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ABSTRACT
In Fine-Grained Cycle Sharing (FGCS) systems, machine

owners voluntarily share their unused CPU cycles with guest
jobs, as long as the performance degradation is tolerable.
For guest users, free resources come at the cost of unpre-
dictable “failures”, where failures are defined as disruption
in the guest job’s execution due to contention from the pro-
cesses of the machine owner or the conventionally under-
stood hardware and software failures. These unpredictable
failures lead to unpredictable completion times. Checkpoint-
recovery has long been used for providing reliability in failure-
prone computing environments. Today’s production FGCS
systems, such as Condor, use expensive, high-performance
dedicated checkpoint servers, even though they could take
advantage of free disk resources offered by the clusters’ com-
modity machines. Also, in large, geographically distributed
clusters, dedicated checkpoint servers may incur high check-
point transfer latencies. In this paper we consider using
available, free disk resources as shared storage hosts for serv-
ing as checkpoint repositories. Doing so raises new chal-
lenges in providing fault-tolerance, because a failing storage
host may lead to a loss of saved application states. We model
failures of such shared storage hosts and develop a prediction
algorithm for such failures and then choosing an appropri-
ate set of storage hosts. We describe the development of
our system called Falcon in the production university-wide
Condor testbed at Purdue University, named “BoilerGrid”.
Through experiments on BoilerGrid, we show that Falcon

provides improved and consistent performance to guest jobs
by ensuring reliability and robustness in the presence of ir-
regular resource availability.
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1. INTRODUCTION
A Fine-Grained Cycle Sharing (FGCS) system [17]

aims at utilizing the large amount of idle computational
resources available on the Internet.In such a cycle sharing
system, PC owners voluntarily make their CPU cycles avail-
able as part of a shared computing environment, but only if
they incur no significant inconvenience from letting a foreign
job (guest process) run on their own machines. To exploit
available idle cycles under this restriction, an FGCS sys-
tem allows a guest process to run concurrently with the jobs
belonging to the machine owner (host processes). However,
for guest users, these free computation resources come at the
cost of fluctuating availability due to “failures”. Here we de-
fine failures to be due either to the eviction of a guest process
from a machine due to resource contention, or due to con-
ventional hardware and software failures of a machine, which
we call resource revocation. The primary victims of such re-
source volatility are large compute-bound guest programs
whose completion times fluctuate widely due to this effect.
Most of these programs are either sequential or composed
of several coarse-grained tasks with little communication in
between.

To achieve high performance in the presence of resource
volatility, checkpointing and rollback have been widely ap-
plied [5]. These techniques enable an application to peri-
odically save a checkpoint - a snapshot of the application’s
state - onto a stable storage that is connected to the com-
putation node(s) through a network. A job may get evicted
from its execution machine any time and can recover from
this failure by rolling back to the latest checkpoint. Evic-
tions may occur due to software or hardware failure, host
work load increasing beyond a threshold or simply owner of
the machine has returned.

Most production FGCS systems, such as Condor [18],
store checkpoints to dedicated storage servers. These are few
in number, are well-provisioned, and maintained such that
24×7 availability is achieved. This solution works well when
a cluster only belongs to a small administrative domain or
there are a large number of storage servers. However, it
does not scale well with the growing sizes of grids having



as participants thousands of home users, and geographically
separated university campuses and research labs. For ex-
ample, the production Condor pool at Purdue University
(PU), called “BoilerGrid” [1], is one of the largest such pools
in the country with 20,000 processors in it. It has machines
“flocking” from Indiana University (IU), University of Notre
Dame (ND), and Purdue University Calumet (PUC). While
BoilerGrid has been using the dedicated storage server so-
lution, a number of performance and feasibility issues have
been encountered.

First, FGCS systems do not include a dedicated net-
work that can efficiently handle the load of transferring po-
tentially gigabytes of checkpoints between a compute host
(CH) (the host on which the guest process is executing)
and the storage hosts (SH) (the hosts that have contributed
storage). Moreover, for multi-university grids, the current
mechanism for storing checkpoints in dedicated servers may
cause large network latencies since the compute and storage
hosts may be located at large network distances. We have
collected traces that show 12% of jobs submitted to Boiler-
Grid between March 5th, 2009 and March 12th, 2009 from
PU actually ran on ND’s machines.

Second, even if multiple storage servers could be provi-
sioned and made available throughout the grid, a mechanism
based on round trip time (RTT) to choose the closest stor-
age host for saving checkpoint data, an option available in
Condor, may not perform well. This is because a physically
close node may observe huge network traffic during check-
point transfer, making it less preferable than a distant one.

Third, a dedicated storage server will become loaded
as the number of guest processes concurrently sending data
increases—which will ultimately cause degradation in the
performance of these guest processes.

Our work is motivated by these issues reported by sci-
entists using BoilerGrid for running their compute-intensive
jobs with checkpoint-recovery. Our work therefore is to de-
velop a framework for reliable execution of applications in a
shared storage environment—an environment where a host
can serve as both an execution node for a guest job as well as
a storage host for saving checkpoints of others—as opposed
to dedicated checkpoint servers. For this, we first propose a
novel multi-state failure model for the shared storage hosts.
Then, we propose a failure prediction scheme and apply this
to the multi-state failure model to choose reliable and less
loaded storage nodes to serve as checkpoint repositories. Fi-
nally, we propose an algorithm for efficient checkpoint stor-
age and recovery. This algorithm uses erasure encoding [8]
to break checkpoint data into multiple fragments, such that
the checkpoint data can be reconstructed from a subset of
the fragments. We realize our algorithms in a practical sys-
tem called Falcon.

The major contributions of our work are —

• A novel multi-state failure model for storage hosts
in shared storage environment for ensuring load-
balancing across different storage hosts. Previous work
has only considered a failure model for compute hosts
[10].

• Failure-aware storage selection technique that selects
a set of reliable and lightly loaded storage hosts for a
compute host, based on their availability and available
bandwidth between the compute host and the storage
hosts. Previous work has not considered the multiplic-
ity of factors related to storage hosts that affect the

performance of checkpointing and recovery [4, 10].

