
Available online at www.sciencedirect.com
Ad Hoc Networks 7 (2009) 42–62

www.elsevier.com/locate/adhoc
Efficient wireless reprogramming through reduced
bandwidth usage and opportunistic sleeping

Rajesh Krishna Panta a,*, Saurabh Bagchi a, Issa M. Khalil b

a Dependable Computing Systems Lab, School of Electrical and Computer Engineering, Purdue University,

465 Northwestern Avenue, West Lafayette, IN 47907, United States
b College of Information Technology, United Arab Emirates University, United Arab Emirates

Received 30 July 2007; received in revised form 12 November 2007; accepted 27 November 2007
Available online 15 December 2007
Abstract

Wireless reprogramming of a sensor network is useful for uploading new code or for changing the functionality of
existing code. Reprogramming may be done multiple times during a node’s lifetime and therefore a node has to remain
receptive to future code updates. Existing reprogramming protocols, including Deluge, achieve this by bundling the repro-
gramming protocol and the application as one code image which is transferred through the network. The reprogramming
protocol being complex, the overall size of the program image that needs to be transferred over the wireless medium
increases, thereby increasing the time and energy required for reprogramming a network. We present a protocol called
Stream that significantly reduces this bloat by using the facility of having multiple code images on the node. It pre-installs
the reprogramming protocol as one image and equips the application program with the ability to listen to new code
updates and switch to this image. For a sample application, the increase in size of the application image is 1 page (48 pack-
ets of 36 bytes each) for Stream and 11 pages for Deluge. Additionally, we design an opportunistic sleeping scheme
whereby nodes can sleep during the period when reprogramming has been initiated but has not yet reached the neighbor-
hood of the node. The savings become significant for large networks and for frequent reprogramming. We implement
Stream on Mica2 motes and conduct testbed and simulation experiments to compare delay and energy consumption
for different network sizes with respect to the state-of-the-art Deluge protocol.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Network reprogramming; Sensor networks; Deluge; Three way handshake; TOSSIM
1. Introduction

Large scale sensor networks may be deployed for
long periods of time during which the requirements
from the network or the environment in which the
1570-8705/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.adhoc.2007.11.015

* Corresponding author. Tel.: +1 7654099988.
E-mail addresses: rpanta@purdue.edu (R.K. Panta), sbagchi

@purdue.edu (S. Bagchi), Ikhalil@uaeu.ac.ae (I.M. Khalil).
nodes are deployed may change. The change may
necessitate uploading a new code or retasking the
existing code with different sets of parameters. We
will use the term code upload for referring to both
these forms. A primary requirement is that the
reprogramming be done while the nodes are
in situ, embedded in their sensing environment. This
has spurred interest in remote multihop reprogram-
ming protocols over the wireless link. For such
.

mailto:rpanta@purdue.edu
mailto:sbagchi@purdue.edu
mailto:@purdue.edu 
mailto:Ikhalil@uaeu.ac.ae 


2

R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 43
reprogramming, it is essential that the code update
be 100% reliable and reach all the nodes that it is
destined for. The code upload should be fast since
the network’s functionality is likely degraded, if
not reduced to zero, during the reprogramming per-
iod. It is also important to minimize the resource
cost of the reprogramming.

It is conceivable that the process of code upload
will be infrequent for many deployments and there-
fore it may appear that its resource consumption
need not be optimized. However, consider that
the sensor network environment has inherent unre-
liability in the wireless links that may have tran-
sient failures. Thus the environment is dynamic
with nodes coming in and out of periods of discon-
nectedness. Also, the network may have nodes
added after the initial deployment while new code
may be injected at arbitrary points in time. Since
in most deployments, the sensor network is
expected to operate over extended periods of time,
it is possible that the parameters for the applica-
tion, such as the monitoring period, change, neces-
sitating retasking. The code dissemination therefore
cannot be considered a one shot process and it
becomes important to minimize the resource con-
sumption used in network reprogramming. Also,
the resource cost which is incurred during the qui-
escent or steady state of the network1 must be opti-
mized since that is the dominant phase in the
network lifetime.

A few researchers have proposed protocols for
reprogramming in sensor networks, the state-of-
the-art being defined by three protocols – Deluge
[6], MNP [7], and Freshet [8]. Common to the three
protocols is the notion of transferring the code
image in chunks of pages on a hop-by-hop basis
with each node disseminating code to its immediate
neighbor through a three-way handshake of adver-
tisement, request, and actual code transfer. MNP
and Freshet build on Deluge and respectively opti-
mize the transfer through judicious sender selection
for dense networks and sleep-awake protocols for
large networks.

The critical problem that besets all three proto-
cols is what is transferred. Common intuition
would be to transfer just what is needed, in other
words, the application image (or the image of the
updates to the application). However, each proto-
1 Quiescent does not mean the node is idle. It means there is no
activity related to code upload, but the node is running its
application and doing its normal activity, such as monitoring.
col transfers the image of the entire reprogramming
protocol together with the minimally necessary part.
Since the reprogramming protocols are of consider-
able complexity, the inflation in the program image
size2 that gets transferred over the wireless medium
increases greatly. The exact amount of increase is
application specific – for a simple stand-alone
application of 1 page, the increase is 20 folds, while
for a communicating application of the same size,
the increase is 11 folds. In a sensor network envi-
ronment, this is problematic. First, the network
links are prone to transient failures and yet, the
code upload process needs to be 100% reliable. Sec-
ond, the networks are envisaged to be large and the
cost of larger image is incurred at every hop and
does not get amortized. Third, it puts pressure on
multiple scarce resources of a node – communica-
tion bandwidth leading to communication conten-
tion, and program Flash memory. The authors of
Deluge argue convincingly that it is difficult to
improve over Deluge the rate of transfer over the
wireless link. Therefore, the logical approach
appears to be to optimize what needs to be trans-
ferred, keeping the basic mode of transfer the same
as in Deluge.

This thinking gives rise to our protocol called
Stream, which was introduced by us in [17]. Stream
transfers close to the minimally required image size
by segmenting the program image into an applica-
tion image and the reprogramming protocol image.
It transfers over the wireless link the former with a
minimal addition. It pre-installs in each node, before
deployment, the reprogramming protocol image.
Stream utilizes the ability to segment the external
Flash memory into multiple images and stores the
two in two different image areas. An application is
modified by linking it to a small component
called StreamApplicationSupport (Stream-AS) while
StreamReprogrammingSupport (Stream-RS) is pre-
installed in each node. Stream-AS is generic and
can be inserted in any TinyOS application through
the insertion of two lines of nesC code. Stream-RS
builds on Deluge to operate in the changed mode.
Overall, Stream’s design principle is to limit the size
of Stream-AS and providing it the facility to switch
to Stream-RS when triggered by a code update
We use the term application image to refer to the user
application that needs to run on the node, reprogramming

protocol image to refer to the protocol components for protocols,
such as Deluge, MNP, or Freshet, and program image to the
combined image that gets transferred over the wireless medium.



44 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
related message. The advantage afforded by Stream
is demonstrated over Deluge, though it can apply
to any of the three protocols, since the problem
Stream addresses is shared by each. What would
change in applying to a different protocol is that
Stream-RS will be based on that protocol.

There are several challenges to implementing the
basic idea of Stream in the mote platform. First, the
node that has been updated with the recent code
needs to remain receptive to future code updates.
Thus, it cannot be running just the application.
The mote platform does not support multi-tasking
and therefore the two programs (reprogramming
protocol and application) cannot be executing con-
currently. A design option we explored was to pre-
install the reprogramming protocol components in
the node and dynamically link it to the application
to create a single executable image once the applica-
tion is uploaded. However, TinyOS does not pro-
vide a linking facility on the node itself.3 Second,
it is unreasonable to assume that the code update
will always occur according to a preset schedule in
which case the node could have queried the base sta-
tion for it. Third, Stream has to consider the possi-
bility that new nodes may be introduced into the
network and may query a given node for coming
up-to-date with the latest version of the code. Thus
a node cannot be content to handle just its own need
for staying up-to-date.

When a node has received all its code update,
Stream optimizes the steady-state energy expendi-
ture by switching from a push-based mechanism
(where the node periodically sends advertisements)
to a pull-based mechanism where a newly inserted
node requests for the code. The benefit of Stream
shows up in fewer number of bytes transferred over
the wireless medium leading to increased energy
savings and reduced delay for reprogramming. To
further reduce the energy used in reprogramming
the sensor network, Stream causes the nodes to be
involved in reprogramming only when they are
actually required to do so, i.e., a node is neither
woken up nor switched over from its application
duties till the new code has reached the neighbor-
hood and the node has to be involved in the three
way handshake for getting the code. Freshet [8]
reduces the reprogramming energy by cleverly esti-
mating how long a node can sleep before the new
3 Interestingly, these constraints are also found in other
common sensor node platforms, such as, Sensoria’s WINS and
JPL’s node.
code, after being injected at one point in the net-
work, arrives its vicinity. However, due to the vari-
ability of the wireless channel, the estimate made by
Freshet based on the hop count is often inaccurate.
An inaccurate estimate either causes higher energy
expenditure (if the time estimate is too low) or
higher delay in completing the reprogramming (if
the estimate is too high). Stream achieves the goal
without needing to estimate the time, but by reboot-
ing the node from Stream-RS for the purpose of
reprogramming only when the new code arrives at
one of its neighbors. As a result, the user application
running on the node can put the node to sleep till
the time to reboot comes. This opportunistic sleep-
ing feature of Stream is useful in conserving the
energy in resource constrained sensor networks,
especially for large networks where the amount of
time to disseminate the code can be quite significant
(tens of minutes). Coupled with this fact is the
observation that reprogramming is not a one-time
task, but rather is done periodically, and quite fre-
quently, in some networks. Note that reprogram-
ming includes the task of updating some
parameters in the existing code, which may be more
frequent than uploading a new version of the code
itself.

