Determining Placement of Intrusion Detectors
for a Distributed Application
through Bayesian Network Modeling

Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon

School of Electrical and Computer Engineering, Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907 USA
{gmodeloh, sbagchi, lebanon}@purdue.edu

Abstract. To secure today’s computer systems, it is critical to have dif-
ferent intrusion detection sensors embedded in them. The complexity of
distributed computer systems makes it difficult to determine the appro-
priate configuration of these detectors, i.e., their choice and placement.
In this paper, we describe a method to evaluate the effect of the detector
configuration on the accuracy and precision of determining security goals
in the system. For this, we develop a Bayesian network model for the
distributed system, from an attack graph representation of multi-stage
attacks in the system. We use Bayesian inference to solve the problem of
determining the likelihood that an attack goal has been achieved, given
a certain set of detector alerts. We quantify the overall detection perfor-
mance in the system for different detector settings, namely, choice and
placement of the detectors, their quality, and levels of uncertainty of
adversarial behavior. These observations lead us to a greedy algorithm
for determining the optimal detector settings in a large-scale distributed
system. We present the results of experiments on Bayesian networks rep-
resenting two real distributed systems and real attacks on them.

Key words: Intrusion detection, detector placement, Bayesian networks,
attack graph

1 Introduction

It is critical to provide intrusion detection to secure todays distributed computer
systems. The overall intrusion detection strategy involves placing multiple detec-
tors at different points of the system, at network ingress or combination points,
specific hosts executing parts of the distributed system, or embedded in specific
applications that form part of the distributed system. At the current time, the
placement of the detectors and the choice of the detectors are more an art than
a science, relying on expert knowledge of the system administrator.

The impact of the choice is significant on the accuracy and precision of the
overall detection function in the system. The detectors are of different qualities,
in terms of their false positive (FP) and false negative (FN) rates, some may
have overlapping functionalities, and there may be many possible positions for

2 G. Modelo-Howard, S. Bagchi, and G. Lebanon

deploying a detector. Therefore the entire space of exploration is large and yet
not much exists today to serve as a scientific basis for the choices. This paper is
a step in that direction.

In the choice of the number of detectors, more is not always better. There
are several reasons why an extreme design choice of a detector at every possible
network point, host, and application may not be ideal. First, there is the eco-
nomic cost of acquiring, configuring, and maintaining the detectors. Detectors
are well-known to need tuning to achieve their best performance and to meet
the targeted needs of the application (specifically in terms of the false positive-
false negative performance balance). Second, a large number of detectors would
mean a large number of alert streams under attack as well as benign conditions.
These could overwhelm the manual or automated process in place to respond
to intrusion alerts. Third, detectors impose a performance penalty on the dis-
tributed system that they are meant to protect. The penalty arises because the
detectors typically share the computational cycles and the bandwidth along with
the application. Fourth, a system owner may have specific security goals, e.g.,
detecting a security goal may be very important and requires high sensitivity,
while another may need to be done with less tolerance for false positives.

The problem that we address in this paper is, given the security goals in a
system and a model for the way multi-stage attacks can spread in the system,
how can we automatically and based on scientific principles, select the right set
of detectors and their placements. Right is determined by an application-specific
requirement on the true positive (TP) - true negative (TN) rate of detection in
the system. We explore the space of the configuration of the individual detectors,
their placement on the different hosts or network points, and their number.

Our solution approach starts with attack graphs, which are a popular repre-
sentation for multi-stage attacks [9]. Attack graphs are a graphical representation
of the different ways multi-stage attacks can be launched against system. The
nodes depict successful intermediate attack goals with the end nodes represent-
ing the ultimate goal of an attack. The edges represent the relation that one
attack goal is a stepping stone to another goal and will thus have to be achieved
before the other. The nodes can be represented at different levels of abstraction,
thus the attack graph representation can bypass the criticism that detailed at-
tack methods and steps will need to be known a priori to be represented (which
is almost never the case for reasonably complex systems). Research in the area
of attack graphs has included automation techniques to generate these graphs
[11], [25], to analyze them [14], [21], and to reason about the completeness of
these graphs [14].

We model the probabilistic relation between attack steps and the detectors
using the statistical Bayesian network formalism. Bayesian network is particu-
larly appealing in this setting since it enables computationally efficient inference
for the unobserved nodes—the attack goals—based on the observed nodes—the
detector alerts. The important question that Bayesian inference can answer for
us is, given a set of detector alerts, what is the likelihood that an attack goal
has been achieved. Further the Bayesian network can be relatively easily created

Determining Placement of Intrusion Detectors 3

from an attack graph structure for the system, which we assume is given by
existing methods.

We design an algorithm to systematically perform Bayesian inference and
determine the accuracy and precision for determining that attack goals have
been achieved. The algorithm then chooses the number, placement, and choice
of detectors that gives the highest value of an application-specific utility func-
tion. We apply our technique to two specific systems—a distributed e-commerce
system and a Voice-over-IP (VoIP) system and demonstrate the optimal choice
under different conditions. The conditions we explore are different qualities of
detectors, different level of knowledge of attack paths, and different threshold
settings by the system administrator for determining if an attack goal is reached.
Our exploration also shows that the value of a detector for determining an attack
step degrades exponentially with distance from the site of the attack.

The rest of this document is organized as follows. Section 2 introduces the
attack graphs model and provides a brief presentation of inference in Bayesian
networks. Section 3 describes the model and algorithm used to determine an
appropriate location for detectors. Section 4 provides a description of the sys-
tems used in our experiments. Section 5 presents a complete description of the
experiments along with their motivations to help determine the location of the
intrusion detectors. Section 6 presents related work and section 7 concludes the
paper and discusses future work.

