
SeNDORComm: An Energy-Efficient Priority-Driven Communication Layer for

Reliable Wireless Sensor Networks

Vinaitheerthan Sundaram, Saurabh Bagchi, Yung-Hsiang Lu, Zhiyuan Li*

School of Electrical and Computer Engineering, Department of Computer Science (*)

Purdue University, West Lafayette, IN 47907

{vsundar,sbagchi,yunglu,li}@purdue.edu

Contact Author: Saurabh Bagchi

Abstract

In many reliable Wireless Sensor Network (WSN) applications, messages have different priorities depending on

urgency or importance. For example, a message reporting the failure of all nodes in a region is more important

than that for a single node. Moreover, traffic can be bursty in nature, such as when a correlated error is reported

by multiple nodes running identical code. Current communication layers in WSNs lack efficient support for these

two requirements. We present a priority-driven communication layer, called SeNDORComm, which schedules

transmission of packets driven by application-specified priority, buffers and packs multiple messages in a packet,

and honors the latency guarantee for a message. We show that SeNDORComm improves energy efficiency,

message reliability, and network utilization and delays congestion in a network. We extensively evaluate

SeNDORComm using analysis, simulation, and testbed experiments. We demonstrate the improvement in goodput

of SeNDORComm over the default communication layer, GenericComm in TinyOS (134.78% for a network of 20

nodes).

Keywords: Wireless sensor network, reliable message delivery, congestion avoidance, priority driven

communication, message aggregation.

1. Introduction

In many WSN applications certain events are more important than others and therefore messages reporting such

events are more urgent. For example, in surveillance applications [6], the alert sent for an intruding pedestrian is

less urgent than that sent for an intruding motor vehicle. Similarly, in an indoor climate control application,

presence of harmful gas in the air should be reported more urgently than the current CO2 level. Another class of

events common in WSNs is run-time errors detected by a monitoring infrastructure such as in [8][[7][10]. The

severity of errors is often different, which necessitates different priorities for the error messages. As an example,

our recent error detection framework called H-SEND [9] distinguishes two kinds of error messages. The advisory

error messages (e.g. messages indicating a transient interfering source went through the network) have much

lower priority than severe error messages which need attention as soon as possible (e.g. messages indicating a

fraction of nodes without a cluster head to align with).

In this paper, we seek to improve network utilization by leveraging the fact that different messages have

different priorities for transmission. Thus, techniques used for network throughput enhancement [2][3][4], such as

message combining or piggybacking, must honor message priorities to ensure that high-priority messages are

delivered without long waits while preventing starvation of the lower priority messages. Motivated by these

insights, we propose an energy-efficient priority-driven communication layer, called SeNDORComm, for reliable

operation of WSNs. In this framework, we distinguish the messages with the highest priority that need immediate

attention, called immediate messages, from the other messages, called deferred messages. SeNDORComm

schedules transmission of packets driven by application-specified priority, buffers deferred messages and

combines multiple deferred messages in a packet, and honors the latency guarantee for a message.

The error traffic in WSNs can be bursty. For example, a change in the environment can lead to multiple sensor

nodes reporting a drop in throughput, which lead to a storm of error alerts traveling toward the base station. Due

to limited bandwidth in WSNs, the possibility of congestion under bursty traffic is high. SeNDORComm handles

bursty traffic efficiently by combining multiple messages into a packet based on priority.

Combining multiple messages into a packet based on priority has the following advantages: It conserves energy,

reduces congestion by sending fewer packets (since there is a fixed overhead to each packet), and prioritizes the

transmission of important messages. Although this functionality may be implemented at different

layersapplication, routing, or link layerthere are several compelling reasons for our choice to implement it in

a new (communication) layer between the application and the routing layers. First, combining using priorities is

potentially useful for all application components that generate messages and thus, it is preferable to provide the

functionality beneath the application layer. On the other hand, although there are a few advantages to implement

combining at the routing/link layers [2][3][4], several significant disadvantages make this option unattractive. At

the routing/link layers, each packet has to be repacked multiple times, thus increasing delay and complexity at

each intermediate hop. Repacking at each intermediate node will require additional information for each message

such as priority and cumulative waiting time of this message in previous message queues, to be carried along with

the message. Next, the priorities are essentially an end-to-end property of messages and therefore it is logical to

not process them at intermediate hops. Finally, not touching the routing/link layer potentially allows more

applications to take advantage of our solution.

To evaluate SeNDORComm, we first perform a queuing theory based analysis of SeNDORComm to determine

an upper bound on the number of explicit packets generated as a function of the latency guarantee. We implement

SeNDORComm in TinyOS and conduct experiments to show the energy and goodput advantage over the baseline

(GenericComm, the default communication layer in TinyOS) for different levels of interference and loads. The

results show a 59.3% reduction in energy for high interference condition. The goodput advantage of

SeNDORComm over GenericComm for a highly-loaded network with 20 Mica2 motes is 134.78%, which

illustrates SeNDORComm’s ability to handle bursty traffic. For demonstrating scalability, we perform a

simulation study with 100 nodes, which shows a 42% improvement in goodput and a 176.5% improvement in

reliability of immediate messages under heavy load.

Summarizing, the key contributions of our paper are:

• We provide a communication layer for a WSN, called SeNDORComm, that handles prioritized messages

while optimizing the energy overhead of transmission and its efficient implementation in Tiny OS.

• We show the benefits of combining priority and piggybacking in WSNs which include energy conservation,

congestion avoidance, and capability to handle bursty traffic.

The rest of the paper is organized as follows. In Section 2 we discuss related work. The detailed design of

SeNDORComm is presented in Section 3. The analysis and discrete-event simulations are explained in Section 4.