We demonstrate the above mentioned claims by
implementing Stream in nesC for the Mica2 mote
platform. We conduct experiments with Deluge
and Stream on a real small-sized testbed (of up to
16 nodes) in linear and grid topologies. The output
metrics we measure are number of bytes transferred
(which relates to the energy spent) and the delay.
We see that Deluge requires 63–98% more repro-
gramming time and transfers 75–132% more num-
ber of bytes than Stream for the grid topologies.
To evaluate Stream for larger sized networks, we
use the TOSSIM simulation environment. We pres-
ent a mathematical analysis to evaluate the perfor-
mance of Stream and compare it to the ideal case
when exactly the application image is transferred.
The rest of the paper is organized as follows. Section
2 surveys related work. Section 3 provides the
detailed design of Stream. Section 4 presents the
mathematical analysis. Section 5 explains the test-
bed experimental setup, and presents the results,
details the simulation setup and provides the simu-
lation results. Section 6 discusses the opportunistic
sleeping mode of Stream. Section 7 provides a brief
explanation of how user application’s sleep/awake
scheme affects reprogramming and Section 8 con-
cludes the paper.



R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 45
2. Related work

Reliable multicast in unreliable environments,
such as ad hoc networks, can be achieved by epi-
demic multicast protocols based on each node gos-
siping the message it received to a subset of
neighbors [1]. This class of protocols gives probabi-
listic guarantee for the update to reach all the group
members. The probability is monotonically increas-
ing with the fanout of each node (the number of
neighbors to gossip to) and the quiescence threshold
(the time after which a node will stop gossiping to
its neighbors). By increasing the quiescence thresh-
old, the reliability can be made to approach 1, which
is the basic premise behind all the epidemic based
code update protocols in sensor networks – Deluge,
MNP, and Freshet.

The push–pull method for data dissemination
through the three way handshake of advertise-
ment-request-code has been used previously in sen-
sor networks with sensed data taking the place of
code. Protocols such as SPIN [2] and SPMS [3] rely
on the advertisement and the request packets being
much smaller than the data packets and the redun-
dancy in the network deployments which make sev-
eral nodes disinterested in any given advertisement.
However, in the data dissemination protocols, there
is only suppression of the requests and the data sizes
are much smaller than the entire binary code images.

The earliest network reprogramming protocol
XNP [4] only operated over a single hop and did
not provide incremental updates of the code image.
The Multihop Over the Air Programming (MOAP)
protocol extended this to operate over multiple hops
[5]. MOAP introduced several concepts which are
used by later protocols, namely, local recovery using
unicast NACKs and broadcast of the code, and slid-
ing window based protocol for receiving parts of the
code image. However, MOAP did not leverage the
pipelining effect with segments of the code image.

The three protocols that are substantially more
sophisticated than the rest and define the state-of-
the-art today are Deluge, MNP, and Freshet. All
use the three way handshake for locally propagating
the code. Deluge [6] was the earliest and laid down
some design principles used by the other two. It uses
a monotonically increasing version number, seg-
ments the binary code image into pages, and pipe-
lines the different pages across the network. It
builds on top of Trickle [14], a protocol for a node
to determine when to propagate code in a one hop
case. The code distribution functions through a
three-way handshake protocol of advertisement,
request, and broadcast code. The operation of each
node is periodic according to a fixed size time win-
dow. The first part of the window is for listening
to advertisements and requests and sending adver-
tisements. The second part of the window is for
transmitting or receiving code corresponding to
the received requests. Within the first part of the
time window, a node randomly selects a time at
which to send an advertisement with meta-data con-
taining the version number, the number of complete
pages it has, and the total number of pages in the
image of this version. When the time to transmit
the advertisement comes, the node sees whether it
has heard a threshold number of advertisements
with identical meta-data, and if so, it suppresses
the advertisement. When a node hears code that is
newer than its own, it sends a request for that code
and the lowest number page it needs, to the node
that advertised the new code. In the second part
of the periodic window, the node transmits packets
with the code image, corresponding to the pages for
which it received requests. A receiving node only
fills its pages in monotonically increasing order
thereby eliminating the need for maintaining large
state for missing holes in the code. For receiving
the code, each node uses the shared broadcast med-
ium that allows overhearing and can fill in a page
requested by a neighbor.

The design goal of MNP [7] is to choose a local
source of the code which can satisfy the maximum
number of nodes. They provide energy savings by
turning off the radio of non-sender nodes. Freshet
[8] is different in aggressively optimizing the energy
consumption for reprogramming. It introduces a
new phase called blitzkrieg when the code update is
started from the base node. During the blitzkrieg
phase, information about the code and topology
(primarily the number of hops a node is away from
the wave front where the code is at) propagates
through the network rapidly. Using the topology
information each node estimates when the code will
arrive in its vicinity and the three way handshake will
be initiated – the distribution phase. Each node can
go to sleep in between the blitzkrieg phase and the
distribution phase thereby saving energy.
Freshet also optimizes the energy consumption by
exponentially reducing the meta-data rate during
conditions of stability in the network when no new
code is being introduced, called the quiescent phase.

The reprogramming protocols discussed above
transmit the complete code image during reprogram-



Base node Circles are sensors nodes 

Code images in nodes
Image0: Stream-RS 
Image1:Stream-AS+
user application 

Fig. 1. Images in Stream.

46 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
ming. In addition to these full image replacement
algorithms, there are some techniques proposed in
the literature which reduce the number of packets
transmitted during reprogramming by comparing
the new code with the previously installed software
and transmitting only the difference. Using a diff-like
approach, Reijers and Langendoen [19] compute the
diff script which captures the difference between the
old and the new code and consists of copy, insert,
address repair and address patch operations. This
approach reduces the network traffic but the draw-
back of their approach is that the address patching
is dependent on the regular structure of the instruc-
tion set architecture and the authors demonstrate
the protocol for a specific customized node called
EYES. Also, their work is focused on the encoding
scheme and does not demonstrate a fully functional
implementation of the reprogramming. Jeong and
Culler [20] describe an incremental network repro-
gramming protocol which uses the Rsync algorithm
[18] to find the blocks of the code that are identical
in the new and the old code images. A drawback of
their approach is that their protocol is meant for sin-
gle-hop reprogramming. Also, since they do not use
the knowledge about the application structure, even
small code shifts can result in a large number of
address patches leading to high bandwidth consump-
tion. Koshy and Pandey [21] describe a scheme that
uses incremental linking on the base node. Their
work is also focused on generating the difference
between the two code images and does not implement
a fully functional reprogramming protocol. FlexCup
[24] uses run time linking on the sensor nodes. It is
implemented on the Mica2 emulator called ATEMU
[22] and not on any real hardware. Further since the
compiled components are stored in the external flash,
they require more space than Deluge or Stream. Also,
the size of the reprogramming protocol is signifi-
cantly larger than Deluge or Stream. Contiki [23] is
an operating system developed for resource con-
strained systems like sensor networks. Based on Con-
tiki, Dunkels et al. [25] describe a reprogramming
approach using dynamic linking on the sensor nodes.
This approach is tied to Contiki’s structure of differ-
entiated application and OS components and seems
difficult to apply to TinyOS. Applications such as
Tiny Diffusion [10], Maté [11], and TinyDB [12],
use concise, high-level virtual code representations
to give programs that are 20–400 bytes long. Unlike
these incremental approaches, Stream uses the full
image replacement technique and still manages to
greatly reduce the amount of data transmitted during
reprogramming. It can be integrated with an incre-
mental reprogramming approach whereby instead
of sending the entire application as Stream-AS, only
the difference can be sent.
3. Stream design

3.1. Design approach

Stream builds on the code distribution method of
Deluge. It optimizes the number of bytes that needs
to be disseminated over the wireless medium so that
instead of transferring the entire Deluge component
along with the new application, only a small subset
of reprogramming functionality is included in the
program image. The idea is to have all nodes in
the network be pre-installed with the Stream-

ReprogrammingSupport (Stream-RS) (Fig. 1)
component that includes the complete functionality
for network reprogramming. Stream-RS is installed
as image 0. The application image augmented with
the Stream-ApplicationSupport (Stream-
AS) component that provides minimal support for
network reprogramming is installed as image 1.
The addition to the size of the program image over
the application image size with Stream is signifi-
cantly less than in the Deluge case. When a new pro-
gram image is to be injected into the network, all the
nodes in the network running image 1 reboot from
image 0 and the new image is injected into the net-
work using Stream-RS. The new image again
includes Stream-AS and we avoid the entire Deluge
component from being transferred to all the nodes
each time the network needs to be reprogrammed.
This modification does not entail modification of
the application on the part of the user. Instead of
adding the Deluge component, she adds the much
smaller component (Stream-AS) to her application.
Both are localized two line changes in the applica-
tion code.

The saving in terms of the number of pages trans-
ferred is quite significant. The exact figure depends
on the application. Any application that uses radio



R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 47
communication will need to add about 11 more
pages if Deluge is used while Stream-AS adds only
one more page. We stress that this benefit is demon-
strated here for Deluge, but applies equally to all the
current network reprogramming protocols since
each transfers the entire protocol image along with
the application image.

3.2. Protocol description

Consider that initially all nodes have Stream-RS
as image 0 and the application with Stream-AS as
image 1. Each node is executing the image 1 code.
The node that initiates the reprogramming is
attached to a computer through the serial port
and is called the base node.