2 Background

2.1 Attack Graphs

An attack graph is a representation of the different methods by which a dis-
tributed system can be compromised. It represents the intermediate attack goals
for a hypothetical adversary leading up to some high level attack goals. The at-
tack goal may be in terms of violating one or more of confidentiality, integrity,
or availability of a component in the system. It is particularly suitable for repre-
senting multi-stage attacks, in which a successful attack step (or steps) is used
to achieve success in a subsequent attack step. An edge will connect the an-
tecedent (or precondition) stage to the consequent (or postcondition) stage. To
be accurate, this discussion reflects the notion of one kind of attack graph, called
the exploit-dependency attack graph [11], [14], [25], but this is by far the most
common type and considering the other subclass will not be discussed further in
this paper.

Recent advances in attack graph generation have been able to create graphs
for systems of up to hundreds and thousands of hosts [11], [25].

For our detector-location framework, exploit-dependency attack graphs are
used as the base graph from which we build the Bayesian network. For the rest
of this paper, the vertex representing an exploit in the distributed system will
be called an attack step.

4 G. Modelo-Howard, S. Bagchi, and G. Lebanon
.*27(.}%@

Fig. 1: Attack graph model for a sample web server. There are three starting vertices,
representing three vulnerabilities found in different services of the server, from where
the attacker can elevate the privileges in order to reach the final goal of compromising
the password file.

2.2 Inference in Bayesian Networks

Bayesian networks [13] provide a convenient framework for modeling the re-
lationship between attack steps and detector alerts. Using Bayesian networks
we can infer which unobserved attack steps have been achieved based on the
observed detector alerts.

Formally, a Bayesian network is a joint probabilistic model for n random
variables (z1,...,z,) based on a directed acyclic graph G = (V, E) where V is
a set of nodes corresponding to the variables V = (z1,...,2,) and E C VaV
contains directed edges connecting some of these nodes in an acyclic manner.
Instead of weights, the graph edges are described by conditional probabilities of
nodes given their parents that are used to construct a joint distribution P(V)
or P(x1,...,Zpn).

There are three main tasks associated with Bayesian networks. The first is in-
ferring values of variables corresponding to nodes that are unobserved given val-
ues of variables corresponding to observed nodes. In our context this corresponds
to predicting whether an attack step has been achieved based on detector alerts.
The second task is learning the conditional probabilities in the model based on
available data which in our context corresponds to estimating the reliability of
the detectors and the probabilistic relations between different attack steps. The
third task is learning the structure of the network based on available data. All
three tasks have been extensively studied in the machine learning literature and,
despite their difficulty in the general case, may be accomplished relatively easily
in the case of a Bayesian network.

We focus in this paper mainly on the first task. For the second task, to es-
timate the conditional probabilities, we can use characterization of the quality
of detectors [20] and the perceived difficulty of achieving an attack step, say
through risk assessment. We consider the fact that the estimate is unlikely to
be perfectly accurate and provide experiments to characterize the loss in perfor-
mance due to imperfections. For the third task, we rely on extensive prior work
on attack graph generation and provide a mapping from the attack graph to the
Bayesian network.

In our Bayesian network, the network contains nodes of two different types
V = VolUW. The first set of nodes V, corresponds to binary variables in-
dicating whether specific attack steps in the attack graph occurred or not.
The second set of nodes V}, corresponds to binary variables indicating whether

Determining Placement of Intrusion Detectors 5

a specific detector issued an alert. The first set of nodes representing attack
steps are typically unobserved while the second set of nodes corresponding
to alerts are observed and constitute the evidence. The Bayesian network de-
fines a joint distribution P(V) = P(V,,V}) which can be used to compute the
marginal probability of the unobserved values P(V,) and the conditional proba-
bility P(V,|Vs) = P(Va, Vi)/P(V3) of the unobserved values given the observed
values. The conditional probability P(V,|V}) can be used to infer the likely values
of the unobserved attack steps given the evidence from the detectors. Compar-
ing the value of the conditional P(V,|V4) with the marginal P(V,) reflects the
gain in information about estimating successful attack steps given the current
set of detectors. Alternatively, we may estimate the suitability of the detectors
by computing classification error rate, precision, recall and Receiver Operating
Characteristic (ROC) curve associated with the prediction of V,, based on V.

P(v=1) [P(v=0)
0 1-6

P(u=1]v) | P(u=0]v)
v=1 a 1-a

v=0 B 1-B

Fig. 2: Simple Bayesian network with two types of nodes: an observed node (u) and
an unobserved node (v). The observed node correspond to the detector alert in our
framework and its conditional probability table includes the true positive (o) and false

positive (3).

Note that the analysis above is based on emulation done prior to deploy-
ment with attacks injected through the vulnerability analysis tools, a plethora
of which exist in the commercial and research domains, including integrated
infrastructures combining multiple tools.

Some attack steps have one or more detectors that specifically measure
whether an attack step has been achieved while other attack steps do not have
such detectors. We create an edge in the Bayesian network between nodes rep-
resenting attack steps and nodes representing the corresponding detector alerts.
Consider a specific pair of nodes v € V,,, u € V}, representing an attack step and a
corresponding detector alert. The conditional probability P(v|u) determines the
values P(v = 1lu = 0), P(v = Oju = 1), P(v = 0Ju = 0), P(v = 1|u = 1). These
probabilities representing false negative, false positive, and correct behavior (last
two) can be obtained from an evaluation of the detectors quality.

3 System Design

3.1 Framework Description

Our framework uses a Bayesian network to represent the causal relationships be-
tween attack steps and also between attack steps and detectors. Such relation-

6 G. Modelo-Howard, S. Bagchi, and G. Lebanon

ships are expressed quantitatively, using conditional probabilities. To produce
the Bayesian network', an attack graph is used as input. The structure of the
attack graph maps exactly to the structure of the Bayesian network. Each node
in the Bayesian network can be in one of two states. Each attack stage node
can either be achieved or not by the attacker. Each detector node can be in one
of two states: alarm generated state or not. The leaf nodes correspond to the
starting stages of the attack, which do not need any precondition, and the end
nodes correspond to end goals for an adversary. Typically, there are multiple leaf
nodes and multiple end nodes.