• An efficient method that provides fault-tolerance to
the process of checkpointing data as well as uses par-
allelism offered by multiple fragments being stored in
multiple storage hosts to reduce checkpoint and recov-
ery overheads. This approach leverages prior work in
erasure coding for fault-tolerance [8] while using it in a
different context (shared grid environments) and using
the parallelism afforded by it.

• We have implemented and evaluated Falcon on the
production Condor testbed of Purdue University—
BoilerGrid—with multiple sequential benchmark ap-
plications. The experiments ran on BoilerGrid show
that performance of an application with Falcon im-
proves between 11% and 44%, depending on the size
of checkpoints and whether the storage server for Con-
dor’s solution was located close to the compute host.
Also, we show that the performance of Falcon scales
as the checkpoint sizes of different scientific applica-
tions increase.

The rest of the paper is organized as follows. Section 2
presents a comprehensive summary of our previous work on
failure-aware checkpointing and resource availability predic-
tion. Our major contributions are described in detail in Sec-
tion 3. Section 4 presents implementation details of Falcon.
Then, experimental approaches and results are discussed in
Section 5. Section 6 reviews some related works. Finally, we
conclude the paper in Section 7.

2. BACKGROUND ON FAILURE-AWARE
CHECKPOINTING
Failure-aware checkpointing builds on mechanisms that

predict the availability of the involved compute and storage
hosts. In our previously developed prediction techniques
[11], we applied a multi-state failure model to predict the
Temporal Reliability, TR, of compute hosts. TR is the prob-
ability that a host will be available throughout a given future
time window. Quantitatively, TR(x) is the probability that
there will be no failure between now and time x in the future.
To compute TR, we applied a Semi Markov Process (SMP)
model, where the probability of transitioning to a state in
the future depends on the current state and the time spent
in this state. The parameters of this model are calculated
from the host resource usages during the same time window
on previous days, since in many environments, the daily pat-
tern of host workloads are comparable to those in the most
recent days [9].

In other work [10], we proposed two algorithms for se-
lecting reliable storage hosts in an FGCS system, where
non-dedicated host machines provide disk storage for sav-
ing checkpoint data. A checkpoint is taken periodically and
contains the entire memory state of an application. A check-
point is used by a job for recovery when it gets rescheduled
to another machine after the current host fails. For reliable
storage in an FGCS system, we considered two criteria: the
network overhead due to saving and recovery of checkpoints,
and the availability of the storage hosts. This work [10] ap-
plied the knowledge of network connectivity and of resource
availability to predict reliability of a checkpoint repository
from a set of storage hosts. This work also proposed a one-
step look ahead heuristic to determine the optimal check-



point interval. It compares the cost of checkpointing imme-
diately with the cost of delaying that to a later time and
uses that to adjusted checkpoint intervals.

Our prior work left some questions unanswered. First,
it applied the failure-model for compute hosts to predict the
availability of storage hosts. These two kinds of hosts of-
fer resources with different characteristics; hence they will
have different failure models. Second, there was no notion
of load-balancing for storage hosts. Thus, a storage host
that is predicted to have high availability in the near future
will see a flash crowd of large checkpoints from several con-
currently executing jobs. The checkpoints are often large
in size (e.g., with the mcf benchmark application that we
experiment with, the size is about 1.7 GB), and this load
disbalance can cause significant perturbation to the FGCS
system. For example, the machine owner can see slow I/O
for his own jobs during such flash crowds. Third, for predict-
ing reliability of a storage host, we used absolute temporal
reliability even though correlated temporal reliability is the
important criterion. By correlated temporal reliability, we
mean what is the likelihood of the storage host being avail-
able, when needed, i.e., when the compute host has a failure.
It is at that time that the checkpoint is needed for recovering
the guest process on a different machine. Fourth, our prior
work used a static bandwidth measure, given by the network
specification, to estimate the network overhead. We find
that the actual bandwidth available for a large checkpoint
transfer may vary significantly from the static measure. Fi-
nally, and most significantly from an implementation and
deployment effort, our prior work performed a simulation
of the checkpoint-based recovery scheme, using the GridSim
toolkit. In this paper, we present a fully functional system
executing on Purdue’s BoilerGrid.

We compare the performance of Falcon with two other
checkpoint repository selection schemes:

• Dedicated: This scheme uses a pre-configured check-
point server to store checkpoints. These are generally
powerful machines with very high availability. This is
a supported current mode of usage for checkpointing
in BoilerGrid, as in many other production Condor
systems.

• Random: This scheme selects storage hosts randomly.
Here, we assume that this scheme employs the same
checkpoint store and retrieve methods as Falcon, ex-
cept that it chooses storage hosts randomly at the be-
ginning of each checkpoint interval.

Resource failure in Cycle Sharing Systems may be clas-
sified as - failure due to excessive resource contention (FRC)
and failure due to resource revocation (FRR) [12]. FRC
represents situations when the performance of local jobs de-
grades due to contention for resources by local and guest
jobs and FRR represents situation where owner of a ma-
chine turns it off or resource becomes unavailable due to
plain software or hardware failure. In this paper, we denote
both FRC and FRR with failure.

3. DESIGN FOR ROBUST CHECKPOINT-
ING
In this section, first we discuss our proposed novel

multi-state failure model for storage hosts. The roles that
a host assumes exhibit different characteristics - computa-
tion nodes execute guest jobs requiring CPU and memory

resources whereas storage hosts handle I/O load. Therefore,
failure models for these two types of resources are different.
We propose a failure model specialized to storage nodes in
a shared computing environment.

Second, we propose a new failure prediction technique
to select reliable checkpoint repositories by considering cor-
relation of failures between compute and storage hosts.
Third, we present an algorithm that fragments checkpoints
using erasure coding and concurrently saves them to multi-
ple storage nodes. The coding introduces redundancy such
that a subset of the fragments can be used for the recovery
of the application.