Following is the description of how Stream
works when a new user application, again with the
Stream-AS component added to it, has to be
injected into the network:

1. In response to the reboot command from the
user, all nodes in the network reboot from image
0. This is accomplished as follows:
a. The base node executing image 1 initiates the

process by generating a command to reboot
from image 0. It broadcasts the reboot com-
mand to its one hop neighbors and itself
reboots from image 0.

b. When a node running the user application
receives the reboot command, it rebroadcasts
the reboot command and itself reboots from
image 0.
2. Once the reboot command reaches all nodes, all
nodes start running Stream-RS. Then the new
user application is injected into the network using
Stream-RS.

3. Stream-RS starts to reprogram the entire net-
work. It does so by using the three way hand-
shake method where each node broadcasts the
advertisement about the code pages that it has.
When a node hears the advertisement of newer
data than it currently has, it sends a request to
the node advertising newer data. Then the adver-
tising node broadcasts the requested data. Each
node maintains a set S containing the node ids
of the nodes from which it has received the
requests.

4. Once the node downloads the new user applica-
tion completely, it performs a single-hop broad-
cast of an ACK indicating it has completed
downloading.
5. Upon receiving the ACK from a node, it removes
the id of that node from the set S.

6. When the set S is empty and all the images are
complete (by complete we mean that all pages
of all images have been downloaded), the node
reboots from image 1. So, after sometime the
entire network is reprogrammed and all nodes
reboot from image 1.
3.3. Handling incremental network deployment

This approach works when new nodes join the
network. Let nodes n1, n2, . . ., nk (k P 1) having an
older version of application as image 1 and running
Stream-RS (image 0) join the network. Nodes
n1, n2, . . ., nk advertise the data they have using
Stream-RS. When neighbors of nodes n1, n2, . . ., nk

running image 1 hear the advertisement, they reboot
from their image 0 (Stream-RS). Note that the
neighbors of n1, n2, . . ., nk do not broadcast the
reboot message and thus only the neighbors of
n1, n2, . . ., nk reboot from Stream-RS. For this, the
nodes should be able to distinguish whether the
reboot message is coming from the base node or
non-base node. This is achieved by looking at the
source field of the reboot message. We assume that
all nodes in the network know the id of the base
node. Now using the steps 2–6, the new nodes down-
load the new application as image 1 and all nodes
reboot from image 1 (the new application).

3.4. Design of Stream-AS

Stream-AS should be designed such that the
increase in the size of the application image when it
is attached to the user application is minimum and
at the same time, the network should be able to repro-
gram itself whenever required. Stream-AS provides
the functionality to reboot from image 0 when the
user gives the reboot command. Before injecting the
application to the network, user gives a reboot com-
mand to the base node. The base node running image
1 (user application plus Stream-AS) broadcasts the
reboot command and itself reboots from image 0
(Stream-RS). The reboot command is flooded
through the network. Ultimately all nodes in the net-
work reboot from image 0 and actual application
image transfer is done by Stream-RS. This kind of
flooding technique used to reboot all the nodes in
the network does not cause congestion because each
node broadcasts the reboot command only once and
reboots from Stream-RS immediately after.



Source node Destination node 

Advertisement

Request

Data

Fig. 2. Three-way handshake for data dissemination.

48 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
Stream-AS provides functionality to reboot from
image 0 when new nodes are introduced to the net-
work. When new nodes join the network, they peri-
odically broadcast the advertisement. After one-hop
neighbors of these new nodes hear the advertise-
ment, they reboot from image 0 (Stream-RS). Then
Stream-RS takes care of sending the new applica-
tion image to the new nodes. One disadvantage of
the current implementation of Stream is that the
new nodes must be running image 0 so that upon
hearing the advertisement from these nodes, already
deployed nodes can reboot from Stream-RS.

From the above discussion, it is clear that incor-
porating Stream-AS requires minimal change in the
user application. In TinyOS, following is the nesC
code required to be added when Deluge is attached
to the user application:

Components DelugeC;

Main.StdControl? DelugeC;

To attach user application to Stream-AS instead,
replace DelugeC by StreamASC.

This difference translates to a considerable differ-
ence in the size of the program image that is trans-
ferred over the wireless channel.

3.4.1. Steady-state behavior
In Deluge, once a node’s reprogramming is over,

it keeps on advertising the code image that it has.
This is to ensure that the new nodes joining the net-
work get the latest version of the application image
and also for future injection of code image. As a
result, radio resources are continuously used by
Deluge even in the steady state. On the other hand,
in Stream, there is no advertising of data in the
steady state because Stream-AS does not advertise
the data that it has. As mentioned earlier, the nodes
running user application plus Stream-AS in the
steady state receive the advertisement from the
new nodes running Stream-RS, reboot from
Stream-RS and send the new application to the
new nodes. When reprogramming is to be done,
the nodes running user application plus Stream-
AS get the reboot command from the base node,
reboot from Stream-RS, and download the new
application, thereby avoiding the need to advertise
at steady state. That means the user application
has to share the node’s radio resources with Deluge
while this is not the case when Stream is used. Also,
since the nodes always run the user application
except during reprogramming period, RAM usage
is much less for Stream than for Deluge because
of the smaller size of the user application plus
Stream-AS compared to user application plus
Deluge.
3.5. Design of Stream-RS

Stream-RS, preinstalled in all nodes as image 0
and executed only during reprogramming phase, is
responsible for actual image transfer among the
nodes in the network. It is based on Deluge with
the significant changes mentioned below. When
new application image is to be injected into the net-
work, all nodes reboot from Stream-RS. Then,
reprogramming is done by using a three-way hand-
shake (Fig. 2) in which each node broadcasts the
advertisement about the code pages that it currently
has. A node, upon hearing the advertisement of
newer data than it currently has, sends a request
to the node advertising newer data. The advertising
node then broadcasts the requested code pages. Del-
uge optimizes this reprogramming method by
proper choice of the time when advertisements and
code pages are sent. For a complete discussion of
Deluge, see [6].
3.5.1. Changes from Deluge

Once reprogramming is done we want all the
nodes to reboot from the new application automat-
ically. One obvious approach would be to reboot
each node from the user application after it com-
pletes downloading the new application. But the
flaw with this approach is that even though a node
has completed downloading the new application, it
may still be serving other nodes in the network.
Therefore the node needs to continue to run
Stream-RS. When a node receives a request for
data, it puts the node-id of the requesting node in
the set S. This set S is not shared and is maintained
by each node. This structure is essential because a
design philosophy of Stream is to have all nodes
running the user application all the time except



R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 49
when reprogramming is being done. Without
knowledge of the nodes to which node A is currently
sending code, A may reboot from image 1 after it
has downloaded all the pages of the new user appli-
cation even though some nodes in the network may
still be receiving code fragments from A.

In Stream-RS when a node downloads the new
application, it broadcasts an ACK saying that it
has completed downloading the new application.
When a node receives an ACK from its neighbor,
it removes the id of that node from the set S. So,
the following invariant is maintained at all times:

A � S ¼ fxjREQðx;AÞ ¼ true ^ACKðx;AÞ ¼ falseg:

This ensures that the set S at a node A consists of
the ids of those nodes to which it is currently send-
ing code fragments. The condition for a node A to
reboot from the user application (image 1) is as
follows:

A � S ¼ / ^ A � #pages ¼ Total number of pages:

The first condition is that A is not sending code
to any node and the second condition is that A itself
has downloaded all the pages of the application.
Eventually all nodes in the network download all
the pages of the new application and reboot from
image 1. So in the steady state all the nodes run
the application attached with Stream-AS.

There is a subtle drawback to the synchronization
in Stream-RS. A node A may be serving a node B

without B having explicitly sent a request to A. Thus
node B would never be included in A’s set S. Let us
consider a scenario when a node n1 hears the adver-
tisement of newer data than it currently has from
node n2 during the reprogramming phase. Before
node n1 sends request for the new data, some other
one-hop neighbor n3 of the advertising node n2

may send the request. In response to the request
from node n3, n2 broadcasts the code. So, the node
n1 may never send the request to node n2 but keep
on receiving the code from node n2, triggered by
request from node n3. If all the nodes that explicitly
request data from the advertising node n2 complete
downloading the new application earlier than the
node n1, node n2 will reboot from the new applica-
tion. This leaves node n1 in the middle of download-
ing the new application. This drawback, however,
does not pose a correctness problem, but a perfor-
mance problem. This is due to the design that after
the advertising node n2 has rebooted from the user
application, it still can hear the advertisement sent
by the node n1 due to Stream-AS. Upon hearing
the advertisement, node n2 will reboot from
Stream-RS and start sending code to node n1

through the three-way handshake.
In Deluge, in contrast to the automatic operation

here, once all nodes complete downloading the new
user application, they reboot from the new applica-
tion only after the user gives the reboot command
manually from the computer attached to the base
node.

4. Stream analysis

Here we present the approximate analysis of the
reprogramming time and energy cost of uploading
applications using three different protocols: Deluge,
Stream and an ideal protocol in which only the
application needs to be uploaded without any extra
overhead. Let the application consist of Np pages
and each page has Apkt packets. Let Ps be the prob-
ability of successful transmission of a packet over a
single link.

4.1. Reprogramming time

In this section, we analyze the reprogramming
time for a grid network. We assume that the trans-
mission range is equal to

p
2 times the grid spacing.