Section 5 and 6 presents the results from the test bed and the simulation. A discussion of future work is in Section

7. Section 8 concludes the paper.

2. Related Work

We confine ourselves to literature in WSN since these are most relevant due to the domain specific challenges.

We classify the related work into four categories: (1) Protocols that use priorities, (2) Protocols that do message

pooling, (3) Protocols that address congestion control, and (4) Investigation of message size on throughput.

1. Priorities. RAP [1] is motivated toward real-time communication. It is an application layer that determines

message priorities to control the latency of its journey to the base station. It could be structured on top of

SeNDORComm which would perform the message transmissions according to the priorities. In [17] the authors

present a protocol for sensor-actor coordination to control the quality of data collection. Actor interests may have

different levels of importance and sensors arrange the use of their resources according to the importance of

interests.

2. Message pooling. AIDA (Adaptive Application-independent Data Aggregation) [2] lies between the network

and the data-link layer. It buffers messages from the network layer in an FCFS queue. It aggregates messages to

different degrees depending on the MAC layer contention. Being at a lower layer, it does not concern itself with

message priorities and the related issue of bounding latency for messages awaiting aggregation. The widely used

CSMA-based MAC layer for WSNs called BMAC [4] provides a mechanism to amortize the cost of sending long

preambles before each packet. If there are multiple packets destined to a receiver, once synchronization between

the sender and the receiver is established, BMAC can omit sending the preamble for all but the first packet.

However, the application has to maintain a message pool destined to the same node and decide when to send the

accumulated messages. SeNDORComm removes this burden from the application. SeNDORComm can benefit

from BMAC’s batching at each intermediate hop.

The Sensornet protocol (SP)[3] sits between the network and the link layer and provides a minimal interface

needed so that different network protocols and different MAC-layer protocols can be plugged in. It supports the

network layer indicating if a message is urgent in which case it is sent without pooling. In case it is not flagged as

such, SP tries to batch multiple messages. Being lower down in the protocol stack, it does not concern itself with

application priorities.

3. Congestion control. There exists a significant volume of work at the link layer to provide congestion avoidance

or control [11][12]. The approach is to detect or anticipate congestion and prevent a congestion collapse by

appropriately backing off communication. SeNDORComm can coexist with such techniques and also with hints

from the application; it can further avoid a congestion collapse. Some work at the routing layer [19] distributes the

traffic load to route around congestion.

4. Message size and throughput. One design decision of SeNDORComm is based on the fact that throughput

improves with increasing message size as long as the channel losses do not outweigh the efficiencies. The impact

of message size on throughput was first studied analytically and through simulation by Akyildiz et al. [13]. A

datalink layer protocol called SEDA [18] shows that by reducing the granularity of retransmission to a smaller

block rather than the entire MAC frame or packet, throughput can be improved even in lossy channels. This work

is very germane to SeNDORComm. If SeNDORComm’s decision to piggyback multiple messages in a packet

increases the loss rate (we empirically show that we can operate in a conservative region where it does not), then

it can use SEDA to recover the affected messages rather than retransmitting the entire packet.

3. SeNDORComm Design and Implementation

SeNDORComm is a communication layer that sits between the application and the network layer. The network

layer interface in TinyOS is called GenericComm as it provides a generic interface to the application irrespective

of underlying protocol layers. The radio stack for WSN applications that use GenericComm and SeNDORComm

is shown in Figure 1. We designed SeNDORComm with the following design goals in mind: 1) reduce deferred

message traffic to conserve energy, 2) send critical messages promptly, and 3) keep the interface simple and close

to GenericComm, so existing TinyOS applications can be easily integrated. We explain how these design goals

are met.

interface SeNDORSend {

command result_t send(uint16_t address, uint8_t length,

SC_TOS_MsgPtr msg, uint8_t urgency);

event result_t sendDone(SC_TOS_MsgPtr msg, result_t success);

}

interface SeNDORReceive {

event SC_TOS_MsgPtr receive(SC_TOS_MsgPtr msgPtr);

command void receiveDone(SC_TOS_MsgPtr msgPtr);

}

interface SeNDORCommCtl {

command result_t receiveInit(SC_TOS_MsgPtr recvQ, uint8_t size);

command result_t pause();

command result_t resume();

}

Figure 1. WSN application’s radio stack interface respectively without and with SeNDORComm(left).

SeNDORComm Interfaces: Send, Receive, Control(right).

3.1. Message Priorities and Queuing Policy

SeNDORComm allows the application to specify priorities for all messages. Since this is application-specific

priority, it is conceivable that more than a few priority values are desired. The allowable range of priority values is

the range of one-byte unsigned integer i.e., 0 to 255. Following the tradition of assigning lower values to denote

higher priority, 0 denotes the highest priority (the immediate messages) and 255 denotes the lowest priority. In

practice, we anticipate a smaller number of priority levels will be used (for our experiments we use three).

The policy for deciding when to send a message is at the heart of SeNDORComm’s design. By our policy, the

immediate messages are sent without buffering and the lowest priority messages are not sent and are logged in the

local persistent storage for later retrieval. Deferred messages are messages with priority ∈ (1, 254) and are

buffered by SeNDORComm. The deferred messages are stored in a priority queue. For multiple messages with the

same priority, they are unordered. Later, they are either piggybacked on other messages destined to the same node

or sent out as a separate packet called an explicit packet as explained later. The guarantee from SeNDORComm is

that a message with priority value i is always sent before or together with a message with priority value j, where j

Messages

Application

Packets

Packets

SeNDORComm

GenericComm

MAC Layer

Messages

Application

Packets

Packets

SeNDORComm

GenericComm

MAC Layer Packets =

Messages

Messages

MAC Layer

GenericComm

Application

> i. However, if the message with priority value j is in the process of being sent when the message with priority

value i arrives, then the sending is completed. Thus, the queuing discipline is a non-preemptive priority queue.

