
Optimizing AES for Embedded Devices and
Wireless Sensor Networks

Shammi Didla, Aaron Ault and Saurabh Bagchi
Center for Wireless Systems and Applications (CWSA)

Purdue University, West Lafayette, IN 47906, USA
{sdidla,ault,sbagchi}@purdue.edu

Abstract—The increased need for security in embedded ap-
plications in recent years has prompted efforts to develop en-
cryption/decryption algorithms capable of running on resource-
constrained systems. The inclusion of the Advanced Encryption
Standard (AES) in the IEEE 802.15.4 Zigbee protocol has driven
its widespread use in current embedded platforms. We propose an
implementation of AES in a high-level language (C in this case)
that is the first software-based solution for 16-bit microcontrollers
capable of matching the communication rate of 250 kbps specified
by the Zigbee protocol, while also minimizing RAM and ROM
usage. We discuss a series of optimizations and their effects
that lead to our final implementation achieving an encryption
speed of 286 kbps, RAM usage of 260 bytes, and code size of
5160 bytes on the Texas Instruments MSP430 microprocessor. We
also develop rigorous benchmark experiments to compare other
AES implementations on a common platform, and show that our
implementation outperforms the best available implementation
by 85%.

Index Terms—AES, encryption, embedded optimizations, se-
cure sensor networks, CC2420, MSP430, Zigbee security.

I. I NTRODUCTION

The proliferation of wireless sensor networks (WSN) in
recent years has prompted increased interest in secure com-
munications for embedded devices. Wireless sensor nodes
are inherently resource-constrained in terms of processor
speed, bandwidth, energy usage, code space, and RAM size.
Therefore, there is a need for secure encryption/decryption
implementations that have a small footprint while performing
at speeds comparable to the radio transmission bitrate on a
low-speed processor.

The Advanced Encryption Standard (AES) became the
standard for encryption to protect sensitive information by
all U.S. government organizations on May 26, 2002 [1]. Its
inclusion in the IEEE 802.15.4 [2] standard as the standard
encryption protocol for ZigBee makes AES ideal for use in
WSNs.

According to the IEEE 802.15.4 specification, Low Rate -
Wireless Personal Area Networks (LR-WPAN) have a max-
imum over-the-air data rate of 250 kbps. Therefore, it is
important for the encryption to match this rate to achieve
optimal wireless communication. After carefully reviewing
and experimenting with previous works, we came to the
conclusion that no previous software scheme is able to encrypt
data using AES at a rate of 250 kbps or higher. Moreover,
there was considerable disagreement among various research
groups about the performance and memory footprint of AES

implementations. The memory footprint consists of RAM
usage and ROM usage. RAM is often a highly constrained
resource on the embedded platforms (e.g., the Crossbow Mica2
mote has 4 KB and the MSP430 chip has up to 10 KB). The
ROM memory is used to hold the program and therefore it is
desirable to limit its usage by the cryptographic functions.

In this paper we show that AES can indeed be rate matched
with the radio communication speed, thus making it practical
for use in WSNs. Our fastest implementation of AES achieved
an encryption speed of 286 kbps and required 5160 bytes of
ROM and 260 bytes of RAM. To the best of our knowledge,
no previous implementation on a similar platform has been
able to match this rate. At this encryption speed, it is also
possible to eliminate latency due to the encryption processin
a IEEE 802.15.4-compliant WSN and therefore use AES on a
continuous stream of 128-bit data blocks.

To achieve this speed, we applied various optimization
techniques to Gladman’s AES implementation [3] for low
resource platforms. We evaluated the effects of specializing
the code (SPECIAL) for AES-128 by removing code that
accommodates for variable key length, varying the data type
(DATASZ) that holds the state and key, eliminating function
calls by integrating all functional blocks into a single function
(INLINE), unrolling looping constructs by taking a copy-
paste approach for repeated operations (UNROLL), reducing
moving data around memory by restructuring the original
implementation (REDMEM), eliminating the use of local
buffers to hold the state (LOCBUF), using a global variable
to hold the key schedule (GLOB), generating the key for each
round during the encryption process instead of precomputing
it and storing it in RAM (OTFK) and using 16-bit memory
writes in theMixColumns transformation (MIX16). We also
examined how these optimizations interact and occasionally
conflict with compiler optimizations and their net effect on
performance, ROM and RAM. Based on our analysis, we
recommend the use of SPECIAL, DATASZ (64-bits), INLINE,
LOCBUF, REDMEM and GLOB for best performance and
additionally apply OTFK to optimize for RAM usage.

To understand how the flexibility and cost-effectiveness of
our software implementation written in C compares to the
performance advantage of using a hardware implementation,
we tested both solutions in a real-time wireless communica-
tion scenario using evaluation boards equipped with Zigbee-
compliant transceiver chips. We also studied and evaluated

three past attempts at optimizing AES in software that repre-
sent state-of-the-art in optimized encryption implementations
for an embedded platform. By using a common platform,
a high precision oscilloscope to accurately measure time to
within ±5µs and by rigorously standardizing tests across
different implementations, we were able to reliably and quan-
titatively compare different implementations and evaluate their
performance.