The reprogramming model that we use for the anal-
ysis is an approximation of the behavior of Stream.
In it, we divide the time line into fixed-size rounds.
The source sends the advertisement at the beginning
of each round and the destination, the one hop
neighbor of the source that hears the advertisement,
sends one request for each new advertisement
received. We assume, for tractability of analysis,
that the advertisement and the request packets are
reliably delivered. This can be achieved in practice
by either having a separate control channel or by
transmitting the control signals multiple times to
give a desired reliability. If this assumption is not
true, then the multi-hop reprogramming time we
find is a lower bound rather than the exact time.
Once the source receives the request, the data pack-
ets are sent immediately. If not all the data packets
in a page can be sent to the destination, the remain-
ing data packets are sent over the following one or
more rounds. The time Tr is defined as the time to
send a new advertisement, receive a request, and
send all the Npkt packets of the page being adver-
tised when the link reliability is 1.0. The number
of rounds that it takes for all the packets in a page



0

200

400

600

800

1 10 100
Application size (pages)

R
ep

ro
gr

am
m

in
g 

tim
e 

(t
im

e 
un

its
)

Ideal

Stream 

Deluge

Fig. 3. Reprogramming time for 10 � 10 grid topology with
standalone applications.

50 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
to be received at the destination is thus a random
variable. Call it Nr. The probability of completing
the upload of the entire page within the kth round
since the start of transmitting the page is the prob-
ability that each packet in the page is successfully
delivered within k rounds. Assuming independence
of the losses of different packets within a page, we
have

PðN r 6 kÞ ¼
Xk

j¼1

P sð1� P sÞj�1

" #Npkt

: ð1Þ

The expected number of rounds for successfully
sending a whole page is

E½N r� ¼
X1
i¼1

i � P ðN r ¼ iÞ ¼
X1
i¼1

P ðN r P iÞ; ð2Þ

E½N r� ¼
X1
i¼1

ð1� P ðN r < iÞÞ ¼
X1
i¼1

ð1� P ðN r 6 i� 1ÞÞ;

ð3Þ

E½N r� ¼
X1
i¼1

1�
Xi�1

j¼1

P sð1� P sÞj�1

" #Npkt
" #

: ð4Þ

The code transmission is pipelined. That is, a
node does not have to completely downloading
the new image before sending it to the next hop.
As soon as the node downloads the first page of
the new application, it can send that page to the
other nodes if it gets the request for that page. Since
the page transmission is pipelined, the expected
number of rounds it takes to download the whole
application at a node h-hop away is given by,

E½N r;h� ¼ minf3 � ðNp � 1Þ þ h;Np � hgE½N r�: ð5Þ

Here h � E[Nr] is the number of rounds to down-
load the first page, 3 � (Np � 1) � E[Nr] is the number
of rounds to download the rest of the pages if the
network spans across more than 4 hops because of
two-hop interference effect on pipelining, i.e. at
any point of time, if a node at hop h receives data
from hop h � 1, no node at hop h + 1 can send data
at the same time because of collision at hop h. For
networks with maximum hop separation less than
4, there is no pipelining of the code transfer and
Np � h � E[Nr] is the number of rounds to download
all the pages. Plugging Eq. (4) into Eq. (5), we get

E½N r;h� ¼ minf3 � ðNp � 1Þ þ h;Np � hg

�
X1
i¼1

1�
Xi�1

j¼1

P sð1� P sÞj�1

" #Npkt
" #

: ð6Þ
Assuming maximum number of hops to be hmax

and the round time to be Tr, the expected repro-
gramming time Trep is

T rep ¼ T r � E½N r;hmax �
¼ T r �minf3 � ðNp � 1Þ þ hmax;Np � hmaxg

�
X1
i¼1

1�
Xi�1

j¼1

P sð1� P sÞj�1

" #Npkt
" #

: ð7Þ

We calculate the reprogramming time for (a)
standalone application (one that does not perform
radio communication) and (b) application that uses
GenericComm component (provided by TinyOS)
for communication. The application size is taken
to be 1, 10, or 100 pages. In case (a), the increases
in the size of the program image (in units of a page)
are 10 and 20 respectively for Stream and Deluge,
while in case (b), these increases are 1 and 11 respec-
tively for Stream and Deluge. We use Ps = 0.98 and
Tr = 1 time unit. Assuming that Ps stays constant
across the three cases (Ideal, Stream, and Deluge),
the reprogramming time becomes directly propor-
tional to the number of pages (since the other fac-
tors are constant). Figs. 3 and 4 show the
reprogramming time for the 10 � 10 grid. Clearly
Stream outperforms Deluge and for applications
having communication features (almost all sensor
network applications have this feature), Stream is
almost as fast as the ideal case.
4.2. Energy cost

Let C be the energy cost of transmitting a single
packet. The energy cost of receiving packets
depends on the specifics of the underlying applica-
tion such as sleeping schedules. Moreover, since
receiving and idle listening have almost the same



0

200

400

600

1 10 100
Application size (pages)

R
ep

ro
gr

am
m

in
g 

tim
e 

(t
im

e 
un

its
)

Ideal

Stream 

Deluge

Fig. 4. Reprogramming time for 10 � 10 grid topology with
applications having communication capability.

1 10 100
Application size (pages)

Ideal

Stream 

Deluge

0

4

8

12

16

E
ne

rg
y 

(J
ou

le
s)

Fig. 5. Total energy consumed in the 10 � 10 grid topology with
standalone applications.

1 10 100
Application size (pages)

E
ne

rg
y 

(J
ou

le
s)

0

4

8

12

16

 

Ideal

Stream 

Deluge

Fig. 6. Total energy consumed in the 10 � 10 grid topology with
communicating applications.

R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 51
energy cost, the energy overhead beyond packet
transmission can be directly computed from the
reprogramming time. So, packet transmission and
writing received packets to external flash are the
major sources of energy consumption during repro-
gramming. Both of these are functions of the num-
ber of packets transmitted during reprogramming.
In this analysis, we count the number of transmitted
packets and use that as an indicator of the energy
performance of the two modes. This simplification
is commonly done in the literature, e.g., [26].
Assuming that retransmissions of a packet are inde-
pendent, the expected number of transmissions over
a link for a successful transmission of a packet Nret

is

K ¼ E½N ret� ¼
Xk¼1
k¼1

½k � ðP sð1� P sÞk�1Þ� ¼ 1

P s

: ð8Þ

Let the redundant set at hop h be Sh, where Sh is
the set of nodes at hop h that can be reprogrammed
by one node at hop h � 1. Let jShj be the average
size of the set. Moreover, let ah be the cardinality
of the subset of nodes at hop h � 1 that can repro-
gram all the nodes at hop h. The additional energy
cost to reprogram all the nodes at hop h given that
all the nodes at hop h � 1 have been reprogrammed
is given by

Eh ¼ K � Np � Npkt � C � ah ¼
Np � N pkt � C � ah

P jShj
s

: ð9Þ

The total energy overhead of reprogramming all
the nodes in a network in which the maximum num-
ber of hops is hmax is given by

E ¼
Xh¼hmax

h¼1

Eh ¼
Xh¼hmax

h¼1

N p � N pkt � C � ah

P jShj
S

" #
: ð10Þ
For a linear topology of N nodes with Rtx = d,
where d the spacing between nodes, and Rtx is the
transmission range, ah = 1, jShj = 1, and hmax =
(N � 1). For an n � m grid topology, ignoring edge
effects, with r =

p
2d, ah = dn/2e, jShj = 3, and

hmax = (m � 1). Let Npkt = Apkt + 1 + E[Nr], where
the second term is to account for the advertisement
packet and the last term represents the expected
number of request packets to successfully transmit
the whole page (Eq. (4)).

We calculate total energy E expended for (a)
standalone application (one that does not perform
radio communication) and (b) application that uses
GenericComm component (provided by TinyOS)
for communication. The application size is taken
to be 1, 10, or 100 pages. In case (a), the increases
in the size of the program image (in units of a page)
are 10 and 20 respectively for Stream and Deluge,
while in case (b), these increases are 1 and 11 respec-
tively for Stream and Deluge. We use fixed energy
cost as 50 nJ/bit, Ps = 0.98, the variable (distance
dependent) energy cost is 100 pJ/bit � r2, for a
transmission distance of r, the receiving energy is
equal to the fixed energy cost. As expected, Figs. 5
and 6 reaffirm that for the communicating applica-



52 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
tions, energy costs of Stream and ideal case are
comparable.

5. Experiments and results

We implement Stream using the nesC program-
ming language in TinyOS [9]. In this section, we
compare the performances of Stream and Deluge
for different network sizes and node densities. Both
testbed experiments and simulations are used to
demonstrate the advantages of Stream over Deluge.
Testbed experiments are performed by using Mica2
[13] nodes and simulations are performed using
TOSSIM [15], a bit level simulator for TinyOS plat-
form. Testbed experiments show the performance of
Stream and Deluge in realistic environment while
simulations exhibit the scalability of these protocols.

5.1. Evaluation metrics

Any network reprogramming protocol must
ensure that all nodes in the network receive the
application image completely in a short period of

time without expending too much energy. Reliability
of code upload is an important evaluation metric.
A second important metric is the time required to
reprogram the network since the network function-
ality is degraded during reprogramming. Since the
sensor network consists of energy-constrained sen-
sor nodes, the reprogramming protocol should use
minimum energy to increase the lifetime of the
network.

Both Deluge and Stream are 100% reliable, i.e. all
nodes in the network download every byte of the
user application. So, in the following sections, we
focus on comparison in terms of time to reprogram
the network and the energy consumed during
reprogramming.

5.2. Testbed description and results

We perform the experiments using Mica2 nodes
having a 7.37 MHz, 8 bit microcontroller. Each
Mica2 node is equipped with 128 kB of program
memory, 4 kB of RAM and 512 kB external flash
which is used for storing multiple code images.
These nodes communicate via a 916 MHz radio
transceiver.

