Optimizing AES for Embedded Devices and
Wireless Sensor Networks

Shammi Didla, Aaron Ault and Saurabh Bagchi
Center for Wireless Systems and Applications (CWSA)
Purdue University, West Lafayette, IN 47906, USA
{sdidla,ault,sbagch@purdue.edu

Abstract—The increased need for security in embedded ap- implementations. The memory footprint consists of RAM
plications in recent years has prompted efforts to develop en- ysage and ROM usage. RAM is often a highly constrained
cryption/decryption algorithms capable of running on resource- yag6rce on the embedded platforms (e.g., the CrossboveMica

constrained systems. The inclusion of the Advanced Encryption .
Standard (AES) in the IEEE 802.15.4 Zigbee protocol has driven MOt€ has 4 KB and the MSP430 chip has up to 10 KB). The

its widespread use in current embedded platforms. We propose an ROM memory is used to hold the program and therefore it is
implementation of AES in a high-level language (C in this case) desirable to limit its usage by the cryptographic functions

that is the first software-based solution for 16-bit microcontrollas In this paper we show that AES can indeed be rate matched
capable of matching the communication rate of 250 kbps specified with the radio communication speed, thus making it prattica

by the Zigbee protocol, while also minimizing RAM and ROM . . - .
usage. We discuss a series of optimizations and their effects]cor use in WSNs. Our fastest implementation of AES achieved

that lead to our final implementation achieving an encryption an encryption speed of 286 kbps and required 5160 bytes of
speed of 286 kbps, RAM usage of 260 bytes, and code size oROM and 260 bytes of RAM. To the best of our knowledge,

5160 bytes on the Texas Instruments MSP430 microprocessor.éV no previous implementation on a similar platform has been
also develop rigorous benchmark experiments to compare other able to match this rate. At this encryption speed, it is also

AES implementations on a common platform, and show that our ible to eliminate lat due to th fi .
implementation outperforms the best available implementation POSSIDI€ 10 €liminaté latency due 1o the encryption proaess

by 85%. a |IEEE 802.15.4-compliant WSN and therefore use AES on a
Index Terms—AES, encryption, embedded optimizations, se- continuous stream of 128-bit data blocks.
cure sensor networks, CC2420, MSP430, Zigbee security. To achieve this speed, we applied various optimization
technigues to Gladman's AES implementation [3] for low
. INTRODUCTION resource platforms. We evaluated the effects of speaiglizi

The proliferation of wireless sensor networks (WSN) ithe code (SPECIAL) for AES-128 by removing code that
recent years has prompted increased interest in secure cagcommodates for variable key length, varying the data type
munications for embedded devices. Wireless sensor nodB&TASZ) that holds the state and key, eliminating function
are inherently resource-constrained in terms of processalls by integrating all functional blocks into a single &tion
speed, bandwidth, energy usage, code space, and RAM s{#&LINE), unrolling looping constructs by taking a copy-
Therefore, there is a need for secure encryption/decnyptipaste approach for repeated operations (UNROLL), reducing
implementations that have a small footprint while perforgni moving data around memory by restructuring the original
at speeds comparable to the radio transmission bitrate oimglementation (REDMEM), eliminating the use of local
low-speed processor. buffers to hold the state (LOCBUF), using a global variable

The Advanced Encryption Standard (AES) became tlte hold the key schedule (GLOB), generating the key for each
standard for encryption to protect sensitive information bround during the encryption process instead of precomgutin
all U.S. government organizations on May 26, 2002 [1]. It and storing it in RAM (OTFK) and using 16-bit memory
inclusion in the IEEE 802.15.4 [2] standard as the standangites in theM xCol umms transformation (MIX16). We also
encryption protocol for ZigBee makes AES ideal for use iexamined how these optimizations interact and occasipnall
WSNSs. conflict with compiler optimizations and their net effect on

According to the IEEE 802.15.4 specification, Low Rate performance, ROM and RAM. Based on our analysis, we
Wireless Personal Area Networks (LR-WPAN) have a maxecommend the use of SPECIAL, DATASZ (64-bits), INLINE,
imum over-the-air data rate of 250 kbps. Therefore, it iSOCBUF, REDMEM and GLOB for best performance and
important for the encryption to match this rate to achievadditionally apply OTFK to optimize for RAM usage.
optimal wireless communication. After carefully reviegin To understand how the flexibility and cost-effectiveness of
and experimenting with previous works, we came to theur software implementation written in C compares to the
conclusion that no previous software scheme is able to phcrperformance advantage of using a hardware implementation,
data using AES at a rate of 250 kbps or higher. Moreovare tested both solutions in a real-time wireless communica-
there was considerable disagreement among various rbseéian scenario using evaluation boards equipped with Zigbee
groups about the performance and memory footprint of AE®mpliant transceiver chips. We also studied and evaluated