We developed and tested all our code on a Texas Instru-
ments’ MSP430 microcontroller unit (MCU) running at 8
MHz. The MSP430 family of microcontrollers is a popular
choice for several sensor nodes such as the Eyes Node [4]
and the T-Mote Sky [5]. It has a 16-bit RISC Core with
a flexible clock system and its low power consumption of
about 250 µA/MIPS-active make it ideal for WSNs. We
also bought evaluation boards that interfaced the MSP430 to
a Chipcon CC2420 transceiver chip. The CC2420 is IEEE
802.15.4 Zigbee-compliant, has an effective data rate of 250
kbps and has support for hardware MAC encryption (AES-
128). We used this setup to evaluate the performance of a
hardware implementation of AES and also compare it to our
software solution.

Our main contributions in this paper are showing that AES
can perform at the radio communication rate by implementing
the fastest software solution to date, presenting an in-depth
analysis of various optimization techniques required to achieve
this speed and performing a rigorous and quantitative bench-
mark of multiple software and hardware solutions.

The rest of the paper is organized as follows. In the
next section, we give details about the other optimized AES
implementations that we chose to evaluate. In Section III,
we give a brief description of AES, discuss the key aspects
of Gladman’s implementation and the IEEE 802.15.4 MAC
sublayer security specification. In Section IV, we describeall
the computational and memory optimizations we used, discuss
the intuition behind and predict the effect of each. In Section
V, we describe our experimental setup and methodology. In
Section VI we present the results of our experimentation and
in the last section, we conclude this paper and discuss future
work.

II. RELATED WORK

We identified three other fast implementations of AES and
obtained the source code from their authors. In addition to
these three, we also chose to evaluate the implementation
provided in the freely available Zigbee Stack for the CC2420.
Below is a brief description, focus and published performance
figures of each of these implementations.

In [6], the authors have benchmarked various block Ciphers
including Rijndael (AES) on a 16-bit MSP430 microcontroller.
Their implementation is based on code from the open source
OpenSSL library. It is heavily modified and compiled with
the commercial IAR Workbench compiler. They have speed-
optimized and size-optimized versions of each implementation
running in Cipher-Block Chaining Mode (CBC), Cipher Feed-
back Mode (CFB), Output Feedback Mode (OFB) and Counter

Mode (CTR). Their estimate shows that AES performs best
in OFB mode taking 3127 clock cycles to encrypt a 128-
bit block of plaintext while taking up 12860 bytes of code
memory (ROM) and 70 bytes of data memory (RAM). Their
size-optimized AES implementation takes 4231 clock cycles
to encrypt a 128-bit block of plaintext taking up 12616 bytes
of ROM and 70 bytes of RAM.

In [7], the authors focus on the need for a compact imple-
mentation. Their implementation requires 3322 bytes in ROM
and 177 bytes in RAM. However, to achieve low code size
they have sacrificed performance. Their implementation takes
3.75 ms to encrypt a 128-bit block of plaintext on a 16-Bit
MSP430 microcontroller running at 4 MHz.

In [8], the authors implement AES on a sensor node based
on the 8-bit Atmel ATmega 128L microcontroller running at
8 MHz. They have based their implementation on Gladman’s
code that was cited in the AES proposal. Their implementation
can encrypt a 128-bit block of plaintext in 0.857 ms.

Texas Instruments has made available a Zigbee Stack for
the boards using the MSP430 with the CC2420. Even though
the CC2420 has hardware support for AES, the stack includes
a software implementation of the AES-128 encryption algo-
rithm. We chose to add this to our evaluation list because we
expect wide use of this implementation by WSN developers.
No performance figures are provided with the implementation.

Figure 7 and Table V in Section VI summarize the published
results of each of these implementations while also comparing
them to the results obtained using our own testing methods.

III. B ACKGROUND

A. Advanced Encryption Standard

Rijndael Cipher, developed by Joan Daemen and Vincent
Rijmen was accepted as the Advanced Encryption Standard
on November 26, 2001. It is a symmetric-key block cipher
with a block length of 128-bits and a flexible key length of
128, 192 or 256 bits. This section gives an overview of how
AES works.

1) Encryption/Decryption Algorithm:A series of permuta-
tions and substitutions are applied to the plaintext for encryp-
tion. Fig. 1 illustrates the overall structure of the algorithm
[9]. There are 4 main transformations used in this process.
Each transformation is applied to a4 × 4 byte matrix called
the State. These transformations are described below:

• SubBytes: Each byte in the state is substituted by a
byte from a 256-byte look-up table called the s-box.

• ShiftRows: The bytes in each of the 4 rows in the
state are rotated by(n − 1) wheren represents the row
number from 1 to 4.

• MixColumns: The state can be considered to be a
4 × 4 matrix and this transformation can be achieved by
multiplying this matrix by:









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









The Overall Structure of AES

Fig. 1. Overall Structure of AES

This multiplication is done inGF
(

28
)

1

• AddRoundKey: In this transformation, theround key
is simply added to the state. InGF

(

28
)

, adding is
equivalent to a bitwise exclusive-or operation.

The encryption process consists of initially applying
AddRoundKey and 10, 12 or 14rounds depending on the
length of the key. Each round except the last one consists of
applying the 4 transformations to the state. In the last round,
only theSubBytes, ShiftRows andAddRoundKey trans-
formations are applied.

2) The Key Expansion:The cipher key is expanded to
generate a different key for each round. Similar to the State,
the key is also considered to be a two-dimensional matrix
consisting of 4 rows. Each column is considered to be a 4-
byte word. The expansion is achieved by applyingSubWord
and RotWord transformations and addition inGF

(

28
)

of
RCon[], a constant word array. These operations are de-
scribed below:

• SubWord: Similar to theSubBytes transformation,
this is done by substituting each byte in the word with a
byte from a 256-byte substitution box.

