS (|Iv|=19)

At the end of the attack
(C) SWIFT (|Iv|=12.6)

At the end of the attack

Table 1. Detailed attack snapshots from attack instance 24

Table 1 shows the selected attack snapshots at different time points for SWIFT and ADEPTS for attack instance 24.

Octagonal node means adversary has achieved the node, elliptical means it has not; solid node means response has

been deployed. In (a), we see the response of SWIFT after only the first attack snapshot has been observed. SWIFT

has already deployed proactive responses, as far ahead as the fourth stage of the attack. Having seen 23 previous

attack instances for this specific attack, SWIFT has deduced that responses in the fourth stage (at nodes svc4, svc9,

svc14, svc19) have to be deployed early enough to be successful. (b) and (c) show the cases at the end of the attack

for ADEPTS and SWIFT respectively. The baseline selects locally optimal responses and therefore prefers the single-

node responses, deploying a total of 11 responses and effectively preventing the end goal of the adversary from

being achieved. However, SWIFT due to the property of searching for globally optimal responses, selects 4 dual-

node responses (ID: 0x4E20, 0x4E23, 0x4E26, 0x4E27) and 1 single-node response (ID: 0xC), again preventing

the end goal from being achieved, but at a lower cost.

13

5.2 Learning from History to Reduce Search Space Size

0

20

40

60

80

100

0 5 10 15 20 25
Attack Instance

N
um

 o
f

E
dg

es
 i

n
D

G

Figure 10. # of edges in the domain

graph generated out of the 3rd
snapshot.

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28
Attack Instance

T
im

e
us

ed
 (

se
c)

Figure 11. Time used by SWIFT in
response decision

0

5

10

15

0 5 10 15 20 25
Attack Instance

|I
v|

Figure 12. |Iv| v.s Attack Instance

This experiment shows the effect of EPF tuning on reducing the size of the domain graph for an attack scenario as

SWIFT gets adapted to the attack steps (Sec. 3.2.). Here we assume a system with an I-GRAPH containing 42 nodes

and 103 edges. We use two attack scenarios EPFAS.1, which can be potentially deterred with deployed responses,

and EPSAS.2, which doesn’t have any applicable responses available on its attack paths and can’t be deterred. 30

attack instances are injected into the system. Attack instances 0-9 follow attack scenario EPFAS.1, 10-19 follow

EPFAS.2, and 20-29 revert to EPFAS.1. Here we discuss the results on the 3rd attack snapshot from a few

representative attack instances. (In the last few attack instances, when SWIFT fully adapts itself to the attack, the

attack is only able to populate three attack snapshots before being effectively stopped by SWIFT. Therefore, for

presentation consistency, we use the 3rd attack snapshot even though in the first few attack instances, there do have

more than three attack snapshots available.)

As we can see EPF Tuning not only reduces the size of the domain graph, which speeds up the execution time of

SWIFT, but also improves the quality of the generated response solutions i.e., reduces the overall system |Iv|. This

happens since SWIFT searches through follow-on attack steps which are more likely and avoids deploying

responses on nodes that are unlikely. From Figure 10, we can see a clear decreasing trend in the size of the domain

graph from 77 edges to 12 edges for the first 10 attack instances with EPF tuning. On the other hand, the number of

edges without EPF tuning is significantly higher. The fluctuation of the number of edges without EPF tuning is due

to the different responses deployed prior to the 3rd attack snapshot for each different attack instance.

From Figure 12 we can see that for attack instances 10-19, all the responses are totally ineffective, which

translates into the higher |Iv| values. From Figure 10, we see the sudden increase in the size of the domain graph at

instance 10 as the unseen attack scenario EPFAS.2 emerges. With EPF tuning, SWIFT adapts itself quickly and the
14

size drops to 12 edges per domain graph starting from attack instance 13 again. When the system is injected with

EPFAS.1 again (instances 20-29), we observe that SWIFT is able to use its memory of EPFAS.1—the domain graph

is small and the |Iv| does not shoot up. The spike in |Iv| at attack instance 22 is due to the probabilistic nature of the

occasional failure of the response on [svcs3].

Overall, we conclude that reducing the size of a domain graph through EPF tuning not only improves the

efficiency in response searching but also improves the quality of the resulting responses.

5.3 Survivability for Real Attack Scenarios

15

Figure 13 shows the two attack scenarios AS3 and

AS4 used in this experiment. These are real in so far

as they are created from the publicly available

vulnerability and attack databases by chaining

individual attack steps. The numbers on the edges

correspond to the response IDs which can prevent

propagation of the attack. Some responses (R9,

R25, R56, R57, and R66) require longer lag time

for effective deployment. They are useful for

SWIFT due to its ability to deploy them

proactively, but kind of useless for the

baseline, which considers only local optimal

responses. Besides, we have initial EI value for R60 set erroneously low and those of the other responses set overly

high. The goal is to see if SWIFT can recover from this situation. The end node N37 is a critical node with a high |Iv|.