3.1 Novel Multi-state Failure Model for
Storage Hosts

In an FGCS system, storage hosts are often non-
dedicated, shared nodes contributing their unused disk
spaces. Checkpoint data saved by guest jobs in these storage
nodes may get lost when the storage nodes become unavail-
able due to resource contention or resource revocation. This
is of particular concern for long-running compute-intensive
applications. The model for recovering a guest job when it
is evicted from a machine is that the guest process migrates
to another compute host and uses the last checkpoint frag-
ments to recover and re-execute from the checkpoint. In this
situation, it is clearly advantageous to choose a storage host
that:

• is going to be available with high probability when a
compute host becomes unavailable.

• is less likely to have high I/O load. This ensures load-
balancing across storage hosts and is crucial for an
FGCS system, since creating load on an already busy
node will reduce the performance of host and guest
jobs.

• has large available bandwidth to the computation node
so that the transfer of checkpoint fragments incurs
lower network latency.

To predict failures of storage hosts, we propose a novel
multi-state failure model. In our previous work [10], we de-
veloped a failure model for compute hosts and applied it
to storage hosts. Since the underlying availability models
of the two types of resources - CPU cycles and disk stor-
age - are different, applying the same failure model to both
these resources is inadequate. Figure 1 presents our new
five-state failure model for storage hosts. The states are de-
fined as follows: (i) S0: storage host is running with I/O
load < τ1 and number of compute hosts sending checkpoint
data concurrently is < MAX-CLIENTS, (ii) S′

0: number of
compute hosts sending checkpoint data concurrently is =
MAX-CLIENTS, (iii) S1: I/O load of storage host is be-
tween [τ1, τ2), (iv) S2: I/O load of storage host is between
[τ2, 100%] (v) S3: storage host is not available due to re-
source revocation.

Here, the states S′

0 and S2 ensure load-balancing since
storage hosts in either of these states do not accept any more
request for saving checkpoint data. Knowledge about states
S1 and S2 is used during storage selection to rank storage
hosts according to their likelihood of becoming loaded in the
future. Note that, state S′

0 has been separated from state
S1 and S2 because this state represents a transient state of
a storage host. A compute host only uses the knowledge of
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Figure 1: New multi-state storage host failure
model. Here, S0: running state, S′

0: state where
the maximum number of compute hosts are sending
data, S1: loaded state, S2: Temporarily unavailable
state and S3: unavailable state.

states running, loaded and temporarily unavailable to pre-
dict load on a storage host machine. The knowledge of S′

0

is only used by the storage host to reject requests for check-
point storage from new compute hosts and thus enforce load
balancing. State S3 is an absorbing state because we assume
the failures are irrecoverable. Even if in practice the failure
can be recovered, the time to recover is large enough and un-
predictable enough to be useless for the current guest job.

When a compute host requests a storage host to save
checkpoint data, depending on which state the storage host
is in, it replies back. When the storage host is in either S0

or S1, it replies “ok”, and the compute host continues with
sending data. Otherwise, if it is in either S′

0 or S2, it does
not accept any new request.

3.2 Failure-aware Storage Selection

3.2.1 Temporal Availability
Similar to other resources in FGCS systems, checkpoint

repositories are volatile. To predict availability of a storage
host SHk in a given time window with respect to a com-
pute host CHl, we define Correlated Reliability Load Score
(CRLS) as:

CRLS(SHk, CHl)

=

(

LI(SHk, CHl) + γ, if CR(SHk, CHl) ≥ γ;

CR(SHk, CHl), otherwise.
(1)

where,

PrCHl
(i) = Pr{CHl in state i}

PrSHk,CHl
(i|j) = Pr{SHk in state i|CHl in state j}

CR(SHk, CHl)

=

8

>

>

>

<

>

>

>

:

PrSHk,CHl
(S0|down)

+PrSHk,CHl
(S1|down)

+PrSHk,CHl
(S2|down), if PrCHl

(down) > 0;

γ, otherwise.

LI(SHk, CHl)

=

8

>

<

>

:

α × PrSHk,CHl
(S0|up)

+(1 − α) × PrSHk,CHl
(S1|up), if PrCHl

(up) > 0;

0, otherwise.

In Equation 1, PrCHl
(down) and PrCHl

(up) denote
the probability that the compute host CHl is down (state
S0) and up (state S1) respectively. Here, CR(SHk, CHl)
and LI(SHk, CHl) denote the correlated reliability and
the load indicator between SHk and CHl respectively.
CR(SHk, CHl) and I(SHk, CHl) are probabilities while
CRLS is not—it is a score ∈ [0, 2]. In Equation 1, we first
calculate CR(SHk, CHl) as the total probability that the
storage host SHk remains up when the compute host CHl

is down. Note that, here we are adding up the probabilities
corresponding to storge host SHk being running, loaded,
or temporarily unavailable. The intuition is that if the
checkpoint data is needed (since the compute host has
gone down), then the storage host will allow the read of
the data, even if it is loaded. We consider storage hosts
having CR(SHk, CHl) ≥ γ (γ is a configurable parameter,
we chose γ = 0.95 for our experiments) as very reliable.
The equation rounds the reliability component of CRLS
to γ since we consider that reliability scores greater than
γ are high enough to be considered equivalent and also
may be statistically indistinguishable due to the inherent
noisiness of the measurements. Beyond this point, we would
want to give weightage to the less loaded storage hosts and
therefore add their load indicators to γ to make less loaded
machines have high CRLS value. For storage hosts having
reliability < γ, we do not consider their load because we
want to ensure that the most reliable storage nodes get
chosen first. We calculate the load indicator LI(SHk, CHl)
as a weighted probability of SHk being in the two tolerably
loaded states, namely, S0 and S1. The weight α is chosen
as 0.75 in our experiments.

