
Intrusion Detection in Voice-over-IP 
Environments 
 

YU-SUNG WU, VINITA APTE1, SAURABH BAGCHI 

Dependable Computing Systems Lab 

School of Electrical & Computer Engineering. -Purdue University  

465 Northwestern Avenue 

West Lafayette, IN 47907 

USA 

Email: {vapte,ywsu,sbagchi}@purdue.edu 
Telephone: +1 765-494-3362 
Fax: +1 765-494-2706 

SACHIN GARG 

Yahoo Labs, India 

Email: gsachin@yahoo-inc.com 

NAVJOT SINGH 

Avaya Labs 

Email: singh@avaya.com 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 The first two authors contributed equally to the paper. The order of these two author names is 
not significant. 

1 



 

 

 

Abstract 
In this article, we present the design of an intrusion detection system for VoIP networks. The first 
part of our work consists of a simple single-component intrusion detection system called SCIDIVE. 

In the second part, we extend the design of SCIDIVE and build a distributed and correlation-based 
intrusion detection system called SPACEDIVE. We create several attack scenarios and evaluate the 
accuracy and efficiency of the system in the face of these attacks. 

To the best of our knowledge, this is the first comprehensive look at the problem of intrusion 
detection in VoIP systems. It includes treatment of the challenges faced due to the distributed 
nature of the system, the nature of the VoIP traffic, and the specific kinds of attacks at such 
systems. 
 

Keywords: Intrusion detection, Voice over IP system, Cross-protocol detection, 
Stateful detection, Correlation-based IDS, SIP, RTP. 

Introduction 
Voice over IP (VoIP) systems are gaining in popularity as the technology for 
transmitting voice traffic over IP networks. While VoIP technology is set to 
revolutionize communications, and is already being used by a number of 
traditional telephone companies to connect their regional offices, on a smaller 
scale it can also be a useful solution for businesses looking to trim their telephone 
expenses. As the popularity of VoIP systems increases, they are being subjected to 
different kinds of intrusions, some of which are specific to such systems, and 
some of which follow a general pattern of attacks against an IP infrastructure. 
There have been enormous strides made in the field of intrusion detection systems 
(IDS) for different components of the information technology infrastructure. 
Some of the IDSs are generic in nature and can be customized with detection rules 
specific to the environment in which they are deployed (e.g., Snort [7] and 
Prelude [10]), and some are tools specifically targeted to an environment or to 
specific classes of intrusions, such as IBM Tivoli Intrusion Manager for MQSeries 
products [11]. VoIP systems pose several new challenges to IDS designers. First, 
these systems employ multiple protocols for call management and data delivery. 
Second, the systems are distributed in nature and employ distributed clients, 
servers, and proxies. Third, the attacks against such systems span a large class, 
from denial of service to billing fraud. Finally, the systems are heterogeneous and 
typically under several different administrative domains, e.g., the proxy server 
may be provided by the service provider and the client managed by the home 
organization. 
In this article, we present our work in the design and deployment of an intrusion 
detection system for VoIP networks. The initial goal of our work was to build a 
local, single-component VoIP IDS. We call this system SCIDIVE (pronounced as 
Skydive). SCIDIVE is structured to detect different classes of intrusions, including, 
masquerading, denial of service, and media stream-based attacks. It can be 
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installed at multiple points – clients, servers, or proxies, and can, without 
substantial system customization, be extended for detecting new classes of attacks. 
The IDS can handle client mobility, an important design goal of VoIP protocols 
such as SIP, and does not flag false alarms for such situations. SCIDIVE can 
operate with both classes of protocols that compose VoIP systems – call 
management protocols (CMP), e.g., the Session Initiation Protocol (SIP) [2], and 
media delivery protocols (MDP), e.g., the Real Time Transport Protocol (RTP) 
[3]. SCIDIVE proposes two critical abstractions for VoIP IDS – stateful detection 
and cross-protocol detection. Stateful detection denotes the functionality of 
assembling state from multiple packets and using the aggregated state in the rule-
matching engine. The reassembly functionality is applicable to packets of both 
CMP and MDP and can be configured to handle packets spread out arbitrarily far 
apart in time. Some existing IDSs provide support for reassembly, but they are 
restrictive and applicable only to specific protocols. For example, Snort’s stream4 
module can reassemble TCP packets that belong to the same session. Cross 
protocol detection denotes the functionality of matching rules that span multiple 
protocols, e.g., detecting a pattern in a SIP packet followed by one in a succeeding 
RTP packet followed by one in an RTCP packet. The aggregation across protocols 
can be chained in an arbitrarily long manner and spread out in time. This 
abstraction is powerful for VoIP systems because they involve multiple protocols 
and several attacks are based on sequences that cross protocol boundaries. There 
are very few systems today that support cross-protocol detection. One of the 
notable ones is WebSTAT [12] for detecting attacks against web servers by 
correlating protocols in a vertical stack, e.g., application level (web server) and 
operating system log. Since VoIP systems use multiple application layer protocols, 
horizontal cross-protocol correlation is required. 
The architecture of SCIDIVE uses a Distiller, through which all incoming network 
traffic passes and which translates packets into protocol dependent information 
units called Footprints. The Footprints that belong to the same session are 
grouped into Trails. The Event Generator maps Footprints into Events which are 
matched by the Rule Matching Engine against a Ruleset. According to the stateful 
and cross-protocol philosophies, the Events can potentially have state information 
and encapsulate information from multiple packets. The rules considered are 
misuse-based, as opposed to the complementary philosophy of anomaly-based 
rules. The classic tradeoffs between the two approaches also hold here⎯misuse-
based detection cannot deal with novel types of attacks, while anomaly-based 
rules can have large amount of false positives.  
SCIDIVE is demonstrated on a sample VoIP system that comprises SIP clients and 
SIP proxy servers. The system uses SIP Express Router for the proxy and three 
different kinds of clients – KDE’s KPhone [13], Microsoft Windows Messenger 
[14], and XTen’s X-Lite IP Telephony client [9]. The protocols used are SIP for 
call management and RTP for real-time audio data transfer. In our experiments, an 
instance of SCIDIVE is associated with each client. Four different types of attacks 
are simulated on the system and the effectiveness and efficiency of SCIDIVE 
analyzed. 
VoIP systems involve multiple components and are distributed in nature. These 
components are widely spread and often fall under different administrative 
domains. Since SCIDIVE uses local, single-component based detection, it cannot 
detect an attack that manifests itself at multiple components. Therefore, in the 
second part of our work, we extend the design of SCIDIVE and build a distributed 
and correlation-based intrusion detection system called SPACEDIVE. SPACEDIVE 
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also uses the concepts of stateful and cross-protocol detection. It further proposes 
the abstraction of correlation based IDS and provides a rule language to express 
correlated rules. Correlation based IDS’s have the goal of clustering alerts from 
multiple detectors (in our case, the detectors resident on the different VoIP 
components) to come up with a combined alert or the determination of an attack. 
The correlation may be of information gathered from peer entities or entities at 
different levels. SPACEDIVE is demonstrated on a sample VoIP system that 
comprises SIP clients and SIP servers spread over two domains. Moreover, our 
testbed is in the form of a hierarchy of components that respects administrative 
domains and is thus suitable for deployment in real-world settings. Several attack 
scenarios are created and the accuracy and the efficiency of the system evaluated 
with rules meant to catch these attacks. 
In summary, the contributions and the advantages of SPACEDIVE can be specified 
as follows: 
1) SPACEDIVE presents the architecture of a hierarchical correlation based IDS 

that is well suited to detecting attacks in VoIP applications. The ability to 
match rules remotely makes the system less prone to DoS attacks launched 
against VoIP components or their hosts.  

2) SPACEDIVE provides a language to specify rules for local matching and remote 
matching. SPACEDIVE’s architecture makes the matching of rules efficient and 
scalable, both essential features for a VoIP system. 