• RotWord: This transformation cyclically shifts the
bytes of a word one place upwards.

Since the key expansion differs slightly for 128-, 192-
and 256-bit keys, and our implementation in this paper deals
with only 128-bit keys, we will discuss only 128-bit key
expansion here. We chose to limit ourselves to AES-128
because we think it provides sufficient data protection for
Wireless Sensor Networks. Moreover, the hardware module

1All arithmetic in Rijndael is done in a Galois Field with 256 Elements

Procedure Times Called
KeyExpand 1
SubBytes 9
ShiftRows 9
MixColumns 8
AddRoundKey 10

TABLE I
FREQUENCY OF TRANSFORMATIONS IN APPLYINGAES-128TO A SINGLE

DATA BLOCK

in Chipcon CC2420 is also limited to AES-128.
For AES-128, the expanded key consists of 176-bytes (44

words). The first 4 words of the expanded key consist of
the original cipher key. Every word after that is equal to the
sum of the previous word and the word 4 positions earlier.
For words in positions that are multiples of 4, theSubWord
andRotWord transformations are applied before applying the
above described exclusive-or. After the exclusive-or, another
exclusive-or with theRCon[] associated with the round is
applied.

3) Profiling: Table I is a frequency distribution table of the
different transformations in the encryption process. Thisserves
as a good starting point in the analysis of the algorithm for
optimization.

B. Brian Gladman’s Low Resource Implementation

In this section, we discuss some of the important aspects of
Gladman’s implementation

1) Use of Look-Up Tables:As mentioned in the AES
proposal, all modular mathematics of AES can be reduced to
a series of table look-ups and exclusive-or operations. Almost
all implementations that we looked at including Gladman’s
take this approach. Therefore, we concluded that using look-
up tables was the only viable option in any practical scenario.

Gladman’s implementation had three 256-byte look-up ta-
bles used for encryption and five 256-byte look-up tables for
decryption.

2) Combination of Transformations:Gladman combined
the MixColumns and SubBytes transformations as well
as the ShiftRows and SubBytes transformations into
two functions. These combinations are possible because the
shifting of rows and mixing of columns are always the same
and are independent of the contents of the state. A large
number of memory moves are eliminated by combining these
transformations with theSubBytes transformation.

This technique was developed by Mark Malbrain and his
contribution is acknowledged in Gladman’s code.

3) Tuning Options:Gladman’s code has 3 options which
can be changed prior to compiling the code. These options
are made possible using conditional preprocessor directives
and modify the code considerably before compilation. These
options can be activated/deactivated by using the #define
preprocessor directive. These are briefly described below:

• HAVE_MEMCPY: Defining this directs the compiler to
take advantage of thememcpy function in the compiler’s
standard library

Level Attribute Confidentiality Description
0x00 None NO No security
0x01 MIC-32 NO Auth (CBC-MAC) 32 bit MIC
0x02 MIC-64 NO Auth (CBC-MAC) 64 bit MIC
0x03 MIC-128 NO Auth (CBC-MAC) 128 bit MIC
0x04 ENC YES Enc (Counter mode AES)
0x05 ENC-MIC-32 YES Enc + Auth (CCM-Mode) 32 bit MIC
0x06 ENC-MIC-64 YES Enc + Auth (CCM-Mode) 64 bit MIC
0x07 ENC-MIC-128 YES Enc + Auth (CCM-Mode) 128 bit MIC

TABLE II
SECURITY MODES SPECIFIED INIEEE 802.15.4

• HAVE_UINT32: Defining this directs the compiler to
take advantage of 32-bit data types if available on the
target platform

• VERSION_1: Defining this makes extensive use of local
buffers within functions instead of accessing data through
pointers

C. IEEE 802.15.4 Security Specification

The IEEE 802.15.4 standard was first released in 2003 and
revised in 2006. It includes Wireless Medium Access Control
(MAC) as well as Physical layer specifications. Security is
specified as part of the MAC sublayer. Since most WSNs
fall within the category of LR-WPANs, compliance with this
standard ensures reliability, compatibility and scalability of the
network. There are a total of 8 security modes of which 4
ensure data confidentiality. These modes are listed in TableII.

All four modes that ensure data confidentiality use AES
as the underlying block cipher function. Level 0x04 uses
AES in counter mode whereas levels 0x05 through 0x07 use
AES in CCM mode. Moreover, CBC-MAC is a cipher based
authentication scheme that in this case, once again, uses AES
as the block cipher. For more information on AES modes of
operation, refer to [10].

Therefore all security modes (except 0x00) rely on AES as
the block cipher with a block length of 128-bits. Irrespective
of the mode, a fast implementation of the AES block cipher
is as essential building block of any secure IEEE 802.15.4
compliant system.

IV. OPTIMIZATIONS

Gladman’s code implements AES for key sizes of 128 and
256 bits. The code also includes on-the-fly key generation
option. We use his code without the use of any tuning options
as our baseline implementation. In this section, we discussin
detail the optimizations we applied and the intuition behind
each optimization.

Since the integrity of the AES algorithm is of prime
importance, these optimizations only aim at streamlining the
program flow so as to achieve the same mathematical op-
eration using fewer processor instructions. This ensures that
our optimized implementation is in strict accordance with
the AES specification. We verify the correctness of each
implementation by comparing them to the test values included
in [1].