We inject 15 instances each of AS3 and AS4 and compare the achieved survivability at the end of each attack

instance for baseline and SWIFT. Figure 14(a) shows that the baseline’s performance is widely fluctuating for AS3.

This is primarily due to the fact that the baseline considers responses close to the nodes that have been achieved.

For example, R71 has about 50% probability of success in deterring the propagation from node N50 to N53 when it is

deployed by the baseline at the time when N9 is flagged. SWIFT consistently has lower |Iv| than the baseline. This is

due primarily to SWIFT’s ability to redeem R60 through the fuzzy EI mechanism (Section 3.1) even though it had a

Exploit ssldump vuln.
On web server

Access web server
admin site

Brute force admin
password

Ping or traceroute to
webserver 1

Run portscanner on
web server 6

16 18

Copy Hacker tool to
webserver 40

Install vuln. Scanner
on web server 56

Run port scanner9 Exploit rpc.statd on
app controller50

Brute force root pwd
on app controller53

14

Copy hacker tool to
web server using tftp40

Connect to
MySQL

36Modification queries
on database tables37

9, 14

14

45

66

71
56,57,71

37, 6025, 60

6

Dashed line: AS3, Thin solid line: AS3 and AS4, Thick line: AS4

Figure 13 Attack scenarios 3 and 4 (AS3, AS4)

0

5

10

15

20

25

0 4 8 12 16
Attack Instance

|I
v|

ADEPTS

SWIFT
0

5

10

15

20

25

0 4 8 12 16
Attack Instance

|I
v|

ADEPTS
SWIFT

(a) AS3 (b) AS4
Figure 14. Experiment 3: Survivability for AS3 and AS4

low initial value. In the baseline system R60 is not considered till the EIs of the other responses also diminish to this

low value. For AS4 (Figure 14 (b)), while the general pattern is similar to that of AS3, the difference in the |Iv| is

negligible for some instances. This is due to the fact that there are more available responses in AS4, and therefore

the baseline does not suffer as much from underestimated response R60.

5.4 Responding to Attack Variants

In this experiment we consider AS3 and

AS4 to be variants of each other (due to

their shared nodes as shown in Figure 13).

The results are shown in Figure 15. In the

first sub-experiment, we execute AS4 15

times and use its snapshot from the ATL

(which includes the optimized responses

that SWIFT had determined) in responding to AS3. In the second sub-experiment, we reverse the roles of AS3 and

AS4. The key difference between using history and not using it expectedly lies in the first attack instance. In both

AS3 and AS4, SWIFT is able to use the historical information from the variant and limit the damage to the system

from the first attack instance compared to the baseline system. This would be valuable in dealing with very

destructive attacks when they are observed for the first time.

9

11

13

15

17

19

0 4 8 12 16
Attack Instance

|I
v|

9

11

13

15

17

19

0 4 8 12 16
Attack Instance

|I
v|

(a) AS3 (b) AS4
Figure 15. Survivability with SWIFT leveraging history from an

attack variant

6 Discussions

This paper has presented the algorithms in SWIFT to decide on optimal responses. Several other aspects of an IRS

are needed to support the presented algorithms, but they cannot all be described in the confines of this paper. Some

aspects are under current investigation, and some have been presented in earlier work [9][10].

16

A question arises as to whether it is reasonable to assume an attack can occur multiple times such that the

adaption process can work. First, we found that the adaption process in our experiments takes only 4-5 attack

instances to get adequately adapted. We can consider the possibility of sharing attack history information across

systems which share similar configurations (e.g. companies using the same three tier configuration), as this is

commonly done with anti-virus signatures. Also, with automated multi-stage attacks, multiple instances of an

attack are also seen for a single system. An administrator may not have the ability to patch the system right after

the first instance of an attack. This is particularly true for third-party software where availability of patches is

outside the control of the system administrator. A common drawback for a solution that relies on history of attacks

is that it is unable to handle a hitherto unseen attack of devastating impact. For SWIFT, history helps the GA to

converge faster but is not strictly necessary. By setting the Iv of a node to a high value, SWIFT can deploy a

response, even if drastic, to prevent the node from being achieved. This shows up in our experiments in the better

performance of SWIFT compared to the baseline.

The I-GRAPH structure used here is implicitly assumed to be complete with respect to the NB-type nodes. One can

leverage existing work [26],[28] to automatically generate the I-GRAPH from a given system configuration and set

of available detectors. A level of non-determinism is introduced by concurrent attacks since the response to one

attack may suffice to contain both attacks. The presented framework can be extended to discriminate between

distinct attacks as in [8] and handle them at the expense of expanding the GA search space.