SPACEDIVE anticipates the growing trend of peer-to-peer VoIP systems and its 
architecture is well suited to detecting intrusions on the basis of information 
exchanged on a peer-to-peer basis. Additionally, we present a taxonomy of attacks 
against VoIP systems. Some notable attacks from this taxonomy are redirect 
attacks, toll frauds, call interception attacks, etc. We propose the end-to-end 
matching paradigm as a powerful approach for detecting a large class of these 
attacks. Yet another contribution of this work is our rule language that extends 
Snort’s rule language and customizes it for a VoIP IDS. 
The taxonomy of attacks and the rule language can be the starting point for much 
needed research and development in VoIP IDS. 

VoIP Overview 
Voice over IP (VoIP) systems provide facilities for setting up and managing voice 
communications based on one of two main call management protocols: H.323 [1] 
and SIP. H.323 is the most widely deployed standard in VoIP communications, 
but SIP is increasing in popularity due to its simplicity and corresponding ease of 
implementation. With both protocols, endpoints or terminals, which may be 
physical phones (hardphones) or software programs executing on a general-
purpose computer (softphones), send and receive RTP packets that contain 
encoded voice conversations. Since voice calls may be made between IP phones 
and phones on the Public-Switched Telephone Network (PSTN), gateways often 
perform transparent translation between IP and non-IP based networks. Such 
gateways may implement protocols for media gateway management such as 
MGCP [4] and MEGACO/H.248 [5]. Within an H.323 network, an optional 
gatekeeper may be present. The gatekeeper performs several functions including 
authorizing network access, assisting in managing quality of service, and 
providing address-translation services. Also, multipoint controllers may be present 
to manage multipoint conferences between three or more terminals or gateways. 
SIP networks also include additional types of servers.  
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Figure 1: SIP-based VoIP Environment 
A proxy server forwards requests, possibly after performing some processing or 
translation. A redirect server is used to support mobile clients and performs 
address translation for an accepted request and returns the new address to the 
originator of the request. Both proxy and redirect servers may be used to 
implement call forwarding and other similar services. User agent clients send 
requests to user agent servers to initiate calls. The user notifies a registrar of his 
current location to allow others to contact him. The registrar is often combined 
with a proxy or redirect server.  
Suppose that a user Bob wants to call another user Alice. Bob begins by sending a 
SIP INVITE message to its own proxy server that contains Alice’s SIP address in 
the destination field. Bob’s proxy server then does a lookup (this could be a DNS 
lookup, a simple table lookup etc) to locate Alice’s proxy server and then 
forwards the INVITE to Alice. When Alice receives the INVITE and is willing to 
accept the call from Bob, she sends a SIP OK message back to Bob using the 
same path. Once this call setup is complete, Alice and Bob can exchange voice 
data encoded in the form of RTP packets directly. 
Both H.323 and SIP provide protocols for call setup, management, and media 
delivery. Voice is encoded using a negotiated codec and delivered using RTP over 
UDP/IP for both protocols. However, call setup and management are handled 
quite differently. H.323 relies on the H.225.0 [15] and H.245 protocols [16], 
whereas SIP uses a much simpler set of request messages: INVITE, ACK, 
OPTIONS, BYE, CANCEL, and REGISTER. SIP provides a globally reachable 
address to which callees bind using SIP REGISTER method. The INVITE 
message is used by a user client agent wishing to initiate a session, which can be 
responded to with an OK, followed by an ACK. To tear down a connection, a 
BYE message is sent. CANCEL cancels a pending INVITE. The OPTIONS 
message is used to query or change optional parameters of the session, such as, 
encryption. Some common SIP error messages are described in Table 1. 
 
Table 1: Sample SIP Error Messages 
 

301 Moved permanently - Redirect 

302 Moved temporarily - Redirect

403 Forbidden 

SIP
Client

SIP
ClientRTP

S I P

S I P

SIP
Gateway

PSTN

S I P Proxy and 
Redirect Servers

SIP
Client

SIP
ClientRTP

S I P

S I P

SIP
Gateway

PSTN

S I P Proxy and 
Redirect Servers
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404 Not Found 

408 Request Timeout 

480 Temporarily Unavailable 

500 Server Internal Error 
 
 

 
Figure 2: Sample SIP message exchange 

INVITE

Ringing

OK

ACK

Conversation over RTP

BYE

OK

INVITE

Ringing

OK

ACK

Conversation over RTP

BYE

OK

VoIP Vulnerabilities 
One of the main advantages of a VoIP system is the convergence of voice and 
data networks with voice being conveyed over a data network. While this offers 
advantages in cost and ease of management, the use of the data network in a 
converged system makes the voice network vulnerable to the same vulnerabilities 
suffered by the data network. This includes well-known attacks such as denial of 
service attacks as well as authentication attacks. In addition, a voice network 
introduces potential vulnerabilities related to toll fraud, privacy, and denial of 
service attacks based on degrading the quality of service of the voice conversation. 
A major source of vulnerabilities lies in the protocols used to set up and manage 
calls. Both H.323 and SIP transmit packet headers and payload in clear text 
without a per-message integrity check (e.g. digitally signed), which allows an 
attacker to forge packets that manipulate device and call states. For example, such 
forged packets can prematurely terminate calls, redirect calls, or facilitate toll 
fraud. Some efforts are currently underway to develop encrypted signaling, but no 
solution has found widespread adoption. Some of the security features are built 
into SIP, such as, end-to-end or hop-by-hop encryption of the SIP traffic. Some 
other solutions rely on lower layer security primitives, such as, IPSec. However, a 
concern regarding use of any of the security primitives is the computation load on 
the end points, some of which are very resource constrained. It also relies on the 
deployment and use of keys, which requires the adoption of a key management 
infrastructure to which the different VoIP service providers must agree. This has 
turned out to be a challenging deployment issue so far. . 
In addition to vulnerabilities present in the signaling protocols, the RTP protocol 
for media delivery also introduces several vulnerabilities due to the absence of 
authentication and encryption. Even if Secure RTP (SRTP) is used, the system 
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would still be vulnerable to smart DoS attacks, as the extra encryption-decryption 
time required for each SRTP packet only worsens the situation. Each RTP packet 
header contains a sequence number that allows the recipient to play back voice 
packets in the proper order. However, an attacker can easily inject artificial 
packets with higher sequence numbers that will cause the injected packets to be 
played in place of the real packets. Also SPIT (Spam over Internet Telephony) is 
predicted to become a problem as VoIP systems become more widespread. 

Attacks Taxonomy 
We can classify the possible attacks into two broad categories:  
(i) Generic Attacks, (ii) VoIP-Specific Attacks 

Generic Attacks 
We classify the generic attacks into four categories: Denial of Service (DoS) 
attacks, Buffer Overflow, Unauthorized access, and Attack on the operating 
system. These kinds of attacks are well-known in traditional computing 
environments, but also affect VoIP environments, since they share several 
protocols, and hence their vulnerabilities.  

VoIP-specific Attacks  
Signal Protocol Attack: Such attacks exploit vulnerabilities in the signaling 
protocol. For example, the SIP protocol contains holes in the subset related to 
invite messages.  
Redirect Attacks: A redirect attack might change a voicemail address or a call 
forwarding address to the address of a hacker, thereby opening a channel to abuse. 
Call Interception: An unauthorized person could monitor and intercept voice 
packets, perhaps reading and stealing or corrupting them.  
This is an example of a passive attack and is outside the purview of SPACEDIVE. 
Toll Fraud: An unauthorized person could monitor and intercept call setup 
packets, gaining sufficient information to allow her to masquerade as a legitimate 
user and make fraudulent calls. 

