
Hermes: Fast and Energy Efficient Incremental
Code Updates for Wireless Sensor Networks

Rajesh K. Panta, Saurabh Bagchi
Dependable Computing Systems Lab (DCSL)

School of Electrical and Computer Engineering, Purdue University�
rpanta,sbagchi � @purdue.edu

Abstract—Wireless reprogramming of sensor nodes is a re-
quirement for long-lived networks due to changes in the func-
tionality of the software running on the nodes. The amount of
information that needs to be wirelessly transmitted during repro-
gramming should be minimized to reduce reprogramming time
and energy. In this paper, we present a multi-hop incremental
reprogramming protocol called Hermes that transfers the delta
between the old and new software and lets the sensor nodes
rebuild the new software using the received delta and the old
software. It reduces the delta by using techniques to mitigate
the effects of function and global variable shifts caused by the
software modifications. Then it compares the binary images at
the byte level with a method to create small delta that needs to
be sent over the wireless network to all the nodes. For a wide
range of software change scenarios that we experimented with,
we find that Hermes transfers up to 201 times less information
than Deluge, the standard reprogramming protocol for TinyOS
and 64 times less than an existing incremental reprogramming
protocol by Jeong and Culler.

I. INTRODUCTION

Large scale sensor networks may be deployed for long peri-
ods of time during which the requirements from the network or
the environment in which the nodes are deployed may change.
This may necessitate modifying the executing application
or retasking the existing application with different sets of
parameters, which we will collectively refer to as reprogram-
ming. The most relevant form of reprogramming is remote
multi-hop reprogramming using the wireless medium which
reprograms the nodes as they are embedded in their sensing
environment. Since the performance of the sensor network is
greatly degraded, if not reduced to zero, during reprogram-
ming, it is essential to minimize the time required to reprogram
the network. Also, as the sensor nodes have limited battery
power, energy consumption during reprogramming should be
minimized. Since reprogramming time and energy depend
chiefly on the amount of radio transmissions, reprogramming
protocol should minimize the amount of information that
needs to be wirelessly transmitted during reprogramming.
Reprogramming is done recurrently and transfers much larger
data than that transmitted during regular communication of the
sensed data. Hence resource consumption of reprogramming
is an important concern.

In practice, software running on a node evolves, with
incremental changes to functionality, or modification of the
parameters that control current functionality. So the difference
between the currently executing code and the new code is often

much smaller than the entire code. This makes incremental
reprogramming attractive because only the changes to the code
need to be transmitted and the entire code can be reassembled
at the node from the existing code and the received changes.
The goal of incremental reprogramming is to transfer a small
delta (difference between the old and the new software) so
that reprogramming time and energy can be minimized.

The design of incremental reprogramming on sensor nodes
poses several practical challenges. A class of operating sys-
tems, that includes the widely used TinyOS [1], does not
support dynamic linking of software components on a node.
This rules out a straightforward way of transferring just the
components that have changed and linking them in at the node.
The second class of operating systems, represented by SOS
[2] and Contiki [3], do support dynamic linking. However,
they do not allow changes to the kernel modules. Also, the
specifics of the position independent code strategy employed
in SOS limits the kinds of changes to a module that can be
handled. In Contiki, the requirement to transfer the symbol
and relocation tables to the node to support runtime linking
increases the amount of traffic that needs to be disseminated
through the network.

In [4], we presented an incremental reprogramming protocol
called Zephyr which does not require dynamic linking on
the node and does not transfer symbol and relocation tables.
Zephyr generates the delta by comparing the two executables
(called byte level comparison) using an optimized version of
the Rsync algorithm [5]. In order to increase the similarity
between the two versions of the software to produce small
delta, Zephyr uses one level of indirection for function calls
to mitigate the effects of function shifts. Each function call is
redirected to a fixed location in the program memory where
the actual call to the function is made.

In this paper, we identify two serious problems related
with Zephyr in particular and incremental reprogramming in
general — 1) Function call indirections decrease the program
execution speed. Although one such indirection increases the
latency of a single function call by only few clock cycles (e.g.
8 clock cycles on AVR platform [6]), it should be noted that
the increase in latency accumulates as the application executes
repeatedly in a loop. Increase in latency means less amount
of time for the sensor nodes to sleep causing the energy
consumption to increase and network lifetime to decrease. 2)
Function call indirections do not handle the increase in delta

2

size due to movement of the global data variables. As the user
software is changed, positions of the global variables change
and the instructions which refer to those variables change as
well between the two versions of the software. This causes a
huge increase in the size of the delta. For example, for a wide
range of software change cases that we experimented with, we
found that the global variable shifts increase the delta size by
1369.56% on average. This translates to proportionate increase
in the time and energy required to reprogram the network.
These problems exist in all protocols that use function call
indirections and in all existing reprogramming protocols.

In this paper, we present a fully functional incremental
reprogramming protocol called Hermes (messenger of gods,
in Greek mythology) which solves the problems mentioned
above. It uses indirection table to mitigate the effects of
function shifts and performs local optimizations at the node
to avoid the latency caused by such indirection. Hermes also
reduces the size of delta significantly by pinning down global
variables to existing locations. We implement Hermes on
TinyOS and demonstrate it on real multi-hop testbeds as well
as using simulations. Our experiments show that Deluge [7],
Stream [8], protocol by Jeong and Culler [9] and Zephyr [4]
need to transfer up to 201.41, 134.27, 64.75 and 62.09 times
more bytes than Hermes, respectively.