3.2.2 Available Bandwidth
In addition to failure-prediction, checkpoint transfer

overhead is one of the key factors in storage repository se-
lection. Our previous work [10] used effective bandwidth
between a compute and a storage host to calculate network
overhead. Effective bandwidth is the maximum possible
bandwidth that a link can deliver. But the actual band-
width available between a compute host and a storage host
may be far less than this quantity. So, it is more accurate
to use available bandwidth between two hosts to access the
overhead of transferring data between them. Available band-
width (ABw) is the unused capacity of a link or end-to-end
path in a network and is a time-varying metric. We define
network overhead of transferring a checkpoint of size n with
erasure coding parameters (m,k) from compute host CHj

to storage host SHi in Equation 2. The parameters (m, k)
mean that a total of m + k checkpoint fragments are stored
and any m of them may be used to recover the entire check-
point.

network overhead, Ni,j =
n/m

ABw(SHi,CHj)
(2)

In Equation 2, Ni,j represents the network overhead of



sending a checkpoint from compute host CHj to storage
host SHi. ABwSHi,CHj

is the available bandwidth between
storage host SHi and compute host CHj .

3.2.3 Objective Function
We define an objective function in Equation 3 that tries

to balance the checkpoint storing overhead with the re-
execution cost if that checkpoint had not been taken. An ap-
plication incurs overhead during a checkpoint storing phase
while benefits from the fact that it does not have to re-
execute from the very beginning and can easily restart from
the state saved in the latest checkpoint. The difference of
these two quantities is the ultimate price that the appli-
cation pays. Clearly, a lower value is desirable. Falcon

selects storage nodes such that they minimize this objective
function. For a particular compute host CHj , m + k stor-
age hosts are selected for storing that many erasure coded
checkpoint fragments.

F =
MTTFcmp

CI
×

V
X

i=1

(Ci×Ni,j)

−(Tcurr + MTTFcmp)×
V

Y

i=1

CRLS′(SHi, CHj)} (3)

V
X

i=1

Ci = (m + k) (4)

CRLS′(SHi, CHj) = max[1 − Ci, CRLS(SHi, CHj)] (5)

Here, MTTFcmp is the mean time to failure of a compute
host, CI is the length of a checkpoint interval and Tcurr is
the time units spent on performing useful computation for
the job so far. V is the total number of storage hosts. The
variable Ci is an indicator variable, set to 1 for the storage
host that is selected and 0 for the one that is not. Our
goal is to pick the m + k storage hosts so as to minimize
the objective function F . The first term corresponds to

the overhead of storing the checkpints. The term
MTTFcmp

CI

approximates the number of checkpoints generated within
MTTFcmp. The second term corresponds to the re-
execution cost—a larger value means lower re-execution
cost. Equation 5 forces the formulation to only consider the
storage hosts that will be selected. We developed a similar
objective function in our previous work [10]. However,
Equation 3 uses different measures of network overhead and
reliability score.

3.2.4 Storage Selection Algorithm
To choose storage nodes that minimize the objective

function in Equation 3, we devise a greedy algorithm. Con-
sider again that the storage selection is being done by com-
pute host CHj .

We first sort the storage hosts in decreasing order of
CRLS(SHi, CHj) and increasing order of Ni,j . If a storage
host appears in the first m + k elements of both the sorted
lists, it is selected. Then, the value of F is calculated with
Ci = 1 for the chosen hosts and 0 for others. This will be
used as the baseline value of F when considering further
nodes to add.

If the number of selected storage hosts is less than
m + k, the objective function is calculated by including one
unselected host at a time. The host causing the minimum
increase to the objective function is selected. When the
number of selected hosts is m+k, the algorithm terminates;
otherwise the algorithm continues adding one storage host
in each iteration. The relative ordering of the different hosts
may change from one iteration to the next and therefore the
objective function has to be evaluated for all the unselected
hosts at each iteration.

When a storage host becomes unavailable later during
a checkpoint interval, the compute host needs to re-choose a
new one to replace it. Re-choosing another host from previ-
ously unselected ones is also done based on minimizing the
same objective function. Our system design is such that
this storage selection process occurs in parallel to the ac-
tual application and to the algorithm that uses this decision
to send checkpoint fragments to the selected repositories.
Since checkpoint repository selection occurs out of the algo-
rithm’s critical path, this speeds up the checkpoint storing
algorithm. But the tradeoff of this design choice is that there
may be stale information being used to choose the storage
hosts. This can be addressed by configuring the periodicity
with which these measurements and list updates take place.
Greater is the volatility in the underlying grid environment,
smaller should be the setting of the period. The statisti-
cal analysis of the eviction characteristics in BoilerGrid ( as
represented in Table 2) shows that on average 1.3 evictions
occur per hour. For all our experiments, we have configured
this periodicity of calculating the objective function to once
every 10 seconds.

3.3 New Method for Checkpoint Recovery
In our previous work [10] we proposed two algorithms -

Optimistic and Pessimistic for selection of storage reposito-
ries. The Optimistic scheme selects a set of storage hosts at
the very beginning of a job’s execution and uses this set to
save checkpoint data during each checkpoint interval. This
set is updated only when a job migrates to a different exe-
cution machine. On the other hand, the Pessimistic scheme
selects a new set of storage hosts at the beginning of each
checkpoint interval. While Optimistic ignores inherent dy-
namism that is present in resource availability, Pessimistic
results in unnecessary overhead [10]. Here, we develop a
new algorithm that chooses storage hosts on an as-needed
basis, always keeping m + k fragments. It releases the re-
source availability assumptions from our prior work and up-
dates the selection of storage hosts on an as-needed basis.
It takes into account the changing load and fluctuating re-
source availability. Our algorithm for storing checkpoint
data has the following steps:

1. Read chosen storage host list generated by algorithm
described in Section 3.2

2. Read checkpoint from disk
3. Compress the checkpoint
4. Erasure encode the checkpoint into m + k fragments

(erasure coding with parameters (m,k))
5. Send fragments concurrently to storage hosts
6. If any of the chosen storage hosts is in state S2 or

S3, re-choose another node from the list of unselected
ones. The same greedy algorithm, described in Section
3.2, is used to rechoose. Send the remaining fragments
concurrently.
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7. Repeat step 6 until all the fragments are sent or a new
checkpoint is generated. If a new checkpoint is gener-
ated then start from step 1 and abandon the remaining
checkpoint fragments.