The first set of experiments is performed in 2 � 2,
3 � 3 and 4 � 4 square grid networks having a dis-
tance of 10 ft. between adjacent nodes in each row
and column. Experiments of network reprogram-
ming using Stream are carried out by pre-installing
Stream-RS as image 0 and same version of applica-
tion image plus Stream-AS as image 1 on all nodes
in the network. A new application image plus
Stream-AS is injected into the source node (situated
at one corner of the grid) via a computer attached to
it. Then the source node starts disseminating the
new application image to the network. Experiments
with Deluge are performed similarly by installing
Deluge as image 0 and the application image plus
Deluge as image 1. A new application image plus
Deluge is injected into the network.

Time to reprogram the network is the time inter-
val between the instant t0 when the source node
sends the first data packet to the instant t1 when
the last node (the one which takes the longest time
to download the new application) completes
downloading the new application. Since clocks
maintained by the nodes in the network are not syn-
chronized, we cannot take the difference between the
time instant t1 measured by the last node and t0 mea-
sured by the source node. Although a synchroniza-
tion protocol can be used to solve this issue, we do
not use it in our experiments because we do not want
to add to the load in the network (due to synchroni-
zation messages) or the node (due to the synchroni-
zation protocol). Instead, once each node completes
downloading the new application image, it sends a
special packet to the source node saying that it has
completed downloading the new application. The
source node measures the time instant t01 when it
receives such packet, timestamps the packet with t01
and sends the packet to the computer. If the network
has n nodes including the source node, the computer
attached to the source node receives one t0 and

(n � 1) number of t01s. We take tprog ¼
max

t01
ðt01 � t0Þ

as the reprogramming time. It should be noted that

the actual reprogramming time is
max

t01
ðt01 � t0 � tdÞ

where td is the time required to send the special
packet from the last node to the source node. Since
td is negligible compared to the reprogramming time,
our formula is a reasonable approximation to the
actual reprogramming time. Furthermore, since we
are interested in the difference between the repro-
gramming times of Stream and Deluge, the effect
of td cancels out assuming td is same for Stream
and Deluge experiments.

Among the various factors that contribute to the
energy used in the process of reprogramming, two
important ones are the amount of radio transmis-
sions in the network and the number of flash-writes



R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 53
(the downloaded application is written to the exter-
nal flash as image 1). Since the radio transmissions
are the major sources of energy consumption, we
take the total number of bytes transmitted by all
nodes in the network as the measure of energy used
in reprogramming. In our experiments, each node
counts the number of bytes it transmits and logs
that data to its external flash. By reading the exter-
nal flash and taking the sum of the number of bytes
transmitted by each node, we find the total number
of bytes transmitted in the network for the purpose
of reprogramming. Since the amount of flash-writes
in Deluge is higher, the energy advantage will be
increased if we take that factor into account.

As mentioned earlier, compared to Deluge the
exact gain achieved by Stream in terms of number
of pages transmitted depends on the user applica-
tion. For a simple application which does not write
to external flash and does not perform any radio
communication, attaching Deluge to the user appli-
cation increases the size of the application image by
20 pages whereas the increase is only 10 pages with
Stream. If the user application has radio communi-
cation functionality but does not write to external
flash, Stream and Deluge increase the number of
pages by 1 page and 11 pages respectively. In our
experiments, we use a simple application that per-
forms radio communication but does not write to
external flash. The application image alone is 11
pages, application image plus Stream-AS is 12 pages
and application image plus Deluge is 22 pages.

Fig. 7 compares the average time taken by
Stream and Deluge to reprogram 2 � 2, 3 � 3 and
4 � 4 grid networks. Interestingly, we observe from
the experiments that the number of hops between
two nodes is dependent on environmental condi-
0

125

250

375

500

2x2 3x3 4x4

Ti
m

e 
(s

ec
on

ds
)

Stream

Deluge

Fig. 7. Reprogramming time for grid networks (left bar is
Stream, right bar is Deluge).
tions and changes during multiple runs of the exper-
iment. For example, a node is sometimes able to
communicate with a node separated by more than
one grid point. Expectedly, the experiments show
that Stream reduces the reprogramming time signif-
icantly. This large gain in reprogramming time is
because Stream needs to transfer only 12 pages
whereas Deluge has to transfer 22 pages. The reduc-
tion in reprogramming time becomes more pro-
nounced for larger networks. Fig. 8 shows the
total number of bytes transmitted in the network
during the reprogramming period. Both data pack-
ets and control packets (request and advertisement
packets for Deluge and request, advertisement and
ACK packets for Stream) are considered while cal-
culating the number of bytes. These results indicate
that the energy required to reprogram the network
can be greatly reduced by using Stream instead of
Deluge. Although the percentage gain in repro-
gramming time and total number of bytes transmit-
ted in the network vary for different topologies, in
our experiments we see that Deluge requires 63–
98% more reprogramming time and transfers 75–
132% more number of bytes than Stream for these
grid topologies (see Figs. 7 and 8).

Next we performed the experiments for linear
topologies with 10 ft. distance between adjacent
nodes. Source node is situated at one end of the line.
Figs. 9 and 10 provide the comparison of the repro-
gramming time and total number of bytes transmit-
ted in the network respectively between Stream and
Deluge for different sizes of the linear topologies.
Again Stream is more efficient than Deluge with
respect to reprogramming time and energy used
for reprogramming. In our experiments, we noticed
that compared to Stream, Deluge takes 58–90%
0

50

100

150

200

N
um

be
r o

f b
yt

es
 (x

10
3 )

2x2 3x3 4x4

Stream

Deluge

Fig. 8. Number of bytes transmitted in the network during
reprogramming for grid networks.



0

125

250

375

500

2 nodes 3 nodes 4 nodes 5 nodes

Ti
m

e 
(s

ec
on

ds
)

Stream

Deluge

Fig. 9. Reprogramming time for linear networks.

0

2000

4000

6000

8000

10000

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

Ti
m

e 
(s

ec
on

ds
)

Stream

Deluge

Fig. 11. Reprogramming time for n � n grids.

N
um

be
r o

f b
yt

es
 (x

10
3 )

0

25

50

75

100

2 nodes 3 nodes 4 nodes 5 nodes

Stream

Deluge

Fig. 10. Number of bytes transmitted in the network during
reprogramming for linear networks.

54 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
more reprogramming time and transfers 59–70%
more number of bytes for different linear topologies.
If we compare the reprogramming time of 2 � 2 grid
and linear network with 4 nodes, we find that the
latter takes longer time to reprogram itself because
2 � 2 network can involve at most 2 hop communi-
cations (mostly 1 hop) while 4 linear nodes can have
at most 3 hop communications.

The above graphs show only the number of bytes
that are transmitted during the reprogramming per-
iod. In Deluge, each node keeps on broadcasting the
advertisement packets even after the reprogram-
ming period is over. As a result, the nodes have to
spend energy in advertising even when reprogram-
ming is not being done. Stream does not have this
problem because as soon as the reprogramming per-
iod is over, the nodes reboot from the application
image plus Stream-AS which does not broadcast
advertisements. As a result, we observe a monoton-
ically increasing difference in the number of bytes as
the protocols are allowed to continue to run in the
steady state.
5.3. Simulation results

In order to demonstrate the scalability of Stream
and to compare it with Deluge for larger network
sizes on the order of hundreds of nodes, we per-
formed some simulations using TOSSIM, a discrete
event simulator for TinyOS. Although TOSSIM
does not model TinyOS hardware precisely, it pro-
vides more accurate modeling of the physical layer
than many other simulators, such as ns-2. As TOS-
SIM does not model execution time accurately, the
simulation results presented here only exhibit the
overall behavior and trend and proper scaling is
required to give the absolute values for the Mica2
platform. Since it takes tens of hours to complete
simulations for larger networks, in our simulations,
we reduce the number of packets per page from 48
to 24 packets. This reduction in page size is not of
serious concern because we are interested in the
comparison of performances of Stream and Deluge
and not on the absolute values.
5.3.1. Effect of network size

We use several square grid networks (10 ft. dis-
tance between successive nodes in any row and col-
umn) of varying size (up to 16 � 16 grid) for our
simulations. A source node at one corner of the grid
disseminates the user application to all other nodes
in the network. Like before, Stream and Deluge
need to transfer 12 and 22 pages respectively to all
nodes in the network. Figs. 11 and 12 compare the
reprogramming times and number of bytes trans-
mitted in the network between Stream and Deluge
for different grid sizes. It shows that both Stream
and Deluge are scalable, at least up to 256 nodes
simulated. In our experiments, we found that com-
pared to Stream, Deluge requires 41–101% more
reprogramming time for different network sizes.



0

400

800

1200

1600

2000

2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

N
um

be
r o

f b
yt

es
 (x

10
4 ) Stream

Deluge

Fig. 12. Number of bytes transmitted in the network during
reprogramming for n � n grids.

0

1250

2500

3750

5000

Ti
m

e 
(s

ec
on

ds
)

Deluge
Stream

0 0.005 0.01 0.015 0.02 0.025 0.03

Density (nodes/sq. ft)

Fig. 13. Reprogramming time for different node densities.

0
0 0.005 0.01 0.015 0.02 0.025 0.03

2000

4000

6000

8000

Density (nodes/sq. ft)

N
um

be
r o

f b
yt

es
 (x

10
3 ) Deluge

Stream

Fig. 14. Number of bytes transmitted in the network during
reprogramming for different node densities.

R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 55
We noticed that the increase in the total number of
bytes transmitted in the network for Deluge com-
pared to Stream was between 75% and 112% for dif-
ferent network sizes.