Our contributions in this paper are as follows:1) Hermes
avoids the latency in the user program due to the use of
indirection table. The technique used for this demonstrates a
new design approach for reprogramming sensor networks —
optimize delta for the wireless transfer as radio transmissions
are expensive and let the sensor nodes perform some local
inexpensive optimizations to achieve execution efficiency. 2)
Hermes eliminates the effect of global variable shifts on the
size of the delta script. 3) We provide quantitative comparison
among the existing protocols to show improvement of two
orders of magnitude.

II. RELATED WORK

The question of reconfigurability of sensor networks has
been an important theme in the community. Systems such
as Mate [10], VM* [11], and ASVM [12] provide virtual
machines that run on resource-constrained sensor nodes. They
enable efficient code updates, since the virtual machine code is
more compact than the native code. However, they trade off, to
different degrees, less flexibility in the kinds of tasks that can
be accomplished through virtual machine programs and less
efficient execution than native code. Hermes can be employed
to compute incremental changes in the virtual machine byte
codes and is thus complementary to this class.

TinyOS is the primary example of an operating system that
does not support loadable program modules. There are several
protocols that provide reprogramming with full binaries, such
as Deluge [7] and Stream [8]. For incremental reprogramming,
Jeong and Culler [9] use Rsync to compute the difference
between the old and new program images. However, it can
only reprogram a single hop network and does not mitigate
the effects of function and global variable shifts causing the

delta to be large. Koshy and Pandey [13] reduce the effects of
function shifts by using slop regions after each function in the
application so that the function can grow. However, the slop
regions lead to fragmentation and inefficient usage of the Flash
and the approach only handles growth of functions up to the
slop region boundary. The authors in [14] present a mechanism
for linking components on the sensor node by sending the
compiled image of only the changed components along with
the new symbol and relocation tables to the nodes for dynamic
linking on the nodes. This has been demonstrated only in an
emulator and makes extensive use of Flash. Also, the symbol
and relocation tables can grow very large resulting in large
updates. To the best of our understanding, no previous work
handles the issue of increased delta size due to global variable
shifts. Previous works on incremental reprogramming have
focused on one or some stages of the process while here we
present the results of the complete multi-hop reprogramming
process that executes on a testbed.

Reconfigurability is simplified in OSes like SOS [2], and
Contiki [3] that support linkable modules. In these systems,
individual modules can be loaded dynamically on the nodes.
Specific challenges exist in the matter of reconfiguration in
these systems. SOS uses position independent code and due
to architectural limitations on common embedded platforms,
the relative jumps can be only within a certain offset (such as
4 KB for the AVR platform). Contiki disseminates the symbol
and relocation tables, which may be quite large (typically
these tables make up 45% to 55% of the object file [13]).
Hermes, while currently implemented in TinyOS, can also
be complementary to SOS and Contiki to upload incremental
changes within a module.

III. OVERVIEW OF HERMES

Figure 1 is the schematic diagram showing various stages
of Hermes. First Hermes performs two application level mod-
ifications on the old and new versions of the software —
one to mitigate the effect of function shifts and the other to
eliminate the effect of global variable shifts. Then the two
executables are compared at the byte level using optimized
Rsync algorithm [4]. This produces the delta script which
describes the difference between the old and new versions of
the software. Next the delta script is transmitted wirelessly to
all the nodes in the network using the delta distribution stage.
Once the nodes download the delta script, they rebuild the
new software using the old software and the received delta
script. The sensor nodes run the newly rebuilt software by
using bootloader to load it in the program memory. The stages
shown in Figure 1 are described in the following individual
sections. Before explaining the application level modifications,
we first describe byte level comparison and show why it is not
sufficient and why we need application level modifications.

IV. BYTE LEVEL COMPARISON

Hermes uses Zephyr’s approach for byte level comparison to
generate the delta script. For the sake of completeness, here we
provide a very brief description of this stage. Hermes computes

3

 New user
application

 Old user
application

Function call
 indirection

Global variable
 placement

Application level modifications

Byte level
comparison

Delta
script

 Delta
distribution
 stage

Delta script
 downloaded
 by nodes

 Image
rebuild
and load
 stage

 Old
application

 New
application

Executed on host computer

Executed on sensor nodes

Delta genration steps

Fig. 1. Overview of Hermes: The stages with dashed rectangles are the ones which are introduced or modified by Hermes.

the delta script between the two versions of the executables
using modified Rsync algorithm. The delta script basically
consists of COPY and INSERT commands. COPY commands
tell which parts of the old software need to be copied to the
new software (and where) and INSERT commands contain the
bytes that are not present in the old software but need to be
inserted in the new software. A complete description of Rsync
algorithm and our modifications to it are explained in [4]. But
the delta script produced by byte level comparison is much
larger than the actual amount of change made in the software.
To see this, let us consider two software change cases:
Case I: Changing Blink application from blinking a green
LED every second to blinking it every 2 seconds. Blink is
an application in TinyOS distribution that blinks an LED at
the specified rate. The delta script produced with byte level
comparison is 23 bytes which is small and congruent with the
amount of change made in the software.
Case II: We added 4 lines of code to Blink. The delta script
between Blink and the one with these few lines added is 2183
bytes. The actual amount of change made in the software for
this case is slightly more than that in Case I, but the delta
script produced is disproportionately larger.

When a single parameter is changed in the application as in
Case I, no part of the already matching binary code is shifted.
All the functions start at the same location as in the old image.
But with the few lines added to the code as in Case II, the
functions following those lines are shifted. So all the calls to
those functions refer to new locations resulting in the large
delta script. Thus we need application level modifications to
make the size of the delta script proportional to the actual
amount of change made in the software.

