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Abstract

A specific application for wastewater monitoring and ac-
tuation, called CSOnet, deployed city-wide in a mid-sized
US city, South Bend, Indiana, posed some challenges to a
time synchronization protocol. The nodes in CSOnet have
a low duty cycle (2% in current deployment) and use an ex-
ternal clock, called the Real Time Clock (RTC), for trigger-
ing the sleep and the wake-up. The RTC has a very low
drift (2 ppm) over the wide range of temperature fluctuations
that the CSOnet nodes have, while having a low power con-
sumption (0.66 mW). However, these clocks will still have to
be synchronized occasionally during the long lifetime of the
CSOnet nodes and this was the problem we confronted with
our time synchronization protocol. The RTC to fit within
the power and the cost constraints makes the tradeoff of hav-
ing a coarse time granularity of only 1 second. Therefore,
it is not sufficient to synchronize the RTC itself—that would
mean a synchronization error of up to 1 second would be
possible even with a perfect synchronization protocol. This
would be unacceptable for the low duty cycle operation—
each node stays awake for only 6 seconds in a 5 minute time
window. This was the first of three challenges for time syn-
chronization. The second challenge is that the synchroniza-
tion has to be extremely fast since ideally the entire network
should be synchronized during the 6 second wake-up period.
Third, the long range radio used for the metropolitan-scale
CSOnet does not make its radio stack software available, as
is seen with several other radios for long-range ISM band
RF communication. Therefore, a common technique for
time synchronization—MAC layer time-stamping—cannot
be used. Additionally, MAC layer time-stamping is known
to be problematic with high speed radios (even at 250 kbps).

We solve these challenges and design a synchronization
protocol called HARMONIA. It has three design innova-
tions. First, it uses the finely granular microcontroller clock
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to achieve synchronization of the RTC, such that the syn-
chronization error, despite the coarse granularity of the RTC,
is in the microsecond range. Second, HARMONIA pipelines
the synchronization messages through the network resulting
in fast synchronization of the entire network. Third, HAR-
MONTIA provides failure handling for transient node and link
failures such that the network is not overburdened with syn-
chronization messages and the recovery is done locally. We
evaluate HARMONIA on CSOnet nodes and compare the two
metrics of synchronization error and synchronization speed
with FTSP. It performs slightly worse in the former and sig-
nificantly better in the latter.
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1 Introduction

Wireless sensor actuator networks or WSANS consist of
computer controlled sensors and actuators that communi-
cate over a wireless (usually RF) communication network.
WSANS use sensed data to power actuators which can then
affect the sensed environment. The resulting changes in that
environment can then be sensed by the network. This forms a
distributed feedback loop that has the potential for efficiently
controlling geographically distributed processes at a scale
that was previously unthinkable. A metropolitan scale (city
wide) WSAN, called CSOnet, is currently being built by a
partnership of private (EmNet, LLC), public (City of South
Bend), and academic (Purdue University and University of
Notre Dame) agencies. The WSAN is being built to con-
trol the frequency of combined sewer overflow (CSO) events
in a mid sized U.S. city (South Bend, Indiana). More than
700 cities in the U.S. have sewer systems that combine sani-
tary and storm water flows in the same system. During rain
storms, wastewater flows can easily overload these combined
sewer systems, thereby causing operators to dump the excess
water into the nearest river or stream. The discharge is called
a CSO event [10]. The problem addressed by CSOnet rep-
resents a major public health and environmental issue faced
by many U.S. cities. At present, the system consists of 150
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wireless sensor nodes monitoring 111 locations in the South
Bend sewer system. Actuation nodes are scheduled to be
completed in summer 2009.

The CSOnet deploys nodes in the sewage channels for
sensing, on top of traffic poles for relaying, and at major
traffic intersections to act as gateways to the cellular net-
work, by which the sensed data is uploaded to a backend
server. The nodes are called Chasqui nodes, which are based
on the Crossbow Mica2 mote design, but expand on it to add
a longer range and faster radio, and significant to our prob-
lem, a Real Time Clock (RTC) with an extremely low drift of
2 ppm. The Chasqui nodes are meant for long-term operation
without the need to change batteries. Therefore, a natural de-
sign point is to have low duty cycle operation of the network.
In the current deployment, each node stays awake for 6 sec-
onds in a 5 minute period, leading to a 2% duty cycle. This
led us to the requirement of accurate time synchronization
for the Chasqui nodes.

The distinctive challenges for synchronization in CSOnet
were three-fold. First, the synchronization had to be fast
since the network only stayed awake for 6 seconds at a time
and the projected scale of the network is large, of the or-
der of a few hundred nodes. Second, the Chasqui nodes
used the RTC, which is external to the microcontroller chip,
for the trigger for wake up. This is due to the RTC’s low
drift over the large temperature range to which the nodes
are exposed—from -13°F to 122°F. However, crystals used
for clocks have a tradeoff in three dimensions—drift, gran-
ularity, and power consumption. The power consumption
has also to be kept very low and hence the RTC sacrifices
the granularity that is exposed to the programmer—it has a
coarse granularity of only 1 second. Thus, we have the situ-
ation that wake up is controlled by a clock whose granularity
is so low that it is not sufficient to synchronize the clock,
given that the duty cycle is low. Third, the high power, long
range, and high speed radio used is a MaxStream 115.2 kbps
radio where the firmware is not available for modification.
Thus, we cannot use a common technique used in time syn-
chronization protocols—MAC layer time-stamping. Addi-
tionally, MAC layer time-stamping with high speed radios
poses problems as documented in [13, 14]. While we have
posed these challenges in the context of CSOnet, we believe
they are more general than that. Abstracting out the details,
these challenges to a time synchronization protocol will be
posed by any WSAN that has large scale, low duty cycle
operation, proprietary radio stack, and crystals that make a
natural tradeoff between drift, granularity, and power con-
sumption.

We found that no existing time synchronization proto-
col addressed these challenges motivating us to design and
develop our protocol called HARMONIA. HARMONIA is
designed and implemented in TinyOS and executes on the
Chasqui nodes. It has three primary design innovations.
First, it has an algorithm to use the high resolution micro-
controller clock to synchronize the low resolution RTC. Sec-
ond, the synchronization-related hand-shake between two
adjacent nodes happens in two phases through a single mes-
sage in each phase. However, HARMONIA pipelines the two
phases, with a node acting as a source of the first phase mes-

sage before it has itself received the second phase message.
This design is important in achieving a rapid synchronization
of the entire network. Third, reliability is built into HARMO-
NIA to handle transient node and link failures. The goal is
to localize the effect of a failure and not overburden the net-
work with synchronization-related messages.

To evaluate HARMONIA, we create small-scale linear and
tree topologies with Chasqui nodes, with each node running
the CSOnet application and having a low 2% duty cycle. We
evaluate the time to synchronize the network and the syn-
chronization error between any two pair of nodes. We com-
pare this to FTSP running on Mica2 nodes. While a compar-
ative evaluation on the same hardware platform would have
been desirable, each protocol relies critically on some spe-
cific hardware feature. The results validate our design goal
that HARMONIA is faster than FTSP, while sacrificing syn-
chronization error. A representative result is that HARMO-
NIA is 8.7X and 12.1X faster than FTSP for a 5 hop linear
network depending on the setting of FTSP, and with a period
of 300ms for synchronization messages. The average one-
hop synchronization error of FTSP is only 1.5us, while that
of HARMONIA is 16.77us.

Next, we describe our target system. In Section 3, we mo-
tivate why we need a new synchronization protocol. Then we
describe the design of HARMONIA. In Section 5, we present
the experiments and results. Then we provide a discussion of
extensions and issues with HARMONIA, followed by a sur-
vey of related work. Finally, we conclude the paper with an
outline of ongoing work.