SCIDIVE Architecture 
VoIP applications involve multiple protocols and each of these protocols has 

its own protocol states that need to be well-synchronized in order to keep the 
VoIP applications running correctly. As the end goal all attacks against VoIP is to 
cause disruptions to these applications, we found that it would be handy for our 
IDS to have the capability to detect the disruptions from the protocols and the 
corresponding states. To achieve this, the IDS’s rules must possess the ability to 
express the combination of the protocol and the states of interest. Most existing 
IDS solutions, such as Snort, provide only a generic architecture in which the IDS 
itself does not pay much attention to the application level protocols and the 
corresponding state information. Consequently, the user has to construct detection 
rules from the ground to capture these application level contexts for performing 
detection. This creates problems in directly applying these IDS solutions 
effectively to a VoIP system.  

The design of the SCIDIVE architecture and its corresponding components is 
meant to facilitate the process of detecting VoIP related attacks by utilizing both 
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the protocols and the state information. We propose a new IDS methodology in 
SCIDIVE in which each rule could harvest the stateful information of VoIP sessions 
for matching malicious patterns – Stateful Detection. It could also harvest packets 
from different protocols involved in a VoIP protocol for detection – Cross 
Protocol Detection. Note that the SCIDIVE architecture is not specific to the 
signaling protocol or the media protocol; it just assumes that there are two distinct 
protocols for these two functions. Thus, either H.323 or SIP can be used for the 
signaling protocol. However, in our current implementation, the parser for the 
rules has been created for SIP and our discussion hereon will assume SIP as the 
signaling protocol.   

SCIDIVE Components: Footprints, Trails, Events, Rules 

 

 
Figure 3: SCIDIVE Architecture 
 
Figure 3 presents an overview of the SCIDIVE architecture. In SCIDIVE, incoming 
network flows first pass through the Distiller, which translates packets into 
protocol dependent information units called Footprints. The Distiller is 
responsible for doing IP fragmentation, reassembly, decoding protocols, and 
finally generating the corresponding Footprints. A Footprint is a protocol 
dependent information unit, which, for example, could be composed of a SIP 
message or an RTP packet. Footprints that belong to the same session are grouped 
into Trails. In Figure 2 we have three Trails that correspond to two SIP sessions 
and one RTP session. The Event Generator maps footprints into a single event. 
For example, we can map two out of order RTP Footprints into an event called 
RtpJitter. Event Generator is hard-coded and seamlessly coupled with internal 
structures for best possible performance. In general, it is just a layer of abstraction, 
which correlates the information in footprints and concentrates the information 
into a single event. It helps performance by hiding some computationally 
expensive matching, e.g., by triggering the ruleset at the moment of interest 
instead of triggering it upon each incoming RTP Footprint. 
Ruleset is triggered by a sequence of Events, e.g., we can define a rule for 
detecting RTP flow [event 1] after a session is torn down [event 2]. The matching 
in the Ruleset is based on Events that can potentially encapsulate information 
from multiple packets and can bear state information. Besides the information that 
Events provide, the Ruleset can also perform the matching based on crude 
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information directly from the Trails in case no suitable Event is available. For 
example, we might be interested in knowing who prematurely tears down the 
session. To achieve this, we probably need to have a look at the corresponding 
SIP Footprint to identify the ID and IP address of the originator. This direct access 
however will cause some degree of inefficiency. 

Cross-protocol Methodology for Detection 
We propose a powerful abstraction for intrusion detection systems in general, and 
VoIP IDSs in particular, namely, cross-protocol detection. An IDS that uses cross-
protocol detection accesses packets from multiple protocols in a system to 
perform its detection. This methodology is suitable to systems that use multiple 
protocols and where attacks spanning these multiple protocols are possible. There 
is the important design  consideration that such access to information across 
protocols must be made efficiently. 
A VoIP system incorporates multiple protocols. A typical example is the use of 
SIP to establish a connection, followed by use of RTP to transfer voice data. Also, 
RTCP and ICMP are used to monitor the health of the connection. VoIP systems 
typically have application level software for billing purposes and therefore may 
have accounting software and a database. 
To motivate the need for cross-protocol detection, we introduce a synthetic 
example of a billing fraud attack. Since VoIP systems have been gaining in 
popularity only of late, there are very few instances of actual attacks in databases 
such as CERT [15] and Bugtraq [16]. In our synthetic scenario, the attack is 
launched by the attacker exploiting a vulnerability in the SIP proxy. She sends a 
carefully crafted SIP message to fool the proxy into believing the call is initiated 
by someone else. The proxy initiates the accounting software with the information 
about the incorrect source for the call. This allows the attacker to make calls 
without being charged. Using the cross-protocol methodology for detection, one 
can create a cross-protocol rule to look at the SIP messages, the transaction 
messages between the accounting software and the database, and the RTP flows 
later on. Specifically, each of the following three conditions must hold.  

1. The SIP message should follow the correct format. 
2. When the accounting software sends out a transaction to denote a call from 

user A to user B, check if user A has sent a SIP Call Initialization message 
to user B. If user A has not set up the call with a legitimate SIP Call 
Initialization message, then this condition will be violated. 

3. Check the source/destination IP addresses of the subsequent RTP flows. 
Together with information from DNS and SIP Location Servers, we can 
reconfirm that each RTP flow has a corresponding legitimate call setup. 

In SCIDIVE, cross-protocol detection is achieved through keeping multiple trails for 
different sessions. In our example, we can have (i) a ‘SIP trail’ which tracks all 
the SIP messages in the session between user A and user B; (ii) an ‘RTP trail’ 
which tracks all the RTP packets in the session between A and B; and (iii) an 
‘Accounting trail’ which tracks relevant accounting transactions in this session 
between A and B. Then, we can define three events based on the three trails 
corresponding to the three conditions above. The first event is “an incorrectly 
formatted SIP message in the SIP trail”, which could be an indication of an 
attempt to exploit the vulnerability in the SIP proxy. The second event is “a 
transaction in the Accounting trail that has no matching call initialization message 
in the SIP trail”. The third event is “either the source or destination IP addresses 
of the RTP packet without a matching address in the SIP packet”. The third event 
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is specialized to take mobility into account, which will be indicated by a SIP 
REINVITE message with an update of state at the SIP Registrar that maintains 
location information. In the Ruleset, we can put a rule called Billing Fraud, which 
is triggered by a combination of these three events. An advantage of creating a 
rule based on a sequence of three events is improving the accuracy of the alarm 
because the rule is based on three facets of the attack. It is perceivable that relying 
solely on Event 1 or Event 3 to signal ‘Billing Fraud’ alarm will result in false 
alarms. Also, bugs or temporary system failures might cause Event 2. Therefore, 
relying solely on Event 2 will possibly give us false alarms.  

Stateful Methodology for Detection 
A second abstraction useful for VoIP systems in particular is stateful detection. 
Stateful detection implies building up relevant state within a session and across 
sessions and using the state in matching for possible attacks. It is important that 
the state aggregation be done efficiently so that the technique is applicable in high 
throughput systems, such as VoIP systems.  
A VoIP system maintains considerable amount of system state. The client side 
maintains state about all the active connections – when the connection was 
initiated, when it can be torn down, and what the properties of the connection are. 
The server side also maintains state relevant to billing, such as the duration of the 
call. To motivate the need for stateful detection, we introduce a synthetic example 
of a DoS attack and a password guessing attack. An unauthorized user client 
keeps sending unauthenticated REGISTER requests to bombard the SIP proxy and 
ignores the 401 UNAUTHORIZED reply error message from the SIP proxy. If the 
user client keeps sending the same request to the server, it can be seen as a type of 
DoS attack on the SIP proxy. Along with the UNAUTHORIZED reply message, the 
proxy sends a challenge phrase to the client. If the client keeps sending requests 
with different values in the challenge response field, this could be seen as a type 
of attack that is trying to break the authentication key by brute force. In either case, 
it would be helpful for detection if the system can look at the series of user client 
requests and the subsequent server responses. Since 4XX responses are not 
uncommon in a normal session, a traditional IDS like Snort with a rule to detect 
multiple 4XX responses may flag a large number of false alarms. For example, 
most user clients send an unauthenticated REGISTER request to the server, 
presuming that the SIP Proxy does not require authentication. Later, the server 
sends a 401 response along with a challenge phrase to the client to indicate that 
authentication is required. The client should then send a new REGISTER request 
to the server along with the correct response phrase to continue the registration 
process. If the IDS does not isolate 4XX error messages from different sessions 
and doesn’t correlate 4XX error messages with requests, it is likely it will make 
false verdicts based on unrelated 4XX error messages. In SCIDIVE, Footprints that 
belong to a session are structured and kept in a single trail. Therefore, the history 
of all the state transitions of each session can be easily tracked. To handle the two 
attack scenarios above, we can set up the following two events – (i) an event 
“DoS via repeated SIP requests”, which represents continuous, alternating SIP 
requests and 4XX error messages in a particular session; (ii) an event “Password 
guessing” which represents continuous, alternating SIP requests with different 
challenge responses and 401 Unauthorized reply error messages in a particular 
session. Flagging of the two events indicates two different kinds of attacks that 
may have different responses. In the first case, the response may be to identify the 
source of the attacker and block her IP address while in the second case, it may be  
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important to take more stringent measures to ensure the security of the system, 
such as changing the authentication password to a longer one. 

