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ABSTRACT
Wireless mesh networks (WMN) are finding increasing usage
in city-wide deployments for providing network connectiv-
ity. Mesh routers in WMNs typically use multiple wireless
channels to enhance the spatial-reuse of frequency bands,
often with multiple radios per node. Due to the coopera-
tive nature of WMNs, they are susceptible to many attacks
that cannot be defeated by using traditional cryptographic
mechanisms of authentication or encryption alone. A so-
lution approach commonly used for defending against such
attacks is behavior-based detection in which some nodes over-
hear communication in their neighborhood to determine if
the behavior by a neighbor is legitimate. It has been pro-
posed to use specialized monitoring nodes deployed strategi-
cally throughout the network for performing such detection.
The problem that arises is where to deploy these monitor-
ing nodes, how to minimize their number, and which chan-
nels to tune their radios to, such that the maximum part of
the network can be covered. This problem has been solved
for single channel networks by a greedy approximation al-
gorithm since the exact solution is NP-hard. The greedy
algorithm achieves the best performance, in terms of the
worst case, possible among all polynomial-time algorithms
provided that P 6= NP . In this paper, we solve the problem
for multi-channel multi-radio WMNs. The intuitive exten-
sion of the greedy algorithm destroys the property of best
performance. Instead, we formulate the problem as an in-
teger linear program, solve its linear program relaxation,
and then use two rounding techniques that we develop by
adapting existing rounding schemes. We thereby present
two approximation algorithms. The first, computationally-
light algorithm, called probabilistic rounding algorithm gives
an expected best performance in the worst case. The sec-
ond, called deterministic rounding algorithm achieves the
best worst-case performance in a deterministic manner. To
evaluate how the three algorithms perform in practice, we
simulate them in random networks and scale-free networks.
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1. INTRODUCTION
Wireless mesh networks (WMN) are finding increasing us-

age in city-wide deployments for providing network connec-
tivity. In these networks, mobile devices connect to the in-
ternet gateways through mesh routers, which are typically
stationary devices. Mesh routers forward packets en route
to the gateways and typically use multiple wireless channels
to enhance the spatial-reuse of frequency bands, often with
multiple radios per node.

WMNs are vulnerable to a wide range of security attacks
that are more severe and easier to launch in these networks
than in their wired counterparts. An adversary can physi-
cally capture mesh routers and tamper with them [10] since
they are often deployed in insecure locations. The compro-
mised mesh routers can be exploited to launch a variety of
attacks. Fundamentally, WMNs rely on cooperation of other
nodes and this makes them vulnerable to malicious routers.
A well-studied example is the malicious behavior at MAC
layer where a malicious node does not follow the back-off
rule for accessing the channel [8].

Many of these attacks cannot be defeated by using tra-
ditional cryptographic mechanisms of authentication or en-
cryption alone. A simple example of this is that compro-
mised nodes fabricate garbage packets that reach the end
point and are then dropped, since they fail the authentica-
tion test; however, such garbage packets drain network re-
sources since intermediate nodes on the route spend their re-
sources forwarding the packets. An approach used to detect
this class of attacks, which does not rely on cryptographic
techniques, is behavior-based detection. In this, nodes ob-
serve the communication behavior of other nodes. In gen-



eral, the behavior being monitored can be other than com-
munication behavior, e.g., sensing behavior to see if sensed
data is accurate. Leveraging the one-hop broadcast nature
of wireless communication, the monitoring node, which is a
one-hop neighbor of the node being verified, overhears the
communication of its neighbors and judges the behavior. For
the example above, monitoring nodes verify that the back-off
time of nodes follows a legitimate pattern. As another ex-
ample, in case of malicious traffic injected into the network,
such as worm traffic in a sensor network [13], the monitor-
ing node can instruct intermediate nodes to drop such traffic,
thereby saving resources.

A mechanism proposed in the literature is to have special-
ized monitoring nodes deployed throughout the network for
validating the behavior of normal nodes in the network [12].
This takes the place of the more intuitively appealing archi-
tecture of every node participating in monitoring. The latter
design is susceptible to framing of legitimate nodes due to
erroneous reports by malicious nodes. The quorum-based
solution [7] only works well under relatively high network
densities, which are unlikely in most WMN deployments.

With specialized monitoring nodes, it would be desirable
to optimize such nodes since they have specialized capabil-
ities. The problem statement then is how to strategically
place a given number of monitoring nodes in the network
such that as large a fraction of the normal nodes as pos-
sible, ideally the entire set, is covered. For WMNs, the
normal nodes can communicate on multiple channels and
the monitoring nodes can also verify on multiple channels.
Therefore, the problem statement is also to choose the chan-
nels that the monitoring nodes need to verify on, given the
communicating channels of the normal nodes. The optimum
placement and choice of channels is a function of the place-
ment and traffic patterns of the normal nodes. When either
changes, the solution will need to be re-evaluated. Alterna-
tively, we consider a number of monitoring nodes deployed
in the field and the problem statement is to decide which
monitoring nodes to activate for achieving maximum cover-
age of the normal nodes since network intrusion detection is
computationally expensive and energy-intensive. Note that
the former problem statement can be mapped to the latter.
Consider that the network is arranged as a grid with a given
number, say k, of monitoring nodes available for placement
on any grid point and we have to choose the grid points
on which to place the monitoring nodes. Then, we can ask
the following equivalent question: assuming that all the grid
points have a monitoring node, how do we choose k out of
them to maximize the coverage.

Previously, the problem has been solved for single channel
networks [12], using a greedy strategy [6]. The determina-
tion of the optimal set of monitoring nodes is NP-hard in
both single-channel and multi-channel networks since the
maximum coverage problem, a well-known NP-hard prob-
lem, can be polynomially reduced to it. The greedy strat-
egy of [12] has been shown to have an approximation ratio
of 1− 1/e [6]. Here, the approximation ratio, loosely speak-
ing, is the minimum of ratios of the number of normal nodes
covered by the given solution over the number of normal
nodes covered by the optimal solution, the minimum being
computed over all possible deployments. It has been shown
that the greedy solution achieves the best approximation
ratio possible among all polynomial-time algorithms unless
P = NP [4].

However, the intuitive extension of the single-channel so-
lution to the multi-channel case leads to a greedy algorithm
with an inferior approximation ratio of 1

2
. Therefore, we

develop a different algorithm for the multi-channel case and
show that our algorithm achieves the best approximation ra-
tio (1− 1/e) possible among all polynomial-time algorithms
unless P = NP . Our algorithm development takes the fol-
lowing path: we first formulate the problem as an integer
linear program; we then relax the integer constraints and
solve the resulting linear program (LP) relaxation, which
takes polynomial time; Lastly, we adopt two LP rounding
techniques—randomized rounding [11] and pipage round-
ing [1]—to achieve feasible solutions to our problem, which
obey the integer constraints. We develop a Probabilistic
Rounding Algorithm (PRA) which is computationally light-
weight and guarantees the expected approximation ratio of
1 − 1/e. Next, we develop a Deterministic Rounding Algo-
rithm (DRA) which guarantees the approximation ratio in
a deterministic manner to be 1− 1/e.