V. APPLICATION LEVEL MODIFICATIONS

Hermes uses Zephyr’s approach of function call indirections
to mitigate the effects of function shifts. As an application
level modification, Hermes changes the linking stage during
the program compilation to redirect the function calls to the
indirection table (placed at the fixed location in program
memory). For example, let the application shown in Figure 2-a
be changed to the one shown in Figure 2-b where functions
fun1, fun2, funn are shifted from their original positions b,
c and a to b � , c � and a � respectively. Hermes modifies the
linking stage of the executable generating process to produce

the code shown in Figure 2-c (for old image) and Figure 2-d
(for new image). Here calls to functions fun1, fun2, ... , funn
are replaced by jumps to fixed locations loc1, loc2, ... , locn
respectively. The segment of the program memory starting at
the fixed location loc1 acts as an indirection table where the
actual calls to the functions are made. When the call to the
actual function returns, the indirection table directs the flow of
control back to the line following the call to loc-x (x=1,2,...,n).
In Hermes, the functions that exist in both the new and old
versions of the software are assigned the same slots in the
indirection table. As a result, if the user program has � calls
to a particular function, they refer to the same location in
the indirection table and only one call in the indirection table
differs between the two versions. On the other hand, if no
indirection table were used, all the � calls would refer to
different locations in old and new applications. Due to the
use of indirection table, the delta script produced by Hermes
is only 280 bytes for Case II compared to 2183 bytes when
only byte level comparison is used. Function call indirections
have been used in some wireline and wireless systems but not
to reduce the delta or reprogram the sensor networks.

The basic idea behind application level modifications is to
mitigate the structural changes in the user program caused by
the modification of the software so that the similarity between
the old and new software is preserved and a small delta script
is produced. Apart from function shifts, the other structural
change caused by software modification is the global variable
shifts. These result in all the instructions that refer to those
variables to change between the two versions of the software.
Note that local variables can also get shifted due to change in
the software, but this does not cause the instructions that refer
to these variables to change. To understand this, let us see how
different variables are stored in RAM. As shown in Figure
3-a, initialized global variables are stored as .data variables
in RAM followed by uninitialized global variables which are
stored as .bss variables. The local variables are stored in stack
which grows upward from the end of RAM. Since the local
variables are referred to using the addresses relative to the
stack pointer, their exact locations in RAM do not affect the
size of the delta script.

To see the severeness of the global variable shifts, con-
sider an example where a global variable is added to the

4

call fun1

funn

fun1

fun2

a

b

c

.

.

.

.

.

.

.

.

.

.

.

.
call fun2

.

.

.
call funn

.

.

.

call fun1

funn

fun1

fun2

a’

b’

c’

.

.

.

.

.

.

.

.

.

.

.

.
call fun2

.

.

.
call funn

.

.

.

call fun1

funn

fun1

fun2

a

b

c

.

.

.

.

.

.

.

.

.

.

.

.
call fun2

.

.

.
call funn

.

.

.

call fun1
ret
call fun2
ret

.

.

.
call funn
ret

loc1

loc2

locn

call fun1

funn

fun1

fun2

a’

b’

c’

.

.

.

.

.

.

.

.

.

.

.

.
call fun2

.

.

.
call funn

.

.

.

call fun1
ret
call fun2
ret

.

.

.
call funn
ret

loc1

loc2

locn

(a) (b)

(c) (d)

Fig. 2. (a) Old and (b) new images without indirection table; (c) Old and
(d) new images with indirection table in Hermes.

Blink application. In this case, the size of the delta script
produced by using only indirection table is 6090 bytes. This
is disproportionately larger than the actual amount of change
made in the software. The size of the delta script depends
on the number of global variables that are shifted and the
number of instructions that refer to those shifted variables.
So, a mechanism to mitigate the effects of global variable
shifts should be a very important component of application
level modifications to make the delta script size proportional
to the actual amount of change made in the software.

It should be noted that the actual order of the global vari-
ables in RAM is determined by the compiler implementation,
not by the order in which they are declared in the user
program. So the programmer has no control over the placement
of the global variables in RAM. Since the location of global
variables in RAM is dependent on the compiler specifics, one
solution is to change the compiler itself and place the global
variables such that the similarity in positions of the variables
between the old and the new versions is maximized. But this
calls for a complex modification to the core of a compiler,
which in turn makes the solution difficult to port.

A. Placement of global variables

Since we desire a compiler-independent solution, Hermes
uses the fact that members of a structure are placed in the

same order in RAM as they are declared within the structure.
Hermes adds one more stage (Structure generator) to the
executable building process. If this is the first time software
is being installed on the sensor nodes (i.e. no old software
exists), this stage scans through the application source files and
transforms the initialized global variables into members of one
structure, called iglobStruct, and uninitialized global variables
into members of another structure, called uglobStruct. This
stage also replaces instructions that refer to the global variables
by the instructions that refer to them as the corresponding
members of these structures. When the software is modified,
the structure generator scans through the new software to
find the global variables. When such variable is found, it
checks if that variable is present in the old software. If yes, it
places that variable as a member of the corresponding structure
(iglobStruct or uglobStruct) at the same slot in that structure
as in the old software. Otherwise, it makes a decision to
assign a slot in the corresponding structure for that variable
(call it a rootless variable), but does not yet create the slot.
After assigning the slots for the existing global variables, it
checks if there are any empty slots in the new software. These
would correspond to variables which were present in the old
software, but not in the new software. If there are empty
slots, Hermes assigns those slots to the rootless variables.
If there are still some rootless variables without a slot, then
the corresponding structure is expanded to accommodate the
rootless variables. Thus, both these structures are naturally
garbage collected and the structures expand on an as-needed
basis. For example, let default RAM structures for old and
new applications be as shown in Figure 3-a and Figure 3-b re-
spectively. The old application has initialized global variables�����������
	��
�����������
�

in the .data section and uninitialized global
variables � ����� � �
	���������� � �
� in the .bss section. Let a single
initialized global variable