4. FALCON STRUCTURE
Figure 2 presents the system level block diagram of

Falcon. In this figure, each large box represents one com-
ponent and each small box represents a module. We have
designed our system such that some modules run off the
critical path of our checkpoint-recovery schemes. Falcon

consists of three major components:

• Compute host component (CHC) takes care of failure-
aware checkpointing and is submitted along with the
guest process to the compute host.

• Storage host component (SHC) is a user application
that runs in storage hosts. This component imple-
ments the multi-state failure model explained in Sec-
tion 3.1.

• History server component (HSC) runs on any machine
and periodically collects states of compute and storage
hosts. Modules in CHC and SHC communicate with
this component to calculate CRLS.

Falcon is integrated with Condor and some of the design
decisions were driven by the design of Condor. For exam-
ple, all the modules are implemented as user-level processes.
Detailed description of each module in each component is
given in the following subsections.

4.1 Compute Host Component (CHC)
Compute host component is the part of Falcon that

runs on an execution host machine. CHC consists of four
modules:

• Module MABw is a process that periodically measures
available bandwidth between this computation host to
all the storage hosts and appends to a file. For avail-
able bandwidth measurement, we have used Spruce [6],
a light-weight available bandwidth measurement tool.
Spruce provides a server module that runs as a part of
CHC and a client module that is a part of SHC. For
our experiments, we have used a period of measuring
available bandwidth of 10 seconds.

• Module Rank is a process that implements the greedy
algorithm described in Section 3.2.4. It iteratively
ranks the storage hosts and produces an ordered list
of storage hosts.

• Module Send implements an algorithm that reads the
checkpoint data from disk, compresses it and then
uses erasure coding to break the compressed check-
point data into m + k fragments where m and k are
parameters of erasure coding. For erasure coding, we
modified the zfec implementation [20] to convert it
to use only C so that we can run on all the machines
of BoilerGrid. These checkpoint fragments are sent in
parallel to storage host module Srvr.

• Module Recover is responsible for retrieving check-
point fragments during a rollback phase from storage
repositories, then decoding the fragments to one com-
pressed data and then uncompressing it to produce
original checkpoint data - that a guest process uses to

restart. Checkpoint fragments are fetched from stor-
age hosts in parallel.

Most of the modules are light-weight, requiring little CPU
and memory resources.

4.2 Storage Host Component (SHC)
The SHC consists of three modules:

• Module Load measures disk I/O load periodically. This
process runs in parallel to actual server module Srvr

and generates required load information that module
Srvr uses to determine which state the storage server
is in according to Figure 1.

• Module Srvr implements the server logic for receiv-
ing and sending checkpoint data to variable number of
compute hosts. It updates the variable current-state
at the beginning of each request received from Module
Send of CHC.

• Module Qry is a parallel process that responds to the
history server’s query about which state the storage
host is currently in. It receives values of the state vari-
ables from module Load (I/O load) and module Srvr

(number of compute hosts currently being served).

4.3 History Server Component (HSC)
This can be run as a user process on any machine. This

component pings each compute host to note if that machine
is up or down and communicates with storage hosts to re-
ceive their current status. Note that, HSC only takes 4 states
of the storage hosts into account based on load - namely, S0,
S1, S2 and S3. This information then is stored in log files
as a {current time stamp, current state} tuple. The HSC
computes CRLS using Equation 1. Our current implemen-
tation uses a central server approach. This design can be
extended to a distributed implementation.

5. EVALUATION
We have developed a complete system, as described

in Section 4. We ran experiments on a production Condor
testbed—BoilerGrid by integrating our work with standard
benchmark applications. These applications were chosen
from SPEC CPU 2006 and BioBench [7] benchmark
suites. SPEC CPU 2006 is widely used for benchmarking
CPU-intensive programs while BioBench consists of well
known biomedical applications. This section presents
the experiments for evaluating the system in terms of
its checkpoint recovery overheads and its effectiveness in
improving job makespan.

We have organized our experiments to measure both
fine-grain (micro benchmark experiments) and coarse-grain
(macro benchmark experiments) metrics. While the mi-
cro benchmark experiments compare overheads of different
checkpoint-recovery schemes under controlled experimental
conditions, the macro benchmark experiments evaluate the
effectiveness in improving job makespan running on Pur-
due’s condor environment, the BoilerGrid. Schemes that we
compare with are:

• Dedicated: Condor’s scheme where dedicated storage
server is used for saving checkpoint data.
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Figure 2: System level block diagram of our system. Here, the Compute Host Component represents Falcon
modules that run in a compute host, the Storage Host Component represents Falcon modules that run in a
storage host and History Server represents a module that keeps history logs of the availability states of the
compute and storage hosts.

Applications mcf TIGR-
I

TIGR-
II

TIGR-
III

Original Check-
point Size (MB)

1677 946 500 170

Compressed
Checkpoint Size
(MB)

241 201 153 129

Compression Ra-
tio

85.63% 78.75% 69.4% 24.12%

Table 1: Checkpoint sizes of different applications.
mcf and TIGR are benchmark applications part of
SPEC and BioBench respectively. TIGR-I, TIGR-II
and TIGR-III are runs of TIGR with different input
sizes.

• Random: A scheme where the storage hosts for saving
the erasure encoded checkpoints are randomly chosen
from among all available storage hosts.