To evaluate how our solutions fare in practice, we perform
simulations for different networks—random and scale-free—
under different placements and densities. We compare the
performance of the three algorithms—the greedy algorithm,
PRA, and DRA—with the optimal value of LP relaxation,
which we use an upper bound for the optimal value of our
problem.

The rest of the paper is organized as follows. Background
of LP rounding is introduced and related work is reviewed
in Section 2. The problem formulation is described in Sec-
tion 3. Hardness of the problem and greedy approximation
algorithm are presented in Section 4. Two approximation
algorithms using LP rounding are presented in Section 5.
Complexity analysis is provided in Section 6. Performance
evaluation through simulation is presented in Section 7. Fi-
nally, we conclude our work and discuss future work in Sec-
tion 8.

2. BACKGROUND AND RELATED WORK
We first introduce a technique for designing approxima-

tion algorithms—LP rounding. We then review the previous
works related to this paper.

2.1 LP Rounding
We often face optimization problems that can be formu-

lated as integer linear programs (ILP). ILPs are in many
practical situations NP-hard. Hence, we cannot solve such
ILPs in polynomial time. Then, instead of exact solutions,
we seek to find approximate ones achievable in polynomial
time. There is a technique called LP rounding, which is a
highly effective technique for designing approximation algo-
rithms with proven performance guarantees [1]. The typical
steps involved in finding the approximate solution are:

1) Formulate an optimization problem as an ILP

2) Transform the ILP to an LP relaxation by removing
the integral constraints

3) Solve the LP relaxation (using one of many existing
polynomial algorithms)

4) Round the optimal solution of LP relaxation, i.e., con-
vert any non-integral values to integral values to obtain
a feasible solution to ILP



In the fourth step, called rounding, there are two distinct
approaches—deterministic and randomized. In this paper,
we develop two rounding schemes derived from existing al-
gorithms, SAMPLING [11] and PIPAGE [1], respectively. The
former algorithm is randomized whereas the latter is deter-
ministic, resulting in our two rounding schemes being ran-
domized and deterministic, respectively.

2.2 Related Work
The selection of monitoring nodes for single-channel wire-

less networks, the most related work to ours, has been stud-
ied by Subhadrabandhu et al. in [12]. They solve the prob-
lem of optimal placement of monitoring nodes that execute
intrusion detection modules, to maximize coverage in the
network. They adapt a greedy algorithm in [6] for solv-
ing the problem, and it is the best approximation algorithm
among all polynomial-time algorithms unless P = NP [4].

The security issue in multi-channel multi-radio WMNs has
been studied in [5,9]. In [9], Naveed et al. identify vulnera-
bilities in channel assignment algorithms and briefly suggest
possible solutions. Then, Haq et al. [5] propose a security
mechanism to address the vulnerabilities exposed in [9].

Our mathematical formulation of the maximum coverage
problem in multi-channel multi-radio WMNs (Section 3) was
previously introduced in a generalized form, called maximum
coverage problem with group budget constraints (our problem
is its cardinality version) in [3]. In [3], Chekuri et al. present
an approximation algorithm to solve the maximum coverage
problem with group budget constraints, which is a simple ex-
tension from the greedy algorithm in [6]. They show that for
the cardinality version, their algorithm solves the problem
within a factor of 1

2
of the optimum and their analysis is

tight, which our performance result of GR-MCMC (Section
4) agrees with.

3. PROBLEM FORMULATION
We are given a set of n normal nodes u1, . . . , un. Node ui

has ai radios called normal radios. We define U = {u1
1, . . . ,

ua1
1 , . . . , u1

n, . . . , uan
n }, where uj

i denotes the radio j of a nor-
mal node ui. Each normal radio is tuned to a specific wire-
less channel, as determined by one of many existing channel
assignment algorithms. The set U defines the set of normal
radios to be verified by the monitoring nodes. There is a set
of m monitoring nodes v1, . . . , vm. Monitoring node vi has ti

radios called monitoring radios. Each monitoring radio can
be tuned to a channel j = 1, . . . , c, where c is the number of
wireless channels. We are also given a collection of subsets of
U , S = {Sij : i = 1, . . . , m, j = 1, . . . , c}, where a coverage-
set is defined as Sij , the set of normal radios that can be cov-
ered by any radio of monitoring node vi tuned on channel j.
We say that a normal radio is covered by a monitoring radio
if the latter can overhear the former’s communication due
to being tuned on the same channel. We will use the term
“set”as a shorthand for“coverage-set”whenever we can do so
without loss of clarity. We denote Si = {Sij : j = 1, . . . , c},
as a group. Our goal is to choose at most k sets from S
with at most ti ones from group Si so as to maximize the
number of normal radios covered by the selected sets. The
constraint of k sets means that there are at most k number
of monitoring radios that we can choose for verifying normal
radios. This constraint is called the total budget constraint.
The constraint of ti is due to the observation that monitor-
ing node vi has ti radios and our design that each radio will

monitor a channel continuously, i.e., without hopping be-
tween different channels. This constraint is called the group
budget constraint. If the ki (ki ≤ ti) sets, Sij1 , . . . , Sijki

, in
the group Si are selected for a solution by any one of the
algorithms presented by us here, then ki radios of the mon-
itoring node vi will be tuned on the channels, j1, . . . , jki .
We refer to this problem as the Maximum Coverage problem
with Multiple Channels (MCMC). For a cleaner exposition,
we let all ai’s and tj ’s be equal to 1. The general case is
a simple extension of our solution detailed here. Therefore,
we can simply let ui = u1

i for notational convenience and de-
note each radio by its node since there is a one-to-one map-
ping between radios and nodes. We denote a special case
of MCMC where all nodes (normal nodes and monitoring
nodes) have a single channel and a single radio (MCMC with
c = 1, ai = 1, ∀i = 1, . . . , n, tj = 1, ∀j = 1, . . . , m) as the
Maximum Coverage problem with Single Channel (MCSC).

4. NP-HARDNESS OF PROBLEM AND
GREEDY APPROXIMATION

Lemma 1. MCMC is an NP-hard problem.

Proof. MCMC can be reduced to the maximum coverage
problem1 by setting c = 1. Thus, if the optimal solution
to MCMC can be determined in polynomial time, then the
maximum coverage problem can also be solved in polynomial
time, which is a contradiction. ¥

Then, it is reasonable to pursue an approximate solution
achievable in polynomial time.

Definition 1. A polynomial-time algorithm is said to be
a δ-approximation algorithm for a maximization problem if
for every instance of the problem, it delivers a solution that
is at least δ times the optimum. Here, δ is referred to as the
approximation ratio.