Placement of SCIDIVE Components 

The SCIDIVE architecture has a great deal of flexibility in terms of the placement of 
its components. For example, it is possible to deploy the SCIDIVE IDS only on the 
SIP client side for detecting anomalies in the VoIP traffic in and out of the client. 
A more aggressive approach would be to deploy the SCIDIVE IDS on all the 
components – Clients, SIP Proxy, and Registrar server – in a VoIP system. For 
example, in the Billing attack scenario outlined earlier in the section “Cross-
protocol Methodology for Detection”, we need to deploy the IDS on the SIP 
Proxy and the Accounting Server to detect Event 1 and Event 2. Also we need to 
deploy the IDS close to both clients to monitor RTP flows to detect Event 3. It 
seems a logical path to use multiple SCIDIVE IDS and an alert correlation engine to 
give better detection accuracy. The actual gains, impacts on the system 
performance, and costs for doing so are explored in the next part in the system 
called SPACEDIVE. 

Prototype and Experiments 
An IDS prototype is built to instantiate the SCIDIVE architecture for VoIP systems. 
We implement four attacks against the VoIP system, instantiate rules in SCIDIVE 
for detecting the attacks, and perform analysis of the detection efficiency. For 
simplicity, the IDS is placed at each client for the experiments here. This 
configuration is shown in Figure 4 and is referred to as an End-point based IDS 
architecture.  
 

 
Figure 4: IDS Engine sits on or close to the end-point 

Internet

IDS

IDS Protected Area

SIP 
Proxy

Hub Internet

IDS

IDS Protected Area

SIP 
Proxy

Hub

Testbed 
Our testbed comprises the following: 
• Proxy : SIP Express Router from www.iptel.org 
• Clients : Kphone from www.wirlab.net; Windows Messenger from Microsoft; 
X-Lite from www.xten.com 
Figure 5 depicts the topology of our testbed. The IDS is connected to a hub 
through which the traffic of Client A can be seen. Although the prototype IDS can 
also see the traffic of Client B and the SIP Proxy, it does not look into those traffic 
for any purpose, thus mimicking an end-point based IDS. 
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Figure 5: Testbed with client phones, proxy servers, network elements, attacker host and the IDS 

Attacks and Demonstration of the IDS 
We implement four attacks to demonstrate the functionality of the IDS. Three of 
the four attacks are based on the vulnerabilities in the signaling protocol, i.e., SIP. 
They are BYE attack, Fake Instant Messaging, and Call Hijacking. The fourth is 
based on the vulnerabilities in the media transport protocol, which is the RTP 
attack. A summary of the attacks is presented in Table 2. Details of the attacks are 
presented in the following sections. 
 
Table 2: Summary of Attacks 
 
Name of 

Attack 
Protocols 

Involved 
Cross-

protocol or 
not?; If yes, 
how? 

Stateful 
or not?; If 
yes, how? 

Rule Snippet 

BYE 
Attack 

SIP, RTP Yes; Detect no 
RTP traffic 
once SIP BYE 
has been seen.

Yes; 
Monitor 
session to 
determine 
when it has 
been torn 
down. 

No RTP traffic
should be seen 
after a SIP 
BYE from a 
particular 
user agent. 

Fake 
Instant 
Messaging

SIP, IP Yes; Check the 
source IP 
addresses of 
incoming IM 
messages (SIP 
Message) 

No; Check the IP 
addresses of 
all the 
incoming 
messages. The 
address should 
stay the same 
within a time 
period. 

Call SIP, RTP Yes; Detect no Yes; No RTP traffic 
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Hijacking RTP traffic 
once SIP 
REINVITE has 
been seen. 

Monitor 
session to 
determine 
when it has 
been 
redirected. 

should be seen 
after 
a SIP BYE from 
a particular 
user agent. 

RTP 
Attack 

RTP, IP Yes; Check the 
source IP 
address of RTP 
packets. 

Yes. Check 
if the 
sequence 
numbers in 
consecutive 
packets 
increase as 
expected. 

Check if RTP 
packets come 
from 
legitimate IP 
address and if 
the sequence
number 
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BYE Attack 

 
Figure 6: Schematic of BYE Attack 
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In this attack scenario, we have three SIP User Agents {A, B, and Attacker}. We 
also have a SIP Proxy for setting up the connections. The goal of the BYE attack 
is to prematurely tear down an existing dialog session, which can be viewed as a 
kind of Denial-of-Service attack. In Figure 6, SIP UA A and SIP UA B have an 
ongoing dialog session. Later, Attacker sends a faked BYE message to A. After 
that, A will believe that it is B who wants to tear down the connection by sending 
the BYE message. A will stop its outward RTP flow immediately, while B will 
continue to send RTP packets to A, since B has no notion that the connection 
should be terminated. 
In order to detect this attack, we create a rule that detects orphan RTP flow. 
Specifically, if it is indeed B who wants to stop the connection, then A should not 
see the RTP flow from B after getting the BYE message. Thus, in the IDS, we 
create a rule which signals an alarm when seeing new RTP Footprints in the RTP 
Trail that corresponds to the flow from B after seeing a BYE SIP Footprint. 
Although the attack itself occurs only within the signaling protocol (SIP), our 
detection rule spans SIP and RTP and provides an illustration of the importance of 
cross-protocol detection. 
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Fake Instant Messaging 

 
Figure 7: Schematic of a Fake Instant Messaging Attack 
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In addition to IP Phone Call setup, SIP also supports Instant Messaging. By faking 
the header of an instant message appropriately, the attacker can forge a message to 
A and mislead it into believing the message is from B. Our rule for detecting this 
attack looks at the IP addresses of the messages. Under most circumstances, 
within a period, messages from B should bear the same source IP address. 
Therefore, once we find a message from B which carries a different IP address, it 
would be an indication that this message is a fake one. The rule takes rate of user 
mobility into account and allows for changes in the IP address according to the 
maximum rate of user motion. Indeed, this rule is not perfect. If the attacker is 
able to spoof its IP address, then this rule will not work. However, based on the 
Host-based architecture, this is probably the best we can do. This leads to interests 
in research on a more ambitious architecture like deploying IDS on both client 
ends. 
 

Call Hijacking 

 
Figure 8: Schematic of Call Hijacking Attack 
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A direct impact of this attack is that B will experience a continued silence since A 
is no longer sending its voice data to B. For this part, the Call Hijacking attack can 
be seen as a kind of Denial-of-Service attack. A more subtle impact is that if the 
attacker were able to emulate the voice data of B, then after successfully 
redirecting the call, A would not be able to distinguish between B and the attacker. 
This could lead to issues of confidentiality and breach of privacy since the 
attacker will be able to listen to what A is saying.  
To detect this attack, we use a similar approach as for the BYE attack. Intuitively, 
if the REINVITE message is indeed from B, then A should not see any RTP flow 
from B after that. By detecting orphan flows, we are able to determine whether 
it’s a legitimate REINVITE message or a malicious one. 
 