The goals of the mathematical analysis in Section
4 and simulation in this section are not to find the
exact values of the reprogramming time and energy.
The exact mathematical analysis is extremely diffi-
cult to do and as far as we know, there has been
no such attempt in any published literature. Also
TOSSIM does not simulate the node hardware and
execution time exactly. So our objective in both
mathematical analysis and simulation is to compare
Stream and Deluge in terms of reprogramming time
and energy and show the trend of these quantities as
a function of the parameters like network sizes, size
of the user application, etc. For example, if we com-
pare the ratios of the reprogramming time for Del-
uge to that for Stream for 10 � 10 grid networks, it
is about 1.8 from mathematical analysis and about
1.9 from simulation results. The results from simula-
tion and analysis can be used only to observe the
trend and to compare the two protocols. It would
be incorrect to try to obtain accurate absolute values
of any of the output parameters from either simula-
tion results or analytical results. The absolute results
are given by the testbed experiments.
5.3.2. Effect of network densities

To compare the performances of Stream and
Deluge for different node densities, we vary the
number of nodes in a 90 ft. � 90 ft. area. For each
node density, the nodes are still arranged in grid
fashion with uniform spacing between the adjacent
nodes (just the spacing decreases with increasing
density). Fig. 13 shows that Stream reprograms
the network much faster than Deluge for all net-
work densities and Fig. 14 shows that Stream uses
lesser number of bytes than Deluge. The increase
in node density increases the reprogramming time
due to two reasons. First, there is an increase in
the number of nodes in a given area resulting in
more collisions of the transmitted packets. Second,
there are simply more nodes that need to download
the new application. These figures show that for
higher node densities, the gap between reprogram-
ming times as well as number of bytes between
Stream and Deluge widens further. This can be
explained by the fact that Stream reduces collisions
more effectively due to the reduced number of bytes
transferred.

5.3.3. Profile of code dissemination

Fig. 15 shows the profile of code dissemination
with Stream in a 9 � 9 grid with 10 ft. separation.
The fill-pattern of the node indicates its time to
download the application code. The results indicate
that the dissemination takes place uniformly with
hop distance from the source (which is at the top left
corner). The results are close to what we get for Del-
uge and matches with what the authors find in [6]
for a low density network.



Fig. 15. Code dissemination profile according to the convergence
time of a node.

56 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
6. Stream with opportunistic node sleeping

6.1. Background and rationale

Since sensor networks consist of energy-con-
strained nodes, one of the biggest goals of any sensor
network protocol is to minimize the energy con-
sumed by the nodes. As idle listening is a major
source of energy consumption, many practical sen-
sor network applications put the nodes to sleep as
much as possible when the nodes are not doing any
work, primarily, sensing and communicating. Thus
the sensor network reprogramming protocol should
also aim at putting the nodes to sleep mode when-
ever they are not actually involved in reprogram-
ming. When the new code is injected into the
network, it takes some time for the new code to reach
the nodes which are far from the point of injection in
the network. Freshet [8] cleverly estimates how long
it takes for the new code to reach one of the neigh-
bors of a given node and puts that node to sleep
for the estimated duration. It does this by having
each node estimate the number of hops it is away
from the point of injection and then using an empir-
ically calculated formula relating the time to the
number of hops. Secondly, Freshet also puts the
node to sleep for part of the time in the quiescent
phase, i.e., when the code upload is complete. Note
that Stream possesses the second advantage because
immediately after the code upload is over, all nodes
in the network reboot from image 1 (User applica-
tion + Stream-AS) and the user application can
put the node to sleep as it deems necessary. If Stream
is operated in the alternate mode (to be described in
this section), it can also achieve the other advantage
of Freshet—putting nodes to sleep until the newly
injected code arrives at one of its neighbors.
In this new mode of operation called Opportunis-
tic Sleeping, Stream does not reboot a node from
image 0 (Stream-RS) until the new code arrives at
one of the neighbors of the node. A sensor node
running image 1 (User application + Stream-AS)
reboots from image 0 for reprogramming only if it
hears an advertisement which is different from its
meta-data. We will describe this mode in Section
6.2. It should be noted that in Freshet, each node
estimates how long it takes for the code to reach
one of its neighbors based on its distance (hop
count) to the base node. Because of the variability
of the code propagation characteristics, such an
estimate may not always be accurate resulting either
in decrease of energy savings (underestimate of the
time for the code to reach the node) or delay in
reprogramming (overestimate). However, Opportu-
nistic Sleeping mode of Stream does not have this
problem because it does not put the node to
sleep for some estimated interval, but it causes the
node to reboot from image 0 (Stream-RS) only
when the new code actually arrives at one of its
neighbors.

Some sensor network applications may require
all the nodes in the network to be running the same
version of the application at any given time. The
opportunistic sleep mode of Stream’s operation vio-
lates this requirement. As a result, this mode should
be used only if such restrictions are not present.

6.2. Protocol description

Consider that initially nodes in the network have
Stream-RS as image 0 and Stream-AS plus user
application as image 1. A new user application
attached to Stream-AS is injected at the base node.
Then the base node running Stream-RS (image 0) is
placed within the communication range of its single
hop neighboring nodes. All nodes in the network
are reprogrammed with the new code as follows:

1. Let a1 be the set of nodes running image 1 which
are within the communication range of the base
node. Each of these nodes listens to the advertise-
ment from the base node. The advertisement as
usual carries an image version number, total
number of pages in the code image and number
of complete pages. If the advertisement is differ-
ent than the code image version it currently
has, each node in a1 reboots from image 0. Other-
wise, it does not reboot from image 0. Since the
base node has newly injected image 1, all nodes



y x

z1

z2

z3

cy cx

Fig. 16. Illustration of which nodes reboot for reprogramming.
Cx and Cy are the communication ranges of nodes x and y

respectively.

R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 57
in a1 reboot from image 1. Note that unlike in the
primary mode of Stream, no reboot message
needs to be broadcast through the network.

2. After nodes in a1 reboot from image 0, they start
getting pages of the new code image from the base
node. The three-way handshake to get the code
image pages remains unchanged from the primary
mode of Stream.

3. The nodes in a1 advertise their meta-data once
they have a completed page of the code image.
In line with existing multi-hop reprogramming
protocols, they do not wait for the entire code
image to be downloaded before advertising their
meta-data. This is identical to the primary mode
of Stream.

4. Let a2 be the set of nodes which are within com-
munication range of at least one node in a1.
When nodes in a2 hear the new advertisement
from nodes in a1, they also reboot from image
0. In this way, the nodes reboot from image 0
for the purpose of reprogramming only when
the new code image has arrived at one of its
neighbors.

5. Using the same method as explained in Section
3.2, all nodes in the network get reprogrammed
and reboot from image 1 (the new code image
that was just downloaded).

A node running image 1 (Stream-AS plus user
application) has to check the advertisement
received from another node against its own meta-
data, consisting of information about the images
it currently has, such as version number. It uses this
information to decide if it has to reboot from
Stream-RS for reprogramming. Reading data from
the external flash where the meta-data is stored is
expensive because it increases the size of image 1
(Stream-AS plus user application) and also incurs
a higher current draw. The exact amount of
increase in image size is application dependent,
but for the user applications which do not use
external flash, this increase is 2 pages. Since the
goal of Stream is to reduce the size of image 1 that
gets transferred over the wireless medium during
reprogramming, this increase in size reduces the
advantage of Stream. To avoid this, Stream stores
the meta-data information in internal EEPROM
memory. Reading from internal EEPROM
increases the size of image 1 by few bytes (about
50 bytes in the applications that we considered).
So, this mode of operation does not sacrifice the
gains of original Stream.
In opportunistic sleeping mode, no reboot mes-
sage is explicitly sent. Instead, a node x running
Stream-AS decides whether to reboot from
Stream-RS based on the advertisement message it
receives from say node y. If the advertisement from
the node y has y.version – x.version, then the node
x reboots from Stream-RS. If y.version < x.version,
then the node x reboots with the intention of bring-
ing node y up-to-date. However the neighbors of
node x (z1, z2, z3 in Fig. 16) will not reboot from
Stream-RS if they are not neighbors of node y

because they only hear the advertisement from node
x and x.version = z1.version = z2.version = z3.ver-
sion. On the other hand, if y.version > x.version,
node x will reboot from Stream-RS and once it gets
the first page of the new image, it will start advertis-
ing the new image. Then the neighbors of node x (z1,
z2, z3 in Fig. 16) will also reboot from Stream-RS
because they find that node x has new version of
the image. As a result, those nodes also start getting
reprogrammed with the new image.
6.3. Experiments and results

We performed testbed experiments and TOSSIM
simulations with opportunistic sleeping mode of
Stream to show how long a node can sleep before
rebooting from image 0 during the initial stage of
reprogramming before the newly injected code
arrives at one of its neighbors. Note that the delay
between the injection of the new code image and
the instant when this code arrives at one of its neigh-
bors of a given node depends on how far (hop
count) the node is from the base node. As this
hop distance increases, the delay also increases.
The advantage of this mode of Stream is pro-
nounced only for larger-hop networks. To do this



0

40

80

120

1 2 3 4 5 6 7 8 9 10
Hop Count

D
el

ay
 (s

ec
on

ds
)

Fig. 18. Testbed result: delay before a node reboots from Stream-
RS for reprogramming as a function of its hop count from the
base node.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

400

800

1200

1600

Hop Count

D
el

ay
 (s

ec
on

ds
)

Fig. 19. Simulation result: delay before a node reboots from
Stream-RS for reprogramming as a function of its distance (hop
count) from the base node.