��� �
���
be added to .data section

due to the modification in the software and the compiler
places it after

��� �
(Figure 3-b). As a result, global variables��� 	 �����
���
����������� � � � � � � � � 	 �
����� � � � are shifted to new positions in

RAM causing all the instructions in program memory that refer
to these shifted variables to vary between the two versions of
the application. This results in a large delta script. Hermes uses
the two structures, iglobStruct and uglobStruct, to put .data and
.bss variables respectively as shown in Figure 3-c for the old
application. Hermes also leaves some space between .data and
.bss sections to allow the former to grow with less chance of
the latter being straddled which would cause an undesirable
shift in the uninitialized global variables. In Section VIII, we
discuss how Hermes avoids this gap. In the new application
(Figure 3-d), Hermes places the added variable

��� �
���
at the

end of the .data section so that the variables which are common
between the two versions of the application are located at the
same locations in RAM. So the instructions referring to the
global variables that exist in both the versions do not change
resulting in a small delta script.

These changes in Hermes are transparent to the user. She
does not need to change the way she programs. Hermes applies
these changes during the executable generation process when

5

iv1
iv2

ivn
uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

iv1
ivn+1

ivn
uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iv2

iv1
iv2

ivn

uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iglobStruct

uglobStruct

iv1

ivn

uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iv2

iglobStruct

uglobStruct

ivn+1Gap
Gap

 Shifted
 global
variables

(a) (b)

(c) (d)

.data
section

.bss
section

heap

Fig. 3. Baseline RAM structures for (a) old and (b) new applications. RAM
structures for corresponding (c) old and (d) new applications using Hermes.

the user invokes program compilation. With this approach, the
size of the delta script produced by Hermes for the case where
one global variable was added to Blink application is 156 bytes
compared to 6090 bytes when only indirection table is used (as
in Zephyr). In other words, with the addition of the structure
generator to the application level modification stage, the size of
the delta script is significantly reduced making it proportional
to the actual amount of change made in the software.

VI. DELTA DISTRIBUTION STAGE

For wirelessly distributing the delta script, Hermes uses
the approach from Stream [8] with some modifications. The
core data dissemination method of Stream is the same as
in Deluge. Deluge uses a monotonically increasing version
number, segments the binary code image into pages, and
pipelines the different pages across the network. The code
distribution occurs through a three-way handshake of adver-
tisement, request, and code broadcast between neighboring
nodes. Unlike Deluge, Stream avoids transferring the entire
reprogramming component every time code update is done.
The reason behind this requirement in Deluge is that the
reprogramming component needs to be running on the sensor
nodes all the time so that the nodes can be receptive to future
code updates and these nodes are not capable of multitasking
(running more than one application at a time). Stream solves
this problem by storing the reprogramming component in
the external flash and running it on demand — whenever
reprogramming is to be done.

Distinct from Stream, Hermes divides the external flash
as shown in the right side of Figure 4. The reprogramming
component and delta script are stored as image 0 and image
1 respectively. Image 2 and image 3 are the user applications
— one old version and the other current version which is
created from the old image and the delta script as discussed
in Section VII. The protocol works as follows: 1) Let image
2 be the current version (

� ���
of the user application. Initially

all nodes in the network are running image 2. At the host
computer, delta script is generated between the old image
(
� �

) and the new image (
� 	

). 2) The user gives the com-
mand to the base node (node physically attached to the host
computer) to reboot all nodes in the network from image 0
(reprogramming component). 3) The base node broadcasts the
reboot command and itself reboots from the reprogramming
component. 4) The nodes receiving the reboot command from
the base node rebroadcast the reboot command and themselves
reboot from the reprogramming component. This is controlled
flooding because each node broadcasts the reboot command
only once. Finally all nodes in the network are executing
the reprogramming component. 5) The user then injects the
delta script to the base node. It is wirelessly transmitted to
all nodes in the network using the usual 3-way handshake of
advertisement, request, and code broadcast as in Deluge. Note
that unlike Stream and Deluge which transfer the application
image itself, Hermes transfers the delta script only. 6) All
nodes receive the delta script and store it as image 1.

VII. IMAGE REBUILD AND LOAD STAGE

After the nodes download the delta script, they rebuild the
new image using the script (stored as image 1 in the external
flash) and the old image (stored as image 2 in the external
flash). The image rebuilder stage consists of a delta interpreter
which interprets the COPY command by copying the specified
number of bytes from the specified location in the old image
to the specified location in the new image. All these locations
are specified in the COPY command of the delta script. The
interpreter inserts the bytes present in the INSERT command
at the specified location in the new image. The new image is
stored as image 3. The bootloader then loads the new software
from image 3 of the external flash to the program memory
(Figure 4). In the next round of reprogramming, image 3
becomes the old image and the newly rebuilt image is stored
as image 2. Next we describe the processing at the bootloader
when creating the executable image.
Avoiding latency due to indirection table: As mentioned ear-
lier, Hermes uses Zephyr’s approach of function call indi-
rections to mitigate the effects of the function shifts. Use
of one extra level of indirection increases the latency of the
user program. Though it might look like one such indirection
increases the time taken for one function call by only few clock
cycles (e.g. 8 clock cycles for the AVR platform), it should
be noted that the increase in latency accumulates over time.
This is especially true for sensor networks where applications
typically run in a loop — sample the sensor, process the sensed
data, send data to some sink node, and then repeat the same

6

Reprogramming
 component

 Delta script

Old application
 (v1)

Indirection table
 for image-2

image-0

image-1

image-2

New application
 (v2)

image-3

 ...
 ...

call loc1;
 ...
 ...

loc1: call fun1;
 ret;
loc2: call fun2;
 ret;

...