RTP Attack 

 
Figure 9: Schematic of an RTP Attack 
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All the attacks mentioned earlier are signaling based attacks. The RTP attack on 
the contrary is based on the vulnerabilities in media transport. In this attack, the 
attacker sends RTP packets whose contents are garbage (both the header and the 
payload are filled with random bytes) to one of the persons in a dialog. In this 
example, the attacker sends garbage bytes to A. Since these garbage packets will 
corrupt the jitter buffer in the IP Phone client, depending on different 
implementations, this attack could result in intermittent voice conversation or in 
crashing the client. For example, in our experiment, X-Lite will crash after this 
attack while the effect on Microsoft Messenger is intermittent voice conversation. 
This attack also leads to degradation in QoS (jitter) and in the voice quality. The 
rule we use for detecting this attack is that the sequence number in succeeding 
RTP packets should increase regularly. Specifically, if we see two consecutive 
packets whose sequence numbers have a difference greater than 50, the IDS will 
signal an alarm. The gap between sequence numbers can also be seen in a DoS 
attack free environment, which can be caused by abrupt network traffic 
congestion or high CPU utilization on a phone. For example, we have seen cases 
where the sequence number jumped by hundreds due to crashed phone clients. 
However, these are not so common as seen in our testbed, and the number 50 is 
empirically chosen such that the false positive rate is kept low enough (e.g. < 4% 
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in our experiment). A larger difference value will further decrease the false 
positive rate but can decrease the sensitivity in detecting DoS attacks as well.  
 

Performance Evaluation 

In this section, we comment on the performance of the IDS system with respect to 
three metrics: (1) the detection delay, D, which is defined as the time from when 
an attack/intrusion is made to the time it is detected, (2) the probability of false 
alarm, Pf, which is defined as the probability that the IDS flags an intrusion when 
none has occurred, and (3) the probability of missed alarm, Pm, which is defined 
as the probability that the IDS system does not flag an intrusion when one occurs. 
The goal is to make the reader aware of the variables that affect these metrics and 
give an idea of practical values. Detailed performance evaluation with numerical 
computation is the subject of ongoing work. 

BYE and Call Hijacking attack 
In both these attacks, the IDS rule looks at the SIP signaling event (BYE or 
REINVITE) and monitors the media stream following this event to detect an 
intrusion. Specifically, the arrival of an RTP packet at the original RTP port from 
the original sender flags an intrusion. 

Detection Delay 

 
Figure 10: Detection Delay 
 
Measuring from the time the SIP message is received, it includes the time up to 
the arrival of the RTP packet from the original sender. Obviously, the time 
depends on the frequency of RTP packets. A typical period employed is 20 
milliseconds. However, the RTP packet arrival depends also on the network 
conditions. Specifically, the delay distribution of packets from the sender to the 
receiver would cause this quantity to change. Figure 10 outlines the various 
timing variables involved. Let the time of the last RTP packet arrival be T1 (before 
the fake BYE/REINVITE message arrival). Also, without loss of generality, let 
this message originate from the sender at time 0. Then T1 is the transport delay of 
this RTP packet. Further, let Tsip be the time of arrival of the SIP message. Let T2 
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be the time of arrival of the RTP packet, which originated 20 ms after the previous 
RTP packet. We assume that the fake SIP message was generated after the 1st 
RTP packet but before the 2nd RTP packet. When the SIP message is received, the 
IDS system starts looking for RTP packets for a total duration of “m” 
milliseconds. Obviously, T1, T2 and Tsip are random variables and m is a fixed 
value. The detection delay D is a function of these four parameters as D = T2 − Tsip, 
where T2 = 20 + Nrtp and Tsip = Gsip + Nsip . Nrtp and Nsip are the random variables 
associated with the network delay for each packet. While the second RTP packet 
is generated 20 milliseconds after the origin, the fake SIP message is generated 
between the two RTP packets with a distribution given by Gsip. Therefore, D = 20 
+ Nrtp − (Gsip − Nsip). Given the distributions of these random variables, it is 
possible to compute the detection delay distribution. Under the simplest of 
assumptions, where the fake SIP message is generated with a uniform distribution 
in (0,20), and the network delay is assumed to be independent and identical for all 
packets, the expected detection delay is 10 milliseconds, which is half of the RTP 
packet generation period. 

Probability of Missed Alarm 

Since the detection depends on monitoring after a SIP message arrival and since 
this monitoring interval is necessary finite (‘m’ milliseconds), there is a 
probability that the IDS system may not detect the intrusion. For instance, if the 
subsequent RTP packet(s) from the original sender are lost (somewhere in the 
network) and no RTP packet arrives within the monitoring interval, then no alarm 
will be raised. Referring to Figure 10, the probability is given by : 
Pf = Pr{T2 > Tsip + m} = Pr{Nrtp −Gsip − Nsip > m −20}. 

Probability of False Alarm 

 
Figure 11: Probability of False Alarm 
 
Although rare, it is possible for a valid BYE message to arrive before the RTP 
packet if, for instance, they take a different route, as shown in Figure 11. In this 
case, the IDS system will raise a false alarm. In order to compute this probability, 
we assume that the sender generated the valid SIP BYE/REINVITE immediately 
(with zero delay) after it has sent out the last RTP packet. In that case, the false 
alarm probability is given as Pf = Pr{Nsip < Nrtp}. If the density function and 
distribution function of Nrtp and Nsip is assumed to be identical and independent 
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denoted by fN(t) and FN(t) respectively, then the false alarm probability 

is . ∫
m

0

NN dt (t)(t)fF

SPACEDIVE 
As an extension of SCIDIVE, we propose the design of a system called SPACEDIVE 
to serve as a correlation-based IDS for VoIP systems. The implementation 
provides an instantiation of the design principles, which are applicable to the 
design of any IDS for VoIP applications. Our solution centers on three basic 
design principles. 
Rule matching engine at the local and remote levels. The system includes rule 
matching engines located at the individual VoIP components (local rule matching 
engine, or RMEL) as well as remote rule matching engines (RMER). Thus fast 
matching of local attack patterns can be done together with correlation of attack 
patterns arising from multiple sources. The placement of the RME’s is flexible as 
is the generation and transfer of information needed for the RMER’s.  
Cross protocol and stateful detection. These principles were present in our earlier 
version of the system, SCIDIVE and are maintained in the distributed architecture 
as well. To recap, stateful detection denotes the functionality of assembling state 
from multiple packets and using the aggregated state in the rule-matching engine. 
Cross protocol detection denotes the functionality of matching rules that span 
multiple protocols. However, SCIDIVE did not provide any rule language for 
specifying these patterns while SPACEDIVE does. Thus the system takes the 
rulebase as an input easing the task of applying SPACEDIVE to new deployments. 
Integration with Snort. SPACEDIVE needs to examine packets coming in at a host 
executing a VoIP component. The packet rate may be high and therefore fast 
matching of the rules locally and fast processing to generate events for correlation 
are required. The Snort IDS is well known for its efficiency in examining 
incoming packets and SPACEDIVE leverages the Snort functionality. To avoid 
performance loss, SPACEDIVE is built into Snort using part of its low-level 
functionality (examining and processing packets) and adding to it (e.g., to build 
state to support stateful detection) and building completely the high level 
functionality specific to the VoIP environment.  
The typical process flow for the detection of an attack in SPACEDIVE is as follows. 
At the local rule matching engine (RMEL), an incoming packet is sniffed and 
passed through local rules. These local rules are specified in a language derived 
from Snort’s and augmented with constructs to create state. The match generates 
an event for the local event trail and optionally state associated with the event. An 
event parser next parses the local events to optionally generate a network event. A 
network event is synonymous with an event that needs to be aggregated with 
events from other VoIP components for matching at an RMER. At the RMER, 
there exists a rulebase for network events specified in a high level language 
introduced in this paper. The network events from the individual RMEL’s can be 
either pushed to or pulled by the RMER, depending on the nature of the event and 
the rulebase at the RMER.  
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SPACEDIVE Design 

SPACEDIVE Design Hierarchy 
The SPACEDIVE design can be broken down in two parts – the local-level design 
and the network-level design. Local-level design involves a single VoIP 
component (client, proxy, etc.) and has the local Rule Matching Engine (RMEL). 
Network–level design takes into consideration all the components deployed in one 
domain or across multiple domains and the interactions between them and 
provides the remote Rule Matching Engine (RMER). Providing separate IDSs at 
the local level and at the network level plays a large part in keeping SPACEDIVE 
scalable.  
 