three past attempts at optimizing AES in software that repri®lode (CTR). Their estimate shows that AES performs best
sent state-of-the-art in optimized encryption implemgates in OFB mode taking 3127 clock cycles to encrypt a 128-
for an embedded platform. By using a common platforniit block of plaintext while taking up 12860 bytes of code
a high precision oscilloscope to accurately measure time nemory (ROM) and 70 bytes of data memory (RAM). Their
within +£5us and by rigorously standardizing tests acrossize-optimized AES implementation takes 4231 clock cycles
different implementations, we were able to reliably andrguato encrypt a 128-bit block of plaintext taking up 12616 bytes
titatively compare different implementations and evauheir of ROM and 70 bytes of RAM.
performance. In [7], the authors focus on the need for a compact imple-
We developed and tested all our code on a Texas Instraentation. Their implementation requires 3322 bytes in ROM
ments’ MSP430 microcontroller unit (MCU) running at 8and 177 bytes in RAM. However, to achieve low code size
MHz. The MSP430 family of microcontrollers is a populathey have sacrificed performance. Their implementatiorgak
choice for several sensor nodes such as the Eyes Node 3415 ms to encrypt a 128-bit block of plaintext on a 16-Bit
and the T-Mote Sky [5]. It has a 16-bit RISC Core wittMSP430 microcontroller running at 4 MHz.
a flexible clock system and its low power consumption of In [8], the authors implement AES on a sensor node based
about 250 1, A/MIPS-active make it ideal for WSNs. Weon the 8-bit Atmel ATmega 128L microcontroller running at
also bought evaluation boards that interfaced the MSP4308&dviHz. They have based their implementation on Gladman’s
a Chipcon CC2420 transceiver chip. The CC2420 is |IEEEde that was cited in the AES proposal. Their implementatio
802.15.4 Zigbee-compliant, has an effective data rate 6f 26an encrypt a 128-bit block of plaintext in 0.857 ms.
kbps and has support for hardware MAC encryption (AES- Texas Instruments has made available a Zigbee Stack for
128). We used this setup to evaluate the performance othe boards using the MSP430 with the CC2420. Even though
hardware implementation of AES and also compare it to otlre CC2420 has hardware support for AES, the stack includes
software solution. a software implementation of the AES-128 encryption algo-
Our main contributions in this paper are showing that AEfthm. We chose to add this to our evaluation list because we
can perform at the radio communication rate by implementirgxpect wide use of this implementation by WSN developers.
the fastest software solution to date, presenting an ithdefNo performance figures are provided with the implementation
analysis of various optimization techniques required tiexe Figure 7 and Table V in Section VI summarize the published
this speed and performing a rigorous and quantitative benchsults of each of these implementations while also compari
mark of multiple software and hardware solutions. them to the results obtained using our own testing methods.
The rest of the paper is organized as follows. In the
next section, we give details about the other optimized AES
implementations that we chose to evaluate. In Section I\ Advanced Encryption Standard
we give a brief description of AES, discuss the key aspectsRijndael Cipher, developed by Joan Daemen and Vincent
of Gladman’s implementation and the IEEE 802.15.4 MARijmen was accepted as the Advanced Encryption Standard
sublayer security specification. In Section IV, we descabe on November 26, 2001. It is a symmetric-key block cipher
the computational and memory optimizations we used, déscugith a block length of 128-bits and a flexible key length of
the intuition behind and predict the effect of each. In Setti 128, 192 or 256 bits. This section gives an overview of how
V, we describe our experimental setup and methodology. NES works.
Section VI we present the results of our experimentation andi) Encryption/Decryption AlgorithmA series of permuta-
in the last section, we conclude this paper and discusséuttions and substitutions are applied to the plaintext fomgmc
work. tion. Fig. 1 illustrates the overall structure of the algjom
[9]. There are 4 main transformations used in this process.
Each transformation is applied todax 4 byte matrix called

We identified three other fast implementations of AES anfle State These transformations are described below:
obtained the source code from their authors. In addition to SubBytes: Each byte in the state is substituted by a

these three, we also chose to evaluate the implementation byte from a 256-byte look-up table called the s-box.
provided in the freely available Zigbee Stack for the CC2420 | ghift Rows: The bytes in each of the 4 rows in the
Below is a brief description, focus and published perforagan state are rotated bfn — 1) wheren represents the row
figures of each of these implementations. number from 1 to 4.

In [6], the authors have benchmarked various block Ciphers, a1 xcol unms: The state can be considered to be a
including Rijndael (AES) on a 16-bit MSP430 microcontralle 4 x 4 matrix and this transformation can be achieved by
Their implementation is based on code from the open source multiplying this matrix by:

OpenSSL library. It is heavily modified and compiled with

I11. BACKGROUND

Il. RELATED WORK

the commercial IAR Workbench compiler. They have speed- 02 03 01 01
optimized and size-optimized versions of each implemaniat 01 02 03 01
running in Cipher-Block Chaining Mode (CBC), Cipher Feed- 01 01 02 03

back Mode (CFB), Output Feedback Mode (OFB) and Counter 03 01 01 02

The Overall Structure of AES Procedure Times Called
KeyExpand 1
Plaintext Key Plaintext SUbByt €s 9
—3 Shi f t Rows 9
w0, M xCol unms 8
| Substitute bytes | [Expandkey] [Inverse sub bytes | E AddRoundKey 10
=
g
- & TABLE |
T oy T
Z — Taverse mix cols FREQUENCY OF TRANSFORMATIONS IN APPLYINGAES-128T0 A SINGLE
DATA BLOCK

Add round key

L w4, 7]

Add round key

Inverse sub bytes
Inverse shift rows

Round 9

in Chipcon CC2420 is also limited to AES-128.

For AES-128, the expanded key consists of 176-bytes (44
words). The first 4 words of the expanded key consist of
the original cipher key. Every word after that is equal to the
sum of the previous word and the word 4 positions earlier.
For words in positions that are multiples of 4, tBabWor d
andRot Wor d transformations are applied before applying the
above described exclusive-or. After the exclusive-or,tlaio
exclusive-or with theRCon[] associated with the round is
applied.