...

locn: call funn;
 ret;

Indirection
 table for
 image-3

Unused part

External Flash

Program
memory

bootloader

 New
application
 (v2’)

 Read new
application

 Load new
application
 avoiding
indirection
 table Image

Rebuilder

Fig. 4. Image rebuild and load stage. The right side shows the structure of
external flash in Hermes.

process. Many functions are called in each iteration of the loop
and the latency increases over time.

To solve this problem, we observe that there are two
conflicting requirements: we need indirection table to reduce
the size of the delta script and we need to remove any
indirection for optimized execution speed. We solve this by
having the sensor nodes store the application with indirection
table in the external flash, but we change the bootloader to
avoid using indirection table. As shown in Figure 4, when the
bootloader loads the new image (image-3) from external flash
to program memory, it eliminates the indirection by using the
exact function address from the indirection table. For example,
in Figure 4, when the bootloader reads call loc1, it finds from
the indirection table that the actual target address for this
call instruction is fun1. So when writing to program memory,
it writes call fun1 instead of call loc1. Thus as shown in
Figure 4, the application image in program memory (

�
�) is

different from that in the external flash (
��	

) in that it does
not use indirection table. In this way, the sensor nodes still
possess the program image with the indirection table in the
external flash which helps to rebuild the new image in future,
and yet the currently running instance of the program image
does not use the indirection table and is thus optimized for
execution speed. With this, we put forward a new idea for
reprogramming sensor nodes — since radio transmissions are
the most expensive operations, optimize for the transfer and let
the sensor nodes perform some inexpensive local operations
to optimize for execution speed.

VIII. AVOIDING EMPTY SPACE BETWEEN .DATA AND .BSS

SECTIONS

One drawback of the scheme outlined above is that we need
to leave some empty space between .data and .bss variables
in RAM to allow for .data variables to grow in future. If
this space is too small, the probability of .data variables
extending beyond the empty space when the software is

modified becomes high, causing the .bss variables to shift. As a
result, the delta script becomes large. To avoid this situation,
we need to leave sufficiently large space between .data and
.bss variables in RAM. But RAM is a limited resource on the
sensor nodes. For example, mica2 and micaz motes have 4KB
RAM. Next we explain how we solve this problem in Hermes.

One possible soultion is to leave a large space between
.data and .bss sections while compiling the application on the
host computer, generate the delta script on the host computer,
distribute the delta script to all the sensor nodes in the network
and change the bootloader running on the sensor nodes to
avoid that space. When the bootloader loads the application
from external flash to the program memory, it can change the
instructions that refer to .bss variables by subtracting gapSize
from the addresses used by these instructions where gapSize is
the size of the empty space between .data and .bss variables.
Because of the complex addressing schemes on the common
sensor node platforms, an algorithm with some control flow
analysis is needed. Given the tight computational and memory
constraints of the sensor nodes, this may not be feasible.

To solve this problem, Hermes uses two different ap-
proaches, respectively for Von-Neumann (e.g. msp430 plat-
form [15]) and Harvard (e.g. AVR platform [6]) architectures.
In Von-Neumann architecture, a single bus is used as the
instruction and the data bus. Program memory (where program
code is stored) and RAM (where global variables, stack and
heap are stored) share the same logical address space and
therefore the same mode for addressing the two kinds of
memory. As a result, we can move .bss variables from RAM
to program memory and avoid the space between the .data
and .bss variables in RAM. We implemented this approach
on TMote [16] (msp430 platform) sensor nodes. Note that
program memory is larger than RAM on the sensor nodes
(e.g. TMote has 10KB RAM and 48KB program memory).
Reprogramming protocol that we use occupies only about
25KB of program memory and hence enough space is available
for .bss variables in program memory.

In Harvard architecture, data and instruction buses are
different. Program memory and RAM lie in separate address
spaces. So, if we move .bss variables to program memory,
we need to change all the instructions that use data bus to
refer to .bss variables with different addressing modes to use
the instruction bus instead. This increases the complexity of
the implementation. Furthermore, even if .bss variables are
stored in program memory, we can write to those locations
only from restricted areas of the program memory (e.g. boot-
loader section) due to memory protection. This would disallow
references to the .bss variables from general-purpose user
programs. Thus for Harvard architecture, when the application
is compiled on the host computer, Hermes leaves a small space
between the two sections in RAM. If .data section expands
beyond this space, we move only those .bss variables which
are straddled by the .data section expansion to the end of the
.bss section. This is simply done by putting such .bss variables
at the end of uglobStruct. In this way, we minimize the number
of .bss variables that get shifted due to the expansion of

7

.data section beyond the allocated small empty space. For
our mica2 [17] experiments, we leave an empty space of 10
bytes between .data and .bss sections. This is not a significant
number because mica2 (and also micaz) nodes have 4KB
RAM.