A. Manual Optimizations

1) Specialization of Code (SPECIAL):As mentioned be-
fore, the baseline implementation is a generic implementation
capable doing AES-128 as well as AES-256. This definitely
adds to the code size and hurts the performance of the key
expansion process. By focusing on AES-128 and making
the code less generic, we can eliminate a lot of conditional
constructs and thereby substantially decrease the code size and
improve performance.

2) Varying Data Type Size (DATASZ):One of Gladman’s
tuning options is to take advantage of 32-bit data types (if
available) instead of the 8-bit data types. Our compiler’s
largest data type is 64-bits. We expect the use of 8-bit data
types to be highly inefficient since we are operating on a
16-bit platform. The use of data types larger than 16-bits is
tested though we do not expect a substantial performance gain
beyond 16-bit types. We expect this to show a substantial effect
in theAddRoundKey transformation since the processor can
exclusive-or 16-bits at a time instead of doing 8-bits at a time.
Our profiling data (Table I) also shows thatAddRoundKey
is the most frequently used transformation.

3) Function-Inlining (INLINE): Function inlining is a very
common optimization technique. Instead of organizing code
into discrete functions which can be reused as and when
required, all the functional blocks of the algorithm are coded
into a single function. This eliminates the need to save the
state of the function onto the stack and subsequently retrieve
it. Function inlining improves performance but also increases
code size if there is repeated use of code segments that perform
the same set of operations on different data sets. In AES,
each transformation is called only once per round. Therefore,
when using a loop construct, we expect to see only a slight
increase in code size. However, if the loops are unrolled
and the functions are inlined, the code size might increase
substantially. To have more control over function inlining, we
chose to manually do this as opposed to using the compiler
option.

4) Loop Unrolling (UNROLL): Loop unrolling is another
very commonly used optimization technique which has similar
effects as function inlining. Instead of using a looping con-
struct to iterate multiple times and use an index to perform the
same operation on different sets of data, the code to perform
the operation is copy-pasted multiple times. Since AES-128
has 10 rounds, 9 of which consist of exactly the same set
of transformations, any performance gain from loop unrolling
will be 9 fold. By manually unrolling the loops, we can also
eliminate calculating array indices based on the loop counter.
This usually results in better performing code while adding
substantially to the code size.

5) Reducing Memory Moves (REDMEM):The baseline
implementation has severalmemcpy function calls while
operating on the input state. We can eliminate copying of data
from one memory location to the other by restructuring the
code so that each transformation function saves its output in a
location that is used as the input for the next transformation.
To be able to do this, we will need to perform two sets of

transformations on the state during each iteration of the main
loop. This approach is illustrated in Fig. 2.

Make Copy

buffer1

buffer2

Transformation
function

input state

output state

buffer1

buffer2

Transformation
function

input state

output state

buffer1

buffer2

Transformation
function

input state

output state

buffer2

buffer1

(a) ORIGINAL (b) REDMEM

Fig. 2. Restructuring the program to reduce data movement (REDMEM)

6) Eliminate Local Buffers in Functions (LOCBUF):Glad-
man’s code had a tuning option to either copy the state into
a local buffer and then operate on it or access the state
by passing a pointer to it to the transformation function.
Gladman suggested that the performance implication of having
a local buffer would depend on the platform. This is due to
the fact that different microcontrollers have different memory
addressing modes. Since the MSP430 family has a wide range
of addressing capabilities, we expect passing of pointers to be
more efficient since we eliminate copying the data.

state

code

data

state

function

(a) USE OF LOCAL BUFFER

do something;

do something;

…

…

state

code

data

function

(a) DIRECT ACCESS USING POINTER

do something;

do something;

…

…

Make Copy

Fig. 3. Alternative approach to accessing the state from a function

7) Use of Global Variables (GLOB):Due to the above
mentioned issue with addressing modes, global variables have
an advantage over local variables since their address can be
precomputed before runtime by the compiler. AES is very
efficient in terms of memory usage. It uses a minimal amount
of memory for all its transformations and can operate with the
help of a 128-bit extra buffer to store the temporary state. The
only scope for use of a global variable is to store the 176-byte
key schedule since this is accessed by multiple functions at
all stages of the encryption/decryption process.

8) On-the-fly-key Generation (OTFK): For
encryption/decryption, a 16-byte key gets expanded into

a 176-byte key which can then be reused for 128-bit blocks
of plaintext data. The 176-byte array that holds the key
accounts for a very large percentage of the RAM requirement
of AES. In cases where data memory is more important that
performance, the need for a 176-byte array can be eliminated
by generating the key on the fly during each round. This
technique becomes proportionally less efficient compared to
the pre-keyedversion with increasing size of the plaintext to
be encrypted with the same key.