Naturally, δ < 1, and the closer it is to 1, the better. In this
paper, we seek to find the answers to the following questions
for our maximization problem, MCMC: What is the best
approximation ratio attainable? How can it be achieved
through a realizable algorithm?

We first consider MCSC, which is a special case of MCMC
but still an NP-hard problem since it is exactly the maxi-
mum coverage problem. It is known that a simple greedy
algorithm solves MCSC within a factor of 1 − (1 − 1/k)k

of the optimum [6], where k is the maximum number of
monitoring nodes that can be selected. Let us denote it
as GR-MCSC. GR-MCSC selects k sets in S by picking at
each iteration the set that covers the maximum number of
uncovered elements. It is proven in [4] that no polynomial-
time algorithm can achieve higher approximation ratio than
1− 1/e (≈ 0.632) provided that P 6= NP .

Lemma 2. GR-MCSC is the best approximation algo-
rithm for MCSC unless P = NP .

Proof. It follows from that 1−(1−1/k)k > 1−1/e since
limk→∞[1 − (1 − 1/k)k] = 1 − 1/e and 1 − (1 − 1/k)k is a
decreasing function of k [6]. ¥
1Given a set U = {1, . . . , n} and a collection of subsets of
U , C = {C1, . . . , Cm}, the maximum coverage problem is to
select k of these subsets such that the cardinality of union of
the selected subsets is maximized. It is an NP-hard problem.
[6]



Algorithm 1 GR-MCMC

1: I ← {1, 2, . . . , m}, S′ij ← Sij , ∀i = 1, . . . , m, ∀j =
1, . . . , c, G ← ∅

2: for l ← 1 to k do
3: Find il, jl such that

∣∣S′iljl

∣∣ = max∀i∈I, ∀j

∣∣S′ij
∣∣

4: Do Gl ← Siljl , where Gl denotes the l-th set in G
5: I ← I\{il}
6: for each i ∈ I do
7: for j ← 1 to c do
8: S′ij ← S′ij\S′iljl

9: end for
10: end for
11: end for
12: return G

We proceed to explore if the approximation ratio of 1−1/e
is attainable for MCMC. Intuitively, we first generalize the
greedy approach of GR-MCSC to MCMC and thereby pro-
pose our first algorithm, GReedy algorithm for MCMC (GR-
MCMC). Note that a direct application of GR-MCSC by
iterating it over all channels on all monitoring nodes can
violate the group budget constraint. Basically, GR-MCMC
operates similarly to GR-MCSC except that once a set Sij is
chosen from group Si, no other set from Si is considered for
further selection. We formally present GR-MCMC, denoted
GR-MCMC, in Algo. 1. For each iteration of the for loop in
line 2, we pick the set covering the maximum number of un-
covered elements. We remove the already covered elements
from the remaining sets in lines 6–10. We terminate the loop
once k monitoring nodes are selected.

We are now interested in the performance of GR-MCMC. We
first prove the following lemmas.

Lemma 3. GR-MCMC is a 1
2
-approximation algorithm.

Proof. We define H = {H1, . . . , Hk} as the optimal se-
lection and H1, H2 to be a partition of H. Here, if Hj ∈ H
has a same group index as that of some Gi ∈ G, then
Hj ∈ H1, and otherwise Hj ∈ H2. We similarly define
G1, G2 to be a partition of G. Consider a set Hj ∈ H1.
There must exist some Gi ∈ G1 whose group index is same
as that of Hj . GR-MCMC picks Gi at i-th iteration, which is
the set of maximum number of uncovered elements among
remaining sets at i-th iteration. The fact that Gi and Hj

belong to same group implies that Hj is available at i-th it-
eration. Hence, we get that |Gi−∪i−1

l=1Gl| ≥ |Hj−∪i−1
l=1Gl| ≥

|Hj − ∪k
l=1Gl|, and thereby it follows that

∑
i:Gi∈G1

|Gi −
∪i−1

l=1Gl| ≥
∑

j:Hj∈H1
|Hj − ∪k

l=1Gl|—(∗). Also, due to the

property of GR-MCMC mentioned right above, it is true that
∀Gi ∈ G, ∀Hj ∈ H2, |Gi−∪i−1

l=1Gl| ≥ |Hj−∪i−1
l=1Gl| ≥ |Hj−

∪k
l=1Gl|, and therefore we get that

∑
i:Gi∈G2

|Gi−∪i−1
l=1Gl| ≥∑

j:Hj∈H2
|Hj − ∪k

l=1Gl|—(∗∗). Using (∗) and (∗∗), we can

obtain that
∑k

i=1 |Gi − ∪i−1
l=1Gl| ≥

∑k
i=1 |Hi − ∪k

l=1Gl|—
(∗∗∗). Since it is true that |∪k

i=1 Gi| =
∑k

i=1 |Gi−∪i−1
l=1Gl|,

and also that
∑k

i=1 |Hi−∪k
l=1Gl| ≥ | ∪k

i=1 (Hi−∪k
l=1Gl)| =

| ∪k
i=1 Hi−∪k

l=1Gl)| ≥ | ∪k
i=1 Hi| − | ∪k

l=1 Gl|, it follows from
(∗ ∗ ∗) that | ∪k

i=1 Gi| ≥ | ∪k
i=1 Hi| − | ∪k

i=1 Gi|. Therefore,
we finally get that | ∪k

i=1 Gi| ≥ 1
2
| ∪k

i=1 Hi|. ¥

Lemma 4. The approximation ratio of 1
2

of GR-MCMC can-
not be improved further.

Proof. Consider an input instance for GR-MCMC: S11 =
{u1, . . . , un}, S12 = {un+1, . . . , u2n−1}, S21 = {u1, . . . , un−1},
S22 = {u2n}, and k = 2. Then, GR-MCMC outputs S11 and
S22 while the optimal selection is S12 and S21. Therefore, a
ratio r of the solution value of GR-MCMC to the optimum is
r = n+1

2(n−1)
= 1

2
+ 1

n−1
> 1

2
. We can make r arbitrarily close

to 1
2

by setting a large value of n. Thus, the approximation

ratio of GR-MCMC cannot be greater than 1
2
. ¥

Lemmas 3 and 4 lead to the following proposition.

Proposition 1. GR-MCMC is a 1
2
-approximation algorithm

and cannot be improved further.

5. LP ROUNDING ALGORITHMS
From MCSC, we determine that the best possible approx-

imation ratio is 1 − 1/e provided that P 6= NP . GR-MCMC

achieves 1
2
. Thus, we have the unanswered question: does

there exist an approximation algorithm that can achieve the
ratio 1−1/e? In this section, we present two approximation
algorithms: PRA and DRA. PRA is a randomized algorithm
and probabilistically attains the best approximation ratio
1 − 1/e. On the other hand, DRA is a deterministic algo-
rithm and deterministically achieves the best approximation
ratio. Both algorithms employ the LP rounding technique,
which was explained in Section 2.1.