IX. EXPERIMENTS AND RESULTS

To evaluate the performance of Hermes, we considered
following software change scenarios for TinyOS applications.
Case 1: Blink to Blink with a global variable added.
Case 2: Blink to CntToLeds.
Case 3: Blink to CntToLedsAndRfm.
Case 4: CntToLeds to CntToLedsAndRfm.

CntToLeds is an application that displays the lowest 3
bits of the counting sequence on the LEDs. In addition,
CntToLedsAndRfm transmits the counting sequence over the
radio. To evaluate the performance of Hermes with respect to
natural evolution of the real world software, we considered
a real world sensor network application called eStadium [18]
deployed in Ross Ade football stadium at Purdue. eStadium
applications provide safety and security functionality, infotain-
ment features such as coordinated cheering contests among
different parts of the stadium using the microphone data,
information to fans about lines in front of concession stands,
etc. We considered a subset of the changes that the software
had actually gone through, during various stages of refinement
of the application.
Case A: An application that samples battery voltage and
temperature from MTS310 [17] sensor board to one where
few functions are added to sample the photo sensor also.
Case B: We decided to use opaque boxes for the sensor nodes.
So, few functions were deleted to remove the light sampling
features.
Case C: In addition to temperature and battery, we added the
features for sampling all the sensors on the MTS310 board
except light (e.g.microphone, accelerometer, magnetometer).
Case D: Same as case C but with the addition of a feature to
reduce the frequency of sampling battery voltage.
Case E: Same as case D but with the addition of a feature to
filter out microphone samples (considering them as noise) if
they are greater than some threshold value.

Case 1, Case D and Case E are small changes; Case 2 is
a moderate change; Case A, Case B and Case 4 are large
changes; Case 3 and Case C are huge changes in the software.

A. Size of delta script

Table I shows the ratios of the number of bytes required
to be transmitted for reprogramming by Deluge, Stream,
Rsync and Zephyr to Hermes for the software change cases
mentioned above. For Deluge and Stream, the size of the
information to be transmitted is the size of the binary image
while for the other schemes it is the size of delta script. A
small delta script translates to smaller reprogramming time
and energy due to less number of packet transmissions over
the network and less number of flash writes on the node. For
small changes in software (like Case 1, Case D, and Case

TABLE I
RATIO OF NUMBER OF BYTES TO BE TRANSMITTED BY OTHER

APPROACHES TO HERMES

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes
Case 1 148.62 84.92 63.47 39.04
Case 2 34.81 19.89 12.49 4.11
Case 3 12.37 7.66 5.64 2.73
Case 4 13.41 8.3 6.14 2.95

Case A 13.52 9.01 5.96 1.79
Case B 15.21 10.14 6.62 1.96
Case C 5.5 3.8 3.14 2.08
Case D 45.65 30.43 26.02 15.51
Case E 201.41 134.27 64.75 62.09

E), the incremental reprogramming protocols perform much
better. Deluge, Stream, Rsync and Zephyr take up to 201,
134, 64 and 62 times more bytes than Hermes, respectively.
Koshy and Pandey [13] use slop region after each function
to avoid the effects of the function shifts. Hence the delta
script for their best case (when none of the functions expand
beyond the assigned slop regions) will be same as that of
Zephyr. But even in their best case scenario, the program
memory is fragmented and inefficiently used than Zephyr. The
ratios of Hermes to Zephyr also compares Hermes with the
best case scenario of [13]. Table I shows that [13] requires to
transmit 1.79 to 62.09 times more information than Hermes for
reprogramming. This huge advantage shows the importance of
our approach to eliminate the effects of global variable shifts.
The exact amount of advantage of Hermes over Zephyr is
directly proportional to the number of global variables that
are shifted in Zephyr due to change in the software and the
number of times those shifted variables are referred to in the
program code. For example, the addition or deletion of .data
variables results in more reduction in the size of the delta script
by Hermes compared to Zephyr than the .bss variables. We
refer to Jeong and Culler [9] as Rsync because their approach
is to generate the difference using Rsync. Their approach
compares the two executables without any application level
modifications. The ratios of Rsync to Hermes greater than 1
show the importance of the Rsync optimization [4] and the
application level modifications (both function call indirections
and global variable placements). Rsync [9] approach needs to
transfer 3.14 to 64.75 times more bytes than Hermes.

B. Testbed experiments

We perform testbed experiments using Mica2 [17] nodes
for grid and linear topologies. For each network topology,
we define neighbors of a node �

�
as those nodes which are

adjacent to that node �
�

in the specific topology. For the
grid network, the transmission range ����� of a node satisfies� ���
	

�����
	��
�

, where
�

is the separation between the
two adjacent nodes in any row or column of the grid. The
linear networks have the nodes with the transmission range
����� such that

��	
�����

	����
where

�
is the distance between

the adjacent nodes. Due to fluctuations in transmission range,
occasionally a non-adjacent node will receive a packet. In
our experiments, if a node receives a packet from a non-
adjacent node, it is dropped. This kind of software topology

8

TABLE II
RATIO OF REPROGRAMMING TIMES OF OTHER APPROACHES TO HERMES

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Case 1 24.77 44.66 34.24 14.12 25.96 20 10.98 19.78 15.63 7.69 16.08 11.39
Case 2 19.02 50.67 30.16 10.62 29.45 17.8 7.66 19.21 12.27 2.25 5.71 3.6
Case 3 6.14 13.48 9.8 4.77 9.15 6.37 3.37 5.57 4.56 2.06 3.56 2.8
Case 4 6.13 13.55 10.37 4.78 9.2 6.74 3.38 6.54 4.87 1.97 3.72 2.94