58 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
with the limited number of sensor nodes that we
have, we ran the experiments on various linear
topologies having up to 11 nodes. As shown in
Fig. 17 an originator node (node 0) situated at one
end of the line disseminates code to all the nodes
in the network. Let the nodes be arranged as shown
in Fig. 17 where the node next to node 0 is node 1,
the node next to node 1 is node 2 and so on. To
achieve maximum possible hops between the base
node and the farthest node from the base node,
we restrict the communication of a node i with node
(i � 1) and node (i + 1) only. Fig. 18 shows the
delay (time interval between the instant when new
code is injected to the base node to the instant when
the node reboots from image 0) for each node in the
network as a function of its hop count from the base
node. As expected, the delay increases with the hop
count. Note that significant amount of energy can
be saved if the nodes sleep for these intervals since
the current draw in the sleep mode is three orders
of magnitude less than in the idle mode for the mote
class of sensor nodes (lA versus mA).

As explained above, the advantage of the new
mode of Stream becomes more pronounced for lar-
ger-hop networks. So, we conducted TOSSIM sim-
ulations for linear networks of sizes up to 150
nodes. As with testbed experiments, we restrict the
communication of a node i with node (i � 1) and
node (i + 1) only to achieve maximum possible
number of hops in the network. Fig. 19 shows the
simulation results. The amount of energy saved by
the opportunistic sleeping mode of Stream is quite
significant for larger networks. Note that TOSSIM
simulations do not provide the exact numbers and
should be used only to observe the trend.

It should be noted that in real sensor network
applications, the exact amount of time a node sleeps
depends on the sleep cycle schedule of the user
application running on the sensor node. Stream can-
not unilaterally decide how long a node can sleep. It
can put the node to sleep only during those time
intervals when the user application running on the
node does not require it to be awake. Without this
new mode of Stream, nodes reboot from Stream-
RS and remain awake even during the delay for
the code to reach its vicinity. But with the new mode
of Stream, the nodes can sleep during this delay
0 1 2

Fig. 17. Linear topology with nodes being reprogrammed using alterna
interval if the user application does not require it
to be awake. In other words, depending upon the
user application’s sleep schedule, the nodes may
not sleep for the entire delay interval shown in Figs.
18 and 19. Since most of the sensor applications
sleep for a longer interval before waking up for a
short interval to do its job (sensing, sending data,
etc.), the sleep time will likely be close to the delay
values shown in Figs. 18 and 19. The energy savings
per reprogramming due to this delay is shown in
Fig. 20 for different duty cycles (ratio of sleep time
to one cycle consisting of sleep time and awake
time) of the sensor node. Energy savings is
calculated using the formula: Savings = Volt-
age � (Current for idle radio + Current for idle
CPU) � Sleeping time (as calculated from the TOS-
SIM experiments) � (1-duty cycle). For mica2
platform, current for idle radio = 7.03 mA, current
for idle CPU = 3.2 mA. We neglect the current
draw in the sleep mode, which is less than 1 lA.
N-1 N 

te mode of Stream with node 0 as the base node (N = 1, 2, . . ., 11).



0

10

20

30

40

1 20 40 60 80 100 120 140

En
er

gy
 (J

ou
le

s)

Duty cycle=5%
Duty cycle=10%
Duty cycle=15%
Duty cycle=20%

Hop count

Fig. 20. Energy saving achieved by Stream over Deluge due to
nodes sleeping till the code image arrives at its vicinity.

R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 59
6.4. Mathematical analysis

Next, we analyze the delay between the injection
of the code in the base node and the instant when it
arrives at one of the neighbors of a node h hops
away from the base node. For a node one hop away
from the originator of the new code, this time inter-
val is the time for a single round of a three way
handshake. Assuming perfect pipelining of the sin-
gle page of the code, the time interval Tdelay,h for a
node h hops away from the originator of the new
code is Tdelay,h = h � Tround where Tround is the time
for a single round of the three way handshake.
Tround consists of following components:

T round ¼ T adv þ T req þ T data;

where Tadv is the time used by the nodes in advertis-
ing their meta-data before the node requiring the
new code decides to send the request. Treq is the time
used for requesting the data and Tdata is the time re-
quired to send one page of data.

To calculate Tadv, Treq and Tdata, we need to find
the expected number of transmissions required for a
successful transmission of a packet. Let Ps be the
probability of a successful transmission of a packet
over a single hop. Assuming that the retransmis-
sions of a packet are independent, the probability
that the number of transmissions of a packet, Ntx,
equals k is given by

P ðN tx ¼ kÞ ¼ ð1� P sÞk�1P s:

The expected number of transmissions for a
given packet is

E½N tx� ¼
X1
k¼1

kð1� P sÞk�1P s ¼
1

P s

;

Tadv can be approximated as follows:

T adv ¼ E½N tx�ðtl þ GX 2 þ T x þ T procÞ;
where tl is the approximate time interval between
two advertisements. Note that Stream uses Deluge’s
advertisement policy. It divides time into intervals
[tl, th] and each node decides whether to advertise
or not in a given interval based on the number of
similar advertisements it has heard in the previous
interval. We take the lower value tl because once
the originator gets the new version of the code, it
sets its advertisement period to tl and the nodes
hearing the advertisement from the originator also
set their advertisement periods to tl. We also assume
that there were not enough similar advertisements in
the previous interval to prevent the node from
advertising in the current interval. GX2 is the
MAC delay for a single packet, where X is the num-
ber of contending nodes. The MAC delay is difficult
to compute analytically and to the best of our
knowledge, no closed form solution has yet been
proposed. The authors in [16] show that for the re-
gion of interest (low contention) the delay is approx-
imately proportional to the square of the number of
contending nodes. Here G is the proportionality
constant and X is the number of contending nodes.
Tx is the transmission time for a single packet. Tproc

is the processing time required by a node after
receiving the packet.

Treq can be calculated as follows:

T req ¼ E½N tx�E½N reqs�ðE½tr� þ GX 2 þ T x þ T procÞ;

where E[Nreqs] is the expected number of requests a
node makes to complete a given page and E[tr] is the
expected time between two requests. Tdata can be
calculated approximately as follows:

T data ¼ E½N tx�NðGX 2 þ T x þ T procÞ;

where N is the number of packets in a page.
Fig. 21 shows the delay as a function of hop

count for a grid network with d = 10 ft. separation
between adjacent nodes. Probability of successful
transmission of a packet Ps is taken as 0.9. For
Stream, tl = 2 s, tr = 0.5 s and N = 48 packets.
From [6], we take E[Nreqs] = 5.4. For mica2 node,
transmission rate is 19.2 kbps and hence Tx =
0.015 s. We take Tproc = 0.001 s. To calculate
MAC delay GX2, we take G = 1 [3]. For a given
node, the number of contending nodes varies with
the location of the node in the network. For exam-
ple, for the grid network, the nodes along the diag-
onal of the grid have higher number of contending
nodes while those at the periphery have less con-
tending nodes. We assume that the network is large
and hence the average number of contending nodes



0

100

200

300

400

500

600

700

1 25 50 75 100
Hop count

D
el

ay
 (s

ec
s)

Fig. 21. Delay before a node reboots from Stream-RS for
reprogramming as a function of its distance (hop count) from the
base node.

60 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
is 9/4d2 (eliminating boundary effects) and the num-
ber of contending nodes is 9/4d2 � pr2 where r is the
transmission range. The interference range of a
node may be different from its transmission range.
The difference can be easily accommodated in our
analysis by replacing the communication range with
the given interference range. Fig. 21 shows that the
time delay before the node reboots from Stream-RS
for reprogramming is quite large for the nodes dis-
tant from the originator of the code. Under the
new mode of operation of Stream, the nodes can
sleep for this duration, and thus Stream can con-
serve the energy for network reprogramming which
increases with the network size. As mentioned
before, results from TOSSIM simulations and
mathematical analysis are not exact and should be
used just to observe the trends. The trends of the
delay values with increasing hop count obtained
from analysis (Fig. 21), real testbed experiments
(Fig. 18) and simulations (Fig. 19) are comparable.
7. Effect of user application’s sleep/awake scheme on

reprogramming

We have to be aware that Stream does not exe-
cute in isolation at the sensor nodes. The nodes
run some user application which generally causes
the node to operate with a low duty cycle, i.e., the
node sleeps for most of the time and wakes up for
short time interval to perform its tasks (like sensing,
sending data to base station, etc.). This helps the
node to reduce the energy consumption due to idle
listening and thus to lengthen the lifetime of the
node. Generally, for the best performance (small
reprogramming time), all nodes in the network
should be awake during the reprogramming period.
So, for the quick reprogramming of the network, it
is better if the network owner puts all nodes to the
awake state during reprogramming. If that is not
the case, all the existing reprogramming protocols
(Deluge, Freshet, etc.) including Stream (both the
original and the opportunistic sleeping modes) suf-
fer performance degradation, i.e., they take longer
time to be reprogrammed.

Beside performance degradation, the reprogram-
ming protocol may not be able to reprogram all the
nodes in the network due to the application induced
sleeping of the nodes. For example, in Deluge, when
all nodes complete downloading the new image, the
user has to manually send a reboot command to
reboot all the nodes in the network from the freshly
injected image. If at the time when the reboot com-
mand is issued by the user, some nodes are not
awake, they cannot reboot from the new image.
The same problem occurs in Freshet also. In Stream
(original mode), this problem is slightly different.
Although the nodes automatically reboot from the
newly injected image (after it is completely down-
loaded), the user has to give the reboot command
to reboot all the nodes in the network from
Stream-RS while starting the reprogramming pro-
cess itself. Therefore all nodes need to be awake at
that time. However, in the opportunistic sleeping
mode of Stream, this problem does not exist. The
user does not have to give the reboot command at
all. But another problem can occur in the alternate
mode of Stream. Let us assume that n1 and n2 are
respectively the first hop and second hop neighbors
of the base node. Let the base node has new image
stored in its external Flash and it is running Stream-
RS. The node n1, running Stream-AS plus user
application, hears the advertisement from the base
node and since the base node’s advertisement says
that it has a new image, n1 reboots from Stream-
RS and starts downloading the pages of the new
image from the base node. Let us assume that n2

never wakes up during the entire period when n1 is
downloading the new image and sending out its
advertisements. Then n1 reboots from the new
image since there was no request to it for the new
image. As a result, n2 is not reprogrammed. To
overcome this possible problem, each node running
Stream-AS plus user application periodically sends
the advertisement so that even if a node like n2

wakes up after the node n1 has downloaded the
new image completely and rebooted from the new
image, n2 will eventually hear the advertisement
from n1.