Note that, the default scheme of Condor is to send check-
point back to submitter machine (machine from which the
job is submitted). This scheme is similar to that of using a
dedicated server and hence performs no better than our ref-
erence Dedicated algorithm ( in fact, it can be significantly
worse, if the submitter sits behind a low-bandwidth connec-
tion).
Checkpoint storing overhead includes time:

• For Falcon to: (i) Read chosen storage host list from
disk (ii) Read checkpoint from disk (iii) Compress (iv)
Erasure encode and write fragments to disk (v) Read
fragments from disk (vi) Send checkpoint fragments in
parallel to storage hosts

• For Dedicated to: (i) Read checkpoint from disk (ii)
Send checkpoint to storage server

• For Random to: (i) Choose storage nodes randomly
(ii) Follow steps (ii) - (vi) of Falcon

Recovery overhead includes time:

• For Falcon to: (i) Fetch the minimum required frag-
ments from storage hosts. This time includes reading
checkpoint at the storage host end, network transfer
and writing to disk at the compute host end (ii) Era-
sure decode and write compressed checkpoint data to
disk (iii) Decompress and write to disk

• For Dedicated to: (i) Fetch checkpoint data from stor-
age server. This time includes reading checkpoint at
the storage host end, network transfer and writing to
disk at the compute host end

• For Random to: (i) Follow steps (i) - (iii) of Falcon

For all our macro and micro benchmark experiments, we
set erasure coding parameters to (3, 2) - meaning 3 fragments
are required and 2 are redundant.

5.1 Macro Benchmark Experiments
This section presents results of our macro benchmark

experiments - experiments that we ran by submitting scien-
tific applications to BoilerGrid and measuring their average
makespan — the time difference between submission and
completion minus the time it spent in the idle or the sus-
pended states. A job submitted to Condor remains idle un-
til it gets scheduled to a suitable machine. Condor jobs can
specify their requirements for disk space, memory, machine
architecture, operating system etc. in a submission script
and a scheduler matches these requirements with machines
that are available for running Condor jobs. Since this idle
time is in no way related to checkpoint-recovery scheme, we
exclude it from calculating makespan.

Checkpointing in Condor is non-blocking for the appli-
cations - the only blocking part is till the checkpoint is lo-
cally stored. Condor then transfers this checkpoint to appro-
priate storage repository as configured. This non-blocking
technique efficiently hides checkpoint transfer overhead from
makespan of applications. It is during restart when appli-
cations need to fetch checkpoints to the execution machine
and restart. This recovery overhead directly adds up to an
application’s makespan.
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 Also, our optimistic and pessimistic schemes from [XXX] do not form valid points of comparison with Falcon. For the optimistic scheme, the assumption is that the storage hosts selected at the beginning of the execution of the application will remain available through the lifetime of the application. This condition is often violated. The pessimistic scheme on the other hand clearly underperforms Falcon. It rechooses all the storage hosts at every checkpoint storage event. This is an overkill since many of the storage hosts may be perfectly capable of accepting checkpoints. This is precisely the insight that Falcon leverages. 



The recovery overhead is incurred as many times as
there are evictions of the applications from the compute
hosts. We empirically measured this in BoilerGrid and show
the failure characteristics in Table 2. We use 1.3 evic-
tions per hour as the rate of eviction for our experiments
in Section 5.1.1. In Section 5.1.1 we compare average job

N µ σ Range
116 1.3130 0.2172 [1.0298,2.3931]

Table 2: Statistical analysis of the eviction charac-
teristics in BoilerGrid. The table shows number of
jobs for which we collected data (N), average num-
ber of evictions per hour (µ), standard deviation (σ)
and range.

makespan of applications using different checkpoint reposi-
tory techniques. The decompositions of checkpoint storing
and recovery overheads are shown in Section 5.1.2 and Sec-
tion 5.1.3 respectively.

5.1.1 Overall Evaluation
For overall evaluation of different schemes, we collected

average job makespan of two benchmark applications. We
integrated three checkpoint schemes: Falcon, Dedicated
with a local checkpoint server (lab machine connected to
the campus-wide LAN at Purdue) and Dedicated with a
remote checkpoint server (machine at University of Notre
Dame connected to Internet) with these applications and
submitted jobs in BoilerGrid. Note that, University of Notre
Dame is a part of this multi-university grid. For all cases,
these applications took checkpoint once every 5 minutes.
Here, using the Dedicated-Remote scheme represents the sit-
uation when jobs submitted from one university go to run
at another university but the checkpoint server is at the first
university. This is exactly the situation in Boiler-Grid for
applications that run on other university machines.
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Figure 3: Average job makespan of different appli-
cations. Here, Dedicated-Local represents the ded-
icated scheme using a local checkpoint server and
Dedicated-Remote represents the dedicated scheme
using a remote checkpoint server.

From Figure 3, we see that Falcon outperforms
Dedicated-Local and Dedicated-Remote in actual applica-
tion runs. In actual runs on BoilerGrid, applications on
an average will see performance that lies between that of
Dedicated-local and Dedicated-Remote since applications do
go to run on machines at other campuses. The reasons for
performance improvement of Falcon are many-fold — (i)

Falcon chooses storage repositories that are more efficient
to access (ii) checkpoint fragments saved by Falcon are
much smaller in size due to compression and encoding, com-
pared to the checkpoint size that Dedicated schemes store.
Section 5.1.3 explains that smaller checkpoint size results in
lower recovery overhead and hence improved job makespan
and (iii) the fragments are retrieved in parallel from the
chosen storage hosts. More about the contribution of each
of the techniques (compression, load balancing and paral-
lel network transfer) in improving the recovery overhead is
discussed in Section 5.2.5.

5.1.2 Checkpoint Storing Overhead
Figure 4 shows decomposition of overhead of Falcon

and Dedicated for a single store operation. Dedicated
scheme uses a remote checkpoint server.
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Figure 4: Average checkpoint storing overhead vs
different checkpoint sizes.

One observation that can be drawn from Figure 4 is that
as checkpoint size increases, increase in checkpoint storing
overhead of Dedicated becomes much higher than Falcon.
The overhead is dominated by the disk read and network
transfer time, which increases with increasing checkpoint
sizes. However, Falcon’s design of compressing the check-
points and parallelizing the transfer of smaller checkpoint
fragments speeds this up.

5.1.3 Recovery Overhead
In Figure 5 we plot recovery overhead incurred by

Falcon and Dedicated schemes for a single recovery op-
eration.