9) MixColumns with 16-bit Memory Writes (MIX16):As
described in Section III, theMixColumns transformation can
be implemented using XOR operations and table look-ups.
Each 8-bit entry in the state is replaced by XORing four 8-
bit values from precomputed tables. To reduce the number of
memory writes, we can compute a 16-bit entry for the state
by using a 8-bit shift and an OR operation on two sets of four
8-bit values. The effectiveness of this optimization depends
on the speed of memory writes versus the cost of bitwise-or
and bitwise-shift operations. For example, ifA8, B8 are 8-
bit numbers andv8[] andv16[] are arrays of 8-bit and 16-bit
elements respectively, the statements:

v8[0] = A8;

v8[1] = B8;

have the same effect as

v16[0] = A8|(B8 ≪ 8);

B. Compiler Optimizations

The msp-gcc compiler we are using is based on version
3.2.3 of GNU GCC. It includes several compiler optimizations
which are broadly divided into 4 categories:

• O1 (level 1): compiler tried to reduce code size and
execution time

• O2 (level 2): compiler turns on all optimizations except
loop unrolling, function inlining and register renaming

• O3 (level 3): compiler turns on all optimizations including
loop unrolling, function inlining and register renaming

• Os (Optimize for size): compiler turns on all O2 opti-
mizations that do not increase code size

Since the primary focus of our paper is to optimize for
speed, we compiled all versions of our implementation with
the O3 option. Since O3 turns on a large number of compiler
optimizations, in some cases, it cancels out the effect of our
manual optimizations. To understand and analyze such cases
better, we also tested all our code without the use of any
compiler optimizations. This method enabled us to get a clear
idea of the effects of O3 as well as our manual optimizations.
We discuss each optimization and its effect in Section VI.

V. EXPERIMENTAL METHOD

A. The Setup

As mentioned before, we chose to develop on the MSP430
platform. These microcontrollers are available in different
configurations. Key features of the MSP430F1611 MCU we
used are listed below:

Fig. 4. SoftBaugh DZ1611 Zigbee demo board

• Clock frequency of 8 MHz
• 48 KB ISP Flash ROM
• 10 KB RAM
• Power consumption: 330µA at 1 MHz, 2.2 V
Our main reason for choosing the MSP430F1611 is the

commercial availability of an evaluation board from SoftBaugh
Inc. The evaluation board interfaces the MSP430F1611 to a
Chipcon CC2420 transceiver chip as specified in technical
documentation provided by TI [11]. Key features of the
CC2420 are listed below:

• 2.4 GHz IEEE 802.15.4 compliant RF transceiver
• 250 kbps effective data rate
• Low power consumption: 17.4 - 19.7 mA, 2.1 - 3.6 V
• 4-wire SPI interface
• Serial clock up to 10 MHz
• Hardware MAC encryption (AES-128)
All code was tested on the Softbaugh DZ1611 Zigbee

demo boards (Fig. 4, taken from [12]). The MSP430 can be
programmed by either a JTAG interface provided on the board
or a custom BootStrap Loader (BSL) interface.

Some changes were made to the board:
• The default 6 MHz crystal oscillator was replaced with

a 8 MHz crystal to get peak performance from the
microcontroller.

• Four pull-up resistors were added to the 4-wire SPI
interface between the CC2420 and the MSP430. This was
done because the CC2420 operates onactive lowsignals.

We chose to develop using the open source mspgcc
toolchain. This is a port of the gcc compiler and a subset of
GNU tools to the MSP430 platform. We used mspgcc version
3.2.3.

B. Metrics

Upon reviewing previous works, we see significant disagree-
ment with regard to the resource requirements of AES as well
as its performance capability. Several reasons can accountfor
this:

1) Measurement methodology
2) Differences in implementation

3) Hardware platform
4) Software tools
In this section, we discuss an accurate method for measuring

parameters that are of interest to us: namely, RAM, ROM
and Speed. This will help us better evaluate AES and its
implementations.

1) ROM: or Code memory is the flash memory used by the
program when it is loaded onto the MCU. This is the most
straightforward parameter to measure. When the C code is
compiled, the compiler generates several segments. The TEXT
segment contains executable instructions and global constants
and is loaded into the the MCU’s ROM. The size of each
segment and its target physical address can be obtained using
the msp430-objdump utility. We are interested in measuring
the code memory used by the AES implementation only
and not the whole program which includes themain()
function with the code to initialize the MCU and call the
encryption/decryption functions. To do this we compile the
test code without the encryption/decryption code to obtainthe
size contributed by the main function and subtract this from
the size of the TEXT segment of the original test code. This
value is the best estimate of the ROM requirement of the AES
module.

2) RAM: or Data memory refers to the volatile, high-speed
on-board memory of the MCU. This resource is extremely
limited on most embedded systems. It is also hard to measure
because in addition to global variables, we also need to take
into account the variable stack size. Accurately measuringthe
stack size has been a difficult challenge for embedded systems
developers. Yet it is important because bugs resulting from
stack overflows are unpredictable and hard to find. We chose
to use a very accurate and reliable method that tends to be
somewhat involved. The steps required to calculate the stack
size are given below:

1) Compile the code with the -g option to include debug-
ging information for use by msp430-gdb (MSP430 port
of the GNU debugger)

2) Load the code on the MCU through msp430-gdb using
the JTAG interface for real-time debugging

3) Using msp430-gdb, set break points at the start of each
function

4) Set a watch for register 1 of the MSP430 microcon-
troller. Register 1 is used as the Stack Pointer (SP)

5) Run the program and keep track of the minimum value
of SP. This is because the stack always grows up, thus
the minimum value of SP would give us the maximum
size of the stack

6) Subtract the minimum value of the stack from the value
of SP at themain() function to get the stack depth of
AES

Once we have a value for the maximum depth of the stack,
we can add the size of the DATA segment and the BSS
segment to account for initialized and uninitialized global
variables.

3) Software Encryption Speed:is the number of bits of
plaintext data that can be encrypted per second. Since the

Scale Accuracy
100µs/divsion ±1µs
200µs/divsion ±2µs
500µs/divsion ±5µs

TABLE III
SCALE SETTINGS ANDACCURACY OF THEAGILENT DSO3202A

time to encrypt a single block of plaintext is on the order
of microseconds, it is important to rely on a method that
can measure at this resolution. To avoid any interference, we
execute our code in a standalone mode without any underlying
operating system on the msp430 and without the possibility
of interruption.