3.3 Operation of SeNDORComm

SeNDORComm Send. When an application requests SeNDORComm to send an immediate message,

SeNDORComm generates a packet and copies the immediate message into it. It piggybacks as many deferred

messages as possible, the deferred messages being selected from the send queue in priority order. It then sends the

packet comprising multiple messages down the stack. When an application requests SeNDORComm to send a

deferred message, SeNDORComm stores the deferred message in the priority queue and returns immediately as

long as the queue is not full and if no explicit packet is currently being sent. If the priority queue is full,

SeNDORComm treats the deferred message as an immediate message. If an explicit packet send is in progress,

SeNDORComm stores the deferred message in the queue but returns to the application only when the explicit

packet send is done. This is to prevent the priority queue from overflowing by the application. Thus

SeNDORComm rate-controls the application and partially prevents congestion from forming.

Each deferred message is assigned a threshold for staying in the queue based on its priority value. In cases when

the deferred message has stayed for more than the threshold amount of time in the priority queue, an explicit

packet is generated to send that message. This explicit packet piggybacks as many deferred messages as possible

again in priority order. If sending the deferred message on the wireless link fails due to collision or lossy link,

SeNDORComm stores the message back into its priority queue with priority value 1 (most urgent in the deferred

message class). If transmission has been attempted more than the allowable number of times without success

(three in our experiments), the message is dropped. The implication of this failure handling policy is discussed in

Section 7.

SeNDORComm Receive. When a packet is received from GenericComm, SeNDORComm demarshalls the

packet to retrieve the constituent messages in the packet and delivers one message at a time to the application.

Since there can be multiple messages in a single packet, SeNDORComm uses a circular list, called receiver buffer

that is provided by the application at initialization, to temporarily store the messages until they are consumed by

the application. By delivering one message at a time, the receive message handler in the application need not be

modified from that for GenericComm.

3.4. Application Interface and Implementation Details

The SeNDORComm interfaces are shown in Figure 1. In addition to the familiar send and receive interfaces, it

provides a control interface SeNDORCommCtl that gives the flexibility for the application to turn on and off the

generation of explicit packets. The SeNDORSend and SeNDORReceive interfaces are very similar to

GenericComm Send and Receive interfaces. The send command in the SeNDORSend interface takes an urgency

parameter, which is synonymous with the priority value for the message. The receive function in the

SeNDORReceive interface has exactly the same syntax and semantics as the receive function in GenericComm’s

Receive interface except for the return value semantics. The return value of GenericComm receive command is a

buffer where the next received message can be stored, while the return value of the SeNDORReceive function is

indication of whether the passed buffer has been processed by the application or not. Due to space limitations, we

refer the interested reader to [22] for complete implementation details. SeNDORComm has a low memory

footprint of around 100 bytes and small code size of around 4 KB, when compiled using default settings in

TinyOS development environment. Three configurations of buffers in SeNDORComm namely, minimum,

medium (or typical) and large amount of buffers are shown in Table 1.

4. Analytical Evaluation

To evaluate SeNDORComm, we perform an analysis to derive an upper bound on the additional traffic injected

into the network due to the explicit packets generated for the deferred messages The analytical result could be

useful for guiding the choice of the deadline for deferred messages in a real deployment.

4.1. Assumptions and Notations

We make the following assumptions to make the analysis tractable. (1) A three-level hierarchy is assumed with

sensing node, cluster head, and base station. (2) The clusters are all identical. Thus, analyzing a single cluster is

sufficient. (3) The rate of immediate messages generated at a node is exponentially distributed with mean 1/µi and

for deferred messages the exponential distribution has mean 1/Λ. (4) The priority of deferred messages is

uniformly distributed in [0, r]. (5) In one packet only one deferred message can be piggybacked with an immediate

message. Without this assumption, the queuing theory formulation would be overly complex since the service time

would depend on the state of the queue.

Let n denote the number of nodes in the network, k the number of clusters, and m the number of nodes in each

cluster (= n/k). Let f denote the compression factor at the cluster head i.e., the data size arriving at the cluster head

divided by the data size sent by the cluster head to the base station. Let the rate of deferred messages with a given

priority be λ = Λ/(r+1). Let the transmission time of a packet in a CSMA network be exponentially distributed

with rate µt.

4.2. Upper bound on the overhead traffic generated by individual nodes

The key observation for the analysis is that we can view the priority queue maintained by SeNDORcomm as an

M/G/1 non-preemptive (head-of-the-line) priority queue with the immediate messages being considered as the

server. A deferred message is serviced when an immediate message arrives and piggybacks the deferred message.

So, a deferred message at the top of the queue can be considered to be under service until an immediate message

arrives, piggybacks it, and gets sent out on the wireless channel. Thus, the service time (B) is the sum of inter-

arrival time of immediate messages and the transmission time for the packet. Thus B follows a hypo-exponential

distribution with parameters µi and µt.

To keep the analysis tractable, we do not take into account the “draining” effect of explicit packets on the

priority queue. This is one of the factors pushing the final result to be an upper bound. The expected number of

explicit messages generated is equal to the expected rate of messages arriving at the queue times the probability

that a message waits more than the threshold wait time in the priority queue.