5.1 ILP Formulation and LP Relaxation
Solution

We first formulate MCMC as an ILP. We assign variables
xl, yij to ul ∈ U and Sij ∈ S, respectively. If Sij is chosen
for a solution, yij is set to 1; otherwise, it is set to 0. If
ul ∈ U is covered by a solution, xl is set to 1; otherwise, it
is set to 0. For notational convenience, let us define index
sets I = {1, . . . , m} and J = {1, . . . , c}, which will be used
throughout this section. We now formulate MCMC as the
following ILP:

(ILP-MC) max

n∑

l=1

xl (1)

subject to xl ≤
∑

i,j: ul∈Sij

yij , ∀l ∈ {1, . . . , n}, (2)

m∑
i=1

c∑
j=1

yij ≤ k, (3)

c∑
j=1

yij ≤ 1, ∀i ∈ I, (4)

0 ≤ yij ≤ 1, ∀i ∈ I, ∀j ∈ J, (5)

0 ≤ xl ≤ 1, ∀l ∈ {1, . . . , n}, (6)

yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J. (7)

The constraint (2) says that xl is upper bounded by the
number of sets chosen for a solution that have ul in them.
It seems that we need an additional constraint to restrict
xl ∈ {0, 1}. However, xl will automatically be set to either
0 or 1 due to (6) and (7), and due to the fact that we would
like to maximize xl. The constraints (3) and (4) arise be-
cause we can choose at most k sets (total budget) with at
most one in each group (group budget). Although (5) is un-
necessary here due to (7), we keep it for the LP relaxation



since we need to still maintain (5) after relaxing the inte-
gral constraint (7). As expected due to the NP-hardness of
MCMC (Lemma 1), ILP-MC cannot be solved in polynomial
time.

Next, we perform LP relaxation by removing the integral
constraint (7) from ILP-MC and denote it as LP-MC. Now
yij can take any value in [0, 1], including fractional values,
and therefore loses its physical interpretation in ILP-MC.
We can obtain the optimal solution to LP-MC through one
of many existing polynomial LP solvers. We develop two
rounding schemes, probabilistic rounding scheme and deter-
ministic rounding scheme, and provide the algorithms, PRA
and DRA, each using the corresponding rounding scheme as
its subroutine. In fact, we should only round yij ’s and not
the xl’s. Rather, we define xl naturally to be max{y∗ij : ul ∈
Sij}, where y∗ij is the resulting value after rounding.

5.2 Probabilistic Rounding Algorithm
Probabilistic Rounding Scheme (PRS) treats the value of

each variable as the probability of rounding the variable to
1. Let ~̃y = (ỹij : i ∈ I, j ∈ J) be the optimal solution to
LP-MC and define Yij to be the resulting integral value of
ỹij after PRS runs. Since ỹij is rounded in a probabilistic
manner, Yij is a binary random variable. Then, Yij ’s will
satisfy the following properties:

(P1) Pr[Yij = 1] = ỹij , ∀i ∈ I, ∀j ∈ J ,

(P2)
∑m

i=1

∑c
j=1 Yij ≤ k,

(P3)
∑c

j=1 Yij ≤ 1, ∀i ∈ I,

(P4) Pr
[ ⋂

(i,j)∈H{Yij = 0}] ≤ ∏
(i,j)∈H Pr[Yij = 0],

∀H ⊆ {
(i, j) : i ∈ I, j ∈ J

}
.

The properties (P1) and (P4) will be proved and used in
the proof of Lemma 7 to show the performance of PRS. The
other two properties (P2) and (P3) are necessary for the re-
sulting solution after the execution of PRS to be feasible for
ILP-MC. Their proofs will be given in the proof of Lemma 5.

To meet the four properties (P1)–(P4), PRS employs an
existing algorithm, called SAMPLING [11]. Given a vector
(p1, . . . , pt) such that pi ∈ [0, 1], ∀i = 1, . . . , t, and

∑t
i=1 pi

is an integer, say p, SAMPLING generates a vector of 0’s or 1’s
(X1, . . . , Xt) satisfying the following properties:

(S1) Pr[Xi = 1] = pi, ∀i ∈ {1, . . . , t},

(S2) Pr
[∣∣{i : Xi = 1}

∣∣ = p
]

= 1, (deterministically, the

number of Xi’s being 1 is p),

(S3) Pr
[⋂

i∈S{Xi = 0}] ≤ ∏
i∈S Pr [Xi = 0] ,

∀S ⊆ {1, . . . , t}.
We now explain how PRS is developed through the use

of SAMPLING. PRS (refer to Algo. 2) consists of two phases.
In the first phase (line 2), the exact k′ (=

⌈ ∑m
i=1

∑c
j=1 ỹij

⌉
)

groups are selected using SAMPLING with the vector ~y =
(ỹ1, . . . , ỹm, k′−∑m

i=1 ỹi), where ỹi =
∑c

j=1 ỹij and the last
element is padded to make the total sum integral, which is
a requirement of SAMPLING. In all cases, except when ad-
ditional monitoring nodes give no coverage improvement,
k′ = k, i.e., solution of LP-MC will use the maximum allow-
able number of monitoring nodes. The last element Zm+1

in the output of SAMPLING is thrown away, leaving m ele-
ments again in the vector. In the second phase (lines 3–9),

Algorithm 2 Probabilistic Rounding Scheme (PRS)

1: k′ ← ⌈ ∑m
i=1

∑c
j=1 ỹij

⌉
, ỹi ←

∑c
j=1 ỹij , ∀i = 1, . . . , m,

~y ← (ỹ1, . . . , ỹm, k′ −∑m
i=1 ỹi)

2: ~Z = (Z1, . . . , Zm, Zm+1) ← SAMPLING(~y)
3: for l ← 1 to m do
4: if Zl = 1 then
5: (Yl1, . . . , Ylc) ← SAMPLING(ỹl1/ỹl, . . . , ỹlc/ỹl)
6: else
7: (Yl1, . . . , Ylc) ← (0, . . . , 0)
8: end if
9: end for

10: return ~Y = (Y11, . . . , Y1c, . . . , Ym1, . . . , Ymc)

Algorithm 3 Probabilistic Rounding Algorithm (PRA)

1: Formulate ILP-MC from a given MCMC
2: Transform ILP-MC into LP-MC by removing the inte-

gral constraint
3: Obtain the optimal solution ~̃y = (ỹij : i ∈ I, j ∈ J) to

LP-MC (using one of many existing LP solvers)

4: if ~̃y is an integral vector then
5: ~Y = ~̃y
6: else
7: ~Y = PRS(~̃y)
8: end if
9: return ~Y

SAMPLING with the input (ỹl1/ỹl, . . . , ỹlc/ỹl) picks only one
set in each group l selected in the first phase. The formal
description of PRA, denoted PRA, using PRS as its subroutine
is provided in Algo. 3.

We now show the feasibility and performance of the solu-
tion of PRA. We first prove the feasibility of the solution.