3) Profiling: Table | is a frequency distribution table of the
different transformations in the encryption process. Beives
as a good starting point in the analysis of the algorithm for
optimization.

Ciphertext Ciphertext

Round 9

Add round key

Round 1

Round 10

(a) Encryption (b) Decryption

Fig. 1. Overall Structure of AES

This multiplication is done IrGF (28)*
o AddRoundKey: In this transformation, theound key
is simply added to the state. IG'F (2%), adding iS Gladman's implementation

equivalent to a bitwise exclusive-or operation. 1) Use of Look-Up Tables:As mentioned in the AES
The encryption process consists of initially applyingroposal, all modular mathematics of AES can be reduced to
AddRoundKey and 10, 12 or 14oundsdepending on the a series of table look-ups and exclusive-or operations.o&tm
length of the key. Each round except the last one consistsaiif implementations that we looked at including Gladman’s
applying the 4 transformations to the state. In the last dourtake this approach. Therefore, we concluded that using-look
only theSubByt es, Shi f t Rows andAddRoundKey trans- up tables was the only viable option in any practical scenari
formations are applied. Gladman’s implementation had three 256-byte look-up ta-
2) The Key ExpansionThe cipher key is expanded tobles used for encryption and five 256-byte look-up tables for
generate a different key for each round. Similar to the Statdecryption.
the key is also considered to be a two-dimensional matrix2) Combination of TransformationsGladman combined
consisting of 4 rows. Each column is considered to be a the M xCol urms and SubByt es transformations as well
byte word. The expansion is achieved by applyBuypWord as the Shi ft Rows and SubByt es transformations into
and Rot Wr d transformations and addition i&¥F' (28) of two functions. These combinations are possible because the
RCon[], a constant word array. These operations are dghifting of rows and mixing of columns are always the same
scribed below: and are independent of the contents of the state. A large
« SubWord: Similar to theSubByt es transformation, number of memory moves are eliminated by combining these
this is done by substituting each byte in the word with §ansformations with th&ubByt es transformation.
byte from a 256-byte substitution box. This technique was developed by Mark Malbrain and his
« RotWrd: This transformation cyclically shifts the contribution is acknowledged in Gladman's code.
bytes of a word one place upwards. 3) Tuning Options:Gladman’s code has 3 options which
Since the key expansion differs slightly for 128-, 192¢an be changeq prior _to comp?li.ng the code. These .opti(_)ns
and 256-bit keys, and our implementation in this paper dedts madg possible using _cond|t|onal preprocessor digectiv
with only 128-bit keys, we will discuss only 128-bit key@d modify the code considerably before compilation. These
expansion here. We chose to limit ourselves to AES-1 tions can b? ac_twated/deactlvate_d by using the #de?fme
because we think it provides sufficient data protection f&reprocessor directive. These are briefly described below:

Wireless Sensor Networks. Moreover, the hardware module® HAVE_MEMCPY: Defining this directs the compiler to
take advantage of theentpy function in the compiler’s

standard library

B. Brian Gladman’'s Low Resource Implementation
In this section, we discuss some of the important aspects of

LAl arithmetic in Rijndael is done in a Galois Field with 256eFRients

Level Attribute Confidentiality Description

0x00 None NO No security A. Manual Optimizations

0x01 MIC-32 NO Auth (CBC-MAC) 32 bit MIC

0x02 MIC-64 NO Auth (CBC-MAC) 64 bit MIC 1) Specialization of Code (SPECIALAsS mentioned be-
0x03 MIC-128 NO Auth (CBC-MAC) 128 bit MIC H H H H Ay P

004 ENG YES Enc (Counter mode AES) fore, the baseline implementation is a generic implemanmtat
0x05 ENC-MIC-32 YES Enc + Auth (CCM-Mode) 32 bit MIC capable doing AES-128 as well as AES-256. This definitely
0x06 ENC-MIC-64 YES Enc + Auth (CCM-Mode) 64 bit MIC .

0x07 ENC-MIC-128 YES Enc + Auth (CCM-Mode) 128 bitmic adds to the code size and hurts the performance of the key

expansion process. By focusing on AES-128 and making
the code less generic, we can eliminate a lot of conditional
constructs and thereby substantially decrease the coglastz
improve performance.

2) Varying Data Type Size (DATASZPne of Gladman’s

« HAVE Ul NT32: Defining this directs the compiler to tuning OP“P”S Is to take advqntage of 32-bit data typgs (if
take gdvantage of 32-bit data types if available on tHaé/anable) instead of the 8-bit data types. Our compiler’s
target platform largest data type is 64-bits. We expect the use of 8-bit data

« VERSI ON_1: Defining this makes extensive use of locaYP€S t© be highly inefficient since we are operating on a

buffers within functions instead of accessing data througélﬁs'bit platiorm. The use of data types larger than 16-bits is
pointers ested though we do not expect a substantial performance gai