The Bayesian network requires that the sets of vertices and directed edges
form a directed acyclic graph (DAG). This property is also found in attack
graphs. The idea is that the attacker follows a monotonic path, in which an
attack step does not have to be revisited after moving to a subsequent attack
step. This assumption can be considered reasonable in many scenarios according
to experiences from real systems.

Input from

Intrusion

detectors

Attack Graph ._|Bayesian Network - Inference
algorithm o algorithm o algorithm

Fig. 3: A block diagram of the framework to determine placement of intrusion detectors.
The dotted lines indicate a future component, controller, not included currently in the
framework. It would provide for a feedback mechanism to adjust location of detectors.

A Bayesian network quantifies the causal relation that is implied by an edge
in an attack graph. In the cases when an attack step has a parent, determined
by the existence of an edge coming to this child vertex from another attack
step, a conditional probability table is attached to the child vertex. As such,
the probability values for each state of the child are conditioned by the state(s)
of the parent(s). In these cases, the conditional probability is defined as the
probability of a packet from an attacker that already achieved the parent attack
step, achieving the child attack step. All values associated to the child are in-
cluded in a conditional probability table (CPT). As an example, all values for
node u in Figure 2 are conditioned on the possible states of its parent, node
v. In conclusion, we are assuming that the path taken by the attacker is fully
probabilistic. The attacker is following a strategy to maximize the probability of

! Henceforth, when we refer to a node, we mean a node in the Bayesian network, as
opposed to a node in the attack graph. The clarifying phrase is thus implied.

Determining Placement of Intrusion Detectors 7

success, to reach the security goal. To achieve it, the attacker is well informed
about the vulnerabilities associated to a component of the distributed system
and how to exploit it. The fact that an attack graph is generated from databases
of vulnerabilities support this assumption.

The CPTs have been estimated for the Bayesian networks created. Input
values are a mixture of estimates based on testing specific elements of the system,
like using a certain detector such as IPTables [12] or Snort [28], and subjective
estimates, using judgment of a system administrator. From the perspective of the
expert (administrator), the probability values reflect the difficulty of reaching a
higher level attack goal, having achieved some lower level attack goal.

A potential problem when building the Bayesian network is to obtain a good
source for the values used in the CPTs of all nodes. The question is then how
to deal with possible imperfect knowledge when building Bayesian networks. We
took two approaches to deal with this issue: (1) use data from past work and
industry sources and (2) evaluate and measure in our experiments the impact
such imperfect knowledge might have.

For the purposes of the experiments explained in section 5, we have chosen
the junction tree algorithm to do inference, the task of estimating probabilities
given a Bayesian network and the observations or evidence. There are many
different algorithms that could be chosen, making different tradeoffs between
speed, complexity, and accuracy. Still, the junction tree engine is a general-
purpose inference algorithm well suited for our experiments since it works under
our scenario: allows discrete nodes, as we have defined our two-states nodes, in
direct acyclic graphs such as Bayesian networks, and does exact inference. This
last characteristic refers to the algorithm computing the posterior probability
distribution for all nodes in network, given some evidence.

3.2 Algorithm

We present here an algorithm to achieve an optimal choice and placement of
detectors. It takes as input (i) a Bayesian network with all attack vertices, their
corresponding CPTs and the host impacted by the attack vertex; (ii) a set of
detectors, the possible attack vertices each detector can be associated with, and
the CPTs for each detector with respect to all applicable attack vertices.

Input: (i) Bayesian network BN = (V,CPT(V),H(V)) where V is the set
of attack vertices, CPT (V) is the set of conditional probability tables associated
with the attack vertices, and H (V) is the set of hosts affected if the attack vertex
is achieved.

(ii) Set of detectors D = (d;,V(d;), CPT]i][j]) where d; is the ith detec-
tor, V(d;) is the set of attack vertices that the detector d; can be attached to
(i.e., the detector can possibly detect those attack goals being achieved), and
CPTYi][j] Y5 € V(d;) is the CPT tables associated with detector ¢ and attack
vertex j.

Output: Set of tuples § = (d;, m;) where d; is the ith detector selected and
m; is the set of attack vertices that it is attached to.

8 G. Modelo-Howard, S. Bagchi, and G. Lebanon

DETECTOR-PLACEMENT (BN, D)

1 System-Cost =0

2 Sort all (di,a;),a; € V(d;),Vi by BENEFIT(d;, a;). Sorted list = L

3 Length(L)=N

4 for (i = 1toN)

5 System-Cost = System-Cost + COST(d;, a;)

6 /* COST(d;, aj) can be in terms of economic cost, cost due
to false alarms and missed alarms, etc. */

7 if (System-Cost > Threshold 7) break

8 if (d; € 0) add a; to m; € 6

9 else add (d;, m = a;) to 6

10 end for

11 return 6

BENEFIT (d, a)
/* This is to calculate the benefit from attaching detector d
to attack vertex a */
1 Let the end attack vertices in the BN be F = f;,i=1,..., M
For each f;, the following cost-benefit table exists
3 Perform Bayesian inference with d as the only detector
in the network and connected to attack vertex a
4 Calculate for each f;, the precision and recall, call them,
Precision(f;, d, a), Recall(f;, d, a)
5 System-Benefit = Zi\il [Benefity, (True Negative) x Precision(f;, d, a)
+ Benefity, (True Positive) x Recall(f;, d, a)]

[\

6 return System-Benefit

The algorithm starts by sorting all combinations of detectors and their as-
sociated attack vertices according to their benefit to the overall system (line 2).
The system benefit is calculated by the BENEFIT function. This specific design
considers only the end nodes in the BN, corresponding to the ultimate attack
goals. Other nodes that are of value to the system owner may also be considered.
Note that a greedy decision is made in the BENEFIT calculation each detector
is considered singly. From the sorted list, (detector, attack vertex) combinations
are added in order, till the overall system cost due to detection is exceeded (line
7). Note that we use a cost-benefit table (line 2 of BENEFIT function), which is
likely specified for each attack vertex at the finest level of granularity. One may
also specify it for each host or each subnet in the system.