We use the digital output pins of the MCU to set pins high
just before initiating the encryption process and set it lowjust
after completion. Using a oscilloscope capable of sampling
voltage at a rate of 2 giga-samples per second, we recorded
the square wave generated by the output pin going high and
low and used the auto-measure feature of the scope to measure
the time when the digital output pin remained high. We used
an infinite loop which encrypted and decrypted a block of data.
For AES, a single block is 128 bits in size. Our code sets the
output pin high during encryption and low during decryption.
The accuracy of this technique depends on the scale setting of
the oscilloscope display. In Table III, we list the scale settings
that we have used for our measurements and the accuracy of
each setting.

We also use this time measurement technique to measure
time taken by the AES key expansion process and the CC2420
transmission rate.

4) CC2420 Hardware Encryption Speed:poses a slightly
different challenge because the encryption takes place on the
CC2420 chip. We are limited by the interface it provides to
the microcontroller to make any time measurements. Though
the CC2420 supports a serial clock of up to 10 MHz, we
are limited to 4 MHz by the MSP430 SPI (Serial Peripheral
Interface) master mode. However, a serial clock of 4 MHz
allows us to interact with the CC2420 at a rate of 4 Mbps
which is much higher than the radio transmission rate of 250
kbps. Therefore, we do not see the serial link as a major
performance bottleneck.

Similar to our timing method for software encryption, we
used digital output pins of the MSP430 and an oscilloscope to
measure time. Using the CC2420 hardware module involves
multiple steps. These are:

1) Writing to the CC2420 RAM
2) Issuing the encrypt command to the CC2420
3) Wait for encryption module to complete processing by

requesting status byte
4) Read from the CC2420 RAM

Though step 3 alone accounts for the time spent on encryp-
tion by the CC2420 hardware module, we need to factor in all
of the steps listed above to get an application level estimate
of encryption time.

Note that we evaluate the characteristics of the CC2420
in standalone encryption mode only. We assume that the
circuitry used in standalone mode is the same as the circuitry
used in inline mode. However, the CC2420 is not capable of
performing decryption in standalone mode, so our results are
limited to encryption only.

VI. RESULTS

A. Effects of Optimizations

Fig. 5 shows the effects of applying our optimization
techniques on performance, RAM and ROM with the O3
compiler option, Fig. 6 shows similar metrics without the O3
option.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12

Version

R
O
M
 (
b
y
te
s
)

0

100

200

300

400

500

600

R
A
M
 (
b
y
te
s
)

ROM

RAM

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

Version

T
im
e
 (
m
s
)

Encryption time (ms)

Decryption time (ms)

Key Expansion time (ms)

Fig. 5. Effect of optimizations on encryptions speed, ROM andRAM usage.
Refer to Table IV for optimizations associated with version numbers

Version Optimizations applied
1 NONE
2 SPECIAL, DATASZ(8-bits)
3 SPECIAL, DATASZ(16-bits)
4 SPECIAL, DATASZ(32-bits)
5 SPECIAL, DATASZ(64-bits)
6 SPECIAL, DATASZ(64-bits), MIX16
7 SPECIAL, DATASZ(64-bits), MIX16, UNROLL
8 SPECIAL, DATASZ(64-bits), MIX16, INLINE
9 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM
10 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBUF
11 SPECIAL, DATASZ(64-bits), MIX16, INLINE, REDMEM, LOCBUF, GLOB
12 SPECIAL, DATASZ(64-bits), INLINE, REDMEM, LOCBUF, GLOB

TABLE IV
OPTIMIZATIONS ASSOCIATED WITH VERSION NUMBER OF EACH

IMPLEMENTATION . ALL VERSIONS COMPILED WITH -O3 OPTION

PROVIDED BY MSP-GCC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Version

T
im
e
 (
m
s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
O
M
 (
b
y
te
s
)

Encryption time (ms)

Key Expansion time (ms)

ROM

Fig. 6. Effect of optimizations on encryption speed and code size (without
the use of msp-gcc O3 option). Refer to Table IV for optimizations associated
with version numbers

1) Specialization of Code (SPECIAL):Modifying the
generic baseline implementation and making it specializedfor
AES-128 reduced the code size from 4942 to 4316 bytes. Due
to the elimination of conditional constructs that accommodated
the key expansion for different key sizes, we see a performance
improvement of 183.52% in the key expansion process. Since
the RAM size depends on the maximum depth of the stack,
it is not effected by the key expansion process which happens
before the encryption process that has a much greater stack
requirement.

2) Varying Data Type Size (DATASZ):As expected, moving
from 8-bit types to 16-bit types has a huge performance benefit
of 39.53% due to the use of a 16-bit microcontroller. We also
see a drop in code size from 4882 to 4314 bytes and RAM
size from 244 to 232 bytes.

The mspgcc compiler also supports 32-bit and 64-bit types.
On testing with these sizes, the gain in speed is negligible.
However, on testing the same variations without the compiler
optimization flag, we see a more noticeable difference. With-
out the O3 flag, in moving from 16-bit to 64-bit types, the
speed increased by 7.03% while the ROM decreased from
6138 to 5950 bytes. This shows that the compiler optimizations
work well to speed up theAddRoundKey transformation.