SPACEDIVE Local Level Design 

 
Figure 12: Local Level Design 
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Figure 12 shows the SPACEDIVE components at the local level. The components 
below the dashed line represent an instance of SPACEDIVE installed on each VoIP 
component and integrated with Snort. The sniffing module makes use of the 
libpcap library to read packets received over the network. Currently, Snort 
understands 4 protocols: IP, TCP, UDP, and ICMP. We have modified Snort so 
that it now identifies SIP and RTP packets too.  
The State Repository stores the current state of the system. State comprises the 
status of an ongoing session – i.e. connecting, established, terminated, etc., the 
status of a node, e.g., if the node has moved, or the reception of a particular type 
of packet (e.g. a SIP BYE message). The Event Trail keeps track of events, 
specified using the low level rule language detailed later in the section titled “Low 
Level Rule Language”. The event trail contains events ordered by session ID. For 
events that have no associated session ID, such as RTP packets, the timestamp is 
used for ordering. The Processing Engine determines whether a pre-defined event 
has occurred and records it in the event trail. It also updates the state of the rule 
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variables in the State Repository. The Event Parser takes the event trail as input 
and generates a trail of “Network Events”. What constitutes a Network Event is 
specified in the RMER, which disseminates the pertinent network event definitions 
to the local RMEs. The RMER uses the Network Event Trail to correlate events 
across the different components of the network. 

Low Level Rule Language 
Since the RMEL is built on Snort, we make use of the Snort rule language to 
match incoming packets at each VoIP component to generate the local events. A 
rule can be broken down into two basic parts, the rule header and options for the 
rule. The rule header contains the action to perform, the protocol that the rule 
applies to, and the source and destination addresses and ports. The rule options is 
used to create a descriptive message to associate with the rule, as well as check a 
variety of other packet attributes by making use of Snort's extensive library of 
plug-ins. 
The general form of a local rule is: action proto src_ip src_port direction dst_ip 
dst_port (options).  
There are four major categories of rule options: 
meta-data These options provide information about the rule but do not have any 
effect during detection 
payload These options all look for data inside the packet payload and can be 
inter-related 
non-payload These options look for non-payload data 
post-detection These options are rule specific triggers that happen after a rule has 
“fired.” 
Some important rule options are ‘content’ (allows the user to set rules that search 
for specific content in the packet  payload and trigger response based on that data) 
and ‘priority’ (assigns a severity level to rules.) 
When a packet comes in, its source and destination IP addresses and ports are 
compared to the rules in the ruleset. If any of them are applicable to the packet, 
then the options are compared to the packet. If these comparisons return a match, 
then the specified action is taken. 
The native rule language of Snort is not well-suited for VoIP stateful or cross-
protocol detection. Snort provides limited capability for remembering state both 
within a VoIP session for a given protocol (e.g. SIP) and across protocols (e.g. 
SIP & RTP). To make up for this, we add constructs to the existing rule language 
so that it is better-suited for detecting attacks targeted to VoIP environments that 
span packets in a session and different protocols. Next, we provide a brief 
description of the new constructs. 
1. sip. This construct is used to identify a SIP call session, which includes all the 

SIP messages used in a phone call between two parties. 
2. var. This construct is used to set the integer value of a variable in case of a 

rule match. This is used as a way of keeping state. The var construct belongs 
to the ‘options’ part of a Snort rule. 

3. Event. The event construct is used to create event trails. It tells Snort to record 
an event when the corresponding rule-match occurs. An event can be triggered 
on a combination of rule matches according to the following constructs. 

I. And/Or/Not – Logical Constructs. These constructs are used to 
trigger an event based on logical combinations of rule matches;  
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II. Before/After – Temporal Constructs. The Before and After 
constructs are used to trigger events based on a temporal sequence of 
rule matches. 

4. Net_Event. This construct follows the same syntax as ‘Event’ except that it is 
used to represent a network event as opposed to a local event. 

5. Protocol-specific constructs. To detect certain attacks we need to look into 
specific fields in the header of a protocol. For example, we may need to know 
the window of allowable sequence numbers for an RTP packet. This leads us 
to define a construct called ‘seqwin’ that represents the in-range sequence 
numbers of RTP. This means that now SPACEDIVE needs to parse the VoIP 
protocols (currently SIP and RTP) in addition to the four protocols (IP, ICMP, 
TCP, UDP) Snort is currently able to parse. This is more difficult especially 
for RTP, because RTP packets do not have a fixed length and they do not 
contain any string identifier to identify them as RTP packets. SPACEDIVE uses 
the port numbers negotiated via SIP to identify an RTP session. Currently, we 
limit our SIP parsing to the session id and the RTP port fields contained in the 
SDP header of SIP since these fields suffice for the range of attacks we 
consider; while in the case of RTP, we parse the entire header. 

Sample Rule: Suppose that an attack pattern consists of packet A containing the 
string “DESTROY” followed by packet B containing the string “ERASE”. 
Assume that packet A is on port 5000 and packet B is an RTP packet on port 6000. 
Then we construct the rule as follows, which will log an event in the local event 
trail if both packets are found.  
var r1; var r2; 
alert udp any 5000 -> any any (content:”DESTROY”; var:r1); 
alert rtp any 6000 -> any any (content:”ERASE”; var:r2); 
event (r1 AND r2); 

SPACEDIVE Network Level Design 

 
Figure 13: Rule Matching Engine Hierarchy 
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At the network level, SPACEDIVE views the system as composed of multiple VoIP 
domains, each with its own RMER (Figure 13).  
The RMER’s perform remote rule matching from network events generated by 
each RMEL in its domain. Each RMER comes with a configuration script that 
gives it the following information – the IP address and hostname of all the clients, 
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servers, and proxies in its domain. The RME uses this configuration information 
for network level rule matching. 
We have developed a high-level rule language for specifying network level events 
in the RMEs.  At the network level a rule R can be represented as: 

R  = ((wherei:whati) conni) response   (i= 1, …,  N) 

In R, wherei denotes the location of event i, whati denotes the network level event 
i, conni is the connective between the events and may be AND, OR, NOT, 
BEFORE, AFTER, or NULL. The clause response indicates the response to be 
taken in the case of a match and is currently limited to an alert or dropping a 
packet. The RME extracts the event specifications (whati) from the rule pertaining 
to a particular node (wherei) and disseminates them to that node at start-up. These 
event specifications are then used by the event parsers in the RMEL’s to generate 
network events. For example, consider a VoIP call established between clients A 
and B. An attacker C sends a faked SIP BYE message to A to make it believe that 
B wants to tear down the connection. Since B does not know of this attack, it will 
continue sending RTP packets to A. To detect this attack, we look for an orphan 
RTP flow at A after the BYE message is received. We can frame the high level 
rule as: 
(clientA:RTP_Flow) AFTER (clientB:BYE_Sent) alert 
To make the detection infrastructure scalable, the RMEs may be arranged in a 
hierarchy as shown in Figure 13 correlating information across domains. In this 
hierarchy, RMEH is a higher level RME that can look at rules corresponding to 
multiple administrative domains. Driven by the realization that different parts of a 
VoIP system may be owned by different organizations, SPACEDIVE has the 
capability to accommodate multiple peer-level RMER’s. The policies and the 
resultant rules in each administrative domain may be encapsulated within the 
RMEL’s and the RMER without the need to share them. A third-party organization  
may own the RMEH which matches for rules that affect multiple organizations. 