beyond 16-bit types. We expect this to show a substantieteff
: e in the AddRoundKey transformation since the processor can
C. IEEE 802.15.4 Security Specification exclusive-or 16-bits at a time instead of doing 8-bits atzeti
The IEEE 802.15.4 standard was first released in 2003 aDdr profiling data (Table 1) also shows thatdRoundKey
revised in 2006. It includes Wireless Medium Access Contr@g the most frequently used transformation.
(MAC) as well as Physical layer specifications. Security is 3) Function-Inlining (INLINE): Function inlining is a very
specified as part of the MAC sublayer. Since most WSN®mmon optimization technique. Instead of organizing code
fall within the category of LR-WPANS, compliance with thisinto discrete functions which can be reused as and when
standard ensures reliability, compatibility and scalgbdf the required, all the functional blocks of the algorithm are edd
network. There are a total of 8 security modes of which dito a single function. This eliminates the need to save the
ensure data confidentiality. These modes are listed in Tablestate of the function onto the stack and subsequently vetrie
All four modes that ensure data confidentiality use AE® Function inlining improves performance but also inces
as the underlying block cipher function. Level 0x04 usezode size if there is repeated use of code segments thatiperfo
AES in counter mode whereas levels 0x05 through 0x07 udwe same set of operations on different data sets. In AES,
AES in CCM mode. Moreover, CBC-MAC is a cipher baseéach transformation is called only once per round. Theeefor
authentication scheme that in this case, once again, us8s Aghen using a loop construct, we expect to see only a slight
as the block cipher. For more information on AES modes aifcrease in code size. However, if the loops are unrolled
operation, refer to [10]. and the functions are inlined, the code size might increase
Therefore all security modes (except 0x00) rely on AES &slbstantially. To have more control over function inlinimge
the block cipher with a block length of 128-bits. Irrespeeti chose to manually do this as opposed to using the compiler
of the mode, a fast implementation of the AES block ciph@ption.
is as essential building block of any secure IEEE 802.15.44) Loop Unrolling (UNROLL): Loop unrolling is another
compliant system. very commonly used optimization technique which has simila
effects as function inlining. Instead of using a looping -con
IV. OPTIMIZATIONS struct to iterate multiple times and use an index to perfdren t
same operation on different sets of data, the code to perform
Gladman's code implements AES for key sizes of 128 ande operation is copy-pasted multiple times. Since AES-128
256 bits. The code also includes on-the-fly key generatigras 10 rounds, 9 of which consist of exactly the same set
option. We use his code without the use of any tuning optioa$ transformations, any performance gain from loop urmglli
as our baseline implementation. In this section, we disausswill be 9 fold. By manually unrolling the loops, we can also
detail the optimizations we applied and the intuition behineliminate calculating array indices based on the loop aunt
each optimization. This usually results in better performing code while adding
Since the integrity of the AES algorithm is of primesubstantially to the code size.
importance, these optimizations only aim at streamliningg t 5) Reducing Memory Moves (REDMEM)fhe baseline
program flow so as to achieve the same mathematical omplementation has severatentpy function calls while
eration using fewer processor instructions. This ensuras toperating on the input state. We can eliminate copying od dat
our optimized implementation is in strict accordance witfrom one memory location to the other by restructuring the
the AES specification. We verify the correctness of eadawode so that each transformation function saves its outpat i
implementation by comparing them to the test values indudécation that is used as the input for the next transformatio
in [1]. To be able to do this, we will need to perform two sets of

TABLE Il
SECURITY MODES SPECIFIED INNEEE 802.15.4

transformations on the state during each iteration of thenma 176-byte key which can then be reused for 128-bit blocks
loop. This approach is illustrated in Fig. 2. of plaintext data. The 176-byte array that holds the key
accounts for a very large percentage of the RAM requirement
of AES. In cases where data memory is more important that
performance, the need for a 176-byte array can be eliminated
by generating the key on the fly during each round. This
technique becomes proportionally less efficient compaoed t
the pre-keyedversion with increasing size of the plaintext to
be encrypted with the same key.
9) MixColumns with 16-bit Memory Writes (MIX16As
described in Section IlI, th®1 xCol urms transformation can
be implemented using XOR operations and table look-ups.
Each 8-bit entry in the state is replaced by XORing four 8-
bit values from precomputed tables. To reduce the number of
memory writes, we can compute a 16-bit entry for the state
() ORIGINAL (o) REDMEM by using a 8-bit shift and an OR operation on two sets of four
Fig. 2. Restructuring the program to reduce data movement REM) 8_hjt values. The effectiveness of this optimization defsen
on the speed of memory writes versus the cost of bitwise-or

6) Eliminate Local Buffers in Functions (LOCBUFlad- apd bitwise-shift operations. For examplef,Afg,_Bg are 8',
man’s code had a tuning option to either copy the state i} numbers ands|] Iandhvm[] are arrays o 8-bit and 16-bit
a local buffer and then operate on it or access the st gments respectively, the statements:
by passing a pointer to it to the transformation function. vs]0] = Ag;

Gladman suggested that the performance implication ofigavi

input state

Transformation
function

output state

i Make Copy

/4

input state

Transformation
function

output state

input state

Transformation
function

output state

a local buffer would depend on the platform. This is due to vs[l] = Bs;
the fact that different microcontrollers have differentmuey have the same effect as
addressing modes. Since the MSP430 family has a wide range v16[0] = Asg|(Bs < 8);

of addressing capabilities, we expect passing of pointelset . o
more efficient since we eliminate copying the data. B. Compiler Optimizations

The msp-gcc compiler we are using is based on version
3.2.3 of GNU GCC. It includes several compiler optimization

state which are broadly divided into 4 categories:

e O1 (level 1): compiler tried to reduce code size and
execution time

o O2 (level 2): compiler turns on all optimizations except
loop unrolling, function inlining and register renaming

o O3 (level 3): compiler turns on all optimizations including

function loop unrolling, function inlining and register renaming

o Os (Optimize for size): compiler turns on all O2 opti-

mizations that do not increase code size

Since the primary focus of our paper is to optimize for
speed, we compiled all versions of our implementation with
the O3 option. Since O3 turns on a large number of compiler
optimizations, in some cases, it cancels out the effect of ou