3) Loop Unrolling (UNROLL): When the O3 compiler
optimization is selected, the compiler automatically tries to
perform loop unrolling as well as function inlining. We see
that manually unrolling the loop when the O3 compiler opti-
mization was selected had a negative impact on RAM, ROM
and Speed. The RAM increased by more than 2.2 times and
the code size increased by more than 3.61 times. The speed
also decreased by 14.73%.

This effect of loop unrolling is counter-intuitive and is due
to the compiler’s inability to determine which portions of code
need to be optimized. To verify this, we applied manual loop
unrolling without the use of O3 and as expected, we observed
a slight increase of 2.15% in speed and a 452 byte increase
in code size.

4) Function Inlining (INLINE): As mentioned before, O3
directs the compiler to attempt function inlining on the entire

code. Therefore, compiling the source code with O3 with
manual function inlining only gave us a negligible advantage.
To evaluate the advantage gained due to function inlining, we
compiled the source code without O3 and observed an increase
of 20.55% in speed without sacrificing code space. This is
because each transformation is called only once within the
main loop which iterates through the rounds.

5) Reducing Memory Moves (REDMEM) :Reducing
movement of data from one buffer to the other during the
encryption process resulted in a 42.12% increase in perfor-
mance. But this also increased the code size significantly by
1134 bytes.

When we tested the effects of reducing memory moves with-
out the use of compiler optimizations, we observed a decrease
in performance. This is because the compiler optimization
enforces the use of more direct memory addressing which
results in faster array accesses.

6) Eliminate Local buffers in Functions (LOCBUF):Use of
a local buffer for the state within a function resulted in only
a slight increase in performance, code size and RAM. This
was again due to the effect of O3 which optimizes memory
accesses using pointers. Without the use of O3, we see a more
significant increase of 27.30% in performance and a decrease
of 1096 bytes in code size.

7) Use of Global Variables (GLOB):Storing the entire
key schedule in a global variable hurt the performance of the
key expansion process by 6.38% and resulted in a negligible
improvement in encryption time. Again, without the use of
O3, use of global key schedule improved key expansion
performance significantly by 29.27%. This shows that the
compiler is also effective at optimizing memory accesses for
global variables.

8) On-the-fly-key Generation (OTFK):Generating keys on-
the-fly saves 160 bytes of RAM. This represents a key trade-
off between performance and RAM usage. Performance is hurt
only when encrypting multiple blocks as the round keys are
recalculated for each block. This design choice largely depends
on the size of the plaintext data to be encrypted using a single
key.

9) MixColumns with 16-bit Memory Writes (MIX16):
When compiled with the O3 option, using an 8-bit shift and or
operation to generate a 16-bit value to write to RAM instead of
writing two 8-bit values hurt performance by 2.22%. However,
without the use of compiler optimizations, the performance
showed a slight improvement. This shows that the compiler
optimizes memory writes enough to make the use of 16-bit
writes unnecessary.

B. Recommended Optimizations

Based on our analysis, we recommend these optimizations:

• SPECIAL
• DATASZ (64-bits)
• INLINE
• LOCBUF
• REDMEM
• GLOB

Using the msp430-gcc compiler at the O3 optimization level
boosts performance by an additional 40.49%.

OTFK can be used on top of the above optimizations in
cases where it is important to use minimal amount of RAM
and the size of the plaintext data to be encrypted with a single
key is not too large. If however, the data to be encrypted is
large, then to prevent data replay attacks, different keys will
have to be used anyway and therefore OTFK is less useful.

Using the above optimizations, we achieved an encryption
speed of 286.35 kbps, RAM requirement of 260 bytes and a
code size of 5160 bytes.

C. Comparison with Other Implementations

In Fig. 7, we see how our fastest implementation com-
pares to previous attempts at optimizing AES on a similar
platform. Our timing measurements for each implementation
differ slightly from the published values as we compiled and
tested each implementation on our platform. We can see that
we have accomplished a significant improvement of 104.02%
in encryption speed, 12.5% in key expansion and an overall
improvement of 84.69% over the previous best performing
implementation.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

Implementation

T
im
e
 (
m
s
)

Encryption time

Key Expansion time

Fig. 7. Comparison of Encryption Time + Key Expansion Time between our
implementation (number 5) and other implementations (numbers 1-4). Refer
to Table V for details about which implementation correspondswith which
number above.

Additionally, Table V compares ROM usage among other
implementations. Our version has the smallest ROM usage
of all our empirically measured code sizes, 5160 bytes. Note
that implementation 3 lists a smaller published ROM size, due
most likely to our use of the -O3 compiler optimizations for
our measured values.

RAM usage was similar among all implementations, and
depends largely on whether keys are generated on the fly or
pre-computed. Additionally, it is not clear how RAM usage
was measured in other published implementations, especially
with regard to stack usage.

D. Comparison with Hardware Implementation

In this section we will examine the pros and cons of using
a hardware implementation as well as describe our experience
in getting it up and running.

Implementation Reference paper Measured ROM Usage PublishedROM Usage
1 [8] 5968 bytes n/a
2 [6] 6780 bytes 12616 bytes
3 [7] 6848 bytes 3322 bytes
4 [13] n/a n/a
5 Our implementation 5160 bytes n/a

TABLE V
INFORMATION ABOUT IMPLEMENTATIONS COMPARED INFIG. 7.