2 CSOnet
2.1 CSOnet Architecture

CSOnet’s architecture was designed to be a set of lo-
cal WSANSs that connect to an existing wide area network
(WAN) through gateway devices. CSOnet can therefore be
viewed as a heterogeneous sensor-actuator network. It con-
sists of four types of devices: (i) Instrumentation Node or IN-
ode: these nodes are responsible for retrieving the measure-
ment of a given environmental variable, processing that data
and forwarding the data to the destination gateway through a
radio transceiver. (ii) Relay Node or RNode: these nodes aid
in forwarding data collected by INodes that are more than
one-hop away from the gateway node. The RNodes only
serve to enhance the connectivity in the wireless network.
(iii)) Gateway Node or GNode: these nodes serve as gate-
ways between the WSAN used to gather data from the IN-
odes and a Wide Area Network (WAN) which allows remote
users easy access to CSOnet’s data. (iv) Actuator Node or
ANode: these nodes are connected to valves (actuators) that
are used to hold back water in the sewer system.

To appreciate the challenges posed to a synchronization
protocol, we first need to describe the system that is con-
trolled by CSOnet. Figure 1 shows a sewer system in
which combined sewer trunk lines (sanitation and storm wa-
ter flows) feed into a large interceptor sewer. Prior to 1974,
municipal combined sewer lines dumped directly into rivers
and streams. Under the Clean Water Act, cities were forced
to treat the water from these combined sewer lines before
they were released into a river or stream. One common way



to meet this regulatory burden was to build an interceptor
sewer along the river. This sewer would intercept the flow
from the combined sewer trunk lines and convey that flow to
a wastewater treatment plant (WWTP). Under dry weather
conditions the flows were small enough to be handled by the
WWTP. Under wet weather conditions (storms), the flows
often overwhelmed the WWTP’s capacity, thereby forcing
operators to dump the excess directly into the river or stream.
Such discharges constitute the CSO events described earlier.
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Figure 1. South Bend Interceptor Sewer and CSO Diver-
sion Structure.

From Figure 1 we can see that the combined sewer trunk
lines and interceptor sewer connect at a CSO diversion struc-
ture. This is the point where we can apply control. This
means that the natural place to put ANodes is at the CSO di-
version points. These ANodes would then adjust the amount
of water diverted into the interceptor sewer line based on an
adaptive threshold that is a function of the current flows into
the system. The GNode serves as a gateway between this
particular WSAN and neighboring WSANSs up and down the
interceptor line. Figure 2 illustrates this system architecture
with 2 different WSANS controlling the two diversion struc-
tures into the interceptor line. GNodes at these diversion
structures and the WWTP are used to exchange control infor-
mation in a way that allows coordinated flow control across
the city’s entire sewer system.

Interceptor
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Figure 2. CSOnet’s Hierarchical Architecture.

2.2 CSOnet Hardware

The basic building block of CSOnet’s WSAN is a more
rugged version of the Mica2 processor module called the
Chasqui wireless sensor node. The Chasqui node started

with the original embedded node designs developed by U.C.
Berkeley. EmNet, LLC enhanced the radio subsystem and
sensor/actuator interface subsystems of this earlier design.
The Chasqui node uses a 115 kbps MaxStream radio oper-
ating at 900 MHz. It uses frequency hopping spread spec-
trum (FHSS) signaling to reduce the radio’s sensitivity to in-
terference. The radio has a larger maximum transmission
power (1 watt) than the conventional Chipcon radio. Conse-
quently, the Chasqui node has a range of over 700 meters in
urban environments and up to a 5 km range for line-of-sight
connections. The longer range of the Chasqui processor fits
well with the distances required by the CSOnet application.
The MAC layer of the radio is implemented in proprietary
firmware that is closed source. However, a feature signifi-
cant to our synchronization protocol, is that the radio sends
a signal a fixed offset time after the first bit being sent out
on the wireless channel and also a signal when the first bit
is received from the wireless channel. This signal is used to
trigger an interrupt followed by executing part of HARMO-
NIA’s algorithm.

To give a sense of the deployment for which our HAR-
MONIA is targeted, we provide in Figure 3 an overlaid map
view of the largest of the 36 CSO areas in South Bend, which
covers an area of 3758 acres. It has 7 RNodes, 3 INodes, 2
GNodes and 1 ANode, that controls an automated valve at
the basin. Notice that the network of Rnodes is almost linear.
Due to the requirements of the application that the network
needs to span a large geographical area, the Rnodes provide
relaying functionality, and the radio has a long range, the net-
work in most parts is almost linear. This is a driver for some
design decisions in HARMONIA, which we will discuss in
Section 6.
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Figure 3. Overlaid map view of the largest of the 36 CSO
areas in South Bend. It shows the four different kinds
of nodes - Instrumentation node (INode in yellow), Relay
node (RNode in red), Gateway node (GNode in green),
and Actuator node (Anode in gray). The blue box is a
unit with a RNode and a GNode.

In spite of the higher transmission power required by the
MaxStream module, careful design of the CSOnet middle-
ware and hardware allows the WSANSs based on the Chasqui
node to operate for several years before changing batteries.
The Chasqui node consumes up to SW when fully active and
drops down to 0.14mW in sleep mode. Long battery life can



be effectively achieved by using low duty cycles. All the
nodes in CSOnet wake up at the beginning of every T,, sec-
onds defined a slot, and stay awake only for the first 7, sec-
onds of each slot based on the RTC. Here, T, is much smaller
than T, to save battery power. In current deployment, those
are set to 7, = 6 seconds and 7,, = 300 seconds, resulting in
a 2% duty cycle.

Awake Round R,
period starts

Round R, HTa\ | | rr H
starts H Sleep ‘ ‘ JJ H

S ]_ZVZ 1 slot 2
Figure 4. The duty cycle of a Chasqui node showing the
awake period (7, = 6 seconds in the deployment) and the
sleep period, which together constitute a slot (7,, = 5 min-
utes in the deployment). The beginning of a round is
marked by the base station initiating a new synchroniza-
tion process.

These values are possible due to the nature of the phe-
nomenon that the WSAN is meant to monitor—such events
last for more than 5 minutes. The biggest limitation to ef-
ficient communication in low duty cycle systems is precise
synchronization. Typical crystal tolerances such as the one
used in the Mica?2 platform are on the order of 40 ppm yield-
ing drifts of up to 3.456 seconds per day. Extreme tem-
perature differentials can be seen in the CSOnet applica-
tion: nodes inside the sewer system are at a relatively con-
stant temperature of around 10°C year round while nodes
mounted on traffic poles can experience temperatures rang-
ing between -20°C and 50°C. Experiments at these temper-
atures showed drifts of up to 3 seconds per day using regular
crystals. While synchronization algorithms can periodically
reset the drift error between nodes, they also consume pre-
cious energy resources. Therefore, the Chasqui node uses a
precision RTC provided by the Maxim DS3231 chip [5]. Us-
ing this, the nodes can coordinate their active and sleep cy-
cles with sufficient precision to reliably function at a 2% duty
cycle. The Chasqui node implements a precision RTC with a
typical drift of only 2 ppm giving CSOnet tight synchronism
between synchronization updates. Our calculation, based on
experimental results for HARMONIA’s synchronization error,
shows that the Chasqui nodes can reliably function with peri-
odic synchronization updates in HARMONIA every 13 hours
(see Section 5). With such a duty cycle, the CSOnet applica-
tions based on the Chasqui processor node have a service life
in excess of three years with a 4 cell lithium battery pack.