Case A 6.58 14.95 11.36 4.98 10.41 7.8 3.66 6.67 5.13 1.62 2.84 2.06
Case B 7.07 15.39 11.95 5.35 10.65 8.21 3.87 7.09 5.33 1.64 2.59 2.05
Case C 3.95 6.2 4.92 2.69 4.14 3.32 2.27 3.23 2.88 1.73 2.31 2.01
Case D 26.83 76.61 45.21 18.09 44.78 27.77 16.22 40.81 25.61 8.99 22.91 14.67
Case E 36.97 78.16 59.23 23.9 47.83 36.81 21.05 42.8 29.51 13.56 25.83 17.92

TABLE III
RATIO OF NUMBER OF PACKETS TRANSMITTED DURING REPROGRAMMING BY OTHER APPROACHES TO HERMES

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Case 1 28.54 140.31 91.83 17.05 78.5 49.87 11.02 53.28 33.2 6.23 35.43 20.26
Case 2 13.84 60.72 31.73 8.42 34.84 17.45 4.75 19.27 9 3.26 11.57 5.72
Case 3 5.93 13.03 10.4 4.16 8.21 6.45 2.89 6.34 4.73 1.67 2.66 2.12
Case 4 6.2 13.26 10.11 4.04 7.84 6.27 2.6 5.96 4.59 1.77 2.53 2.12

Case A 6.34 14.79 11.56 4.51 10.7 7.88 3.03 6.64 5.11 1.86 2.28 2.02
Case B 6.37 16.53 12.41 4.53 11.46 8.46 3.03 7.71 5.49 1.85 2.26 2.01
Case C 3.94 7.6 6.17 2.84 6.02 4.4 2.49 4.74 3.68 1.56 2.85 2.3
Case D 18.87 103.12 46.34 12.64 49.1 27.7 11.63 46.74 24.91 6.94 30.27 14.63
Case E 46.67 194.19 124.29 26 114.93 76.91 20.65 87.28 59.27 12.54 53.18 35.12

TABLE IV
SIMULATION RESULTS: RATIO OF REPROGRAMMING TIME AND NUMBER OF PACKETS TRANSMITTED BY OTHER APPROACHES TO HERMES

6x6 8x8 10x10 12x12 14x14
Time # Pkts Time # Pkts Time # Pkts Time # Pkts Time # Pkts

Deluge:Hermes 27.41 61.11 53.61 60.07 70.87 73.02 76.88 105.68 94.3 149.82
Stream:Hermes 15.55 34.16 40.01 38.68 48.25 45.4 53.28 67.66 70.52 97.55
Rsync:Hermes 12.34 26.68 2.12 27.87 28.43 34.22 38.16 49.56 54.43 74.77
Zephyr:Hermes 8.31 17.33 10.69 16.81 13.93 21.22 22.73 29.96 34.27 46.28

control has been used in other works also [19], [20]. For the
grid network, a node situated at one corner of the grid acts
as the base node while the node at one end of the line is
the base node for linear networks. We provide quantitative
comparison of Hermes with Deluge [7], Stream [8], Rsync
(Jeong and Culler [9]) and Zephyr [4]. Note that Jeong
and Culler [9] reprogram only nodes within one hop of the
base node, but we used their approach on top of multi hop
reprogramming protocol to provide a fair comparison. The
metrics for comparison are reprogramming time and energy.
We perform these experiments for grids of size 2x2 to 4x4 and
linear networks of size 2 to 10 nodes. The results presented
here are the minimum, maximum and average over these grid
and linear networks.

1) Reprogramming time and energy: Time to reprogram
the network is the sum of the time to download the delta
script and the time to rebuild the new image. We used the
approach of [20] to measure the network reprogramming time.
Table II compares the ratio of reprogramming times of other
approaches to Hermes. As expected, Hermes outperforms the
non incremental reprogramming protocols Deluge and Stream
significantly. Hermes is also 2.27 to 42.8 times faster than
Rsync [9]. This illustrates that application level modifications
that Hermes applies are very important in reducing the time
to reprogram the networks. As mentioned above, the best case

scenario for Koshy and Pandey [13] is same as that of Zephyr.
Hermes is 1.62 to 25.83 times faster than Zephyr. This shows
how Hermes’ technique to eliminate the effects of the global
variable shifts translates into speeding up the reprogramming
process. To see the significance of these improvements, let
us consider Case E. Deluge, Stream, Rsync, Zephyr, and
Hermes took 648.68, 347.19, 299.78, 196.06, 195.06 and
14.24 seconds respectively to reprogram the 4x4 grid. Note
that Hermes is most effective for small or moderate software
change cases (like Case 1, Case 2, Case D and Case E) which
are more likely to happen in practice. The time to rebuild
the new image depends on the size of the delta script, but is
small compared to the total reprogramming time. In all these
experiments, the image rebuild time is less than 6 seconds
which is small compared to the total reprogramming time (in
the order of several minutes). That is, the image rebuild stage
on the sensor nodes is an inexpensive operation compared to
the network-wide transfer even though the rebuilding is done
on the resource-constrained sensor nodes.