7) Use of Global Variables (GLOB)Due to the above manual optimizations. To understand a_nd analyze such cases
mentioned issue with addressing modes, global variables hRetter, we also tested all our code without the use of any
an advantage over local variables since their address canCBEPiler optimizations. This method enabled us to get arclea
precomputed before runtime by the compiler. AES is veffl€a of the effects of O3 as well as our manual optimizations.
efficient in terms of memory usage. It uses a minimal amoulfe discuss each optimization and its effect in Section VI.
of memory for all its transformations and can operate with th
help of a 128-bit extra buffer to store the temporary statee T
only scope for use of a global variable is to store the 17@byf The Setup
key schedule since this is accessed by multiple functions atAs mentioned before, we chose to develop on the MSP430
all stages of the encryption/decryption process. platform. These microcontrollers are available in différe

8) On-the-fly-key Generation (OTFK): For configurations. Key features of the MSP430F1611 MCU we
encryption/decryption, a 16-byte key gets expanded intsed are listed below:

v

function

(a) USE OF LOCAL BUFFER (a) DIRECT ACCESS USING POINTER

Fig. 3. Alternative approach to accessing the state fromnation

V. EXPERIMENTAL METHOD

3) Hardware platform

4) Software tools

In this section, we discuss an accurate method for measuring
parameters that are of interest to us: namely, RAM, ROM
and Speed. This will help us better evaluate AES and its
implementations.

1) ROM: or Code memory is the flash memory used by the
program when it is loaded onto the MCU. This is the most
straightforward parameter to measure. When the C code is
compiled, the compiler generates several segments. ThRE TEX
segment contains executable instructions and global aptsst
and is loaded into the the MCU’s ROM. The size of each
segment and its target physical address can be obtainegl usin

Fig. 4. SoftBaugh DZ1611 Zighbee demo board the msp430-objdump utility. We are interested in measuring
the code memory used by the AES implementation only
and not the whole program which includes thai n()
« Clock frequency of 8 MHz function with the code to initialize the MCU and call the
. 48 KB ISP Flash ROM encryption/decryption functions. To do this we compile the
« 10 KB RAM test code without the encryption/decryption code to obtlai
size contributed by the main function and subtract this from

o Power consumption: 3304 at 1 MHz, 2.2 V he si f the TEXT £ th iinal de. Thi
Our main reason for choosing the MSP430F1611 is trt1ee size of the segment of the original test code. This

commercial availability of an evaluation board from Softiga \rlr?clalcjjilg the best estimate of the ROM requirement of the AES

Inc. The evaluation board interfaces the MSP430F1611 to %) RAM: or Data memory refers to the volatile, high-speed

Chipcon CC2420 transceiver chip as specified in technic -board r.nemory of the MCU. This resource ,is extremely

g%:gggntatlﬂ_ntpgogldled. by TI [11]. Key features of th‘ﬁmited on most embedded systems. It is also hard to measure
are listed below. because in addition to global variables, we also need to take

ic
383
383
5%
S5%
H
3

« 2.4 GHz IEEE 802.15.4 compliant RF transceiver yio account the variable stack size. Accurately measutieg

» 250 Kbps effective data rate stack size has been a difficult challenge for embedded sgstem

. Low power_consumptlon: 17.4 -19.7mA, 21 - 36V developers. Yet it is important because bugs resulting from

« 4-wire SPI interface stack overflows are unpredictable and hard to find. We chose
« Serial clock up to 10 MHz to use a very accurate and reliable method that tends to be
« Hardware MAC encryption (AES-128) somewhat involved. The steps required to calculate thek stac

All code was tested on the Softbaugh DZ1611 Zigbegize are given below:
demo boards (Fig. 4, taken from [12]). The MSP430 can be1) Compile the code with the -g option to include debug-
programmed by either a JTAG interface provided on the board ging information for use by msp430-gdb (MSP430 port
or a custom BootStrap Loader (BSL) interface. of the GNU debugger)
Some changes were made to the board: 2) Load the code on the MCU through msp430-gdb using
o The default 6 MHz crystal oscillator was replaced with the JTAG interface for real-time debugging
a 8 MHz crystal to get peak performance from the 3) Using msp430-gdb, set break points at the start of each
microcontroller. function
« Four pull-up resistors were added to the 4-wire SPI 4) Set a watch for register 1 of the MSP430 microcon-
interface between the CC2420 and the MSP430. This was troller. Register 1 is used as the Stack Pointer (SP)
done because the CC2420 operatesictive lowsignals. 5) Run the program and keep track of the minimum value
We chose to develop using the open source mspgcc of SP. This is because the stack always grows up, thus
toolchain. This is a port of the gcc compiler and a subset of the minimum value of SP would give us the maximum
GNU tools to the MSP430 platform. We used mspgcc version size of the stack

3.2.3. 6) Subtract the minimum value of the stack from the value
. of SP at themai n() function to get the stack depth of
B. Metrics AES

Upon reviewing previous works, we see significant disagree-once we have a value for the maximum depth of the stack,
ment with regard to the resource requirements of AES as Wﬁ)b can add the size Of the DATA Segment and the BSS
as its performance capability. Several reasons can acéountsegment to account for initialized and uninitialized globa
this: variables.