3 Can FTSP be Used to Synchronize CSOnet?

The FTSP protocol [4] represents the state-of-the-art in
synchronization protocols and compensates for most sources
of time variability, thus achieving highly accurate synchro-
nization. It does not rely on any network topology. A root is
elected, based on node IDs, and it initiates the synchroniza-
tion by periodically broadcasting a synchronization message.
After some initial startup time when the caches are being
populated, each node periodically broadcasts to its neighbors
its local estimate of the time at the root node. FTSP uses a

single broadcast message, rather than a two-way handshake,
to establish synchronization points between the sender and
the receiver. FTSP’s design eliminates many sources of syn-
chronization error, notably the interrupt handling time and
the encoding/decoding time. It also uses MAC layer time-
stamping. Each node uses a linear regression table to esti-
mate the offsets between the local clock and that of the root
node. The performance of the protocol—the synchronization
error and the time to synchronize the network—is dependent
on the number of points that are used to create the regression
line. This technique enables each node to estimate its drift
with respect to another node and compensate for it.

If we say that the synchronization packet flooding period
is P, the number of points needed to draw the regression line
is Ng (Ng = 8 by default), and the maximum number of hops
in the network from the root is N, then FTSP takes approx-
imately NgPN time to synchronize the whole network [4].
This is because only after a node finishes the linear regres-
sion by receiving the Nr synchronization packets, it can start
to flood the estimate of the global time through a local broad-
cast. Moreover, if the root fails and a new root needs to be
re-elected, this takes PN /2 time on an average. This is for the
average case where the new root is at a distance N /2 from the
old root. Such time requirements of the FTSP make it chal-
lenging to apply it to CSOnet synchronization since nodes
in the CSOnet stays awake only for 6 seconds every wakeup
and many parts of the network are in effect connected in a
linear topology. For example, even if we set the value of
P quite short (compared to values used in the experiments
in [4]) as P = 300ms and sacrifice the performance of lin-
ear regression by taking the minimum two points, we can
synchronize at most a 20-hop network from the root within
the 6 seconds. Practically this number will be much smaller
because nodes can communicate with each other for even
less than 6 seconds due to the drift in RTC when a synchro-
nization protocol is initiated. For example, we are targeting
to synchronize the whole network within 2 seconds for this
reason.

Let us consider two straw man proposals to adapt FTSP
to our problem. First, we use FTSP to synchronize the mi-
crocontroller clock (MCC) since it has a fine granularity
(0.125us for the Mica2) and can benefit from the small syn-
chronization error achievable with FTSP. However, the MCC
does not run during the time the Chasqui node is asleep and
the sleep-wake is guided by the RTC. Therefore, synchroniz-
ing the MCC will not serve our purpose.

Second (and alternately to the first), we synchronize the
RTC since the RTC continues to tick through the microcon-
troller’s sleep period. Then we can relax the requirement
that the entire network needs to be synchronized within the
awake period of one slot. Rather the synchronization pack-
ets needed for regression can be collected over multiple slots
and the RTC synchronized with them. However, the RTC has
a coarse granularity of only 1 second and therefore, despite
the small synchronization error of FTSP, the clock may dif-
fer by up to 1 second. This would be unsuitable for the low
duty cycle CSOnet.

The two straw man proposals suggest the approach that
we take in design of HARMONIA. The approach simply put



is to synchronize the MCC first and then change the RTC to
a globally determined value at the same time based on the
synchronized MCC. This achieves both finely granular value
for the time used in synchronization algorithm and synchro-
nism of RTC for sleep-wake. Therefore, applying FTSP to
this model boils down to first synchronizing the MCC using
FTSP and then adjusting the RTC based on this synchronized
MCC. However, this runs in to the slow network-wide syn-
chronization problem of the FTSP explained at the beginning
of this section. This argument crucially depends on the fol-
lowing observation—the synchronization of the MCC has to
happen within one awake period of one slot. This cannot be
staggered over multiple slots.
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Figure 5. FTSP’s problem with linear regression when
working with sleep-wake operation.

The reason is explained by Figure 5. Consider that node
B is trying to synchronize itself to the clock of node A. In
Figure 5(a), we see two lines one corresponds to node B’s
MCC measured with respect to node B’s MCC — obviously
this is a 45° line from the origin; the second corresponds
to node A’s MCC again measured with respect to node B’s
MCC. The two clocks have different frequencies and hence
the difference in slope between the two lines. Node A’s clock
also has an offset—time 7 in the figure. In Figure 5(b), we
see the MCC difference between nodes A and B with respect
to node B’s MCC. Ideally, node B should be able to esti-
mate the difference in drift between A’s MCC and its own
MCC. Thus, in Figure 5(b), it should be able to estimate the
slope /. According to FTSP, if FTSP had completed within

the wake period, it would indeed have been able to estimate
the slope. However, since the synchronization does not com-
plete within the wake period, node B hits against the onset of
sleep, time #1 in Figure 5(a). At this time the offset that node
A’s MCC has over node B’s MCC is Ar. However, nodes A
and B wake up after their sleep based on a trigger from their
respective RTCs. The RTCs also have different frequencies.
Therefore, nodes A and B wake up at slightly different times,
say node A wakes up before node B. Then the offset at node
B’s MCC time #; suddenly jumps from Az to At 4 Az/. In
other words, the curve in Figure 5(b) has a discontinuity at
time #;. Now, consider what happens if node B had staggered
its regression points across the two awake periods. Node B
would then have estimated, using FTSP, that the slope of the
relative MCC difference is I/ (Figure 5(b)), rather than the
correct slope of /. There is no fixed relation between I/ and
l—it depends on the arbitrary order and difference in time
between the wake-up of nodes A and B.

The nub of the argument then is that the linear regression
should be finished within each awake period. For networks
of the size of CSOnet, FTSP out-of-the-box cannot achieve
this as we will show in the experiments section. Yet a third
strawman proposal to modify FTSP to suit our needs is as
follows. Use FTSP to synchronize the MCC clocks across
a large network by periodically keeping the nodes turned on
for more than 6 seconds. Then, synchronize the RTC clocks
by using the MCC clocks. The increase in the duty cycle will
have to be done rarely (once every 13 hours in our network
as per the calculation in Section 5.3). However, the problem
with this approach would be that during the synchronization
process, there is a large number of messages that are sent
down from the root throughout the network. With a period of
300ms for synchronization messages in FTSP, the synchro-
nization process takes a long time - greater than 8 seconds
for a 5-hop diameter network in our experiments (see Figure
11) and which increases linearly with the number of hops.
During this period, it is quite likely that data messages flow-
ing up toward the base station (BS) will collide and have a
low reliability. Considering that CSOnet is meant to detect
rare and critical events, such reduced reliability during the
periodic synchronization events would be unacceptable.

Moreover, a problem common to all these FTSP exten-
sions is that they will not handle efficiently the case that a
node (or a sub-tree) comes out of failure and wants itself (or
the set of nodes in the sub-tree) to be synchronized. The ex-
tensions will flood the synchronization messages all through
the network. Hence, the need for a new synchronization pro-
tocol, hence HARMONIA.

4 Proposed Protocol

4.1 Operational Scenario

The CSOnet is connected for data dissemination and col-
lection in a tree topology whose root is a BS. The topology
is created by stateless gradient-based routing [7]. Each node
in the network has a gradient number that is an indication of
how close the node is to the destination. Since there might
be several destinations, each node stores one gradient num-
ber per destination in the network. HARMONIA will also use
the tree topology.



Recollect that all nodes in the CSOnet wake up at the be-
ginning of every T,, seconds defined as a slot, and stay awake
only for the first 7, seconds of each slot. The BS initiates the
synchronization procedure in certain slots. We say a new
round of synchronization is started when that happens. The
BS may decide when to initiate this based on a fixed period,
for example, through calculation of the worst case drift of
the RTC, or some indication that the network has gone out
of synchronism, for example, inferring from a drop in the
received data rate.