Let Wa be the random variable denoting the actual waiting time of a deferred message, Wp the waiting time for

the deferred message in queue with priority p and Bimm the inter-arrival time of immediate messages. The

relationship between them is shown in Eqs. (1),(2). Assuming Bimm and Wp are independent, we have Eq. (3). Let

E[N] denote the expected number of explicit messages generated by all queues in unit time and E[Np] the

expected number generated in queue p per unit time. γp represents the threshold waiting time in queue p, p = 1, …,

r. Let γ represent the base threshold waiting time. γp = γ + (p-1)/2, p = 1, …, r. We can write E[N] and E[Np] as in

Eqs. (4) and (5). To solve Eq. (5), we need the distribution of waiting time Wa, which requires the probability

distribution of waiting time Wp for queue p. The priority queue with non-preemptive priority for M/G/1 system has

been well-studied. The first two moments of Wp are given in [16]. With Bi as the service time distribution of the

queue, we have the first two moments of the waiting time as shown in Eqs.(6) and (7). Bi follows HYPO(µi, µt),

for all p. Therefore, we can obtain the first, second, and third moments of Bi. Putting these in Eqs. (6) and (7), we

obtain E[Wp] and
2
W
p

σ .The mean and variance of waiting time distribution can be used to obtain an upper bound

for P(Wp > γp) by using Chebyshev’s inequality. For all ε>0, the inequality given in Eq. (9). Rewriting

Chebyshev’s inequality for γp > E[Wa] (which is reasonable since the threshold should be longer than the average

waiting time, otherwise the network will be overwhelmed with explicit packets), we have (using Eq.(5)) Eq. (10).

W W B
a p imm
= + (1)

[] [] (1/)E W E W
a p i

µ= + (2)

2 2 2(1/)
W W i
a p

σ σ µ= + (3)

[] []

1

r
E N E N

p
i

= ∑
=

 (4)

[] ()E N P W
p a p

λ γ= > (5)

2[]

1[]
2(1)(1)

1

r
E B
i i

iE W
p

p p

λ

σ σ

∑
==

− −
−

 (6)

2
23 [][]

12 1[]
2 2 23(1) (1) 2(1) (1)

1 1

1
2 2[] []

1 1
32(1) (1)

1

rr
E BE B
i ii i

iiE W
p

p p p p

r r
E B E B
i i i i

i i

p p

λλ

σ σ σ σ

λ λ

σ σ

 ∑∑
= == +

− − − −
− −

−
 ∑ ∑
= = +

− −
−

 (7)

where,
1 1

p p p

p k
k k s s

λ λ
σ ρ

µ µ
= = =∑ ∑

= =
 (8)

2

(| [] |)
2

w
aP W E W

a a

σ

ε
ε

− > ≤ (9)

2

[] ()
2([])

W
aE N P W

p a p
E W

p a

σ

λ γ λ
γ

= > ≤
−

 (10)

(1 1/)
_

m f
no debug data

ζ µ= + (11)

[]E N
node data
β µ λ= + + (12)

(*)
(1) (1) []

m
data m m E N

head f

µ
β λ= + + + + (13)

_

_
(2 1) (2 1) []

with debug head node

no debug

m

m m E N

ζ β β

ζ λ

= +

 = + + + +
 (14)

_

_ _

(2 1) (2 1) []
1

with debug

overhead
no debug no debug

m m E N
ζ λ

ζ
ζ ζ

+ + +
= = + (15)

4.3. Upper bound on relative network-wide overhead due to debugging

The traffic in the network is defined as the number of packets generated in the network per unit time. Let ζno_debug

and ζwith_debug denote the total traffic in a cluster respectively without and with SeNDORComm. The subscript

“with debug” indicates that as an example the analysis takes all deferred messages are generated due to runtime

monitoring (or debugging). For ζno_debug, the traffic in the cluster, includes the packets generated by m cluster

nodes and the packets sent by the cluster head and is shown in Eq. (11). With SeNDORComm, at a cluster node

the traffic is due to the immediate data messages, the highest priority messages arriving with rate λ, and the

explicit packets. At the cluster head, we get an upper bound if every deferred message is forwarded to the base

station instead of being consumed locally. This can occur say if the message is related to a detected error that

needs to be forwarded to the base station for action. The traffic generated by a cluster node βnode and by a cluster

head βhead is given in Eqs. (12) and (13). The total traffic generated in a cluster with run-time debugging (ζwith_debug

) is given in Eq. (14). Therefore, the upper bound on the normalized overhead generated due to run-time

debugging (ζoverhead) is given in Eq. (15).

4.4. Results: Analysis and Discrete Event Simulation

Using the above analysis, we plotted the normalized overhead traffic in a cluster against the base threshold

waiting time (γ). Given a γ, γp is defined as γ + (p-1)/2, p is the priority value. For the plot µdata = 1 message/s.

The maximum packet size in SeNDORComm is 65 bytes (58 bytes payload + 7 bytes header). For mica2 nodes

running B-MAC, the size of preamble at 2.2% duty cycle is 1212 bytes. Therefore, the minimum transmission

time of nodes running at 2.2% duty cycle is 0.511 seconds at 20kbps. This gives us µt = 1.96 messages/s. A plot is

drawn for high (0.5 messages/s) deferred message arrival rates and is shown in Figure 2. The overhead incurred by

the baseline approach (aka GenericComm) in which every deferred message is sent to the cluster head

immediately can be calculated by using E[N] = Λ in Eq. (15).

We also performed a discrete event simulation of the M/G/1 non-preemptive priority queue to validate that the

analysis gives the upper bound. The simulation also cannot take into account the effect of an explicit message in

draining the queues and therefore, it also gives an upper bound, albeit a tighter one than the analysis.

The result shows that for a high load scenario, SeNDORComm reduces the overhead of debugging by 26% even

with a reasonably short baseline deadline of 10 seconds for explicit packet generation. The gains are less (about

7%) for a medium load scenario (0.1 deferred messages per second).