Lemma 5. PRA presents a feasible solution ~Y to ILP-MC.

Proof. If the condition in line 4 of PRA is true, then it
is obvious that ~Y is a feasible solution to ILP-MC. Now, we
consider the case when the condition in line 4 is not true.
In line 2 of PRS, the number of 1’s of the first m elements
in ~Z is k′ or k′ − 1. In line 5 of PRS, for every l ∈ I such
that Zl = 1, only one element in the vector (Yl1, . . . , Ylc)
has a value of 1 due to the fact that

∑c
j=1 ỹlj/ỹl = 1 and

(S2) while for every l ∈ I such that Zl = 0, all the elements
in the vector (Yl1, . . . , Ylc) are 0. This proves the property
(P3). Since k′ =

⌈ ∑m
i=1

∑c
j=1 ỹij

⌉ ≤ dke = k, at most k or
k − 1 elements are 1 and all the others are 0, leading to the
property (P2). Thus, ~Y is a feasible solution to ILP-MC. ¥

Before we show the performance of PRA, we introduce a use-
ful lemma from [1] for proving it. This lemma will also be
used for the proof of Lemma 12.

Lemma 6. For 0 ≤ yij ≤ 1, ∀i ∈ I, ∀j ∈ J ,

1−
∏

i,j: ul∈Sij

(1−yij) ≥
(
1−(1−1/p)p)

min{1,
∑

i,j: ul∈Sij

yij},

where p =
∣∣∣
{
(i, j) : ul ∈ Sij

}∣∣∣.

For our MCMC, p means the maximum number of monitor-
ing nodes that can cover a given normal node.



Lemma 7. The expected solution quality of PRA is at least
1 − (1 − 1/m)m times the optimal value of ILP-MC, where
m denotes the number of monitoring nodes.

Proof. It follows from (S1) that ∀i ∈ I, ∀j ∈ J, Pr[Yij =
1] = Pr[Yij = 1|Zi = 1] · Pr[Zi = 1] = (ỹij/ỹi) · ỹi = ỹij ,
proving the property (P1). We omit the detailed proof of
(P4) here due to the limitation of space. However, one

can verify that PRS(~̃y) is a specific way of implementing

SAMPLING(~̃y) and therefore (S3) holds for Yij ’s by PRS out-
put. This proves (P4) to be true. We define {x̃l, ỹij : l =
1, . . . , n, i = 1, . . . , m, j = 1, . . . , c} and z̃ to be the optimal
solution to LP-MC and its optimal value, respectively. Let
Xl = max{Yij : ul ∈ Sij}. Then, we have the following
equation:

Pr[Xl = 1] = 1− Pr


 ⋂

i,j:ul∈Sij

{Yij = 0}



≥ 1−
∏

i,j: ul∈Sij

Pr[Yij = 0]
(
from (P4)

)

= 1−
∏

i,j: ul∈Sij

(1− ỹij)
(
from (P1)

)

≥ (
1− (1− 1/m)m)

min{1,
∑

i,j: ul∈Sij

ỹij}

(from Lemma 6 and m ≥ p)

=
(
1− (1− 1/m)m)

x̃l.

The last equality follows from that {x̃l, ỹij} satisfies the con-
straints (2), (6), and that we would like to maximize x̃l. We
thereby have that E

[ ∑n
l=1 Xl

] ≥ (
1−(1−1/m)m

) ∑n
l=1 x̃l =(

1− (1− 1/m)m
) · z̃. Since the optimal value z̃ of LP-MC is

an upper bound of that of ILP-MC, the proof is completed.
¥

Now, we state the following proposition.

Proposition 2. The expected approximation ratio of PRA
is 1 − 1/e, which is the best possible approximation ratio
unless P = NP .

Proof. Due to Lemma 7, it suffices for proving the above
proposition to recall that 1− (1− 1/m)m > 1− 1/e, which
has been shown in the proof of Lemma 2. ¥

The value of 1−1/e is reached asymptotically when m grows
to infinity. Thus, practically with a finite number of moni-
toring nodes, the expected worst-case performance of PRA is
better than 1−1/e times the quality of the optimal solution.

5.3 Deterministic Rounding Algorithm
We now approach the problem of finding an algorithm

that can provide the best possible approximation ratio in a
deterministic manner. We develop DRA to solve MCMC.
DRA uses a Deterministic Rounding Scheme (DRS), which
we develop and which uses a previous algorithm called PI-

PAGE [1].
We first describe the algorithm PIPAGE. Suppose that we

are given a bipartite graph G = (P, Q; E), a function F (~x)
defined on points ~x = (xe : e ∈ E) of the |E|-dimensional

cube [0, 1]|E| and computable in polynomial time, and a
function p : P ∪Q → Z+, where Z+ denotes the set of pos-
itive integers. Consider a binary program of the following

form:

(BP) max F (~x) (8)

subject to
∑

e∈E(v)

xe ≤ p(v), v ∈ P ∪Q, (9)

0 ≤ xe ≤ 1, e ∈ E, (10)

xe ∈ {0, 1}, e ∈ E, (11)

where E(v) denotes the set of edges that are connected to a
vertex v. Note that the function F (~x) does not need to be
linear. We say that a solution only satisfying (9) and (10) is
fractional since some of its components may be non-integral.
The algorithm PIPAGE takes a BP and a fractional ~x as its
input and outputs a new fractional solution ~x′.

Now, we describe how PIPAGE proceeds. If ~x is inte-
gral, then PIPAGE terminates and outputs ~x′ = ~x. Sup-
pose now that ~x is non-integral. Construct the subgraph
H~x of G with the same vertex set and the edge set E~x

defined by the condition that e ∈ E~x if and only if xe is
non-integral. If H~x contains cycles, then we set R to be
one such cycle. If H~x is a forest, then we set R to be
one path of H~x whose endpoints have degree 1. Since H~x

is bipartite, in both cases R can be uniquely represented
as the union of two matchings2. Let M1 and M2 denote
those matchings. Define a new solution ~x(ε, R) by the fol-
lowing rule: if e ∈ E\R, then xe(ε, R) = xe, otherwise
xe(ε, R) = xe + ε when e ∈ M1, and xe(ε, R) = xe − ε when
e ∈ M2. Set ε1 = min

{
mine∈M1 xe, mine∈M2(1 − xe)

}
and ε2 = min

{
mine∈M1(1 − xe), mine∈M2 xe

}
. Let ~x1 =

~x(−ε1, R) and ~x2 = ~x(ε2, R). Set ~x′ = ~x1 if F (~x1) > F (~x2)
and ~x′ = ~x2 otherwise. Note that by the construction of
PIPAGE, if ~x is non-integral, the number of integral compo-
nents in ~x′ is at least one greater than that in ~x. Hence,
we can transform a non-integral solution to an integral one
satisfying (9)–(11) after iterating PIPAGE at most |E| times.

We move on to describe DRS, which makes use of PI-

PAGE. We define F (~y) =
∑n

l=1

(
1 − ∏

i,j: ul∈Sij
(1 − yij)

)
.