7 Related Research

With increasing complexity and ubiquity of distributed systems, IRSs for such systems are gaining interest. They

can broadly be classified into four categories. Static decision making. This class of IRS [11]-[13] provides a static

mapping of the alert from the detector to the response to be deployed. The IRS includes basically a look-up table

where the admin has anticipated all alerts possible in the system and an expert indicated responses to take for each.

Dynamic decision making. This class of IRS reasons about an ongoing attack based on the observed alerts and

determines an appropriate response to take. A wide variety is discernible in this class based on the sophistication of

the algorithms. The systems in [1]-[6] fall in this category. Intrusion tolerance through diverse replicas. This class

of IRS implicitly provides the response to an attack by masking the effect of the attack. The approach is to employ

a diverse set of replicas to implement any service. The fault model is that the replicas are unlikely to share the same

vulnerabilities and therefore not all will be compromised by a single attack. An advantage is that the system can

continue operation without a disruption as in the active replication technique. The systems in [14]-[16] fall in this

category. However, in practice, it’s challenging to assume diverse implementations of all the critical services are

available to be set up as replicas. Responses to specific kinds of attacks. This class of IRS is customized to respond

to specific kinds of attacks, most commonly, DDoS attacks. The approach is to trace back as close to the source of

17

the attack as possible and then limit the resources available to the potentially adversarial network flows. The

system reported in [7] fall in this category.

The work presented here differs from previous IRS work in that it lays down a framework to reason about the

optimality of the response choices made by these systems. The approach here can be applied to evaluate any

available IRS. The baseline ADEPTS system does not have the design to choose globally optimal responses.

There have been some efforts at using genetic algorithms for intrusion detection [18]-[20] and search for

vulnerabilities [17]. The results have been promising, but only after careful definition of the syntax of the

chromosomes and tuning of the fitness measure. We have not found prior application of GA to intrusion response.

8 Conclusion

In this paper, we introduced the notion of global optimality of responses deployed by an intrusion response

system. The optimality criterion takes into account the impact on the whole system from a deployed response in

reducing functionality and from the spread of the attack. We proved that the optimal response determination

problem for multi-stage attacks is NP-hard, fundamentally because responses at different services are inter-

dependent. Hence, we proposed using a Genetic Algorithm (GA) based framework. The initial chromosome pool

and the design of carry over of chromosomes from one generation to the next are designed to improve the solution

quality over the locally optimal responses of the state-of-the-art ADEPTS system. The proposed GA framework also

enables the use of history information from past attacks that are similar to the current one through seeding the

initial chromosome pool with the learnt effective response combinations from those similar attacks. The IRS

performance was evaluated on a three tier e-Commerce system through injection of multi-stage attacks. The

evaluation brings out the fact that survivability improves with the global response determination process of SWIFT

over a greedy local response determination (e.g. 27% improvement based on experiment in Sec. 5.1). In our

experiments, on average it takes only about 4~5 attack instances for SWIFT to adequately adapt to an attack. This

number can be further decreased if the history information of attacks can be shared across systems which have

similar configurations.

9 References

[1]. T. Toth and C. Kruegel, “Evaluating the Impact of Automated Intrusion Response Mechanisms”, ACSAC 2002.
[2]. G. White, E. Fisch, U. Pooch, “Cooperating Security Managers: A Peer-based Intrusion Detection System”, IEEE Network, vol 10, no.

1, 1996, pp. 20-23.

18

19

[3]. P. Porras and P. Neumann, “Emerald: Event Monitoring Enabling Responses to Anomalous Live Disturbances,” NISSC, pp. 353-365,
1997.

[4]. D. Ragsdale, C. Carver, J. Humphries, U. Pooch, “Adaptation Techniques for Intrusion Detection and Intrusion Response Systems”,
Int. Conf. on Systems, Man, Cybernetics, pp. 2344-2349, 2000.

[5]. I. Balepin, S. Maltsev, J. Rowe, K. Levitt, "Using specification-based intrusion detection for automated response," RAID, pp. 136–154,
2003.

[6]. W. Lee, W. Fan, M. Miller, S. J. Stolfo, E. Zadok, "Toward cost-sensitive modeling for intrusion detection and response," Journal of
Computer Security, vol. 10, pp. 5-22, 2002.

[7]. D. Sterne, K. Djahandari, B. Wilson, B. Babson, D. Schnackenberg, H. Holliday, T. Reid, “Autonomic Response to Distributed Denial
of Service Attacks”, RAID 2001.