Table 1. Code and Memory Footprint of

SeNDORComm integrated with LEACH

676

426

138

0

Buffers

Size

1596

1351

1118

811

RAM

Size

21812LEACH with SenDORComm and Debugging

(10 buffer priority queue, 4 buffer receiver list)

21812LEACH with SeNDORComm and Debugging

(5 buffer priority queue, 4 buffer receiver list)

21812LEACH with SeNDORComm and Debugging

(1 buffer priority queue, 2 buffer receiver list)

17884

ROM

Size

LEACH with GenericComm and Debugging

Components

676

426

138

0

Buffers

Size

1596

1351

1118

811

RAM

Size

21812LEACH with SenDORComm and Debugging

(10 buffer priority queue, 4 buffer receiver list)

21812LEACH with SeNDORComm and Debugging

(5 buffer priority queue, 4 buffer receiver list)

21812LEACH with SeNDORComm and Debugging

(1 buffer priority queue, 2 buffer receiver list)

17884

ROM

Size

LEACH with GenericComm and Debugging

Components

 1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12

Base Threshold Value (seconds)

N
o
rm

a
li
z
e
d
 T
ra
ff
ic
 O
v
e
rh
e
a
d
(p
a
c
k
e
ts
/s
e
c
)

Base_Lambda_0.5

Anal_Lambda_0.5

Sim_Lambda_0.5

Figure 2. Normalized traffic overhead due to

SeNDORComm and GenericComm (Base)

5. Experimental Evaluation

We designed a set of experiments to evaluate the main thesis of SeNDORComm that deferring lower priority

messages and piggybacking them on immediate messages can improve energy efficiency and message reliability

as well as its capability to handle bursty traffic. The first experiment is designed to measure the energy savings

obtained using SeNDORComm. The second experiment is designed to evaluate SeNDORComm’s performance

under different load conditions in a real-world scenario. For this experiment, we used distributed debugging of a

standard clustering protocol as a case-study.

In our experiments, we compare SeNDORComm against the baseline GenericComm, as state-of-the-art solutions

(i.e., not GenericComm) use only one of our two principles (priorities and message pooling) and for a different

purpose. For example, RAP uses priorities at the routing layer for scheduling packet transmission but does not do

message pooling. AIDA does message pooling at the link layer but does not use priorities. Moreover, RAP and

AIDA are not end-to-end and therefore, do not preserve the end-to-end nature of application-priority.

5.1. Energy Expenditure under Interference

In this experiment, we evaluate the energy savings of SeNDORComm compared to GenericComm in the

presence of interfering traffic. We have shown in [22] that the fundamental requirement of SeNDORComm,

namely the ability to pack multiple messages in a packet is met in sample indoor and outdoor settings without

significant increase in loss rates.

Two Mica2 motes are kept at approximately 5 m distance and at 1 m height from the floor. The sender attempts

to send 200 unique messages of which 25% are immediate and 75% are deferred. The sender retries a message

three times before dropping it. For SeNDORComm, the sender retransmits only the immediate messages to have a

fair comparison with GenericComm (since the SeNDORComm layer itself takes care of retransmitting the

deferred messages thrice). The sender attempts to send a unique message every second if the radio is free, else, it

waits for the next second. Therefore, the experiment period is the time taken to send 200 messages. The

experiments are run in BMAC’s LPL mode 3 (corresponding to 11.5% radio duty-cycle).

We perform three sets of experiments—with no interfering node, 3 interfering nodes and 5 interfering nodes.

These emulate low, medium, and high contention networks respectively. In each set, the experiment is repeated 6

times for each of SeNDORComm and GenericComm, which gives acceptably low variance.

To measure the current used by the mote, the sender node was connected to the HP Agilient 3458A Multimeter

over the span of entire experiment, which was 6 minutes. The current was sampled every 5 milliseconds. The

energy spent by the mote is the product of current measurement, voltage (3 volts) and time (5 milliseconds). The

total energy spent by the mote over the span of the experiment is the sum of the energy of all samples.

We have used the two performance metrics: (1) the total transmission energy spent per useful receive byte,

where useful bytes are from messages that are not duplicates, (2) fraction of deferred and immediate messages

received correctly.

In Figure 3 (a), we see that the energy required per useful byte received is considerably lower for

SeNDORComm (43.5%, 44.2%, and 59.3% for low, medium, and high interference). This energy savings is due to

piggybacking deferred messages on immediate messages, which reduces the fixed overhead cost associated with

sending a packet. When the interference from other nodes increases, the energy spent increases for both

communication layers due to the increased losses from collisions. However the increase is faster for

GenericComm. By prioritizing and batching, SeNDORComm sends fewer packets in the network thereby reducing

packet collisions and retransmissions.

10.05

3.6

6.65

43.47%

 44.2%

59.3%

0

4

8

12

16

0 3 5
Number of Interfereing Nodes

(a)

E
n
e
rg
y
 P
e
r
U
s
e
fu
l

B
y
te
 R
e
c
e
iv
e
d
 (
m
J
) SeNDORComm

GenericComm

13.3%

-2.4%

-

0.33%

60%

80%

100%

0 3 5

Number of Interfering Nodes

(b)

%
 I
m
m
e
d
ia
te
 M
e
s
s
a
g
e
s

R
e
c
e
iv
e
d
 C
o
rr
e
c
tl
y

SeNDORComm
GenericComm

7.3%

-0.22%

21.3%

60%

80%

100%

0 3 5
Number of Interfering Nodes

(c)

%
 D
e
fe
rr
e
d
 M
e
s
s
a
g
e
s

re
c
e
iv
e
d
 c
o
rr
e
c
tl
y

SeNDORComm
GenericComm

Figure 3. (a) Energy spent by the sender node per useful byte received for different levels of interference

in network. (b) and (c)Fraction of immediate and deferred messages received successfully. The percentage

numbers on GenericComm denotes the increase relative to the corresponding SeNDORComm case and in (a), the

number on SeNDORComm denotes the absolute energy value.