Note that ILP-MC is equivalent to maximizing F (~y) under
the constraints (3), (4), and (7). This maximization prob-
lem consists of only the variables yij ’s rather than two sets
of variables—yij ’s and xl’s as in the original ILP-MC. Thus,
this is of the form of BP. However, due to having two con-
straints, total budget and group budget, it is impossible to
make the problem into the form of BP as in (8)–(11). There-
fore, we design DRS to operate in two phases. In the first
phase, we round non-integral variables satisfying the group
budget constraint while in the second phase, we round the
remaining non-integral variables after the first phase satisfy-
ing the total budget constraint. When PIPAGE rounds in the
first phase, it may violate the total budget constraint since it
is not included as a constraint in the binary program of the
first phase (refer to BP1 described below). Therefore, an im-
portant goal is to keep satisfying the total budget constraint
in the first phase, which we achieve through modifying PI-

PAGE.
We define ~̃y = (ỹij : i ∈ I, j ∈ J) to be the optimal solu-

tion to LP-MC. We first explain the first phase of DRS.
Consider a bipartite graph G1 = (P1, Q1; E1), shown in
Fig. 1(a), where P1 = {1, . . . , m}, Q1 = {1, . . . , mc}, and
E1 = {ei = (pi, qi) : pi = di/ce ∈ P1, qi = i ∈ Q1, i =

2In a graph, a matching is a set of edges without common
vertices.



(a) G1

(b) G2

Figure 1: Bipartite graphs

1, . . . , mc}. We have a total of |E1| = mc edges in G1 and
assign variables to them such that yij is assigned to the edge
e(i−1)∗c+j = (i, (i− 1)c + j). Build the binary program:

(BP1) max F (~y) (12)

subject to

c∑
j=1

yij ≤ 1, ∀i ∈ I, (13)

0 ≤ yij ≤ 1, ∀i ∈ I, ∀j ∈ J, (14)

yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J. (15)

In the first phase, DRS uses a new algorithm called MOD-

PIPAGE, which is derived from PIPAGE. DRS calls MOD-PIPAGE
with BP1 (which includes G1) and ~̃y as inputs. Note that R
in G1 cannot be a cycle, thus it is constrained to be of length
one or two. MOD-PIPAGE creates the sub-graph H~̃y from G1

as before. But, different from PIPAGE, it considers a path
R only if at least two edges are non-integral. This restricts
R to be of length exactly two. MOD-PIPAGE exits when no
such path R can be found. Hence, if there exists a path
of length two in H~̃y satisfying the non-integral constraint
from above, then MOD-PIPAGE will produce an output with
at least one more integral component. The first phase of
DRS iteratively runs MOD-PIPAGE and terminates when MOD-

PIPAGE exits without making any change. We denote the
resulting vector after the first phase as ~y∗. Each vertex in
P1 of the graph G1 now has at most one non-integral edge.

Next, we describe the second phase of DRS. Consider a
bipartite graph G2 = (P2, Q2; E2), shown in Fig. 1(b), where
P2 = {1}, Q2 = {1, . . . , mc}, and E2 = {ei = (1, i) : 1 ∈
P2, i ∈ Q2, i = 1, . . . , mc}. We have in total |E2| = mc
edges in G2 and assign variables to them such that yij is
assigned to the edge e(i−1)∗c+j = (1, (i− 1)c + j). Build the
binary program:

(BP2) max F (~y) (16)

subject to

m∑
i=1

c∑
j=1

yij ≤ k (17)

0 ≤ yij ≤ 1, ∀i ∈ I, ∀j ∈ J, (18)

yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J. (19)

We input BP2 and ~y∗ to the original PIPAGE algorithm and
run it iteratively until we obtain the integral vector, de-
noted by ~y#. The integral solution ~y# provides the desired
solution to MCMC—if y#

ij = 1, then monitoring node vi is
chosen to verify on channel j. We provide the formal de-
scription of DRS, denoted DRS, in Algo. 4. We also present

Algorithm 4 Deterministic Rounding Scheme (DRS)

1: ~y′ ← ~̃y
2: while (1) do
3: ~y∗ ← MOD-PIPAGE(BP1, ~y′)
4: if ~y∗ = ~y′ then
5: break;
6: else
7: ~y′ ← ~y∗

8: end if
9: end while

10: ~y# ← ~y∗

11: while ~y# is non-integral do
12: ~y# ← PIPAGE(BP2, ~y#)
13: end while
14: return ~y#

Algorithm 5 Deterministic Rounding Algorithm (DRA)

1: Formulate ILP-MC from a given MCMC
2: Transform ILP-MC into LP-MC by removing the inte-

gral constraint
3: Obtain the optimal solution ~̃y = (ỹij : i ∈ I, j ∈ J) to

LP-MC (using one of existing LP solvers)

4: ~y# = DRS(~̃y)
5: return ~y#

in Algo. 5 DRA, denoted DRA, using DRS as its subroutine.
We now show the feasibility and performance of the solu-

tion from DRA. Before that, we first prove the following two
lemmas.

Lemma 8. It holds that
∑c

j=1 y∗ij =
∑c

j=1 ỹij , ∀i ∈ I.

Proof. Observe that when MOD-PIPAGE runs, a chosen
path always consists of two edges, which are connected to a
common vertex in P1. If the value of one edge is increased
by ε, that of the other is decreased by ε. Hence, for every
vertex i ∈ P1,

∑c
j=1 ỹij would remain same after a single

execution of MOD-PIPAGE. Thus, it follows that
∑c

j=1 y∗ij =∑c
j=1 ỹij , ∀i ∈ I. ¥

Lemma 9. ~y∗ is a fractional solution to BP2.

Proof. Since ~̃y is the optimal solution to LP-MC, ~̃y must
satisfy the total budget constraint and hence we have that∑m

i=1

∑c
j=1 ỹij ≤ k. Therefore, it follows from Lemma 8

that
∑m

i=1

∑c
j=1 y∗ij =

∑m
i=1

∑c
j=1 ỹij ≤ k, satisfying (17).

As mentioned earlier in this subsection, PIPAGE takes a frac-
tional solution as its input and outputs a new fractional
solution. MOD-PIPAGE uses the same method to increment or
decrement edge weights and therefore preserves this prop-
erty of PIPAGE. Hence, 0 ≤ y∗ij ≤ 1, ∀i ∈ I, ∀j ∈ J , which
satisfies (18). ¥

We now show the feasibility of the solution of DRA in the
following lemma.

Lemma 10. DRA produces a feasible solution ~y# to ILP-
MC.