One observation that can be made from Figure 5 is that
as checkpoint size increases, Dedicated scheme suffers due to
large network transfer overhead. Compression by Falcon

results in smaller checkpoint data and hence reduced net-
work transfer overhead. As Table 1 shows, compression ratio
increases as size of checkpoint data increases. This justifies
our approach of incurring a little overhead at the compute
host side for compression with the benefit of significant im-
provement in recovery overhead. Note that, lower recovery
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Figure 5: Recovery overhead of four different check-
point sizes generated by applications in Table 1.
This figure shows contributions of different compo-
nents in total recovery time. Erasure coding param-
eters are (m=3, k=2). Fetch and disk write time
also includes the time to read checkpoint data from
storage repositories.

overheads directly translate to better performance for an
application.

5.2 Micro Benchmark Experiments
The objective of the micro benchmark experiments is

to show off specific features of Falcon under controlled ex-
perimental conditions. We conducted three sets of experi-
ments to compare: (i) efficiency of different schemes in han-
dling concurrent clients, (ii) efficiency in handling storage
failures and (iii) performance improvement due to load bal-
ancing. For these experiments, we used checkpoint data of
500MB generated by application TIGR. As storage hosts for
Falcon we used 11 - 1.86 GHz Intel Core 2 Duo machines
with 80GB of hard disk connected to the campus-wide 100
Mbps LAN and 1 - 2.00 GHz laptop with 160GB of hard disk
connected to a DSL modem. As dedicated storage server we
used another lab machine with configuration 2.66 GHz Intel
Core 2 Duo with 80GB of hard disk space and connected to
the campus-wide LAN. This machine was always available.

5.2.1 Efficiency in Handling Simultaneous Clients
The objective of this experiment is to show how the

performance of different schemes scale with load imposed by
multiple concurrent clients. In this experiment, the check-
point storing overheads of different schemes, in addition to
the factors described in Section 5, include time to write the
checkpoint data to disk at the storage host end. We vary
the number of compute hosts simultaneously sending data
and measure the overhead for storing checkpoints.

Two observations that can be drawn from Figure 6 are:

1. As the number of clients simultaneously sending data
increases, the checkpoint scheme with a dedicated
server suffers more than Falcon. Even though with
erasure coding Falcon introduces 40% more data,
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Figure 6: Average execution time of the algorithms
vs number of clients concurrently sending data to
the servers.

due to compression the total amount actually sent by
Falcon is less than that of Dedicated. Total amount
of data sent by Falcon with compression and erasure
coding is:

datasent = 5 ×
153

3
MB = 255MB < 500MB

2. Checkpoint storing overhead of Random is larger than
that of Falcon because Random chose the laptop
behind the slow network connection 8% of the time.
Because of low available bandwidth between compute
host and this laptop, Falcon never chose it.

5.2.2 Efficiency in Handling Storage Failures
Since storage hosts in FGCS are non-dedicated re-

sources, a protocol must be able to handle unavailability of
storage nodes efficiently. The objective of this experiment is
to compare the added overhead of re-choosing storage nodes
by Falcon with that of Random and the more conservative
approach of Pessimistic [10]. For this experiment, we killed
the storage daemons running in those storage hosts to make
them appear unavailable.
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Figure 7: Average checkpoint storing overhead of
different schemes with variable number of unavail-
able storage hosts. This overhead includes time to
re-choose storage hosts to replace unavailable ones.

One observation that can be drawn from Figure 7 is
that the overhead of re-choosing storage hosts using history
and available bandwidth is no worse than that of choosing
them randomly. This shows that Falcon’s design choice of
measuring history and available bandwidth out of the crit-
ical path yields robustness at no extra cost. But it is clear
from Section 5.2.2 that the scheme employed by Falcon

chooses storage nodes wisely. Pessimistic however incurs



large overhead due to measuring bandwidth between com-
pute and storage hosts at the beginning of every checkpoint
storing instance.

5.2.3 Load Balancing vs Checkpointing Overhead
In this experiment, we compare the overheads of stor-

ing checkpoints when the workload in storage hosts varies.
The objective of this experiment is to evaluate the effective-
ness of Falcon’s load balancing technique. For this experi-
ment, we generated background I/O load in a single storage
host out of the 5 chosen ones using a file system benchmark
application Bonnie [2]. The checkpointing overheads of both
the techniques, in addition to the factors described in Sec-
tion 5, include the time for the storage hosts to write data
to disk. Additionally, the overhead of the scheme with load
balancing includes time to rechoose a storage host to replace
the overloaded one.
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Figure 8: Average checkpoint storing overhead of
different schemes with various I/O loads on one of
the storage hosts. This overhead includes the time
for storage hosts to write checkpoint data and ac-
knowledge.

Since τ2 is set as 80%, in Figure 8, the difference be-
tween the load balancing and no load balancing cases comes
up when load on a storage host becomes ≥ 80% and Falcon

with load balancing scheme re-chooses. As high I/O load
may imply high CPU utilization as well, the model with
load balancing benefits by not sending data to this host.
Ensuring balanced load among the shared storage resources
is utterly important because these resources are shared by
the owners voluntarily. Hence, taking advantage of these re-
sources in a way so that the actual host’s performance does
not degrade beyond a threshold is as crucial a parameter as
the performance benefit gained.

5.2.4 Parallel vs Sequential Retrieval of Checkpoints
In this experiment, we compare the network transfer

overheads incurred by retrieving the checkpoint fragments
sequentially with that of retrieving them in parallel. The
size of the checkpoint fragments was 940MB each and we
generated 100% I/O load on the loaded storage nodes us-
ing Bonnie [2]. There were 5 storage nodes and the erasure
encoding parameters were set at (3,2) - meaning 3 required
and 2 redundant fragments. The objective of this exper-
iment is to evaluate the effectiveness of Falcon’s parallel
data retrieval technique when a subset of the storage nodes
containing the checkpoint fragments becomes loaded. Here,
the sequential scheme retrieves fragments from m storage
nodes including all the loaded ones.