We first provide a conceptual view of how HARMONIA
works, hiding the technical details. Note that there are two
clocks in the picture - a MCC and the RTC. The MCC has a
high drift but high resolution, and it also does not tick when
the node is sleeping. The RTC has a low drift but low resolu-
tion, such that synchronizing the RTC alone will have a large
synchronization error (up to 1 second) and thus will not be
sufficient for our requirements. Our goal is to synchronize
RTCs of all nodes accurately enough to ensure all nodes in
the network wake up at the same time.

The BS initiates the synchronization once a certain time
has elapsed since waking up. Synchronization happens in
cascaded stages where the synchronization proceeds along
the tree topology with the BS acting as the root node. The
interaction between a node and its children happens in two
phases. A pipelining effect is achieved between multiple lev-
els of the tree by having a node perform the first phase of the
synchronization with its children even though it has not com-
pleted its own synchronization, i.e., it is yet to complete its
second phase. After a node has received the two phases from
its parent, a node is considered synchronized with respect to
its parent. It then sets an alarm using its MCC. The drift in
the MCC during this alarm interval contributes to the syn-
chronization error in HARMONIA, in addition to other fac-
tors. The synchronization achieves the effect that the alarms
of all the nodes in the network will go off at the same time,
modulo the synchronization error. When the alarm goes off,
a node sets its RTC’s second hand to a value determined by
globally known parameters. Since all the nodes do this at the
same time and since sleep-wake happens according to the
RTC value, this implies that the entire network is synchro-
nized for its sleep-wake.

Once the BS decides to synchronize a network, it begins
the protocol 7; seconds after it wakes up as depicted in Fig-
ure 6. The value of T; should be chosen to ensure that all the
children of the BS have already woken up so as not to miss
any synchronization-related messages from the BS. In addi-
tion, since all nodes adjust their RTC at Tp4m = Ts + Tinterval
they have to stay awake until the RTC is adjusted. Thus the
values for 75 and Tjervq; must be taken to satisfy the follow-
ing conditions:

Ts > Td and Ts + T;‘nterval < Ta - Td7 (1)

where T; denotes the maximum offset in RTC that has built
up between a parent and a child node since the previous syn-
chronization. However the second condition is not as critical
if we enforce the design that a node delays going to sleep till
its alarm has expired. Additionally, the value Ty, Used at
the BS should be large enough that all the nodes in the net-

work have gone through both synchronization phases and are
ready to set their RTCs. However, there is a desire to keep
Tintervar small since the drift in the MCC during this interval
contributes to the synchronization error.

4.2 Synchronization Protocol

Our goal is to synchronize RTCs of all nodes to ensure all
nodes in the network wake up at the same time. However,
since RTC has only 1-second resolution, if we adjust any
node’s RTC on the basis of another node’s, there could be
at worst a 1-second synchronization error between the two
nodes. In order to reduce this kind of uncontrollable syn-
chronization error, we adopt another timer in our protocol,
which uses a MCC provided by the Atmel Atmegal28L, a
microcontoller used in Chasqui motes. The MCC provides
much finer resolution than the RTC, operating at the fre-
quency of 8 MHz. However it cannot be used directly as
a system clock since it does not run when a node is sleeping.
Therefore the core part of HARMONIA is about how to use
the MCC to set the RTC to the same value, at the same time.
Here “same time” must be defined within a high resolution,
identical to that of the MCC. From now on, the value of the
MCC is expressed using lowercase 7 not to be confused with
the value of the RTC, which is being expressed using upper-
case T.

When the BS initiates the protocol, it sets an alarm to
go off after Ti;ervq- To achieve this, it sets the MCC timer
that goes off at #44,. For example, for T;;ervaq = 2 seconds
and for a 8 MHz MCC, it will set the timer to expire after
16 x 10° ticks. When the alarm fires, the RTC’s second hand
is set to the value Tyqpm = Ty + Tinrerva- Right after setting
the alarm, the BS gets to be the first to do the following two-
phase message transmission. This is repeated recursively by
each node with its children through the network.

Phase 1: SYNC packet transmission and reception

- Transmission: A parent sends to its children a synchro-
nization initiator packet called SYNC that carries #44y-
The parent records ¢, the local time at which its radio
chip starts to transmit the first bit of the SYNC through
an antenna.

- Reception: Each child records 7. the local time at which its
radio chip starts to receive the first bit of the SYNC.

Phase 2: SYNCD packet transmission and reception

- Transmission: A parent sends to its children a synchro-
nization data packet called SYNCD carrying the ¢, and
taif,» where the 4 is the offset between its MCC and

the BS’s. For the BS, the 1,47 is always set to zero.
- Reception: After receiving the SYNCD, each child of the

parent updates its t4;s as tyif = tgf‘; +1t. —t, (the “rcv”
indicates it is the value received by the node), and sets
an alarm that goes off at (faamm + taif)-
Here each SYNC(SYNCD) packet is sent after a backoff
time taken randomly from a uniform distribution over [0, 1],
where 1,7 denotes the maximum backoff time. This is
to avoid contention in the synchronization packets among
neighbors.

Figure 7 depicts the above two-phase synchronization
packet transmissions and receptions performed from the BS
to two-level lower hierarchy. Every node in the network be-
comes aware of t4,,, the time at which the BS expires its
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Figure 6. Sleep-wake operation and its relationship to the synchronization protocol.

alarm by receiving SYNC packet from its parent. However,
since all nodes” MCC may not be synchronized, each node
needs to figure out the offset in the MCC between itself and
BS to make its alarm go off at the same physical time as at the
BS. This is done by the SYNCD packet propagation: When
anode receives the SYNCD from its parent, the SYNCD lets
it know the offset between the parent and the BS, that is, #4;¢.
Thus the node can calculate the offset between itself and the
BS by adding the offset between itself and its parent to the
received t4;¢. It would be obvious from the above descrip-
tion that HARMONTIA does not compensate for the difference
in drifts in the MCCs or the RTCs of two nodes, nor for the
jitter in the interrupt handling times for the interrupts arising
from the MaxStream signals.

Note that the 7, and ¢, in the Phase 1 are recorded in a
similar way that MAC layer time-stamping technique gets
timestamps, but unlike in the MAC layer time-stamping, the
value of 1, is transmitted in a different packet—SYNCD, not
SYNC. This is because the MaxStream radio MAC firmware
is not modifiable and we cannot embed the #, into the SYNC.

MaxStream Signaling on Bit Transmission and Recep-
tion

In our description above, we simplified the issue of signaling
from the MaxStream radio to the microcontroller. In real-
ity, what happens is depicted in Figure 8. On the transmitter
side, the radio generates a pulse of width 77y, and on the re-
ceiver side, the radio generates a pulse of width Tgy. Trigger
to the Chasqui microcontroller happen respectively on the
rising edge and the falling edge. There is a time difference,
say Ipuisedif» between when the event is time-stamped at the
transmitter and at the receiver end, since Ty; > Tgp. Ac-
cording to the MaxStream 9XTend OEM RF Module speci-
fication [1], fpuseqir s ideally 190us. We reflect this using
a parameter f.,, and thus #4;; in phase 2 reception is up-
dated as t4ir = tl;jjf + 1. —ty +teon. Here te,, is a constant
intended to compensate a synchronization error offset ob-
tained when without it. By this, we can compensate a signal
propagation delay and a handling time for the interrupts by
the MaxStream radio as well as #,,5.4ir. We explain in Sec-
tion 5 how f.,, is experimentally measured.

Bit transmission handed

off to MaxStream (M3) radioc

—L4k447 Pulse from MS radio
Trigger to Chasgui microcontreoller

Tr, on rising edge

) Bit reception at MS radio
Receliver

side Pulse from MS radic
4[4}447 Trigger to Chasqui microcontroller
on falling edge

TRL
Figure 8. The signaling from the MaxStream radio to the
microcontroller. The signal on the transmit and on the
receive side are used to take timestamps which are used
in HARMONIA.