Algorithms in SPACEDIVE 

Local Level Event Generation – Efficient Matching 
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Figure 14: Example rule processing at RMEL 

 
At the local level, all rules specified in the rules file are parsed to form an 
expression tree. For example, consider the rule event ((rv1 AND rv2) OR rv3 AND 
rv4). The corresponding expression tree for this rule is shown in Figure 14. 
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Each variable (rv1, rv2, rv3, rv4) in the rule will have a pointer to the root of this 
expression tree stored with it. Note that a variable may be involved in multiple 
rules. In that case, we store a list of root pointers with each variable. 
Whenever a variable is set to 1 after a rule match, we need to evaluate the 
expression tree. For example, in the above case, when rv3 is set to 1, we find that 
the value of the OR expression (the parent of rv3) becomes TRUE, irrespective of 
the values of rv1 and rv2. So we can simplify the tree structure by rolling up the 
sub-tree rooted at the OR as shown in Figure 14. 
Assuming a total of r rules and an average of v variables in each rule, the total 
number of variables at RMEL is V=r.v. The search operation is O(log V) time 
using binary search. Let H be the height of the original expression tree before any 
roll-up. The worst case for locating the variable in the tree is when the tree is 
unbalanced with height H = v-1. To locate a variable in the expression tree of 
height i, we need O(i) operations. In the worst case, we assume that setting each 
variable in the tree to 1 decreases the height of the tree by just one, i.e. no tree 
roll-up is possible at any stage. This would happen for example if all the 
connectives are AND. Thus, to evaluate the entire expression we get a complexity 

O(∑ ) = O(H.logV + H2) = O(v.logV + v2) = O[v.log v + v.log r + v 2]. 

If r < v, then the operation is O(v2).  
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Network Level Event Generation 
The event parser is loaded with a rules file at start-up by pushing this information 
from the RMER that tells it what events to look for in generating the network 
events. It then matches these rule definitions with the local event trail to generate 
network events. The search through the event trail is linear, not logarithmic, since 
the events are generated at runtime and the sorting to enable binary search is not 
possible. Consider that the RMER manages M RMEL’s. Let us assume the number 
of remote events for each RMEL follows a uniform distribution U(LR, UR). Let 
the buffer size for the local event trail be L. In the worst case, there will be UR 
rules, the local event trail buffer is full, and each rule will have to be checked 
against the entire buffer. This gives a worst case complexity for the remote event 
generation as O(UR×L). 

Processing at RMER 
The RMER also generates an expression tree from the high level rules. The rules 
are pointed to by a hash table of size M, each entry corresponding to an RMEL. 
Assuming r rules at the RMER, the number of what clauses (equal to the number 
of nodes in the expression tree for one rule) is h = kM/r, where k = ½(LR+UR). 

Therefore the cost of matching one rule is O(∑ ) = O(h2). 
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Demonstration and Experiments 

Experimental Testbed 

 
Figure 15: SPACEDIVE Testbed 
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Figure 15 shows the layout of our testbed. To realistically simulate a VoIP 
environment, we have built a testbed with two domains. This enables us to 
demonstrate intra domain calls as well as inter-domain calls. Each domain has a 
SIP gateway, a proxy server, a registrar server, clients and support servers like 
FTP, DNS etc. The SIP clients and servers are equipped with the SPACEDIVE  IDS. 
We use the SIP Express Router (ser) [8] for the SIP servers. Ser can be configured 
as a SIP registrar or proxy server. Our SIP clients are Windows based and use X-
Lite [9].  In the testbed, we have the gateway, registrar and proxy server running 
on the same machine. We deploy RMEH in domain 1 though in practice it can 
belong to either domain or be in a separate domain altogether. 

Workload 
The normal workload consists of the scenario where client 1 from domain 1 
makes a call to client 2 in domain 2. When client 1 initiates a call, a SIP request is 
sent to the SIP server (either a proxy or a redirect server) in domain 1 with the 
addresses of the caller and the callee. If a proxy server is used, client 1 sends an 
INVITE request to the proxy server, the proxy server determines the path, and 
then forwards the request to client 2. Client 2 responds to the proxy server, which 
in turn, forwards the response to client 1. The proxy server forwards the 
acknowledgments of both parties. A session is then established between the two 
clients. The communication between the caller and the callee happens through 
RTP packets. The SIP Gateways provide call control.  

Attack Scenarios 
This section describes several possible attack scenarios on a VoIP system. In all 
the attack scenarios, S1, S2 are two SIP proxies overseeing two different domains, 
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A and B are legitimate clients, while H is a malicious client. To compare and 
contrast the power of a local IDS (SCIDIVE) and SPACEDIVE, we give the steps in 
detecting each attack scenario by the two systems. Fragments of the relevant rules 
from SPACEDIVE are also given.  
At the end of the section, we classify the attack scenarios in two dimensions and 
summarize the detection in the two systems. 

Call Hijacking 

 
Figure 16: Call Hijacking 
 
In the Call Hijacking attack, we assume that H is at a place on the network where 
she can sniff the traffic from B. A possible case is that B and H happen to be 
using the same network hub. In the attack, H first sends a busy transfer request to 
server S2 such that any call to B will be transferred to H when B is busy. Now A 
places a call to B. H is able to sniff the Invite message from S2 to B and responds 
with a ‘B is busy’ message back to S2 before B is able to reply to S2. 
S2 sends a new invite message to H, thinking that B is busy and the call should be 
transferred to H. Although B’s ok message will eventually go to S2, many server 
implementations will regard this as a noisy reply. On Openser, with the default 
configuration, this ok message will also be forwarded to A, which is then ignored 
by the X-Lite client. Thus H hijacks the conversation and can collect confidential 
information that A wants to pass to B. 
SPACEDIVE Detection: A SPACEDIVE rule checks if the OK reply from B goes 
correctly all the way from B to A. The correlation is done across events at B, S2, 
S1, and A. This falls in the general class of rule called end-to-end matching in 
SPACEDIVE, where the correlation is done across events at each component in the 
path. This is a powerful rule class and can detect many different kinds of 
attacks.(Rules in Table 3) 
 
Table 3: Rules to Detect the Call Hijacking Attack 
 
Component Rule Snippet 
A alert sip any any -> any any (var:rv1; 

content:INVITE;); net_event (rv1;)  
B alert sip any any -> any any (var:rv2; 

content:OK;); net_event (rv2;) 
S2 alert sip any any -> any any (var:rv3; 

content:OK;); net_event (rv3;) 
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RME (A:SIP_SESSION_ESTB) AND (B:SIP_OK) AND 
(NOT(S2:SIP_OK)) alert 

Man in the middle attack: intercepting outgoing calls 

 
Figure 17: Man in the middle attack 
 
In this attack, we assume H is on the route between S2 and B. The goal for H is to 
intercept outgoing calls from B. The INVITE messages are authenticated through 
a challenge-response mechanism. As B places an outgoing call, the attacker H 
forwards the INVITE messages and the challenge-responses between S2 and B 
until the authentication phase is completed. 
Then H fakes a ‘404 Not Found’ message back to B such that B thinks A is not 
present. In effect a call is established between H and A with H representing itself 
as B.  
SCIDIVE Detection: SCIDIVE is not able to detect this attack, since the message 
exchanges that happen at A, S1, S2, and B can all be part of a legitimate call 
signaling process. Furthermore, since H is the malicious client, SCIDIVE cannot be 
placed on H. 
SPACEDIVE Detection: This can be detected by SPACEDIVE with an end-to-end 
matching rule for the OK message going correctly all the way from A to B 
through S1 and S2. (Rules in Table 4) 
 