The worst-case complexity of this algorithm is O(dv B(v, C PT (v))+dv log(dv)+
dv), where d is the number of detectors and v is the number of attack ver-
tices. B(v, CPT(v)) is the cost of Bayesian inference on a BN with v nodes and
CPT(v) defining the edges. The first term is due to calling Bayesian inference
with up to d times v terms. The second term is the sorting cost and the third
term is the cost of going through the for loop dv times. In practice, each detector
will be applicable to only a constant number of attack vertices and therefore the

Determining Placement of Intrusion Detectors 9

dv terms can be replaced by a constant times d, which will be only d considering
order statistics.

The reader would have observed that the presented algorithm is greedy-
choice of detectors is done according to a pre-computed order, in a linear sweep
through the sorted list L (the for loop starting in line 4). This is not guaranteed
to provide an optimal solution. For example, detectors d2 and ds taken together
may provide greater benefit even though detector d1 being ranked higher would
have been considered first in the DETECTOR-PLACEMENT algorithm. This is
due to the observation that the problem of optimal detector choice and placement
can be mapped to the 0-1 knapsack problem which is known to be NP-hard. The
mapping is obvious consider D x A (D: Detectors and A: Attack vertices). We
have to include as many of these tuples so as to maximize the benefit without
the cost exceeding , the system cost of detection.

4 Experimental Systems

We created three Bayesian networks for our experiments modeling two real sys-
tems and one synthetic network. These are a distributed electronic commerce
(e-commerce) system, a Voice-over-IP (VoIP) network, and a synthetic generic
Bayesian network that is larger than the other two. The Bayesian networks were
manually created from attack graphs that include several multi-step attacks for
the vulnerabilities found in the software used for each system. These vulnera-
bilities are associated with specific versions of the particular software, and are
taken from popular databases [6], [23]. An explanation for each Bayesian network
follows.

4.1 E-Commerce System

The distributed e-commerce system used to build the first Bayesian network is a
three tier architecture connected to the Internet and composed of an Apache web
server, the Tomcat application server, and the MySQL database backend. All
servers are running a Unix-based operating system. The web server sits in a de-
militarized zone (DMZ) separated by a firewall from the other two servers, which
are connected to a network not accessible from the Internet. All connections from
the Internet and through servers are controlled by the firewall. Rules state that
the web and application servers can communicate, as well as the web server
can be reached from the Internet. The attack scenarios are designed with the
assumption that the attacker is an external one and thus her starting point is
the Internet. The goal for the attacker is to have access to the MySQL database
(specifically access customer confidential data such as credit card information
node 19 in the Bayesian network of Figure 4).

As an example, an attack step would be a portscan on the application server
(node 10). This node has a child node, which represents a buffer overflow vulner-
ability present in the rpc.statd service running on the application server (node
12). The other attack steps in the network follow a similar logic and represent

10 G. Modelo-Howard, S. Bagchi, and G. Lebanon

Web Server

Internal
) Network
Firewall

Application Database
Server Server

Fig. 4: Network diagram for the e-commerce system and its corresponding Bayesian
network. The white nodes are the attack steps and the gray nodes are the detectors.

other phases of an attack to the distributed system. The system includes four
detectors: IPtables, Snort, Libsafe, and a database IDS. As shown in Figure 4,
each detector has a causal relationship to at least one attack step.

4.2 Voice-over-IP (VoIP) System

The VoIP system used to build the second network has a few more components,
making the resulting Bayesian network more complex. The system is divided
into three zones: a DMZ for the servers accessible from the Internet, an internal
network for local resources such as desktop computers, mail server and DNS
server, and an internal network only for VoIP components. This separation of
the internal network into two units follows the security guidelines for deploying
a secure VoIP system [18].

DNS Maill Internal User
Internal 3
Network 3

IWYies

VoIP Phone VolP Phone VoiceMail PBX/Proxy
d

(hardware)) (software)

Firewall

Fig. 5: VoIP system and its corresponding Bayesian network.

The VoIP network includes a PBX/Proxy, voicemail server and software-
based and hardware-based phones. A firewall provides all the rules to control

11

Attack = True | Attack = False
TP i T
ion= Recall = ——— Precision= ———
Detection = True ™ FP TP+EN =
Detection = False FN ™

Fig. 6: Parameters used for our experiments: True Positive (TP), False Positive (FP),
True Negative (TN), False Negative (FN), precision, and recall.

the traffic between zones. The DNS and mail servers in the DMZ are the only
accessible hosts from the Internet. The PBX server can route calls to the Internet
or to a public-switched telephone network (PSTN). The ultimate goal of this
multi-stage attack is to eavesdrop on VoIP communication. There are 4 detectors
Iptables, and three network IDSs on the different subnets.

A third synthetic Bayesian network was built to test our framework for exper-
iments where a larger network, than the other two, was required. This network
is shown in Figure 7(a).

5 Experiments

The correct number, accuracy, and location of the detectors can provide an ad-
vantage to the systems owner when deploying an intrusion detection system.
Several metrics have been developed for evaluation of intrusion detection sys-
tems. In our work, we concentrate on the precision and recall. Precision is the
fraction of true positives determined among all attacks flagged by the detection
system. Recall is the fraction of true positives determined among all real posi-
tives in the system. The notions of true positive, false positive, etc. are shown
in Figure 6. We also plot the ROC curve which is a traditional method for char-
acterizing detector performanceit is a plot of the true positive against the false
positive.