R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62 61
8. Conclusion

In this paper, we presented a sensor network
reprogramming protocol called Stream that signifi-
cantly reduces the number of bytes to be transmitted
over the wireless medium for reprogramming. It
addresses a fundamental problem in all existing net-
work reprogramming protocols, whereby the appli-
cation image together with the reprogramming
protocol image is transferred. Stream pre-installs
the reprogramming protocol image in a node and
transfers the application image with a small addi-
tion. Consequently, it reduces the reprogramming
time, number of bytes transferred, and the energy
expended. Stream is implemented on TinyOS for
the Mica family of sensor nodes. Experiments are
conducted on a testbed of Mica2 motes to demon-
strate the efficiency of Stream over Deluge. Our
experiments show that Deluge requires up to 98%
more reprogramming time and transfers up to
132% more number of bytes compared to Stream.
Simulation experiments are conducted using TOS-
SIM to show the scalability of Stream and increas-
ing advantages over Deluge with larger network
sizes. We also presented an opportunistic sleeping
mode of operation for Stream that lets nodes in
the network sleep till the new code image reaches
the neighborhood of the node. This extension is
analyzed, simulated, and empirically demonstrated
to achieve energy savings, which become significant
for large networks.

Further we are experimenting with making
Stream work with multiple source nodes, ability to
avoid congestion collapse in the network during
high reprogramming activity, and handling hetero-
geneous nodes.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant No.
ECS-0330016 and the Indiana 21st Century
Research and Technology Fund Grant No.
512040817. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the sponsors.

References

[1] J. Luo, P.T. Eugster, J.P. Hubaux, Route driven gossip:
probabilistic reliable multicast in ad hoc networks, in: The
Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM),
2003, pp. 2229–2239.

[2] J. Kulik, W. Heinzelman, H. Balakrishnan, Negotiation-
based protocols for disseminating information in wireless
sensor networks, Wireless Networks 8 (2/3) (2002) 169–185.

[3] G. Khanna, S. Bagchi, Y.-S. Wu, Fault tolerant energy
aware data dissemination protocol in sensor networks, in:
The International Conference on Dependable Systems and
Networks, 2004, pp. 795–804.

[4] Crossbow Tech Inc., Mote In-Network Programming User
Reference, http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf,
2003.

[5] T. Stathopoulos, J. Heidemann, D. Estrin, A remote code
update mechanism for wireless sensor networks, Technical
Report CENS Technical Report 30, 2003.

[6] J.W. Hui, D. Culler, The dynamic behavior of a data
dissemination protocol for network programming at scale,
in: The Proceedings of the Second International Conference
on Embedded Networked Sensor Systems, Baltimore, MD,
USA, 2004, pp. 81–94.

[7] S.S. Kulkarni, L. Wang, MNP: multihop network repro-
gramming service for sensor networks, in: The 25th IEEE
International Conference on Distributed Computing Sys-
tems, 2005, pp. 7–16.

[8] M.D. Krasniewski, R.K. Panta, S. Bagchi, C.-L. Yang, W.J.
Chappell, Energy-efficient, On-demand Reprogramming of
Large-scale Sensor Networks, ACM Trans. Sensor Networks
(TOSN). June 2007, accepted.

[9] University of California, Berkeley, ‘‘TinyOS”, at http://
www.tinyos.net/.

[10] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, D. Ganesan, Building efficient wireless sensor
networks with low-level naming, in: The Proceedings of the
Eighteenth ACM Symposium on Operating Systems Princi-
ples, Banff, Alberta, Canada, 2001, pp. 146–159.

[11] P. Levis, D. Culler, Maté: a tiny virtual machine for sensor
networks, in: Proceedings of the 10th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 2002, pp. 85–95.

[12] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong,
TinyDB: an acquisitional query processing system for sensor
networks, ACM Trans. Database Syst. 30 (1) (2005) 122–
173.

[13] Crossbow Technology, Inc., MPR/ MIB user’s Manual at
http://www.xbow.com/Support/Support_pdf_files/MPR-
MIB_Series_Users_Manual.pdf.

[14] P. Levis, N. Patel, S. Shenker, D. Culler, Trickle: a self-
regulating algorithm for code propagation and maintenance
in wireless sensor network, in: Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI 2004), 2004.

[15] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate
and scalable simulation of entire TinyOS applications, in:
First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), 2003.

[16] J.H. Kim, J.K. Lee, Performance analysis of MAC protocols
for wireless LAN in Rayleigh and shadow fading channels,
in: IEEE Global Telecommunications Conference (GLOBE-
COM), vol. 1, 1997, pp. 404–408.

[17] R.K. Panta, I. Khalil, S. Bagchi, Stream: low overhead
wireless reprogramming for sensor networks, in: Proceedings

http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf
http://www.tinyos.net/
http://www.tinyos.net/
http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf
http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf


62 R.K. Panta et al. / Ad Hoc Networks 7 (2009) 42–62
of the 26th IEEE International Conference on Computer
Communications (INFOCOM), May 2007, pp. 928–936.

[18] A. Tridgell, Efficient algorithms for Sorting and Synchro-
nization, PhD Thesis, Australian National University,
1999.

[19] N. Reijers, K. Langendoen, Efficient code distribution in
wireless sensor networks, in: Proceedings of the Second
ACM International Conference on Wireless Sensor Net-
works and Applications (WSNA), 2003, pp. 60–67.

[20] J. Jeong, D. Culler, Incremental network programming for
wireless sensors, in: Proceedings of the First IEEE
Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON), 2004, pp.
25–33.

[21] J. Koshy, R. Pandey, Remote incremental linking for energy-
efficient reprogramming of sensor networks, in: Proceedings
of the Second European Workshop on Wireless Sensor
Networks (EWSN), 2005, pp. 354–365.

[22] J. Polley, D. Blazakis, J. McGee, D. Rusk, J.S. Baras,
ATEMU: a fine-grained sensor network simulator, in:
Proceedings of the First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and
Networks, 2004.

[23] A. Dunkels, B. Gronvall, T. Voigt, Contiki – a lightweight
and flexible operating system for tiny networked sensors, in:
Proceedings of the First IEEE Workshop on Embedded
Network Sensors, 2004.

[24] P.J. Marron, M. Gauger, A. Lachenmann, D. Minder, O.
Saukh, K. Rothermel, FlexCup: a flexible and efficient code
update mechanism for sensor networks, in: European
Workshop on Wireless Sensor Networks (EWSN), 2006,
pp. 212–227.

[25] A. Dunkels, N. Finne, J. Eriksson, T. Voigt, Run-time
dynamic linking for reprogramming wireless sensor net-
works, in: Proceedings of the International Conference on
Embedded Networked Sensor Systems (Sensys), 2006, pp.
15–28.

[26] S. Bandyopadhyay, E.J. Coyle, An energy efficient hierar-
chical clustering algorithm for wireless sensor networks, in:
The 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (Infocom), 2003, pp. 1713–
1723.
Rajesh Krishna Panta received B.E. in
Electronics from Tribhuwan University,
Nepal and M.Sc. in Information and
Computer Engineering from Niigata
University, Japan. He is currently a
Ph.D. student at Dependable and Com-
puting Systems Lab at Purdue Univer-
sity. His areas of interests are wireless Ad
hoc and sensor networks, applications of
graph theory and stochastic geometry to
network design and management.
Saurabh Bagchi joined the Department

of Electrical and Computer Engineering
at Purdue University in West Lafayette,
Indiana as an Assistant Professor in
August 2002. Before that, he did his
Ph.D. from the Computer Science
Department of the University of Illinois
at Urbana-Champaign with Prof. Ravi-
shankar Iyer at the Coordinated Science
Laboratory. His Ph.D. dissertation was
on error detection protocols in distrib-

uted systems and was implemented in a fault-tolerant middleware
system called Chameleon.
Issa Khalil received the B.Sc. degree in
Computer Engineering from Jordan
University of Science and Technology
(JUST), Jordan, in 1994, and the MS
degree in Computer Engineering from
JUST in 1996. He is currently pursuing a
Ph.D. in the Dependable Computing
Systems Lab of Prof. Bagchi S. His
research interest includes key-manage-
ment, secure routing protocols, and
intrusion detection in Ad Hoc and Sen-

sor networks. He has worked as the director of computer and
communication center of Alquds Open University, West Bank,

for more than 6 years.


	Efficient wireless reprogramming through reduced bandwidth usage and opportunistic sleeping
	Introduction
	Related work
	Stream design
	Design approach
	Protocol description
	Handling incremental network deployment
	Design of Stream-AS
	Steady-state behavior

	Design of Stream-RS
	Changes from Deluge


	Stream analysis
	Reprogramming time
	Energy cost

	Experiments and results
	Evaluation metrics
	Testbed description and results
	Simulation results
	Effect of network size
	Effect of network densities
	Profile of code dissemination


	Stream with opportunistic node sleeping
	Background and rationale
	Protocol description
	Experiments and results
	Mathematical analysis

	Effect of user application ' s sleep/awake scheme on reprogramming
	Conclusion
	Acknowledgments
	References