Since SeNDORComm piggybacks deferred messages on immediate messages, it increases the possibility of

immediate message getting dropped due to channel losses. However, we see from Figure 3 (b) that the percentage

of immediate messages dropped is very low. The simple retransmission mechanism used by the application

compensates for occasional losses. When interference increases, SeNDORComm achieves higher throughput with

immediate messages than GenericComm as the packet losses due to collision starts dominating over channel

losses. Finally, we notice that the fraction of deferred messages received by SeNDORComm is much higher than

in GenericComm (Figure 3 (c)). Moreover, the fraction decreases much slower than in GenericComm with

increasing amount of interference. This is due to the fact that deferred messages are piggybacked in

SeNDORComm rather than each being sent as a separate packet. This causes less network contention and hence

fewer losses.

5.2. Network Utilization under different loads

In this experiment, we study the network utilization under different load conditions in a real-world scenario and

evaluate the ability of SeNDORComm to delay congestion collapse when the network is heavily loaded.

Checking invariants during run-time is an effective and widely used approach for debugging distributed systems

[14][15]. In distributed debugging, invariants are checked at run-time. To check global invariants, debug messages

are exchanged among nodes. An idea gaining ground in the WSN community is that distributed debugging is

important for robust deployments of these networks [7][8][9]. However, the additional traffic introduced due to

debugging can be significant under many different scenarios, such as, a change in the environment that results in

multiple concurrent invariant violations and correlated failure of several sensor nodes. In these scenarios, it is

important to detect and locate the error in the network promptly for a possible recovery. To achieve this, it is

necessary to have the critical error information reach the base station. This is particularly difficult for the baseline

communication layer to handle because the problem often manifests itself at the time when the available

bandwidth is also constricted.

Thus, distributed debugging can create varying loads in the network and lends itself as a suitable case-study for

this experiment. Therefore, we implemented distributed debugging of a standard clustering protocol called

LEACH [5] using HSEND [7][8]. Since the interface of SeNDORComm to application is similar to that of

GenericComm, the modifications required to convert our LEACH with HSEND code to use SeNDORComm were

minimal. In LEACH, the nodes organize themselves into clusters, with one node in each cluster acting as the

cluster head for one round. Each round is divided into election timeslots that are used to elect a cluster head, and

data timeslots that are used to send data to the cluster head. In election timeslots, the self-elected cluster heads

advertise their status. Nodes that are not cluster heads choose one of the cluster heads to join depending on

received signal strength.

We created a 21 node network of Mica2 motes arranged in a 2x1 grid configuration with all nodes in the

communication range of each other. In our experiment, the parameters used for LEACH are as follows. Each

round has 27 equal timeslots, 20 for sending data messages and 7 time slots for cluster formation. Each slot is 2

seconds long. We used 2 clusters and 9 nodes join a cluster on average. Therefore, each node gets 2.2 timeslots

per round. The cluster head has a compression factor of 3, i.e., for every 3 messages it receives, it sends one to the

base station. We created a simple WSN application that sends one data message to the base station in its

designated slot. Each data message is 14 bytes, debug message is 8 bytes, and the maximum payload length is 58

bytes for SeNDORComm. The application ran respectively on top of GenericComm and SeNDORComm.

H-SEND has an invariant that monitors the rate of successful transmission of sensed data (immediate messages)

at each node. If the rate is below a certain threshold, it generates an error message with priority value 3 (a deferred

message). We set the threshold to be slightly higher than the node’s normal sensed data rate so that on average a

debug message is generated at every check. We vary the frequency of checking the invariant to vary the load in

the network.

A WSN application using LEACH can choose to store the debug messages generated at different points in time

until its data slot or send the debug messages as and when generated. In the former case, the application

implements a FIFO queue to store messages. Implementing such a queue is useful in low load scenarios where all

the messages generated can be sent within the allotted slots in a round.However, there are several drawbacks to

such a queue. Since it is a FIFO queue, important messages such as data messages may stay in the queue longer

than it should. Due to limitations in the memory resources in motes and lack of piggybacking, the queue overflow

is inevitable even under moderate loads. Since BMAC, the default link layer in TinyOS is a CSMA protocol,

messages can be sent outside of LEACH data slots. Therefore, in our experiments, we made the WSN application

send messages as and when generated for both GenericComm and SeNDORComm. Our results indicate that the

reliability is not affected by sending messages out of schedule unless the network is heavily congested.

The metrics of interest are (1) Goodput, the rate of immediate messages that reaches the base station (2)

Transmission success ratio, the ratio of the number of messages received by nodes in the network to the number

of message sends attempted by nodes including retransmission. This indicates how efficiently the channel is used

for communication. (3) Reliability of immediate (deferred) messages, the ratio of immediate (deferred) messages

received by nodes successfully to the total number of immediate (deferred) messages sent by nodes.