4.3 Failure Handling

In this section, we discuss how HARMONIA can handle
transient failures in either links or nodes. A node needs to
detect the loss of any synchronization packet. For this it uses
overhearing of its child’s synchronization packet as an im-
plicit acknowledgement (ACK).

After a node sends SYNC to its children, it sets a timer
which goes off after 7,,,, time within which it expects to over-
hear all its children sending SYNC to their own children. If
the node does not overhear the SYNC packet(s) from one or
more children, this is taken as an indication of failure and it
sends the SYNC again. The protocol has a bound N, for
which the process will be tried, within a slot, before declar-
ing failure.

A parent node begins sending the SYNCD packet to its
children only after it has been assured that all its children
have received the Sync packet, or that there has been a fail-
ure. The same technique is used by the node to detect and to
handle failure in SYNCD.

4.4 Packet Sequences and State Management

In HARMONIA, since retransmissions can occur, we need
a way to allow the nodes which have already received a
packet to disregard the same type of packet subsequently.
Practically those state variables are managed in the follow-
ing manner. Every node has two different kinds of round
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sequences: One is round sequence as a parent denoted by
N;p and the other is round sequence as a child which is N,..
Those are both initially set to zero. Whenever BS initiates
a new round of synchronization procedure, it increases the
N;p by 1. All SYNC and SYNCD packets carry the node’s
N,p value. A child accepts a synchronization packet with N,
greater than or equal to its current N, if the packet is from its
parent. When a node receives a N, value from its parent, it
updates its own N,, value to be the received one. It updates
its Ny value as Ny, = N, + 1 after it sends SYNCD. This will
help the node disregard re-sends of the SYNC from its par-
ent. All the round sequences are dealt with by doing modular
arithmetic in implementation to handle variable overflow.

In addition to the round sequences, the SYNC packet
should carry another type of sequence number for the ARQ
operation denoted by N,,; which represents how many times
the SYNC transmission has been tried so far including the
current one. A parent does not know at what value of Ny
the SYNC packet will be received at each child. Therefore, it
has to record all the instants at which the SYNC is sent with
the corresponding value of N4, and send all these informa-
tion in the SYNCD packet. Each child remembers the value
of N;yiq in the SYNC it received, and finds the corresponding
time of sending the SYNC when it receives the SYNCD. It
uses this time to calculate #4;¢ in reception step of the Phase
2. For example, if node A had to send two SYNC:s to satisfy
its two children C; and C;. The times corresponding to these
two sends are 7,1 and t,2. Then when the node A sends the
SYNCD, it has fields: Trial I: t,1; Trial 2: tp;.

4.5 Fast Recovery

In spite of trying N, number of times within a slot, a
node may be unable to synchronize all its children. Let us
say node A is in such a situation. For this case, we intro-

duce the feature of fast recovery. The fast recovery allows
the node A to proactively initiate the synchronization pro-
cedure in the next slot, targeted only to its descendant sub-
tree, using the value of updated N,,. Thus node A does not
have to wait for the BS to initiate the next synchronization
round. Let us consider one of node A’s child nodes C;. The
fast recovery can happen because of any of the three reasons:
(i) node C; did not even receive the SYNC; (ii) node C; re-
ceived the SYNC but for some reason did not finish getting
synchronized in the slot; (iii) node C; is synchronized, but
the implicit ACK has been lost to node A, or node A is trying
to synchronize a sibling of node C;. For case (i), no spe-
cial treatment of the state variables N, or N, is needed for
node C; since these had not been incremented (the SYNC
was not even received). For case (ii), node C; decrements its
N, before going to sleep so that it will accept the SYNC in
the next slot. For case (iii), node C; disregards the synchro-
nization message and sends an explicit ACK to node A by
transmitting a message called SYNCA. A node tries the fast
recovery at most Nyt riql times.

The fast recovery concept is powerful enough to handle
the situation that a large network cannot all be synchronized
in one slot. Rather the synchronization proceeds with as
much of the network being synchronized initially as possi-
ble, and the unsynchronized parts of the network being han-
dled through fast recovery.

4.6 Choice of Important Parameters

Here we discuss the tradeoffs in choosing the most impor-
tant parameters in HARMONIA.
1. T5: This is the time the BS waits after waking up to initi-
ate the synchronization messages. This value has to be large
enough to accommodate clock drifts that have built up be-
tween a parent and its child node. This is to ensure that the



child node is awake to receive the synchronization message.
But, it must be small enough that the synchronization can
complete in the awake period of one slot. We find for the
CSOnet a value of 2 seconds is reasonable.

2. Nyax: This is the maximum number of times a node tries to
synchronize its children nodes within a slot. A larger value
will increase the reliability of the synchronization process,
within one slot. However, it cannot be so large that the node
arrives at the time to sleep within the slot before it has ex-
hausted all N, tries. Also there is a resource consumption
that goes up with increasing values of N,,,. This depends
upon the frequency of transient failures in the network. We
find a value of 3 works well for us.

3. Tintervar: This is the time after which an alarm will be trig-
gered to set the RTC, all together all through the network.
This value should be large enough to give time for the en-
tire network to be synchronized. However, the drift in the
MCC in this time contributes to the synchronization error;
therefore, it should be kept small. The value will depend on
the scale of the network and we should set it to the smallest
possible value that meets the above condition.

4. tyr,tous: The first is the backoff before sending a SYNC or
SYNCD, the second is the time between the two phases. We
have the condition t,,; > t¢ +proc, Where tpy,c is the small
time used in processing the synchronization message. This
condition is required since otherwise a node may mistake
that its SYNC message to its child has been lost when in re-
ality the child was backing off before sending it along. The
parameter f,¢ should be chosen based on the network den-
sity, a higher density requiring a larger value. The smaller
the value of #,; is, the faster will be the synchronization time
of HARMONIA. For our case with a network density of 6
neighbors, we find 7,y = 100ms does not cause appreciable
collisions. However, we are yet to do thorough experimenta-
tion to determine its setting.

S Experiments

5.1 Experimental Methodology

We tested HARMONIA focusing on network-wide syn-
chronization time and synchronization error with three dif-
ferent network topologies shown in Figure 9. However, in
our experiments, in all three topologies, the nodes are ac-
tually placed within a short distance. This is to make the
experiments feasible from a logistic standpoint. Therefore,
we use software topology control to define the neighbor re-
lations between the nodes. Thus, if node i is not connected
to node j in the topology, it disregards all packets it receives
from node j and vice-versa. Note that this still causes con-
tention that would not be present in the actual network.
Metrics
We define the synchronization error for a node as the differ-
ence in its estimate of the BS’s local time from the actual
local time at the BS. For HARMONIA, synchronization error
for node i corresponds to the difference in time when the BS
and the node adjusts its RTC. We measure this error right af-
ter node i has been synchronized. For FTSP, a polling node
queries the network nodes with a fixed period (3 seconds in
our experiments). On being polled, a node i responds with
its estimate of the BS’s local time and at that instant the BS’s

own local time is also measured. The difference gives the
synchronization error. Thus, for FTSP, there can be a delay
of up to 3 seconds from the synchronization to the measure-
ment.

We define the network-wide synchronization time as the
time from when a round of the synchronization protocol be-
gins to when all nodes in the network get all the packets re-
quired to make an estimate of the BS’s local time and then
have finished the processing of the packets. In HARMONIA,
the time ends when the last node has received SYNCD and
done the processing (update its #4;r) based on SYNCD.

For the experiments with HARMONIA, the microcon-
troller is programmed to generate a rectangular pulse at Pin
7 and Pin 10 on the Chasqui board at the instants when we
have to pinpoint to calculate the synchronization error and
the network-wide synchronization time. These two pins are
connected to an oscilloscope. Specifically, a node generates
the pulse at Pin 7 when it receives SYNCD for the first time
in a round of synchronization procedure and has completed
the attendant processing. A node generates a pulse at Pin 10
when it adjusts its RTC to get synchrony back. In case of BS,
it generates a pulse at Pin 7 whenever it initiates a round of
the synchronization procedure. Therefore, the synchroniza-
tion error between a pair of nodes is the time gap in the rising
edge of the pulse generated at Pin 10 and the network-wide
synchronization time is measured by taking the time gap at
Pin 7 between the BS and the last node to generate the pulse.