For the experiments we create a dataset of 50,000 samples or attacks, based
on the respective Bayesian network. We use the Matlab Bayesian network tool-
box [3] for our Bayesian inference and sample generation. Each sample consists
of a set of binary values, for each attack vertex and each detector vertex. A one
(zero) value for an attack vertex indicates that attack step was achieved (not
achieved) and a one (zero) value for a detector vertex indicates the detector
generated (did not generate) an alert. Separately, we perform inference on the
Bayesian network to determine the conditional probability of different attack
vertices. The probability is then converted to a binary determination whether
the detection system flagged that particular attack step or not, using a thresh-
old. This determination is then compared with reality, as given by the attack
samples which leads to a determination of the systems accuracy. There are sev-
eral experimental parameters which specific attack vertex is to be considered,
the threshold, CPT values, etc. and their values (or variations) are mentioned
in the appropriate experiment. The CPTs of each node in the network are man-
ually configured according to the authors experience administering security for

12 G. Modelo-Howard, S. Bagchi, and G. Lebanon

distributed systems and frequency of occurrences of attacks from references such
as vulnerability databases, as mentioned earlier.

5.1 Experiment 1: Distance from Detectors

The objective of experiment 1 was to quantify for a system designer what is the
gain in placing a detector close to a service where a security event may occur.
Here we used the synthetic network since it provided a larger range of distances
between attack steps and detector alerts.

The CPTs were fixed to manually determined values on each attack step.
Detectors were used as evidence, one at a time, on the Bayesian network and
the respective conditional probability for each attack node was determined. The
effect of the single detector on different attack vertices was studied, thereby
varying the distance between the node and the detector. The output metric is
the difference of two terms. The first term is the conditional probability that
the attack step is achieved, conditioned on a specific detector firing. The second
term is the probability that the attack step is achieved, without use of any
detector evidence. The larger the difference is, the greater is the value of the
information provided by the detector. In Figure 7(b), we show the effect due
to detector corresponding to node 24 and in Figure 7(c), we consider all the
detectors (again one at a time). The effect of all the detectors shows that the
conclusions from node 24 are general.

? 0.8
o 0.8 S
o X
- ["
T o6 L 06
. T
) Soa4p
T 0.4 go4
v 3
o 02 X 02
% W
T o X0
0 2 4 6 =
_ 0 2 4 6 8
Distance(X,,.X)) Distance(X X)

detector’ "

Fig. 7: Results of experiment 1: Impact of distance to a set of attack steps. (a) Generic
Bayesian network used. (b) Using node 24 as the detector (evidence), the line shows
mean values for rate of change. (¢) Comparison between different detectors as evidence,
showing the mean rate of change for case.

The results show that a detector can affect nodes inside a radius of up to
three edges from the detector. The change in probability for a node within this
radius, compared to one outside the radius, can be two times greater when the
detector is used as evidence. For all Bayesian networks tested, the results were
consistent to the three edges radius observation.

Determining Placement of Intrusion Detectors 13

5.2 Experiment 2: Impact of Imperfect Knowledge

The objective of experiment 2 was to determine the performance of the detection
system in the face of attacks. In the first part of the experiment (Ezp 2a), the
effect of the threshold, that is used in converting the conditional probability of
an attack step into a binary determination, is studied. This corresponds to the
practical situation that a system administrator has to make a binary decision
based on the result of a probabilistic framework and there is no oracle at hand
to help. For the second part of the experiment (Exzp 2b), the CPT values in
the Bayesian network are perturbed by introducing variances of different magni-
tudes. This corresponds to the practical situation that the system administrator
cannot accurately gauge the level of difficulty for the adversary to achieve attack
goals. The impact of the imperfect knowledge is studied through a ROC curve.

For Exp 2a, precision and recall were plotted as a function of the threshold
value. This was done for all the attack nodes in the Bayesian network and the
results for a representative sample of six nodes are shown in Figure 8. We used
threshold values from 0.5 to 0.95, since anything below 0.5 would imply the
Bayesian network is useless in its predictive ability.

Node 1 Node 4 Node 9
1003855+ 100x 100
80 \ 80
0
60 60
50
40 40
20 20
0 0 51 0 =)]
0.6 0.8 0.6 0.8 0.6 0.8
Nodel4 Node 17 Node 19
100355855 100 100
50 50 50
0 £ 0 === | 0 S5
0.6 0.8 0.6 0.8 0.6 0.8

Fig. 8: Precision and recall as a function of detection threshold, for the e-commerce
Bayesian network. The line with square markers is recall and other line is for precision.

Expectedly, as the threshold is increased, there are fewer false positives and
the precision of the detection system improves. The opposite is true for the
recall of the system since there are more false negatives. However, an illuminating

14 G. Modelo-Howard, S. Bagchi, and G. Lebanon

observation is that the precision is relatively insensitive to the threshold variation
while the recall has a sharp cutoff. Clearly, the desired threshold is to the left of
the cutoff point. Therefore, this provides a scientific basis for an administrator to
set the threshold for drawing conclusions from a Bayesian network representing
the system.

Node 1 Node 6
1 1
2 08 2 08
g g
206 206
.‘é .§
a 0.4 a 04
[[
E —e&—var=005|| 2 —&— var = 0.05
0.2 var =0.15 0.2 var =0.15
—6—var =0.25 —6—var =0.25
o 0C
0 02 04 06 08 1 0 02 04 06 08 1
False Positive Rate False Positive Rate

Fig.9: ROC curves for two attack steps in e-commerce Bayesian network. Each curve
corresponds to a different variance added to the CTP values.

In experiment 2b we introduced variance to the CPT values of all the at-
tack nodes, mimicking different levels of imperfect knowledge an admin may
have about the adversarys attack strategies. When generating the samples corre-
sponding to the attacks, we used three variance values: 0.05, 0.15, and 0.25. Each
value could be associated with a different level of knowledge from an adminis-
trator: expert, intermediate, and nave, respectively. For each variance value, ten
batches of 1,000 samples were generated and the detection results were averaged
over all batches.