Proof. From Lemma 9 and the fact that DRS in the sec-
ond phase runs PIPAGE until it gets an integral vector, we
conclude that ~y# satisfies (3) and (7). To prove the lemma,

we only need to show that
∑c

j=1 y#
ij ≤ 1, ∀i ∈ I. Recall that



for ~y∗, for every i ∈ I, there should be at most one j ∈ J such
that y∗ij is non-integral. Hence, we have two possible cases
for each i: the first case is that all y∗ij are integral and the sec-
ond case is that only one y∗ij is non-integral. For every i1 hav-

ing the first case, y#
i1j = y∗i1j , ∀j ∈ J since integral edges are

not modified, and therefore
∑c

j=1 y#
i1j =

∑c
j=1 y∗i1j . Also,∑c

j=1 y∗ij =
∑c

j=1 ỹij (by Lemma 8) ≤ 1, ∀i ∈ I. Thus, we

get that
∑c

j=1 y#
i1j ≤ 1. On the other hand, for every i2 hav-

ing the second case, y∗i2j1 for some j1 ∈ J is non-integral.
Then, y∗i2j = 0, ∀j (6= j1) ∈ J since otherwise, for some
j2 ( 6= j1) ∈ J , y∗i2j2 = 1, and thus

∑c
j=1 y∗i2j > 1. This

cannot be true as just shown above within this proof. Af-
ter running the second phase of DRS, we have rounded all
non-integral edges. Hence, y#

i2j1
= 0 or 1. Thus, we get that∑c

j=1 y#
i2j is either 0 or 1, i.e.,

∑c
j=1 y#

i2j ≤ 1. Combining

the two cases,
∑c

j=1 y#
ij ≤ 1, ∀i ∈ I. ¥

The following lemma is important to prove the performance
of DRA.

Lemma 11. F (~y′) ≥ F (~y), where ~y and ~y′ denote the
input and output vectors of PIPAGE (or MOD-PIPAGE).

Proof. Observe that for any fractional solution and any
chosen path R, the function F

(
~y(ε, R)

)
is of the form a2ε

2 +

a1ε + a0, where a2 ≥ 0. Hence, F
(
~y(ε, R)

)
, treated as a

function of ε, is convex and thus attains the maximum at an
endpoint of the interval [−ε1, ε2]. Since ~y′ = ~y(−ε1, R) or
~y(ε2, R), it follows that F (~y′) ≥ F (~y). This proof holds for
both BP1 (MOD-PIPAGE) and BP2 (PIPAGE) since they differ
only in the way the path R is chosen; they are identical in
how the edge weights are updated. ¥

We now show the performance of DRA in the following lemma.

Lemma 12. The solution quality of DRA is at least 1 −
(1− 1/m)m times the optimal value of ILP-MC.

Proof. Define {x̃l, ỹij : l = 1, . . . , n, i = 1, . . . , m, j =
1, . . . , c} and z̃ to be the optimal solution to LP-MC and its

optimal value, respectively. Let xl = max{y#
ij : ul ∈ Sij}.

Then we have the following equation:

n∑

l=1

xl =

n∑

l=1

(
1−

∏
i,j: ul∈Sij

(1− y#
ij )

)

≥
n∑

l=1

(
1−

∏
i,j: ul∈Sij

(1− y∗ij)
)

(by Lemma 11)

≥
n∑

l=1

(
1−

∏
i,j: ul∈Sij

(1− ỹij)
)

(by Lemma 11)

≥ (
1− (1− 1/m)m) n∑

l=1

min{1,
∑

i,j: ul∈Sij

ỹij}

(from Lemma 6 and m ≥ p)

=
(
1− (1− 1/m)m) n∑

l=1

x̃l.

The last equality is true since x̃l = min{1,
∑

i,j: ul∈Sij
ỹij},

which has been shown in the proof of Lemma 7. Knowing
that the optimal value z̃ of LP-MC is an upper bound of
that of ILP-MC, concludes the proof. ¥

Finally, we arrive at the following proposition about the per-
formance of DRA.

Proposition 3. DRA deterministically achieves the best
approximation ratio 1− 1/e unless P = NP .

Proof. It simply follows from Lemma 12 and that 1 −
(1− 1/m)m > 1− 1/e. ¥

As in PRA, DRA’s solution quality is 1−1/e of the optimal for
the asymptotic case of m →∞. For practical deployments,
with a finite number of monitoring nodes, DRA deterministi-
cally achieves a better worst-case performance than 1− 1/e
times the quality relative to the optimal solution.

6. COMPLEXITY ANALYSIS
We first discuss the time complexity of the three algo-

rithms: GR-MCMC, PRA, and DRA.
GR-MCMC picks the set of the maximum number of uncov-

ered elements at each iteration and repeats it k times. Each
iteration takes O(mc). Therefore, GR-MCMC has time com-
plexity of O(kmc).

We next compute the complexity of PRA. Recall that PRA

comprises three steps: 1) Formulate LP-MC; 2) Solve LP-
MC using an LP solver; 3) Call PRS. In the first step, PRA
builds from a given MCMC, an LP in the form: max(~c′~x)

subject to A~x = ~b and ~x ≥ 0. Building matrix A from
the constraints (2)–(6) dominates the complexity in the first
step. Hence, we focus on the the complexity of constructing
A. We have n+mc unknown variables in ~x. In the constraint
(2), we have n inequalities and thus it takes O

(
n(n + mc)

)
to implement (2). Similarly, we can calculate the complexi-
ties for the other constraints (3)–(6), which are O(n + mc),
O

(
m(n + mc)

)
, and O

(
mc(n + mc)

)
, and O

(
n(n + mc)

)
,

respectively. Therefore, the first step, setting up LP-MC,
takes O

(
(n + mc)2

)
. Solving LP-MC in the second step is

O
(
(n + mc)3/ log(n + mc)

)
, which is obtained by using the

complexity of linear solver in [2]. In the third step, PRA

calls its subroutine PRS, which in turn calls SAMPLING. The
algorithm SAMPLING has complexity linear in the size of its
input [11]. The algorithm PRS executes SAMPLING by first
feeding an input of size m + 1 in line 2 in Algo. 2 and then
calls SAMPLING O(m) times with inputs of size c, in lines 3–9
in Algo. 2. Hence, PRS takes O(mc), which is the complexity
of the final step of PRA. Thus, solving LP-MC in the second
step dominates the complexity and thereby PRA has overall
complexity O

(
(n + mc)3/ log(n + mc)

)
.

Finally, we calculate the complexity of DRA. Since DRA and
PRA have the first two steps in common, we can use the result
obtained above for PRA. In Algo. 4, DRS runs MOD-PIPAGE at
most mc times and PIPAGE at most m times. Observe that
both MOD-PIPAGE and PIPAGE take O(nmc). Therefore, DRS
has a complexity of O

(
n(mc)2

)
. Thus, in DRA too, solving

LP-MC is dominant in complexity and hence has overall
complexity O

(
(n + mc)3/ log(n + mc)

)
, same as PRA.