Table 1. Values of parameters in HARMONIA used in the
experiments.

Ta Tw Iv Tal arm Iy f con N, max
6s | Smin | 2s 4s 100ms | 250us 3

All the experimental results are statistics calculated from
at least 10 points—in many cases, it is more; the 10 runs are
used when experimental errors caused us to reject other runs.
We have run experiments for HARMONIA for four different
values for t,,; (to, = 150,200,250, and 300 (ms)) choosing
other parameters as in Table 1. Regarding how to measure
the value of f.,,, we need to think about what the potential
sources are for the synchronization error in HARMONIA: (i)
the propagation delay; (ii) the frequency difference in MCC
of each node, accumulated between the time the alarm is set
to when the alarm fires, and (iii) the handling time for the in-
terrupts that the radio chip signals to record ¢, and z. with the
SYNC packet. Let us use the uncorrected equation for syn-
chronization: f4;r = t4;r +1. —1t,. Then, the absolute value
of the synchronization error between a sender (node i) and a
receiver (node j) E can be expressed as E = t.,, + F, where
if F is the error due to (ii), .., covers the error due to (i),
(ii1), and f5eqif. We then measure the absolute value £ " of
the synchronization error with node j as sender and node i
as receiver. Then E' =t,,, — F. Hence, we can obtain #.,, as
teon = (E + E’) /2. Averaging over a number of experiments,
we select #.,, as 250us.

5.2 Network-wide Synchronization Time
Our main objective is to synchronize a network of sensor
nodes running on a very low duty-cycle quickly—within the
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time period for which they remain awake—keeping the syn-
chronization error among the nodes within a tolerable limit.
Hence synchronization time is the primary metric for us.

For the experiment with HARMONIA, we vary the time
between a SYNC and a SYNCD message, denoted as 7,4).
This time is given by a time-out at the sender side (z,,,) fol-
lowed by a back-off at the sender side (chosen in a random
uniform manner from [0, #;]). Therefore, the expected value
of tgup = towr +1py /2. This calculation of t,,, assumes there
is no retransmission. In our experiments, there are collisions
and retransmissions, and the synchronization time value for
HARMONIA is measured in the presence of such events. It
is only that the average value of #,,, would be higher in that
case from what is plotted.

Figure 10 shows that HARMONIA can synchronize the
three networks within several hundred milliseconds for all
the chosen parameters. We can see from the figure that the
synchronization time increases quite slowly with #g,, com-
pared to FTSP as can be seen by comparing the result shown
in Figure 11. Since HARMONIA pipelines the SYNC and
SYNCD transmissions, a node does not have to finish getting
synchronized before it can act as a source of synchronization
messages. Thus, the network-wide synchronization time is
kept small. When there is no retransmission, increment in
the network-wide synchronization time at each hop is due to
the backoff, not the timeout. In this situation, the total syn-
chronization time can be modeled as ¢ + & x b, where c is the
constant cost due to the timeout at the BS and b is the vari-
able cost which depends on the back-off and is multiplied
by the number of hops 4. Using this, we can roughly esti-
mate how many hops HARMONIA can synchronize within
a single slot. As an example, let us consider the case of
tgap = 200ms in Topology 1. Since ¢ = t,,; = 150ms and
h =5 in this case, we have b = (673.5 — 150)/5 = 104.7
(ms). On the other hand, HARMONIA needs to finish all
the procedure within Tjyerq (currently set to 2 seconds).
Using b = 104.7ms, we can therefore calculate h=(2000-
150)/104.7=17.67 (hops), which can be an estimate of the
maximum hops in linear topology that can be synchronized
within a slot. However, considering that the result in Figure
10 was obtained in a collision-prone environment (all nodes
are in one-hop distance), the value of b will be much lower
than 104.7ms in reality (nodes are sparsely deployed) and

thus we can expect that the limit of the hops that can be syn-
chronized within a slot would be larger than 17 hops with
teap = 200ms. The remainder of the network that cannot be
synchronized within one slot will be synchronized in the next
slot, according to the fast recovery mechanism.

We ran some testbed experiments using Mica2 motes for
the topologies shown in Figure 9 using FTSP to see if it can
achieve our goal and also to compare FTSP with HARMO-
NIA. In FTSP, each node periodically broadcasts the syn-
chronization packet (say with a period P) containing the
MAC layer time-stamp of the instant when the packet is sent.
A node needs to receive Ni (8 by default) number of such
packets to apply linear regression (to account for the clock
drift) and get synchronized with the roof node. Since the
network-wide synchronization time, say 7Ty, is directly pro-
portional to P and Ng, we reduced the values of these param-
eters as much as we could to see how fast FTSP can synchro-
nize the network. For linear regression, Ny has to be at least
2. We found that the TinyOS timer does not fire when we
reduced P below 10ms and therefore the minimum value for
which we have the reading is P = 10ms.

Figure 11 shows the network-wide synchronization time
for FTSP for the three topologies as a function of Nr and P.
From this figure, we can see that Ty is even larger than NgPN
in reality where synchronization packets can collide. Except
for one-hop network of Topology 2, the network-wide syn-
chronization time is quite large for our purpose because we
need to synchronize the network within at most 6 seconds
when the nodes are awake. Furthermore, this figure also
shows that 7y increases with the increase in the number of
hops in the network. Thus FTSP out-of-the-box would not
be suitable for deployment in CSOnet due to its performance
in terms of network-wide synchronization time.

Although we do not provide the network-wide synchro-
nization time for larger values of the synchronization period,
note that Figure 11 shows that it increases linearly with the
synchronization period. The slope of this linear relationship
depends upon various factors like network topology, link re-
liabilities among the nodes, etc. Table 2 shows the slope of
these lines along with the y-intercept value using linear re-
gression.

First off, comparison between HARMONIA and FTSP
would ideally have been done on the same platform. How-
ever, critical features of the protocols are dependent on the
features of the specific hardware. Thus, HARMONIA de-
pends on the signals from the MaxStream radio while FTSP
depends on MAC layer time-stamping available in the Mica2
radio stack. Nevertheless, we see that the network-wide
synchronization time for HARMONIA is of the order of a
few seconds in FTSP and it is in the order of a few hun-
dreds of milliseconds in HARMONIA. For example, with
Topology 1, which most closely resembles CSOnet topology,
with t4,,=200ms and equivalently, P=200ms, FTSP is 7.4X
and 9.8X slower than HARMONIA, for number of regres-
sion points 2 and 8 respectively. The improvement of HAR-
MONTIA increases with increasing values of the period. The
improvement is 8.7X and 12.1X for t4,,=P=300ms. Note
that the equivalence between #,,, and P is not perfect. In
FTSP, P denotes a fixed period; in HARMONIA, fg,), is an ex-



pected value and this represents the gap between SYNC and
SYNCD messages and not a period.

Topology 1

Topology 2

Topology 3

Table 3. One-hop synchronization error.
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of FTSP.

Table 2. Slopes of the linear relationship between
network-wide synchronization time and synchronization
period observed in our experiments.

Topology 1 Topology 2 Topology 3
Np=2 | Ng=8 | Ng=2 | Ng=8 | Ng=2 | Ng=8
slope (s/ms) | 0.0054 | 0.0110 [ 0.0015 | 0.0060 | 0.0031 [ 0.0052
y-intercept (s) | 4.00 4.64 0.02 0.09 1.89 2.30

5.3 Synchronization Error

First, we measure the synchronization error in HARMO-
NIA and FTSP in a single-hop network. In this, there are only
two nodes. For this, HARMONIA results in an average syn-
chronization error of 16.77us, while FTSP results in 1.5us as
shown in Table 3.