In Figure 9, we show the ROC curves for nodes 1 and 6 of the e-commerce
system, with all four detectors in place. Expectedly, as the variance increases,
the performance suffers. However, the process of Bayesian inference shows an
inherent resilience since the performance does not degrade significantly with the
increase in variance. For node 1, several points are placed so close together that
only one marker shows up. On the contrary, for node 6, multiple well spread out
TP-FP value pairs are observed. We hypothesize that since node 1 is directly
connected to the detector node 3, its influence over node 1 dominates that of all
other detectors. Hence fewer number of sharp transitions are seen compared to
node 6, which is more centrally placed with respect to multiple detectors.

Experiment 2c also looked at the impact of imperfect knowledge when defin-
ing the CPT values in the Bayesian network. Here we progressively changed the
CPT values for several attack steps in order to determine how much we would
deviate from the correct value. We used two values 0.6 and 0.8 for each CPT
cell (only two are independent) giving rise to four possible CPT tables for each
node. We plot the minimum and maximum conditional probabilities for a rep-
resentative attack node for a given detector flagging. We change the number of
CPTs that we perturb from the ideal values. Expectedly as the number of CPTs

Determining Placement of Intrusion Detectors 15

0.72

o
3
~

P(X21:1 | XZB =1)
o
~

e
3
o r
v
\
\
@ N
!
\
'
5
<}
o
©

0 5

1 2 3 4
Number of CPTs changed

1 2 4
Number of CPTs changed

Fig. 10: Impact of deviation from correct CPT values, for the (a) e-commerce and (b)
generic Bayesian networks.

changed increases, the difference between the minimum and the maximum in-
creases, but the range is within 0.03. Note that the point at the left end of the
curve for zero CPTs changed gives the correct value.

Both experiments indicate that the BN formalism is relatively robust to im-
perfect assumptions concerning the CPT values. This is an important fact since
it is likely that the values determined by an experienced system administra-
tor would still be somewhat imperfect. Overall, as long as the deviation of the
assumed CPTs from the truth is not overwhelming, the network performance
degrades gracefully.

5.3 Experiment 3: Impact on Choice and Placement of Detectors

The objective of experiment 3 was to determine the impact of selecting the
detectors and their corresponding locations. To achieve this, we ran experiments
on the e-commerce and the VoIP Bayesian networks to determine a pair of
detectors that would be most effective. This pair, called the optimal pair, is
chosen according to the algorithm described in Section 3.2. The performance of
the optimal pair is compared against additional pairs selected at random. We
show the result using the ROC curve for the two ultimate attack goals, namely
node 19 and node 21 in the e-commerce and the VoIP systems.

To calculate the performance of each pair of detectors, we created 10,000
samples from each Bayesian network, corresponding to that many actual attacks.
Then we performed Bayesian inference and calculated the conditional probability
of the attack step, given the pair of detectors. We determined the true positive
rate and false positive rate by sweeping across threshold values.

Results show that the pair of detectors determined from the algorithm per-
forms better than the other randomly selected pairs. Figure 11a shows the sit-
uation in which a single detector (dgg) attached to two attack nodes (z19, x1g)
performs better than two detectors (di3 and dy, or di2 and d3). The placement
of the detector dog affects the performance. This can be explained by the fact
that node 18 is more highly connected in the attack graph and therefore attach-
ing detector day to that node, rather than node 16, provides better predictive
performance.

16 G. Modelo-Howard, S. Bagchi, and G. Lebanon

1, 1

208 g 08

8 &

208 206

8 04 —o=(dpgX;) (A%,) E 04 —o= (dppXp0)(dy g% 1)
o —a=(dyg Xy g) (A%) 2 ——(dygXy o)Ay,)
0.2 +(d13')<12)'(d7'xe) 0.2 +(d18,x12),(d18,x14)

— (15X, (d3%,) — (dygXy h(dgx,)

0 02 04 06 08 1

. 4 0 . 0.5
False Positive Rate False Positive Rate

Fig. 11: ROC curves for detection of attack steps, using pairs of detectors, in the e-
commerce network (left) and the VoIP network (right).

There is a cost of adding detectors to a system, but there is also a cost of
having a detector attached to more attack nodes, in terms of the bandwidth
and computation. Thus adding further edges in the Bayesian network between a
detector node and an attack node, even if feasible, may not be desirable. For the
VoIP network, detector pair dsy and dyg performs best. This time two separate
detectors outperform a single high quality detector (d1g) connected to two nodes.

Further details on all experiments performed, including all the probability
values used for the Bayesian networks, are available at [22]. These are omitted
here due to space constraints and the interested party is welcome to further
read. All the experiments validate the intuition behind our algorithm that the
greedy choice of the detectors also gives good results when multiple detectors
are considered together and over the entire Bayesian network.

6 Related Work

Bayesian networks have been used in intrusion detection to perform classifica-
tion of events. Kruegel et al. [17] proposed the usage of Bayesian networks to
reduce the number of false alarms. Bayesian networks are used to improve the
aggregation of different model outputs and allow integration of additional in-
formation. The experimental results show an improvement in the accuracy of
detections, compared to threshold-based schemes. Ben Amor et al. [4] studied
the use of nave Bayes in intrusion detection, which included a performance com-
parison with decision trees. Due to similar performance and simpler structure,
nave Bayes is an attractive alternative for intrusion detection. Other researchers
have also used nave Bayesian inference for classifying intrusion events [29].

To the best of our knowledge, the problem of determining an appropriate
location for detectors has not been systematically explored by the intrusion
detection community. However, analogous problems have been studied to some
extent in the physical security and the sensor network fields.

Jones et al. [15] developed a Markov Decision Process (MDP) model of how an
intruder might try to penetrate the various barriers designed to protect a physical
facility. The model output includes the probability of a successful intrusion and

Determining Placement of Intrusion Detectors 17

the most likely paths for success. These paths provide a basis to determine the
location of new barriers to deter a future intrusion.