We next discuss the communication complexity of the
three algorithms. All three algorithms must be aware of
S, a collection of coverage-sets, which is global informa-
tion. A central authority first sends queries to monitoring
nodes, then each monitoring node replies with its coverage-
sets to the central authority, and the central authority finally
distributes to monitoring nodes its determination of which
monitoring nodes and channels were picked. Therefore, m+2
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Figure 2: Random network

(a) Coverage for n = 500 (b) Run time for n = 500 (c) Coverage for n = 1000 (d) Run time for n = 1000

Figure 3: Scale-free network

network-wide communications are required in total. How-
ever, for GR-MCMC, we can lower the communication cost to
three network-wide communications and local communica-
tions by employing the approach used in MUNEN-MC for
the single channel problem [12].

7. SIMULATION RESULTS
We evaluate the performance of the three proposed algo-

rithms through simulations in random networks and scale-
free networks. A scale-free network is a network, where a
distribution f(d) of nodes with degree d follows a power
law, most commonly, of the form d−r, where r is a constant.
Thus, there is an exponentially decreasing number of nodes
with high degree. Many empirically observed networks such
as the world wide web appear to be scale-free.

For random networks, we randomly place normal nodes
and monitoring nodes on a 1 × 1 square area. Receiving
ranges of monitoring nodes are set to 0.15. For scale-free
networks, they are generated with parameter r, 2 < r < 3.
There is no explicit receiving range in scale-free networks.
Rather, the coverage of a monitoring node is determined by
the degree of the node. We pick the m nodes with the highest
degree as monitoring nodes, which is reasonable since such
a choice can give a larger coverage than a random choice.
We fix m to 100 and c to 4 in all simulations performed.
Channels of normal nodes are randomly assigned. All the
results are the averages over 30 iterations.

Figures 2(a), (b) show the results for n = 500 in random
networks. In Fig. 2(a), LP-OPT denotes the optimal value
of LP-MC, an upper bound of the optimal value of ILP-MC.
Figure 2(a) shows that DRA has the highest coverage, GR-

MCMC follows DRA with a small gap, and PRA has an inferior
performance. DRA, GR-MCMC, and PRA have performance at
least 97.5%, 96.2%, and 82% of LP-OPT, respectively. Fig-

ure 2(b) shows their running times. Notice that there are
two different y axes. The left axis is for GR-MCMC and PRA,
and the right one is for DRA. We can see that the run time of
GR-MCMC linearly increases with k, as expected by the com-
plexity analysis presented in Section 6. On the other hand,
the results of PRA and DRA are surprising. Recall that PRA

and DRA have in common their first two steps, which are
formulating ILP-MC and solving LP-MC, and that both al-
gorithms have the same asymptotic complexity since the sec-
ond step dominates their complexities. However, Fig. 2(b)
(Fig. 2(d) and Fig. 3(b), (d) also) shows quite a different
result. PRA runs much faster than DRA and also faster than
GR-MCMC for medium to large values of k. This result implies
that in practice, the complexities of PRA and DRA are deter-
mined by their rounding schemes, PRS and DRS. Since they
have the complexities O(mc) and O

(
n(mc)2

)
, respectively,

their corresponding algorithms PRA and DRA have the results
shown in Fig. 2(b). Further, note that the run time of DRA

increases with k despite the fact that its complexity does not
depend on k. This can be explained by the inference that
when k grows, the number of non-integral components in
the input to DRS increases, and DRS requires more iterations,
thus the run time of DRA increases. Figure 2(c), (d) show
the results for n = 1000 in random networks. We see similar
results to those for n = 500. In both cases, the coverage
achievable levels off at around 96%. This is due to a few
unfortunately placed nodes that cannot be covered by any
monitoring node.

Next, we evaluate the performance of the three algorithms
in scale-free networks. Figures 3(a), (b) and Fig. 3(c), (d)
show the results for n = 500 and n = 1000, respectively.
First of all, we find in both settings that all the three algo-
rithms have coverage very close to LP-OPT. Also, we can
notice in both n = 500 and n = 1000 that DRA shows shorter



run time than that for corresponding n in random networks.
These results suggest that scale-free networks provide all the
three algorithms with more favorable collections of coverage-
sets than random networks. Finally, we note that it is not
correct to compare the coverage results of random networks
with those of scale-free networks in the same settings since
we have used different parameters to determine the cover-
age of a monitoring node—the receiving range for random
networks and the parameter r for scale-free networks.

Summarizing our results, DRA shows the best performance
very close to LP-OPT, however, its time complexity is high.
Next, while PRA shows an inferior performance, it is com-
putationally light. Finally, GR-MCMC performs quite close
to LP-OPT and also has reasonable run-time performance.
Hence, GR-MCMC is a good compromise between quality of
solution and time efficiency. However, for critical security
deployments, the network designer needs to guarantee the
worst-case performance, a property that is provided by PRA

and DRA.

8. CONCLUSIONS
In multi-channel multi-radio WMNs, we explore the prob-

lem of optimal selection of monitoring nodes and choice of
channels for verifying the behavior of other network nodes.
We mathematically formulate this problem, and show that
obtaining the exact optimal solution is NP-hard. There-
after, we present three algorithms, GR-MCMC, PRA, and DRA,
to approximate the optimal solution. GR-MCMC is the intu-
itive extension of the existing greedy algorithm for the single
channel case and achieves an approximation ratio of 1

2
, which

is inferior to the best possible approximation ratio of 1−1/e
under the assumption that P 6= NP . Then, we design the
other two algorithms which use LP relaxation followed by
rounding. The first algorithm, PRA, is probabilistic and at-
tains the best approximation ratio on an average. On the
other hand, DRA deterministically achieves this best approxi-
mation ratio. We then provide the time and communication
complexities of the three algorithms. GR-MCMC has a time
complexity linear in the number of monitoring nodes, the
number of channels, and the maximum number of monitor-
ing nodes that can be selected. PRA and DRA have the same
worst-case time complexity, since the worst-case LP solver
complexity dominates both. However, we find that in prac-
tice, PRA has complexity linear in the number of monitoring
nodes and the number of channels, whereas DRA has com-
plexity quadratic in the number of monitoring nodes and the
number of channels and linear in the total number of normal
nodes. Therefore, PRA performs better in terms of time com-
plexity than DRA for the practical networks that we evaluate
these solutions on. For communication complexity, all three
algorithms require the number of monitoring nodes plus two
times in the number of network-wide communications. How-
ever, for GR-MCMC, we can lower the communication cost to
three network-wide communications and local communica-
tions by employing the approach used in MUNEN-MC for
the single channel problem [12]. To evaluate how the three
algorithms perform in practice, we conduct simulation in
random networks and scale-free networks. The simulation
results show that GR-MCMC is a good compromise between
coverage and execution time. However, for critical security
deployments, PRA and DRA are favored since they provide a
superior performance guarantee in the worst case.

Our future work is on making the algorithms distributed

while keeping the communication overhead manageable, and
on designing solutions where a normal node is covered by
multiple monitoring nodes for the scenario where the moni-
toring nodes can themselves be compromised.
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