25

50

75

100

 1:0.5 1:5 1:20

Network Load

(b)

T
ra
n
s
m
is
s
io
n

S
u
c
c
e
s
s
 R
a
ti
o

SeNDORComm
GenericComm

2

6

10

14

 1:0.5 1:5 1:20

Network Load

(a)

G
o
o
d
p
u
t

(b
y
te
s
/n
o
d
e
/r
o
u
n
d
)

SeNDORComm
GenericComm

60

80

100

 1:0.5 1:5 1:20
Network Load

(c)

R
e
li
a
b
il
it
y
 o
f

Im
m
e
d
ia
te
 M
e
s
s
a
g
e
s

SeNDORComm
GenericComm

60

80

100

 1:0.5 1:5 1:20
Network Load

(d)

R
e
li
a
b
il
it
y
 o
f
D
e
fe
rr
e
d

M
e
s
s
a
g
e
s

SeNDORComm
GenericComm

Figure 4. Behavior of SeNDORComm and GenericComm under varying load conditions on a 21 node test

bed network

We ran all the experiments for 20 rounds. We observe the three output metrics mentioned above for

SeNDORComm and GenericComm for varying load conditions. The variation in load is shown as the ratio of

number of data messages (immediate messages in this case) to the number of debug messages (deferred messages

in this case) generated. Figure 4 shows the behavior of SeNDORComm and GenericComm under light (1:0.5),

medium(1:5) and heavy load(1:20) conditions. By piggybacking on immediate messages, SeNDORComm

increases the likelihood of an immediate message being corrupted in the wireless channel. However, with a simple

retransmission scheme, we see that for light load the reduction in goodput for SeNDORComm is low (-1.55%) and

the reliability is almost the same for both (0.79% more than GenericComm). This corroborates our experiment 2

results in Section 6.2. Moreover, the goodput improves considerably as the load in the network increases (20.67%

and 134.78% for medium and heavy loads). This is because the congestion is higher in GenericComm which

affects the successful reception of immediate messages. In SeNDORComm, the batching of multiple messages

into larger-sized packets alleviates the congestion to a certain extent. Likewise, the transmission success ratio of

SeNDORComm improves (1.18%, 28.5%, and 131.99% for the light, medium and heavy loads) as it uses the

network bandwidth more efficiently and therefore cuts down on the fruitless message sends that would collide and

be lost on the congested wireless channel. Under heavy load, we see that the transmission success ratio for

GenericComm has been reduced to 33% and this indicates congestion collapse as each message has to be sent four

times.

In Figure 4(c), we see that with SeNDORComm the reliability improves as the load increases for both immediate

messages (0.79%, 7.13%, and 21.20% for light, medium, and heavy loads) and deferred messages (1.53%, 7.24%,

and 33.9% for the three loads). When the load is less, the packet losses are mainly due to channel losses and when

the load increases, losses due to congestion start dominating. Hence, we see increased reliability benefit with

SeNDORComm as the load increases.

6. Simulation Evaluation for Large Networks

To evaluate SeNDORComm for large WSNs, we used TOSSIM [21] to simulate experiment 2 for a 100 node

MICA2 network. We used the same implementation of LEACH but with different parameters to scale it to 100

nodes, primarily an increase in the number of time slots allowed for sending the JOIN message and an application-

level random back off mechanism to prevent collisions between multiple nodes sending in the same slot. Without

the modifications, only 5% of the nodes were able to take part in data upload. We used LEACH with 5 clusters

and 20 timeslots for sending data messages and 10 slots for cluster formation each slot being 10 seconds. To

simulate wireless channel losses, we injected packet losses as observed in our experiment (8%).

0

20

40

60

80

100

 1:1 1:10 1:20
Network Load

(b)

T
ra
n
s
m
is
s
io
n

S
u
c
c
e
s
s
 R
a
ti
o

SeNDORComm
GenericComm

1

3

5

 1:1 1:10 1:20
Network Load

(a)

G
o
o
d
p
u
t

(b
y
te
s
/n
o
d
e
/r
o
u
n
d
)

SeNDORComm
GenericComm

0

25

50

75

100

 1:1 1:10 1:20

Network Load

(d)

R
e
li
a
b
il
it
y
 o
f
D
e
fe
rr
e
d

M
e
s
s
a
g
e
s

SeNDORComm
GenericComm

0

25

50

75

100

 1:1 1:10 1:20

Network Load

(c)

R
e
li
a
b
il
it
y
 o
f

Im
m
e
d
ia
te
 M
e
s
s
a
g
e
s SeNDORComm

GenericComm

Figure 5. Behavior of SeNDORComm and GenericComm under varying load conditions on a 100 node

network simulation.

Similar to experiment 3, we varied the network load by varying the number of debug message generated by

HSEND. For each ratio, we ran the simulation for 20 rounds and averaged over the rounds for the results shown in

Figure 5. The results from the test bed experiment and the simulation follow a similar trend. We see that

SeNDORComm improves the goodput (3.29%, 12.09%, and 154.42% for light, medium, and heavy loads) and

transmission success ratio (4.86%, 99.48%, and 830.98% for the loads) as the load increases. We see that under

light load conditions the reliability of immediate messages in SeNDORComm is slightly less than that of

GenericComm (-0.79%) owing to the channel losses. However, the reliability increases under heavier loads for

both immediate messages (22.05% and 176.35%) and for deferred messages (13.68% and 231%) for medium and

heavy loads. Under heavy load, we observe a congestion collapse in GenericComm, while this effect is not seen

with SeNDORComm.

7. Discussion

Here we discuss some issues with the current design of SeNDORComm and methods to improve on them. First,

it is conceivable that there are applications where any to any communication between any two nodes in the

network is frequent. In such cases, SeNDORComm generates an explicit packet for the deferred messages if it

does not expect an immediate message to the base station soon. SeNDORComm can improve energy efficiency

even in these cases if the explicit packet contains multiple deferred messages.

Second, when SeNDORComm signals sendDone to the application for a deferred message, it takes over

responsibility for sending the message out. However, if it fails a designated number of times, then the message is

dropped and the application receives no notification. One may argue that if this is a critical message for the

application, it should have been sent as a highest priority message in which case sendDone has the expected

semantic that the message was transmitted successfully to the next node. Alternately, we can add a third phase to

the split phase send operation whereby the node gets a later callback event with a success status when the message

is sent successfully, or a failure status if it is not sent successfully.