[8]. C. Carver, J. Hill, U. Pooch, “Limiting Uncertainty in Intrusion Response”, IEEE Workshop on Info. Assurance and Security, 2001.
[9]. B. Foo, Y-S. Wu, Y-C. Mao, S. Bagchi, E. H. Spafford, “ADEPTS: Adaptive Intrusion Response using Attack Graphs in an E-

Commerce Environment,” DSN, pp. 508-517, 2005.
[10]. Y-S. Wu, B. Foo, Y-C. Mao, S. Bagchi, E. H. Spafford, “Automated Adaptive Intrusion Containment in Systems of Interacting

Services,” In Elsevier Journal on Computer Networks, vol. 51 #5, pp. 1334-1360, April 2007.
[11]. W. Metcalf et al., "Snort-inline."
[12]. Symantec Corp., "Norton Antivirus."
[13]. T. Ryutov, C. Neuman, K. Dongho, Z. Li, "Integrated access control and intrusion detection for Web Servers," ICDCS, pp. 394-401,

2003.
[14]. D. Wang, B. B. Madan, K. S. Trivedi, "Security analysis of SITAR intrusion tolerance system," in ACM workshop on Survivable and

self-regenerative systems, pp. 23-32, 2003.
[15]. C. Cachin, "Distributing trust on the Internet," DSN, pp. 183-192, 2001.
[16]. F. B. Schneider and L. Zhou, "Implementing trustworthy services using replicated state machines," IEEE Security & Privacy

Magazine, vol. 3, pp. 34-43, 2005.
[17]. Jacobs, S., D. Dumas, W. Booth, M. Little, "Security Architecture for Intelligent Agent Based Vulnerability Analysis," 3rd Annual

Fedlab Symposium on Advanced Telecommunications/Information Distribution Research Program, pp. 447-451, February 1999.
[18]. W. A. Jansen, “Intrusion detection with mobile agents,” Computer Communications, Volume 25, Issue 15, pp. 1392-1401, 2002.
[19]. G. Helmer, J. Wong, V. Honavar and L. Miller, “Automated discovery of concise predictive rules for intrusion detection,” Journal of

Systems and Software, Volume 60, Issue 3, pp. 165-175, 2002.
[20]. Ludovic Me, “GASSATA: A genetic algorithm as an alternative tool for security audit trails analysis," RAID '98.
[21]. PCI Security Standards Council. Payment Card Industry (PCI) Data Security Standard. Version 1.1. http://pcisecuritystandards.org.
[22]. The Open Web Application Security Project. The Ten Most Critical Web Application Security Vulnerabilities. 2004, www.owasp.org.
[23]. Genetic Algorithm : (http://en.wikipedia.org/wiki/Genetic_algorithm)
[24]. The MITRE Corporation. Common Vulnerabilities and Exposures. http://cve.mitre.org
[25]. S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building Attack Scenarios through Attack Graph Distances,”

IEEE Annual Computer Security Applications Conference, 2004
[26]. O. Sheyner, J. Haines, S. Jha, R. Lippmann, JM Wing, “Automated generation and analysis of attack graphs, “ IEEE Symposium on

Security and Privacy, 2002
[27]. Yu Liu, Hong Man, “Network vulnerability assessment using Bayesian Networks,” Proceedings of SPIE, Volume 5812, 2005
[28]. Xinming Ou, Wayne F. Boyer, Miles A. McQueen, “A scalable approach to attack graph generation,” ACM conference on Computer

and communications security, 2006
[29]. M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, "Pinpoint: problem determination in large, dynamic Internet services,"

Dependable Systems and Networks (DSN), pp. 595-604, 2002.
[30]. G. Khanna, I. Laguna, F. A. Arshad, S. Bagchi, "Distributed Diagnosis of Failures in a Three Tier E-Commerce System," Symposium

on Reliable Distributed Systems (SRDS), pp.185-198, 2007.

http://pcisecuritystandards.org/
http://www.owasp.org/
http://cve.mitre.org/

	1 Introduction
	2 Framework for Global Optimal Response
	2.1 Adversary and Attack Model
	2.2 Response Model for Multi-Stage Attack
	2.3 Impact Vector Metric
	2.4 Intractability of Optimal Response Determination

	3 Design of Search Algorithms
	3.1 Attack Template Library (ATL) and Attack Snapshots
	3.2 Attack Snapshot Prediction Table and Edge Propagation Factor (EPF) Tuning
	3.3 Domain Graph
	3.4 Genetic Algorithm (GA)-based Response Mechanism

	4 Experimental Testbed
	5 Results
	Survivability for Micro-Benchmark
	5.2 Learning from History to Reduce Search Space Size
	5.3 Survivability for Real Attack Scenarios
	Responding to Attack Variants

	7 Related Research
	9 References