In the case of sensor networks, the placement problem has been studied to
identify multiple phenomena such as determining location of an intrusion [1],
contamination source [5], [27], and atmospheric conditions [16]. Anjum et al.
[1] determined which nodes should act as intrusion detectors in order to pro-
vide detection capabilities in a hierarchical sensor network. The adversary is
trying to send malicious traffic to a destination node (say, the base node). In
their model, only some nodes called tamper-resistant nodes are capable of exe-
cuting a signature-based intrusion detection algorithm and these nodes cannot
be compromised by an adversary. Since these nodes are expensive, the goal is
to minimize the number of such nodes and the authors provide a distributed
approximate algorithm for this based on minimum cut-set and minimum domi-
nating set. The solution is applicable to a specific kind of topology, widely used
in sensor networks, namely clusters with a cluster head in each cluster capable
of communicating with the nodes at the higher layer of the network hierarchy.

In [5], the sensor placement problem is studied to detect the contamination
of air or water supplies from a single source. The goal is to detect that contami-
nation has happened and the source of the contamination, under the constraints
that the number of sensors and the time for detection are limited. The authors
show that the problem with sensor constraint or time constraint are both NP-
hard and they come up with approximation algorithms. They also solve the
problem exactly for two specific cases, the uniform clique and rooted trees. A
significant contribution of this work is the time efficient method of calculating the
sensor placement. However, several simplifying assumptions are made—sensing
is perfect and no sensor failure (either natural or malicious) occurs, there is a
single contaminating source, and the flow is stable.

Krause et al. [16] also point out the intractability of the placement prob-
lem and present a polynomial-time algorithm to provide near-optimal placement
which incurs low communication cost between the sensors. The approximation
algorithm exploits two properties of this problem: submodularity, formalizing the
intuition that adding a node to a small deployment can help more than adding
a node to a large deployment; and locality, under which nodes that are far from
each other provide almost independent information. In our current work, we also
experienced the locality property of the placement problem. The proposed solu-
tion learns a probabilistic model (based on Gaussian processes) of the underlying
phenomenon (variation of temperature, light, and precipitation) and for the ex-
pected communication cost between any two locations from a small, short-term
initial deployment.

In [27], the authors present an approach for determining the location in an
indoor environment based on which sensors cover the location. The key idea is
to ensure that each resolvable position is covered by a unique set of sensors,
which then serves as its signature. They make use of identifying code theory
to reduce the number of active sensors required by the system and yet provide
unique localization for each position. The algorithm also considers robustness,

18 G. Modelo-Howard, S. Bagchi, and G. Lebanon

in terms of the number of sensor failures that can be corrected, and provides
solutions in harsh environments, such as presence of noise and changes in the
structural topology. The objective for deploying sensors here is quite different
from our current work.

For all the previous work on placement of detectors, the authors are looking to
detect events of interest, which propagate using some well-defined models, such
as, through the cluster head en route to a base node. Some of the work (such as
[16]) is focused on detecting natural events, that do not have a malicious motive
in avoiding detection. In our case, we deal with malicious adversaries who have
an active goal of trying to bypass the security of the system. The adversaries’
methods of attacking the system do not follow a well-known model making our
problem challenging. As an example of how our solution handles this, we use
noise in our BN model to emulate the lack of an accurate attack model.

There are some similarities between the work done in alert correlation and
ours, primarily the interest to reduce the number of alerts to be analyzed from
an intrusion. Approaches such as [24] have proposed modeling attack scenarios
to correlate alerts and identify causal relationships among the alerts. Our work
aims to closely integrate the vulnerability analysis into the placement process,
whereas the alert correlation proposals have not suggested such importance.

The idea of using Bayes theorem for detector placement is suggested in [26].
No formal definition is given, but several metrics such as accuracy, sensitivity,
and specificity are presented to help an administrator make informed choices
about placing detectors in a distributed system. These metrics are associated to
different areas or sub-networks of the system to help in the decision process.

Many studies have been done on developing performance metrics for the
evaluation of intrusion detection systems (IDS), which have influenced our choice
of metrics here. Axelsson [2] showed the applicability of estimation theory in the
intrusion detection field and presented the Bayesian detection rate as a metric
for the performance of an IDS. His observation that the base rate, and not only
the false alarm rate, is an important factor on the Bayesian detection rate, was
included in our work by using low base rates as part of probability values in
the Bayesian network. The MAFTIA Project [8] proposed precision and recall
to effectively determine when a vulnerability was exploited in the system. A
difference from our approach is that they expand the metrics to consider a set of
IDSes and not only a single detector. The idea of using ROC curves to measure
performance of intrusion detectors has been explored many times, most recently
in [7], [10].

Extensive work has been done for many years with attack graphs. Recent
work has concentrated on the problems of generating attack graphs for large
networks and automating the process to describe and analyze vulnerabilities
and system components to create the graphs. The NetSPA system [11] uses a
breath-first technique to generate a graph that grows almost linearly with the
size of the distributed system. Ou et al. [25] proposed a graph building algorithm
using a formal logical technique that allows to create graphs of polynomial size
to the network being analyzed.

Determining Placement of Intrusion Detectors 19

7 Conclusions and Future Work

Bayesian networks have proven to be a useful tool in representing complex prob-
ability distributions, such as in our case of determining the likelihood that an
attack goal has been achieved, given evidence from a set of detectors. By us-
ing attack graphs and Bayesian inference, we can quantify the overall detection
performance in the systems by looking at different choices and placements of
detectors and the detection parameter settings. We also quantified the informa-
tion gain due to a detector as a function of its distance from the attack step.
Also, the effectiveness of the Bayesian networks can be affected by imperfect
knowledge when defining the conditional probability values. Nevertheless, the
Bayesian network exhibits considerable resiliency to these factors as our experi-
ments showed.