MEASUREDROM USAGE IS TAKEN FROM THE REFERENCE

IMPLEMENTATION CODE WE USED, COMPILED WITH -O3 OPTIMIZATIONS.
PUBLISHED ROM USAGE IS TAKEN DIRECTLY FROM EACH PUBLISHED

REFERENCE.

Process Time (µs)
Writing to the CC2420 RAM 94.40
Issuing the encrypt/decrypt command to the CC2420 6.40
Wait for encryption module to complete processing by requesting status byte 18.40
Read from the CC2420 RAM 102.40

TABLE VI
TIME TAKEN TO COMPLETE EACH STEP REQUIRED TO ENCRYPT USING

THE CC2420HARDWARE AES MODULE

Table VI shows the time taken to encrypt using the CC2420
AES module. As expected, the hardware module is much
faster than AES in software. This high speed of encryption
does not directly translate into a better performing WSN since
the limiting factor of the network is the radio communication
rate. We have already shown that AES in software can exceed
the maximum specified rate of 250 kbps of IEEE 802.15.4-
compliant WSNs. However, using the hardware module for
data encryption does free up the microprocessor for a few mil-
liseconds which can be used for other tasks. In a system where
performance is crucial, allocating encryption to the CC2420
hardware and efficiently using microprocessor resources can
result in slightly better performance.

The major disadvantage of using hardware AES is its
lack of flexibility. Though AES-128 is sufficiently secure,
security schemes are regularly evaluated and updated to ensure
that they are not susceptible to newly developed attacks. In
[14], NIST acknowledges that the widely used cipher-based
authentication mode, CBC-MAC, has security deficiencies and
details a specification for the CMAC mode. The CC2420
implements AES-based authentication using the CBC-MAC
mode of operation, therefore we assume that its hardware
implementation suffers from these deficiencies. Therefore,
relying on hardware for security is a concern for secure sensor
networks.

We also faced considerable difficulty in using the CC2420
AES hardware module due to lack of proper documentation.
We found that the CC2420 is incapable of performing en-
cryption/decryption unless the ciphertext is preceded by an
802.15.4-compliant header. This means that the hardware AES
module cannot be used if the data are not formatted to be
strictly compliant with IEEE 802.15.4. This is another major
drawback since sensor networks almost always have differ-
ent resource constraints that make it necessary to customize
protocol specifications.

VII. C ONCLUSION

In this paper, we demonstrated that it is possible for an
optimized C implementation of AES encryption-decryption to
match the communication speed of a Zigbee radio. We show
which optimizations work (and which do not) in increasing
computational speed and reducing memory footprint. Addi-
tionally, we show how they interact with the optimizations
of the GCC compiler. We provide a common, rigorous set
of procedures and metrics for accurately measuring execution
speed, ROM usage, and RAM usage. We use these metrics to
benchmark our implementation along with four existing soft-
ware implementations of AES on a common platform (Texas
Instruments’ MSP430 processor with a Chipcon CC2420
Zigbee radio) and show that our optimized implementation
outperforms all previous implementations. We also evaluate
the hardware implementation on the Zigbee radio and find
that it outperforms all software-based schemes. However, this
comes at the cost of lack of flexibility, e.g., different sized
data blocks and difficulty of evolving to patch future security
vulnerabilities.

In future work, we will be using the developed encryption-
decryption scheme as a primitive in a secure application and
to develop efficient interfaces with other primitives such as
authentication. The ultimate goal is to provide an optimal,
secure communication infrastructure for common embedded
platforms.

REFERENCES

[1] Advanced Encryption Standard (AES), ser. FIPS PUB 197, November
2001.

[2] IEEE Standard for Information technology- Telecommunications and
information exchange between systems- Local and metropolitan area
networks- Specific requirements Part 15.4: Wireless MediumAccess
Control (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs), ser. IEEE Standard
802.15.4-2006, September 2006.

[3] B. Gladman, “Brian gladman’s aes implementation,”
http://fp.gladman.plus.com/AES/index.htm.

[4] “Eyes project,”http://www.eyes.eu.org/.
[5] “Moteiv corportation,”http://www.moteiv.com/.
[6] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark ofblock

ciphers for wireless sensor networks,”ACM Trans. Sen. Netw., vol. 2,
no. 1, pp. 65–93, 2006.

[7] A. Vitaletti and G. Palombizio, “Rijndael for sensor networks: Is speed
the main issue?”Electron. Notes Theor. Comput. Sci., vol. 171, no. 1,
pp. 71–81, 2007.

[8] D.-R. Duh, T.-C. Lin, C.-H. Tung, and S.-J. Chan, “An implementation
of aes algorithm with the multiple spaces random key pre-distribution
scheme on mote-kit 5040,” inSUTC ’06: Proceedings of the IEEE
International Conference on Sensor Networks, Ubiquitous,and Trust-
worthy Computing - Vol 2 - Workshops. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 64–71.

[9] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of
Applied Cryptography. CRC Press, 2001.

[10] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
Methods and Techniques, National Institute of Standards and Technol-
ogy, December 2001.

[11] S. Karthikeyani,IEEE 802.15.4TM and ZigBeeTM Hardware Platform
using MSP430F1612, Texas Instruments, September 2005.

[12] “Softbaugh, inc.”http://www.softbaugh.com/.
[13] T. Instruments. (2008) Z-stack: Zigbee protocol stack from texas

instruments. [Online]. Available: http://www.ti.com
[14] M. Dworkin, Recommendation for Block Cipher Modes of Operation:

The CMAC Mode for Authentication, National Institute of Standards and
Technology, May 2005.