Figure 9 demonstrates the advantage of employing par-
allelism in retrieving the fragments from storage nodes. The
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Figure 9: Parallel vs sequential retrieval of the
checkpoint fragments during a recovery phase. Note
that the loaded storage nodes are included in the list
of m nodes which the sequential scheme contacts for
retrieving the checkpoint fragments.

sequential scheme performs poorly because it fetches the
checkpoint fragments from the loaded nodes and can only
complete after all the m fragments are fetched. So if even
any one of the nodes is busy and the sequential scheme starts
retrieving data from that node, it has to finish the transfer.
In contrast, the parallel scheme is done as soon as any m of
the fragments arrive. So, it often happens that there are m
not so loaded nodes and the retrieval process finishes early.

5.2.5 Contributions of Compression, Load balanc-
ing, and Parallelism

In this experiment, we compare the contributions of each
of the three schemes—compression, load balancing, and par-
allel retrieval of checkpoint fragments—in improving the re-
covery overhead and in turn, in improving the performance
of the applications. For this, we successively remove one
of the schemes from Falcon while keeping the other two
schemes. The checkpoint used to run this experiment is
that of the application TIGR-I (Table 1).

The first observation from Figure 10 is that the largest
contribution in improving recovery overhead comes from
compressing the checkpoint data. The highly compressible
nature of these checkpoint data can result in a compression
factor as large as 86% (for mcf) and 79% for this application
(Table 1). This in turn reduces the network transfer over-
head. Also, if the checkpoint is not compressed, the decoding
overhead increases. An important point to note is that even
though the uncompression overhead is the most dominat-
ing component in the recovery overhead, it is worthwhile to
compress and uncompress. Otherwise encoding very large
checkpoints (>= 1GB) incurs very high memory cost and
requires very long time, if at all possible. Second, due to
the small size of each checkpoint fragment, network trans-
fer overhead of both the parallel and the sequential schemes
are comparable. The advantage of using the parallel scheme
over the sequential one in retrieving the checkpoint frag-
ments is discussed in Section 5.2.4. Third, due to the smaller
sizes of the checkpoint fragments, the overhead of retrieving
the m fragments from storage nodes with 100% I/O load
is comparable to that of retrieving them from non-loaded
ones. But the point to note is that load-balancing while it
does not have a very prominent contribution in lowering the
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Figure 10: This figure shows the contributions of
each of the 3 techniques—compression, load balanc-
ing, and parallel network transfer—in improving re-
covery overhead. Note that, lower recovery over-
head reduces the makespan of an application and
hence results in improved performance in Section
5.1.1. Here, PXfer stands for the parallel network
transfer of the checkpoint fragments, SXfer stands
for the sequential network transfer, D stands for de-
coding, and UZ stands for uncompression. Each
scheme consists of a combination of multiple such
schemes. For example, PXfer+D+UZ implies that
this scheme retrieves checkpoint fragments in paral-
lel, decodes them, and then uncompresses them.

recovery overhead in this experiment, it has an impact on
the checkpoint transfer overhead (Section 5.2.3). Load bal-
ancing is also crucial because the storage nodes are shared
resources. So, during the checkpoint storing phase, if com-
pute hosts disregard the fact that a storage node is loaded
and put more load on it by sending the bulk of checkpoint
data, then the performance of the host jobs on that storage
node may degrade considerably. This may cause the owner
to remove his resource from the pool.

6. RELATED WORK
Checkpoint-recovery is a widely used technique for pro-

viding fault-tolerance in high-performance parallel comput-
ing and distributed systems [5]. Related contributions in-
clude checkpointing facilities provided in production systems
for MPI applications [3] and improving checkpointing per-
formance. Production grid systems such as Condor [18],
take checkpoints of applications periodically and store them
in dedicated servers. However, relying on such dedicated
servers does not leverage the idle storage resources in grid
environment. Moreover, recent research [19] has shown that
using non-dedicated storage can actually result in improved
performance of guest applications if a reliable set of such
resources can be chosen. These results motivate our work
of applying resource availability prediction to select reliable,
non-dedicated checkpoint repositories.

Erasure encoding for storing data in a distributed man-
ner to tolerate failure is a well-known technique. Related
work such as [8] discusses in detail a fault-tolerant method
of checkpointing and recovery using erasure coding. On the
other hand, [4] compares different techniques of introducing
redundancy in checkpoint data to improve fault-tolerance
of applications in a shared storage environment. Erasure
coding is also a popular technique for providing reliable ac-

cess to data in peer-to-peer networks [14]. The OceanStore
project [13] creates massive scale redundant copies of data
using (among other techniques) erasure coding. The work
makes contributions in efficient read operation and Byzan-
tine fault-aware replication. The model is not that of FGCS
systems and therefore the notion of guest jobs and their
evictions due to resource contention is not significant.

[16] is an empirical study based on actual Condor trace.
It characterizes the reasons of resource unavailability in Con-
dor and proposes a multi-state grid resource availability
characterization. A few other studies use failure modeling
of compute hosts for scheduling jobs on a grid [15].

Our work in Falcon employs some well-known tech-
niques, to improve fault-tolerance of data (by erasure cod-
ing) and to improve performance of guest processes (by
checkpointing and recovery). However, distinct from prior
work, we try to address the unanswered issues of choosing
reliable storage nodes in a shared grid environment, balanc-
ing load across them, and finally using them for storing and
retrieving checkpoints.

7. CONCLUSION
We have designed, developed and evaluated Falcon, a

system that provides fault-tolerant execution of applications
in FGCS systems without any dedicated storage server. We
present a load-balancing multi-state failure model for these
shared storage resources and apply knowledge of this model
to predict reliability. We present a new checkpoint store and
retrieve technique that efficiently handles large-sized check-
point data, of the order of gigabytes. Finally, we run ex-
periments in BoilerGrid,a multi-university production Con-
dor system at Purdue University. Experiments show that
Falcon provides consistency in running times and improves
overall performance of jobs by 11% to 44% over the mech-
anisms of using dedicated checkpoint servers or choosing
storage hosts randomly. In ongoing work, we are extend-
ing Falcon to handle parallel applications, and leverage the
possibility of coexistence enabled by multi-core machines.
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