Future work should include looking at the scalability issues of Bayesian net-
works and its impact on determining the location for a set of detectors in a
distributed system. The probability values acquisition problem can be handled
by using techniques such as the recursive noisy-OR modeling [19] but experi-
mentation is required to determine its benefits and limitations for our scenario.

Acknowledgments. Gaspar Modelo-Howard was partly supported by an IFARHU-
SENACYT Scholarship from the Republic of Panama. Saurabh Bagchi was
partly supported in this work by an endowment grant from Purdue’s Center
for Education and Research in Information Assurance and Security (CERIAS).

References

1. Anjum, F., Subhadrabandhu, D., Sarkar, S., Shetty, R.: On Optimal Placement
of Intrusion Detection Modules in Sensor Networks. In: 1st IEEE International
Conference on Broadband Networks, pp. 690-699. IEEE Press, New York (2004)

2. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM
Trans. Inf. Syst. Secur. 3-3, 186-205 (2000)

3. Bayes Net Toolbox for Matlab, http://wuw.cs.ubc.ca/~murphyk/Software

4. Ben Amor, N., Benferhat, S., Elouedi, Z.: Naive Bayes vs decision trees in intrusion
detection systems. In: 19th ACM Symposium on Applied computing, pp. 420-424.
ACM Press, New York (2004)

5. Berger-Wolf, T., Hart, W., Saia, J.: Discrete Sensor Placement Problems in Distri-
bution Networks. J. Math. and Comp. Model. 42, 1385-1396 (2005)

6. Bugtraq Vulnerability Database, http://www.securityfocus.com/
vulnerabilities

7. Cardenas, A., Baras, J., Seamon, K.: A Framework for the Evaluation of Intrusion
Detection Systems. In: 27th IEEE Symposium on Security and Privacy, 15 pp. IEEE
Press, New York (2006)

8. Dacier, M. (ed.): Design of an Intrusion-Tolerant Intrusion Detection System. Re-
search Report, Maftia Project (2002)

9. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: Adaptive Intrusion
Response using Attack Graphs in an E-Commerce Environment. In: International
Conference on Dependable Systems and Networks, pp. 508-517, (2005)

20 G. Modelo-Howard, S. Bagchi, and G. Lebanon

10. Gu, G., Fogla, P., Dagon, D., Lee, W., Skoric, B.: Measuring Intrusion Detection
Capability: An Information-Theoretic Approach. In: 1st ACM Symposium on In-
formation, Computer and Communications Security, pp. 90-101. ACM Press, New
York (2006)

11. Ingols, K., Lippmann, R., Piwowarski, K.: Practical Attack Graph Generation for
Network Defense. In: 22nd Annual Computer Security Applications Conference, pp.
121-130. IEEE Press, New York (2006)

12. IPTables Firewall, http://www.netfilters.org/projects/iptables

13. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)

14. Jha, S., Sheyner, O., Wing, J.: Two Formal Analyses of Attack Graphs. In: 15th
IEEE Computer Security Foundations Workshop, pp. 49-63. IEEE Press, New York

2002

15.(Jone)s7 D., Davis, C., Turnquist, M., Nozick, L.: Physical Security and Vulnerability
Modeling for Infrastructure Facilities. Technical Report, Sandia National Laborato-
ries (2006)

16. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal Sensor Place-
ments: Maximizing Information while Minimizing Communication Cost. In: 5th In-
ternational Conference on Information Processing in Sensor Networks, pp. 2-10.
ACM Press, New York (2006)

17. Kriigel, C., Mutz, D., Robertson, W., Valeyr, F.: Bayesian Event Classification for
Intrusion Detection. In: 19th Annual Computer Security Applications Conference,
pp.14-23. IEEE Press, New York (2003)

18. Kuhn, D., Walsh, T., Fires, S.: Security Considerations for Voice Over IP Systems.
Special Publication 800-58, National Institute of Standards and Technology (2005)

19. Lemmer, J., Gossink, D.: Recursive Noisy OR - A Rule for Estimating Complex
Probabilistic Interactions. In: IEEE Trans. Syst. Man. Cybern. B. 34, 2252-2261

2004

20.(Lipp)mann7 R., et al.: Evaluating Intrusion Detection Systems: The 1998 DARPA
Off-line Intrusion Detection Evaluation. In: 1st DARPA Information Survivability
Conference and Exposition, pp. 81-89, (2000)

21. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking Attack Graphs. In:
Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp.127-144. Springer,
Heidelberg (2006)

22. Modelo-Howard, G.: Addendum to Determining Placement of Intrusion Detectors
for a Distributed Application through Bayesian Network Modeling, http://cobueb.
ecn.purdue.edu/~dcsl/publications/detectors-location_addendum.pdf

23. National Vulnerability Database, http://nvd.nist.gov/nvd.cfm

24. Ning, P., Cui, Y., Reeves, D.: Constructing Attack Scenarios through Correlation
of Intrusion Alerts. In: 9th ACM Conference on Computers & Communications
Security, pp. 245-254, (2002)

25. Ou, X., Boyer, W., McQueen, M.: A Scalable Approach to Attack Graph Gen-
eration. In: 13th ACM Conference on Computer & Communications Security, pp.
336-345, (2006)

26. Peikari, C., Chuvakin, A.: Security Warrior. O'Reilly, New York (2004)

27. Ray, S., Starobinski, D., Trachtenberg, A., Ungrangsi, R.: Robust Location De-
tection with Sensor Networks. In: IEEE J. on Selected Areas in Comm., 22, pp.
1016-1025 (2004)

28. Snort Intrusion Detection System, http://www.snort.org

29. Valdes, A., Skinner, K.: Adaptive, Model-based Monitoring for Cyber Attack De-
tection. In: Debar, H., Me, L., Wu, S. (eds.) RAID 2000. LNCS, vol. 1907, pp. 80-92.
Springer, Heidelberg (2000)