Thus FTSP outperforms HARMONIA in terms of synchro-
nization error. There are two primary contributory factors.
First, we do not compensate for the differential drifts in the
MCC:s of two nodes. Note however that we are exposed to
this effect only during the period Tizervar- Second, we do not
account for the jitter in interrupt handling that occurs when
the MaxStream radio gives a signal on message transmission
and on message reception. However, since the RTC has a
high precision oscillator (with a drift of only 2 ppm), the
synchronization error achieved by HARMONIA still means
CSOnet can operate for extended periods of time between
synchronizations. A simple computation for this can be for-
mulated as follows. Consider that in CSOnet, for a safety
margin, we do not want any two nodes to be out of syn-
chrony by more than 2 seconds. The current CSOnet de-

ployment has a diameter of 20 hops. Therefore, in the worst
case, a parent and a child node can be allowed to go out
of synchrony by no more than 2/20 = 0.1 second. This is
the worst case considering that the clock drifts between any
parent-child pair are in the same direction and therefore the
errors add up. Now, to calculate the frequency of HARMO-
NIA’s synchronization rounds, we solve the following equa-
tion: 38us+2us/second x x second = 0.1 second (we use the
measured value of maximum synchronization error of HAR-
MONIA as 38us and the fact that the RTC has a maximum
drift of 2 ppm). Solving this equation, we get that HARMO-
NIA must initiate a synchronization round every 13.88 hours
in the worst case.

How HARMONIA will work in multi-hop networks can
be seen from Figure 12, where the synchronization error at
node i is the absolute value of the synchronization error be-
tween node i/ and the BS. We use the default value of 7,,; =
200ms. The synchronization error decreases from node 1 to
node 2 in Topology 1. This can be explained by the fact that
the relative synchronization error between the BS and node
1 has the opposite sign to that between node 1 and node 2.
The sign of the synchronization error between a pair of nodes
depends on the relative frequencies of the clocks of the two
nodes and could be either positive or negative. Thus, the
synchronization error in HARMONIA will not continuously
build up as the number of hops from the BS increases. We
can confirm this from the result of Topology 3, where node 3
has smaller synchronization error than node 1. We can also
see from Figure 13 that the time gap between SYNC and
SYNCD does not have a strong impact on the synchroniza-
tion error. This is expected — the synchronization error will
go up with Tjy0rvqr and with message load that would cause a
higher rate of interrupts at a node. With a really small value
of tg4p, the second effect could be seen, but this was not ob-
served during the experiments.

From Figures 14 and 15, we see that the synchronization
error in FTSP is very small (the results for Topology 3 are
omitted since they are similar to that of Topology 2). The er-
ror tends to increase when the synchronization messages are
sent too quickly (faster than 100ms) except for the one-hop
network (Topology 2). However, the error is always within
the tolerable limit for CSOnet. Also as the number of regres-
sion points is increased, the synchronization error decreases,
as expected.

6 Discussion

On-demand synchronization

HARMONIA can be easily extended to handle on-demand
synchronization in which a node requests its parent for initi-
ating synchronization. It sends a SYNC_REQ packet which
causes the parent to send the SYNC packet thereby initiat-
ing the first phase of the two phase protocol. The child will
send the request if it has not been synchronized for greater
than some multiple of the duration of a round. This thresh-
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old time is such that if the node does not get synchronized
then complete asynchrony may result, meaning the node’s T,
wake period completely misses the wake period of a neigh-
bor. With the on-demand synchronization, the node initiating
the request and the sub-tree rooted at that node will be syn-
chronized. This function would be important when a node or
a link recovers from a failure and the synchronization pro-
cess had occurred during the failure duration.

Issues with MAC layer time-stamping

MAC layer time-stamping is quite widely used in syn-
chronization protocols, e.g., TPSN and FTSP. In CSOnet’s
Chasqui node, MAC-layer time-stamping was not possible
due to the proprietary closed-source nature of the MAC pro-
tocol. However, even if it had been possible, there are some
cautions to using the technique. On the receiving side, as
soon as a (synchronization) packet comes in, it is time-
stamped at the MAC layer and put in a queue. A queue is re-
quired since for fast radios, more than one packet may come
in before being consumed by the synchronization protocol.
However, the packet itself may be discarded by the receiver
if it fails the CRC check. Then, in the absence of identify-
ing information attached to the time-stamp, the receiver has
no way of discarding the timestamp that corresponds to the
discarded packet. This issue was hinted at in [14] and in
subsequent postings on the TinyOS help forum [13].
Synchronization in sparse (almost) linear networks

The CSOnet is almost linear in most parts when we consider
the Rnodes as the network nodes. This means that HARMO-
NIA can have a low back-off time since a parent has one or
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only a few children nodes. However, in our experiments,
we have the Chasqui nodes placed on a table close by to
each other and use software topology control. This increases
the likelihood of collisions. Additionally, MaxStream ra-
dio typically sends larger-sized packets than the Chipcon ra-
dios making the packets more susceptible to collisions. The
maximum packet size in MaxStream is 2048 Bytes while in
CC2420 it is 128 Bytes. Therefore, in actual deployment,
we expect that HARMONIA will have a lower synchroniza-
tion time since it will incur smaller back-off times.

Reliance on topology

HARMONIA relies on some other middleware service (like
the stateless gradient-based routing in the case of CSOnet) to
get the knowledge about the tree structure used for commu-
nication. FTSP does not require this knowledge. Although
at first glance this may appear to be a drawback of HAR-
MONIA, we believe this prerequisite about the knowledge of
the topological structure is essential to tradeoff generality
for synchronization speed. It is because of this knowledge
of the topological structure that a node n; can quickly start
synchronizing its children after receiving the synchroniza-
tion packet from its parent. It just needs to backoff a short
random time depending upon the number of nodes present at
the same depth of the tree as n; to prevent collision. With-
out such knowledge, after a node receives a synchronization
packet, it has to conservatively estimate the backoff time or
wait for a timer with a sufficiently long interval to fire be-
fore starting to broadcast its own synchronization packet. Al-
though HARMONIA relies on the knowledge of the tree struc-
ture, it works with any such structure as long as it gets this
information from some other middleware application. Dur-



ing the network operation, if the tree structure is changed
due to node/link failure, HARMONIA will work with the new
topology by adjusting the backoff period of a node.
Handling permanent failures

If the external service that creates the topology runs rela-
tively infrequently and a node fails permanently or for a long
time, the subtree rooted at the failed node may lose syn-
chrony. However, HARMONIA can be adjusted such that a
node does not need to wait for the topology service to recon-
struct the tree if its parent has a permanent failure or a failure
that persists for a long time. In such a situation, the children
of the failed node can select a new parent by broadcasting
the ReqToChangeParent packet containing the information
about the depth of this node in the tree. Since many nodes
at different depths of the tree can receive this request, they
may concurrently try to be the parent of the requesting node.
To avoid this, each node replies to this request if its depth is
smaller than that of the requesting node (i.e. if it is higher up
in the tree than the requesting node) after a random interval
proportional to the difference between its depth and that of
the requesting node. This causes the nodes which are in the
closest tier above the requesting node in the tree to respond
to the request first and become the parent. If another node
overhears this response, it will suppress its response. This
will allow the sub-tree to be synchronized before the topol-
ogy has been repaired.