Third, SeNDORComm provides a guarantee that a message send will be attempted by the threshold waiting

time. The guarantee does not cover delivery or even a successful send attempt. The guarantee is a weak one for

several practical reasons—the condition of the wireless channel cannot be predicted and the single timer used for

aging messages in the queue has a fixed granularity. To improve matters, SeNDORComm could estimate the

channel condition based on its transmission attempts and try sending a message in advance of the deadline based

on an estimation of the lossiness of the channel.

Fourth, congestion can form even with SeNDORComm when a network is heavily loaded. The application can

sense congestion with high packet loss and SeNDORComm’s admission control can stop the application sending

explicit messages for certain amount of time to alleviate congestion. Alternately, the congestion control protocols

in [11][12] that are complementary to SeNDORComm can be used.

8. Conclusion

In this paper, we have presented the design and implementation of a communication layer called

SeNDORComm that can handle messages with different priorities. It can buffer and piggyback messages which

are not immediate so as to optimize the wireless channel usage. It respects latency bounds within which a message

needs to be transmitted and it does not starve lower priority messages. Through experiments on a sensor network

testbed, we show that packing multiple messages in a packet is possible without significant losses and the efficient

use of the wireless channel results in lower energy consumption and increases the reliability of the end-to-end

communication over the current default communication layer called GenericComm. In future work, we will be

diagnosing problems in WSNs by correlating error messages. In addition, we are developing a compiler to

automatically inject invariants in an application.

9. Acknowledgments

 The authors would like to thank Mr. Jae-Woo Lee for helping with experiments and Mr.Douglas R. Herbert for

providing source code of his LEACH implementation in Tiny OS.

10. References

[1] Lu, C., Blum, B. M., Abdelzaher, T. F., Stankovic, J. A., and He, T. RAP: A Real-Time Communication Architecture for Large-

Scale Wireless Sensor Networks. In RTAS '02.

[2] He, T., Blum, B. M., Stankovic, J. A., and Abdelzaher, T. AIDA: Adaptive application-independent data aggregation in wireless

sensor networks. In ACM Trans. on Embedded Computing Sys. pp. 426-457, May 2004.

[3] J. Polastre, J. Hui, P. L. J. Zhao, D. Culler, S. Shenker, and I. Stoica, "A Unifying Link Abstraction for Wireless Sensor

Networks," SenSys 2005.

[4] J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for wireless sensor networks," in Sensys, pp. 95-107, 2004.

[5] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, "An application-specific protocol architecture for wireless

microsensor networks," IEEE Trans on Wireless Communications, vol. 1, pp. 660-670, 2002.

[6] T. He et al., "VigilNet: An integrated sensor network system for energy-efficient surveillance," ACM Transactions on Sensor

Networks, pp. 1-38, February 2006.

[7] Herbert, D., Sundaram, V., Lu, Y., Bagchi, S., and Li, Z. Adaptive correctness monitoring for wireless sensor networks using

hierarchical distributed run-time invariant checking. ACM Trans. on Autonomous Adaptive Systems, Sep. 2007.

[8] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin, "Sympathy for the sensor network debugger," Sensys

2005.

[9] D. Herbert, Y. H. Lu, S. Bagchi, and Z. Li, "Detection and Repair of Software Errors in Hierarchical Sensor Networks," SUTC,

pp. 403-410, 2006.

[10] G. Tolle and D. Culler, "Design of an application-cooperative management system for wireless sensor networks," EWSN, pp.121-

132, 2005.

[11] B. Hull, K. Jamieson, and H. Balakrishnan, "Mitigating congestion in wireless sensor networks," Sensys 2004 .

[12] C. Y. Wan, S. B. Eisenman, and A. T. Campbell, "CODA: congestion detection and avoidance in sensor networks," Sensys, pp.

266-279, 2003.

[13] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. McLaughlin, "Energy efficiency based packet size optimization in wireless

sensor networks," in IEEE Workshop on Sensor Network Protocols and Applications (SNPA), pp. 1-8, 2003.

[14] M. Zulkernine and R. E. Seviora, “A Compositional Approach to Monitoring Distributed Systems,” IEEE International

Conference on Dependable Systems and Networks (DSN'02), pp. 763-772, 2002.

[15] G. Khanna, P. Varadharajan, and S. Bagchi, "Self Checking Network Protocols: A Monitor Based Approach.," SRDS, pp. 18-30,

2004.

[16] R. G. Miller, "Priority Queues," The Annals of Mathematical Statistics, vol. 31, pp. 86-103, 1960.

[17] Chatzigiannakis, I., Kinalis, A., and Nikoletseas, S. Priority based adaptive coordination of wireless sensors and actors. Q2SWinet

'06.

[18] Ganti, R. K., Jayachandran, P., Luo, H., and Abdelzaher, T. F. Datalink streaming in wireless sensor networks. In SenSys, pp.

209-222, 2006.

[19] T. He, J.A Stankovic, C. Lu, T. Abdelzaher, "SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks,"

ICDCS, 2003.

[20] A. Arora et al., “A line in the sand: a wireless sensor network for target detection, classification, and tracking,” Computer

Networks, pp. 605-634, December 2004.

[21] Levis,P., Lee, N., Welsh, M., and Culler, D. 2003. TOSSIM: accurate and scalable simulation of entire TinyOS applications.

ACM SenSys 2003.

[22] V. Sundaram, J.W. Lee, S. Bagchi, Y. H. Lu, and Z. Li .SeNDORComm: An Energy-Efficient Priority-Driven Communication

Layer for Reliable Wireless Sensor Networks .Technical Report, School of Electrical and Computer Engineering. Purdue University.

http://docs.lib.purdue.edu/ecetr/