1) Measurement methodology 3) Software Encryption Speeds the number of bits of

2) Differences in implementation plaintext data that can be encrypted per second. Since the

Scale Accuracy

Note that we evaluate the characteristics of the CC2420

100us/divsion +1us . A

2005 /divsion +2us in standalone encryption mode only. We assume that the

500us/divsion +5pus circuitry used in standalone mode is the same as the ciycuitr
TABLE I used in inline mode. However, the CC2420 is not capable of

performing decryption in standalone mode, so our resuls ar
limited to encryption only.

SCALE SETTINGS ANDACCURACY OF THEAGILENT DSO3202A

VI. RESULTS

time to encrypt a single block of plaintext is on the ordef. Effects of Optimizations
of microseconds, it is important to rely on a method that Fig. 5 shows the effects of applying our optimization

can measure at this resolution. To avoid any interferenee, Y&chniques on performance, RAM and ROM with the O3

execute our code in a standalone mode without any underlyi&gmp"er option, Fig. 6 shows similar metrics without the O3
operating system on the msp430 and without the possibil'@btion_

of interruption.

We use the digital output pins of the MCU to set pins higl s 600
w EROM
: EIRAM

just before initiating the encryption process and set it jost 16000 {
after completion. Using a oscilloscope capable of samplir 14000 |
voltage at a rate of 2 giga-samples per second, we recorc 10|
the square wave generated by the output pin going high a
low and used the auto-measure feature of the scope to meas
the time when the digital output pin remained high. We use
an infinite loop which encrypted and decrypted a block of dat
For AES, a single block is 128 bits in size. Our code sets tt
output pin high during encryption and low during decryption
The accuracy of this technique depends on the scale sefting

u
=]
)

N
o
)

10000 -
T 300
8000

ROM (bytes)
RAM (bytes)

60001 [t

N
=]
)

4000

—-
o
)

2000 +

0

o

the oscilloscope display. In Table Ill, we list the scaldings Version
that we have used for our measurements and the accuracy of ™ B Encryption time (ms)
each setting. 1 B bt

We also use this time measurement technique to measure
time taken by the AES key expansion process and the CC2420 °°
transmission rate.

4) CC2420 Hardware Encryption Spee@pses a slightly
different challenge because the encryption takes placén@®nt o4
CC2420 chip. We are limited by the interface it provides to .
the microcontroller to make any time measurements. Though
the CC2420 supports a serial clock of up to 10 MHz, we o
are limited to 4 MHz by the MSP430 SPI (Serial Peripheral '
Interface) master mode. However, a serial clock of 4 MHz

allows us to interact with the CC2420 at a rate of 4 Mbpgg' 5. Effect of optimizations on encryptions speed, ROM BRAdM usage.

S ” - - e efer to Table IV for optimizations associated with versiamers
which is much higher than the radio transmission rate of 250
kbps. Therefore, we do not see the serial link as a major

performance bottleneck.

0.6

Time (ms)

Version Optimizations applied

Similar to our timing method for software encryption, we —1 NONE _
used digital output pins of the MSP430 and an oscilloscope to} SPECIAL DATASE 6 by
measure time. Using the CC2420 hardware module involves! SPECIAL, DATASZ(32-bits)
. 5 SPECIAL, DATASZ(64-bits)
multiple steps. These are: 6 SPECIAL, DATASZ(64-bits), MIX16
. 7 SPECIAL, DATASZ(64-bits), MIX16, UNROLL
1) Writing to the CC2420 RAM 8 SPECIAL, DATASZ(64-bits), MIX16, INLINE
. 9 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM
2) Issuing the encrypt command to the CC2420 10 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBE
i i i 11 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBB, GLOB
3) Walt fOI’ encryptlon mOdUIe to Complete proceSSIng by 12 SPECIAL, DATASZ(64-bits), INLINE, REDMEM, LOCBUF, GLOB

requesting status byte

4) Read from the CC2420 RAM TABLE IV

. OPTIMIZATIONS ASSOCIATED WITH VERSION NUMBER OF EACH
Though step 3 alone accounts for the time spent on €ncryp- yp| EmeNTATION. ALL VERSIONS COMPILED WITH-O3 OPTION

tion by the CC2420 hardware module, we need to factor in all PROVIDED BY MSP-GCC
of the steps listed above to get an application level esémat
of encryption time.

9000

code. Therefore, compiling the source code with O3 with
manual function inlining only gave us a negligible advametag
To evaluate the advantage gained due to function inlinirgy, w
compiled the source code without O3 and observed an increase
of 20.55% in speed without sacrificing code space. This is
because each transformation is called only once within the
main loop which iterates through the rounds.
5) Reducing Memory Moves (REDMEM) Reducing
movement of data from one buffer to the other during the
1. encryption process resulted in a 42.12% increase in perfor-
B N BB E BB mance. But this also increased the code size significantly by
N A I R 1134 bytes.
Fig. 6. Effect of optimizations on encryption speed and cdde @vithout When we tested the effects of reducing memory moves with-
the use of msp-gcc O3 option). Refer to Table IV for optimizasiassociated out the use of compiler optimizations, we observed a deereas
with version numbers in performance. This is because the compiler optimization
enforces the use of more direct memory addressing which
results in faster array accesses.