7 Related Work

Clock synchronization has long been a subject of study
in wired networks. Network Time Protocol (NTP) [6] and
global positioning system (GPS) receivers are popularly used
for synchronization. However, there are significant chal-
lenges in applying them to wireless sensor networks, such
as high power consumption, accuracy of only milliseconds,
and unavailability of synchronization signals indoors. We
also need to consider that the hardware clocks on the indi-
vidual nodes may experience significant drifts. This hap-
pens chiefly due to manufacturing variations in the different
crystals, the temperature fluctuations the nodes (and conse-
quently the crystals) are exposed to, and aging of the crys-
tals. Tight budget concerns in the design of the sensor nodes
rule out the use of the highly accurate oven controlled crys-
tal oscillator (OCXO) or high-end temperature compensated
crystal oscillator (TCXO). Also, the multi-hop nature of the
sensor network precludes the use of client-server solutions,
which most of the solutions from the landline world fall in.

Therefore, there has been active research in time syn-
chronization in the sensor network community. We refer
the reader to [11] for a good coverage of the early work
in this field and here we focus on the more recent work.
At the high level, HARMONIA is motivated by the unmet
need for synchronizing networks that are sleep-wake enabled
and that have low duty cycle. The real-world constraints
of the Chasqui node introduce the additional challenge for
HARMONIA to synchronize a low resolution real time clock.
These challenges are orthogonal to those addressed by the
existing work that we survey here.

The Timing-sync Protocol for Sensor Networks (TPSN)
[2] aims to provide network-wide time synchronization. The

TPSN algorithm elects a root node and builds a spanning tree
of the network during an initial discovery phase. The syn-
chronization phase proceeds in rounds with the children node
in the tree being synchronized to their parents through a two-
way message handshake in each round. Each node embeds
its local clock’s readings in the two-way message handshake
and through it the child node can calculate the propagation
delay and its clock offset relative to its parent’s. TPSN in-
troduced the idea of MAC layer time-stamping. However,
TPSN does not compensate for clock drifts which makes
frequent resynchronization necessary. In addition, TPSN re-
quires the two-way handshake to complete between a parent-
child pair before the synchronization can propagate further in
the network.

The Flooding Time Synchronization Protocol (FTSP) [4]
has already covered it in some detail in Section 3.

The Rapid Time Synchronization (RATS) [3] is also a
MAC layer time-stamping based protocol. In RATS, a root
floods a message carrying an event time. On receiving this
message, nodes calculate the elapsed time since the event
occurrence using a simple time-stamping primitive calld
Elapsed Time on Arrival (ETA) based on the MAC layer
time-stamping technique. By subtracting the elapsed time
from the receiving time, nodes convert the event time from
the root’s local time to its local time. This process may look
similar to HARMONIA’s SYNC/SYNCD flooding. However,
in HARMONIA, as a SYNCD message propagates through a
network, each node calculates the relative difference in the
MCC readings between the BS and itself. By doing so, each
node estimates the current value of the MCC at the BS.

The Reachback Firefly Algorithm (RFA) for clock syn-
chronization [15] is inspired by the way neurons and fire-
flies spontaneously synchronize. Each node periodically
generates a pulse (message) and observes pulses from other
nodes to adjust its own firing phase. RFA only provides
synchronicity—nodes agree on the firing phases but do not
have a common notion of time. RFA is likely to take a long
time to get all the nodes to be firing synchronously and there-
fore will likely not be suitable for our application.

In [8], the authors propose a way to estimate the drifts
in the clocks of two nodes caused by the environment-
dependent variations. The authors introduce the notion of
a software compensated crystal oscillator (SCXO). In an
SCXO, the differential drift between the crystals of two
nearby nodes is used to estimate the drift in the crystal of
one of the nodes. The solution comprises of a one time cali-
bration phase and a runtime measurement and compensation
phase. SCXO achieves mean effective clock stability of 1.6
ppm over a temperature range of -40°C to 75°C. This would
allow us to increase the period between synchronizations of
CSOnet. The authors provide a practical implementation of
the SCXO work in [9] and describe a Crystal Compensated
Crystal based Timer (XCXT), a new way of compensating
a pair of crystals which achieves a 1.2ppm precision over a
temperature range of -10 to 60°C while using only 1.27mW.
The solution relies on a node having two crystal inputs and
two timer units (TMote Sky is their demonstration platform).
To improve the power consumption the authors describe two
approaches. The first is to simply duty cycle one of the crys-



tals. The second approach is to use two crystals, one fast
and the other slow. The fast crystal (§ MHz crystal of the
MSP430 microcontroller in their demonstration) is used if
fine granularity time is needed. The second slower crystal
(32 kHz in their demonstration) is used while the system
is in sleep. Both crystals compensate for each other’s drift
and together form a highly stable timer unit. This last hard-
ware design feature, in a context quite different from that of
the Chasqui nodes, shares a similarity with the Chasqui de-
sign of two clocks. However, this is used by the authors for
achieving power savings.

A recent development in the field is gradient based clock
synchronization [12]. In this the authors present the design to
minimize the clock offset between neighboring nodes. The
motivation is that other time synchronization protocols syn-
chronize clocks based on some topology, whether assumed
or created as part of the synchronization protocol. Two ge-
ographically nearby nodes may be distant in this topology.
Therefore, existing protocols, while trying to ensure a small
synchronization error globally in the network, may cause the
synchronization error in a local neighborhood to be apprecia-
ble. Therefore, the authors design the protocol to have very
low synchronization error in local neighborhoods.

8 Conclusions

We have presented a synchronization protocol called
HARMONIA targeted to low duty cycle multi-hop wireless
networks. The requirements for the synchronization proto-
col come from a wastewater monitoring and actuation ap-
plication called CSOnet, deployed city-wide in South Bend,
Indiana. CSOnet has been operational for over a year now.
CSOnet has had a synchronization protocol which exchanges
synchronization messages once every day, but needs manual
resynchronization at an average rate of once every 30 days
due to its coarse synchronization accuracy and lack of failure
handling mechanism. Based on experiments done by Em-
Net, LLC in small segments of the network, HARMONIA is
expected to get rid of the inconvenience of manual synchro-
nization and bring down the frequency of synchronization
from once a day to once every 5 days (recall the frequency
of once every 13 hours calculated in Section 5.3 is the worst-
case estimate).

The nodes in CSOnet stay awake for only 6 seconds every
5-minute long slot in current deployment and use an external
clock called the RTC which has a low drift, but a coarse 1
second resolution. The RTC is used for driving the sleep-
wake periods on the nodes. The radio used on the nodes
does not allow MAC layer time-stamping, a technique com-
monly used in synchronization protocols. The fundamental
innovation in HARMONIA can be simply stated as follows -
to use a fine granularity clock (MCC) with a relatively high
drift rate to achieve synchronization of a coarse granularity
clock that runs even when the node is asleep. Additionally,
this process is done quickly so that in the common case, for
reasonably sized networks (say, less than 17 hops in diame-
ter) the process can be accomplished within 2 seconds, one-
third of one wake-up interval of the network. By this, the
synchronization error is in the microsecond range despite
the coarse granularity of the RTC. In case that some parts

of the network remain unsynchronized due to the time limit
of the awake period, HARMONIA’s fast recovery mechanism
attempts to synchronize them in the next slot, not waiting for
BS to initiate another synchronization round. The fast recov-
ery can also locally handle transient node and link failures,
not overburdening the whole network with synchronization-
related messages. Experiment results show that HARMO-
NIA’s synchronization error is higher than that of FTSP, but
is still acceptable for CSOnet, being in the range of tens of
microseconds. However, HARMONIA is significantly faster
than FT'SP with respect to the network-wide synchronization
time making it a good fit for low duty cycle networks.

In ongoing work, we are deploying and measuring the
performance of HARMONIA in the real deployment. We ex-
pect to find interesting insights by subjecting our protocol to
the different interference and collision environment. On the
design side, we are laying out the failure handling function-
ality of HARMONIA for long-lasting failures. We are also
looking to incorporate techniques to compensate for the dif-
ference in drifts without sacrificing the speed of HARMONIA.
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