Among the various factors that contribute to the energy
consumed during reprogramming, two important ones are the
amount of radio transmissions and the number of flash writes
(the downloaded delta script is written to the external flash).
Since both of them are proportional to the number of packets
transmitted in the network during reprogramming, we take

9

the total number of packets transmitted by all nodes in the
network as the measure of energy consumption. Table III
compares the total number of packets transmitted by all nodes
in the network using Hermes with other schemes for the above
mentioned grid and linear networks. Like reprogramming time,
Hermes reduces the number of packets transmitted during
reprogramming significantly compared to other approaches. As
indicated by the ratios of Zephyr to Hermes, the elimination of
the global variable shifts results in a very large savings (1.56
to 53.18 times) in energy.

2) Execution speed: In order to demonstrate latency im-
provement for Hermes due to the use of the technique to avoid
the indirection table, we considered a typical sensor network
application which operates in a loop with each run of the loop
consisting of work and sleep periods. In the work period, a
node samples all the sensors on MTS310 sensor board [17],
processes the sampled data and sends the data to the cluster
head. In the sleep period, the node goes to sleep to save energy.
All function calls happen in the work period. Figure 5 shows
the additional latency due to indirections in all function calls
during the work period. That is, the amount of time taken by
Zephyr is larger than that by Hermes by the amount shown
in Figure 5. By removing the indirection table, Hermes saves
this latency, enabling lower duty cycle. So the nodes can sleep
for this extra time and hence the amount of energy saved is
significant in the long run.

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

La
te

nc
y

(s
ec

on
ds

)

Number of runs

Fig. 5. Execution latency due to indirection table

C. Simulation Results

We perform TOSSIM [21] simulations on grid networks of
varying size (up to 14x14) to demonstrate the scalability of
Hermes and to compare it with other schemes. Table IV shows
the reprogramming time and number of packets transmitted
during reprogramming for Case E. We find that Hermes is up
to 94, 70, 54, 34 times faster than Deluge, Stream, Rsync
and Zephyr respectively. Also, Deluge, Stream, Rsync and
Zephyr transmit up to 149, 97, 74 and 46 times more number
of packets than Hermes respectively. Hermes is as scalable as
Deluge since none of the changes in Hermes affects the 3-way
code dissemination handshake or changes with the scale of
the network. All application level modifications are performed
on the host computer and the image rebuilding on each node
does not depend upon the number of nodes in the network.
These simulation results also show that as the network grows

larger, Hermes’ advantage over existing protocols increases.
This happens because with the increase in the network size,
the existing protocols face more contention and collisions as
they need to transfer more bytes than Hermes.

X. CONCLUSIONS

In this paper, we presented a multi-hop incremental repro-
gramming protocol called Hermes that minimizes the repro-
gramming overhead by reducing the size of the delta script
that needs to be disseminated through the network. To the
best of our knowledge, we are the first ones to use techniques
to mitigate the effects of global variable shifts and avoid the
latency caused by function call indirections for incremental
reprogramming of sensor networks. Our scheme can be applied
to systems like TinyOS which do not provide dynamic linking
on the nodes as well as to incrementally upload the changed
modules in operating systems like SOS and Contiki that
provide the dynamic linking feature. As part of our future
work, we plan to use multiple code sources and multiple
channels to speed up reprogramming.

REFERENCES

[1] http://www.tinyos.net.
[2] C. Han, R. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava, “SOS:

A dynamic operating system for sensor networks,” Third International
Conference on Mobile Systems, Applications, And Services, 2005.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” 29th Annual IEEE
International Conference on Local Computer Networks, 2004.

[4] [Online]. Available: http://www.ece.purdue.edu/ � dcsl/publications/
papers/2008/zephyr TR0808.%pdf

[5] A. Tridgell, “Efficient Algorithms for Sorting and Synchronization,”
1999.

[6] http://www.atmel.com.
[7] J. Hui and D. Culler, “The dynamic behavior of a data dissemination

protocol for network programming at scale,” SenSys, pp. 81–94, 2004.
[8] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless

Reprogramming for Sensor Networks,” IEEE Conference on Computer
Communications (Infocom), 2007.

[9] J. Jeong and D. Culler, “Incremental network programming for wireless
sensors,” IEEE SECON, pp. 25–33, 2004.

[10] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” ACM SIGOPS Operating Systems Review, pp. 85–95, 2002.

[11] J. Koshy and R. Pandey, “VMSTAR: synthesizing scalable runtime
environments for sensor networks,” SenSys, pp. 243–254, 2005.

[12] P. Levis, D. Gay, and D. Culler, “Active sensor networks,” Proceedings
of the 2nd USENIX/ACM Symposium on Network Systems Design and
Implementation (NSDI), 2005.

[13] J. Koshy and R. Pandey, “Remote incremental linking for energy-
efficient reprogramming of sensor networks,” EWSN, pp. 354–365.

[14] P. Marron, M. Gauger, A. Lachenmann, O. Minder, D.and Saukh,
and K. Rothermel, “FLEXCUP: A flexible and efficient code update
mechanism for sensor networks,” EWSN, 2006.

[15] http://www.ti.com/msp430.
[16] http://www.sentilla.com.
[17] http://www.xbow.com.
[18] http://estadium.purdue.edu.
[19] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:

maximizing sensor network data persistence,” Proceedings of the con-
ference on Applications, technologies, architectures, and protocols for
computer communications, pp. 255–266, 2006.

[20] R. Panta, I. Khalil, S. Bagchi, and L. Montestruque, “Single versus
Multi-hop Wireless Reprogramming in Sensor Networks,” TridentCom,
pp. 1–7, 2008.

[21] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire tinyOS applications,” SenSys, pp. 126–137,
2003.