1) Specialization of Code (SPECIAL)Modifying the 6) Eliminate Local buffers in Functions (LOCBURF)se of
generic baseline implementation and making it specialized a local buffer for the state within a function resulted inyonl
AES-128 reduced the code size from 4942 to 4316 bytes. Daleslight increase in performance, code size and RAM. This
to the elimination of conditional constructs that accomated was again due to the effect of O3 which optimizes memory
the key expansion for different key sizes, we see a perfocmaraccesses using pointers. Without the use of O3, we see a more
improvement of 183.52% in the key expansion process. Sirsignificant increase of 27.30% in performance and a decrease
the RAM size depends on the maximum depth of the staalf, 1096 bytes in code size.
it is not effected by the key expansion process which happens’) Use of Global Variables (GLOB)Storing the entire
before the encryption process that has a much greater stkeit schedule in a global variable hurt the performance of the
requirement. key expansion process by 6.38% and resulted in a negligible

2) Varying Data Type Size (DATASZ)s expected, moving improvement in encryption time. Again, without the use of
from 8-bit types to 16-bit types has a huge performance bene)i3, use of global key schedule improved key expansion
of 39.53% due to the use of a 16-bit microcontroller. We alggerformance significantly by 29.27%. This shows that the
see a drop in code size from 4882 to 4314 bytes and RAdmpiler is also effective at optimizing memory accesses fo
size from 244 to 232 bytes. global variables.

The mspgcc compiler also supports 32-bit and 64-bit types.8) On-the-fly-key Generation (OTFKEBenerating keys on-
On testing with these sizes, the gain in speed is negligibtee-fly saves 160 bytes of RAM. This represents a key trade-
However, on testing the same variations without the compileff between performance and RAM usage. Performance is hurt
optimization flag, we see a more noticeable difference. Witbnly when encrypting multiple blocks as the round keys are
out the O3 flag, in moving from 16-bit to 64-bit types, theecalculated for each block. This design choice largeledep
speed increased by 7.03% while the ROM decreased fram the size of the plaintext data to be encrypted using assing|
6138 to 5950 bytes. This shows that the compiler optimizatiokey.
work well to speed up thdddRoundKey transformation. 9) MixColumns with 16-bit Memory Writes (MIX16):

3) Loop Unrolling (UNROLL): When the O3 compiler When compiled with the O3 option, using an 8-bit shift and or
optimization is selected, the compiler automatically 9rite operation to generate a 16-bit value to write to RAM instefad o
perform loop unrolling as well as function inlining. We seevriting two 8-bit values hurt performance by 2.22%. However
that manually unrolling the loop when the O3 compiler optiwithout the use of compiler optimizations, the performance
mization was selected had a negative impact on RAM, ROBhowed a slight improvement. This shows that the compiler
and Speed. The RAM increased by more than 2.2 times amptimizes memory writes enough to make the use of 16-bit
the code size increased by more than 3.61 times. The spagiles unnecessary.
also decreased by 14.73%.

This effect of loop unrolling is counter-intuitive and iselu
to the compiler’s inability to determine which portions afde ~ Based on our analysis, we recommend these optimizations:
need to be optimized. To verify this, we applied manual loop « SPECIAL
unrolling without the use of O3 and as expected, we observeds DATASZ (64-bits)

a slight increase of 2.15% in speed and a 452 byte increase INLINE
in code size. « LOCBUF

4) Function Inlining (INLINE): As mentioned before, O3 « REDMEM
directs the compiler to attempt function inlining on theiemt « GLOB

8000

5000 g

(byt

=
4000

B. Recommended Optimizations

Implementation Reference paper Measured ROM Usage PublR®&d Usage
[8] 5968 bytes n/a

Using the msp430-gcc compiler at the O3 optimization level 1
boosts performance by an additional 40.49%. § e oras e s e
mi H H 4 13 / /
OTFK can _b? u'sed on top of the .aI'Jove optimizations in : our imphentation 5160 bytes M

cases where it is important to use minimal amount of RAM
and the size of the plaintext data to be encrypted with asingl | TABLE V o7

H H NFORMATION ABOUT IMPLEMENTATIONS COMPARED INFIG. /.
key is not too large. If however, the data to_be encrypted is MEASURED ROM USAGE 1S TAKEN EROM THE REEERENGE
large, then to prevent data replay attacks, different keyls WimpLeMENTATION CODE WE USED COMPILED WITH -O3 OPTIMIZATIONS.
have to be used anyway and therefore OTFK is less useful. PUBLISHED ROM USAGE IS TAKEN DIRECTLY FROM EACH PUBLISHED

Using the above optimizations, we achieved an encryption REFERENCE
speed of 286.35 kbps, RAM requirement of 260 bytes and a
code size of 5160 bytes.

Process Time (us)
. . . Writing to the CC2420 RAM 94.40
C. Comparlson with Other Implementatlons Issuing the encrypt/decrypt command to the CC2420 6.40
. . . Wait for encryption module to complete processing by reqogsstatus byte 18.40

In Fig. 7, we see how our fastest implementation com-Read from the CC2420 RAM 102.40

pares to previous attempts at optimizing AES on a similar TABLE VI

platform. Our timing measurements for each implementationrye taken 1o coMPLETE EACH STEP REQUIRED TO ENCRYPT USING
differ slightly from the published values as we compiled and THE CC2420HARDWARE AES MODULE

tested each implementation on our platform. We can see that

we have accomplished a significant improvement of 104.02%

in encryption speed, 12.5% in key expansion and an overall

improvement of 84.69% over the previous best performing Taple VI shows the time taken to encrypt using the CC2420
implementation. AES module. As expected, the hardware module is much
faster than AES in software. This high speed of encryption
E S B ame does not directly translate into a better performing WSNesinc
the limiting factor of the network is the radio communicatio

2s rate. We have already shown that AES in software can exceed
the maximum specified rate of 250 kbps of IEEE 802.15.4-
compliant WSNs. However, using the hardware module for
s data encryption does free up the microprocessor for a few mil
= liseconds which can be used for other tasks. In a system where
performance is crucial, allocating encryption to the CQ242
E hardware and efficiently using microprocessor resources ca
= result in slightly better performance.

The major disadvantage of using hardware AES is its
Fig. 7. Comparison of Encryption Time + Key Expansion Time betweur lack of flexibility. Though AES-128 is sufficiently secure,
implementation (number 5) and other implementations (numbeds Refer Security schemes are regularly evaluated and updated tioeens
to Table V for details about which implementation correspowith which that they are not susceptible to newly developed attacks. In
number above. [14], NIST acknowledges that the widely used cipher-based
authentication mode, CBC-MAC, has security deficiencias an

Additionally, Table V compares ROM usage among othefetails a specification for the CMAC mode. The CC2420
implementations. Our version has the smallest ROM usageplements AES-based authentication using the CBC-MAC
of all our empirically measured code sizes, 5160 bytes. Nattode of operation, therefore we assume that its hardware
that implementation 3 lists a smaller published ROM size dimplementation suffers from these deficiencies. Therefore
most likely to our use of the -O3 compiler optimizations forelying on hardware for security is a concern for secure@ens
our measured values. networks.

RAM usage was similar among all implementations, and \e also faced considerable difficulty in using the CC2420
depends largely on whether keys are generated on the flys¥ts hardware module due to lack of proper documentation.
pre-computed. Additionally, it is not clear how RAM usag&ye found that the CC2420 is incapable of performing en-
was measured in other published implementations, esfeci@yption/decryption unless the ciphertext is preceded by a
with regard to stack usage. 802.15.4-compliant header. This means that the hardwag& AE
module cannot be used if the data are not formatted to be
strictly compliant with IEEE 802.15.4. This is another nrajo

In this section we will examine the pros and cons of usindrawback since sensor networks almost always have differ-
a hardware implementation as well as describe our experiemnt resource constraints that make it necessary to customiz
in getting it up and running. protocol specifications.

Time (ms)

]
]
]

Implementation

D. Comparison with Hardware Implementation

VII. CONCLUSION 21

In this paper, we demonstrated that it is possible for an
optimized C implementation of AES encryption-decryption t
match the communication speed of a Zigbee radio. We show
which optimizations work (and which do not) in increasing[s]
computational speed and reducing memory footprint. Addi-
tionally, we show how they interact with the optimizations[4l
of the GCC compiler. We provide a common, rigorous se
of procedures and metrics for accurately measuring exatuti
speed, ROM usage, and RAM usage. We use these metrics to
benchmark our implementation along with four existing soft
ware implementations of AES on a common platform (Texas
Instruments’ MSP430 processor with a Chipcon CC242(?!
Zigbee radio) and show that our optimized implementation
outperforms all previous implementations. We also evaluat
the hardware implementation on the Zigbee radio and find
that it outperforms all software-based schemes. Howeki, t 4
comes at the cost of lack of flexibility, e.g., different size
data blocks and difficulty of evolving to patch future seturi [10]
vulnerabilities.

In future work, we will be using the developed encryptionf1]
decryption scheme as a primitive in a secure application and

IEEE Standard for Information technology- Telecommuridcet and
information exchange between systems- Local and mettapotirea
networks- Specific requirements Part 15.4: Wireless Mediroess
Control (MAC) and Physical Layer (PHY) Specifications forwko
Rate Wireless Personal Area Networks (WPAN®r. IEEE Standard
802.15.4-2006, September 2006.

B. Gladman, “Brian gladman’s aes implementation,”
http://fp.gladnman. pl us. conf AES/ i ndex. ht m

“Eyes project,”ht t p: / / www. eyes. eu. or g/ .

5] “Moteiv corportation,”ht t p: / / www. ot ei v. cont .
] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmarklotk

ciphers for wireless sensor network®&CM Trans. Sen. Netywol. 2,
no. 1, pp. 65-93, 2006.

1 A. Vitaletti and G. Palombizio, “Rijndael for sensor nefiks: Is speed

the main issue?Electron. Notes Theor. Comput. Saiol. 171, no. 1,
pp. 71-81, 2007.

D.-R. Duh, T.-C. Lin, C.-H. Tung, and S.-J. Chan, “An implentation
of aes algorithm with the multiple spaces random key preibigion
scheme on mote-kit 5040,” iSUTC '06: Proceedings of the IEEE
International Conference on Sensor Networks, Ubiquit@rs] Trust-
worthy Computing - Vol 2 - WorkshopsWashington, DC, USA: IEEE
Computer Society, 2006, pp. 64—71.

] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstétendbook of

Applied Cryptography CRC Press, 2001.

M. Dworkin, Recommendation for Block Cipher Modes of Operation:
Methods and TechniqugeBlational Institute of Standards and Technol-
ogy, December 2001.

S. Karthikeyani,|EEE 802.15.4TM and ZigBeeTM Hardware Platform
using MSP430F1612Texas Instruments, September 2005.

12] “Softbaugh, inc."ht t p: / / ww. sof t baugh. cont .

to develop efficient interfaces with other primitives such &5
authentication. The ultimate goal is to provide an optimal,
secure communication infrastructure for common embeddgédl
platforms.

REFERENCES

[1] Advanced Encryption Standard (AESgr. FIPS PUB 197, November
2001.

] T. Instruments. (2008) Z-stack: Zigbee protocol stacknf texas

instruments. [Online]. Available: http://www.ti.com

M. Dworkin, Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for AuthenticatipiNational Institute of Standards and
Technology, May 2005.