Table 4: Rules to Detect the Man in the Middle Attack 
 
Component Rule Snippet 
S1 alert  sip A any -> any any (var:rv1; content:OK;); 

net_event (rv1;)  
S2 alert  sip S1 any -> any any (var:rv2; content:OK;) 

net_event (rv2;) 
B alert  sip S2 any -> any any (var:rv3; content:OK;) 

net_event (rv3;) 
RME (S1:SIP_OK) AND (S2:SIP_OK) AND (NOT(B:SIP_OK)) 

alert 
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BYE Attack 

 
Figure 18: BYE Attack 
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In this attack, H’s goal is to prematurely tear down a current call session between 
A and B. For the attack, H sends a BYE to A, which will trick A into tearing 
down the dialog with B. Here, either the session is not secure, or if it is secure, H 
is able to masquerade as B through some vulnerability in the system. 
SPACEDIVE Detection: This can be detected by SPACEDIVE with an end-to-end 
matching rule for the BYE message from B→S2→S1→A. In this attack scenario, 
the part of B→S2 is missing. (Rules in Table 5) 
 
Table 5: Rules to Detect the BYE Attack 
 

Component Rule Snippet 
S2 alert sip B any -> any any (var:rv1; content:BYE;)  

net_event (rv1;)  
S1 alert sip S2 any -> any any (var:rv2; content:BYE;)  

net_event (rv2;) 
A alert sip S1 any -> any any (var:rv3; content:BYE;)  

net_event (rv3;) 
RME (NOT(S2:SIP_BYE)) AND (S1:SIP_BYE) AND (A:SIP_BYE) 

alert 
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Figure 19: Compromised SIP Proxy 
 
Assume a hybrid system with SIP based VoIP telephony and traditional PSTN 
telephony. The accounting of the relaying calls is done at the SIP proxy S2. 
Therefore, only authorized users from the VoIP side are able to make calls to a 
PSTN phone. Here, we assume that the attacker H exploits a vulnerability at S2, 
such that by sending a malformed INVITE message, she is able to impersonate B 
and place a call to the PSTN phone.  
SCIDIVE Detection: A SCIDIVE IDS at S2 may use signature based rule checking 
to decide whether the incoming INVITE message contains malformed data. A 
weakness of this approach is that the signature is very specific and there may be a 
large number of ways of exploiting vulnerabilities in S2 through malformed 
INVITE messages.  
SPACEDIVE Detection: In SPACEDIVE, detection components installed on both S2 
and B check whether B did send out the INVITE message. (Rules in Table 6) 
 
Table 6: Rules to Detect a Compromised SIP Proxy 
 
Component Rule Snippet 
S1 alert  sip A any -> any any (var:rv1; 

content:INVITE;)  
net_event (rv1;)  

S2 alert  sip S1 any -> any any (var:rv2; 
content:INVITE;)  
net_event (rv2;) 

B alert  sip S2 any -> any any (var:rv3; 
content:INVITE;)  
net_event (rv3;) 

RME (S1:SIP_INVITE) AND (S2:SIP_INVITE) AND 
(NOT(B:SIP_INVITE)) alert 

Denial of Service (DoS) Attack 
An attacker can launch a denial of service attack by flooding the servers signaling 
port, flooding the media proxy’s listening port or by flooding the clients media or 
signaling port. 
SPACEDIVE Detection: SPACEDIVE can detect a DoS attack targeted at a client’s 
media port. To detect a DoS attack launched on host A we have the rule as shown 
in Table 7.  
 
Table 7: Rule to Detect a DoS Attack 
 
Rule Snippet 
alert rtp any any → A any (seqwin:50; var:rv;); net_event (rv;)

 
This rule will generate an alert if the RTP sequence numbers of two consecutive 
packets in the same session are off by +50 or -50 units. Thus, if one packet has 
sequence number of 400 and the next one has anything greater than 450 or less 
than 350, SCIDIVE will flag an alarm. The detection in SCIDIVE follows the same 
principle though the rule has to be hard coded in the system. 
  
Table 8: Classification of attack scenarios 
 

Attack Scenario Mitigated by secure VoIP 
protocol; Dependent on 

Detected by 
SCIDIVE; 
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position of malicious 
client 

Detected by 
SPACEDIVE 

Call hijacking YES; YES YES; YES 
Man in the middle NO; YES NO; YES 

Bye Attack YES; NO YES; YES 
Compromised SIP 

proxy NO; NO NO; YES 

Billing fraud YES; NO MAYBE; YES 
 
 
In Table 8, we classify the attack scenarios in two dimensions – whether secure 
VoIP protocols can nullify the attack and whether the attack is dependent on 
position of H vis-à-vis A and B. A “Yes” indicator in a column indicates the 
attack is more difficult to execute. Finally, the table gives whether the attack 
scenario can be detected in SPACEDIVE and SCIDIVE.  
Note that all the above attacks are active attacks. SPACEDIVE cannot detect 
passive attacks like eavesdropping. This is an inherent limitation of the current 
IDS technology in general. 

Experimental Results 

Timeline for correlated detection 

 
Figure 20: Experimental Setup 
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For this experiment, we use the Man in the Middle Attack to demonstrate the 
timeline of the correlated detections among SPACEDIVE components.  The layout 
of the testbed is shown in Figure 20. We use an Openser SIP proxy (say, X) and 
two X-Lite SIP softphones on A and B. The attacker H, which is a simple home 
made proxy, relays the traffic between B and X. We have SPACEDIVE RMEL’s 
deployed on A, B, and X, and the RMER on a separate host. B first tries to make 
an outbound call to A and begins by authenticating with X. The authentication 
process ends with an INVITE message from X to B. Until this point, H faithfully 
relays all messages exchanged between X and B. After this, H immediately sends 
a ‘404 Not Found’ message back to B and stops relaying any message between B 
and X. Once A gets the INVITE message, she will reply with an OK message, 
which should go all the way back to B for establishing the call. However, since H 
has sent the ‘404 Not Found’ message instead of the OK message to B, B will 
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never see an OK message and will assume that A is not present on the other side. 
The way we detect this attack is by putting local rules at S0, S1, and S2 such that 
when an OK message is seen, the local detector will send an event to the RMER. 
The rule at RMER is then to check whether there are three OK messages from S2, 
S1, and S0 in sequence within a bounded time window – we use a configurable 
window of 4 ms from the time the first event is received. In this case, S0 does not 
see the OK message, which will then trigger the man in the middle detection alert. 
The timeline for these detections is shown in Figure 21. 
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Figure 21: Timeline for Remote Rule Matching (times are not drawn to scale) 

Performance of rule matching 
In this experiment we compared the rule matching overhead of SPACEDIVE for 
different rule types. We tested four categories of rules, each of which involves 
content matching for a string in the payload. 
Type 0 is rule matching in Snort, while Type 1 is a vanilla Snort rule matched in 
SPACEDIVE. Type 2 rules use the var construct to set the value of a variable in 
the state repository. Type 3 rules are ones that use the event construct to create a 
local event in the event trail. We show cases of using 1, 2, 4, and 8 variables to 
construct the event. Figure 22 shows the comparative performance of the four 
categories of rules. 
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Figure 22: Processing time for classes of SPACEDIVE rules. 
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As seen from the figure, rule matching for Type 1 rules incurs negligible overhead. 
Type 2 rules involve about 8% overhead over Type 0. Type 3 rules with 1 variable 
fare almost the same as Type 2 rules. This is quite intuitive, since the expression 
tree for one variable is just a single node (the root of the tree). As expected, the 
performance cost increases with the number of variables. For a Type 3 rule with 8 
variables, the overhead is, on an average about 40%. This results from the fact 
that an expression tree with 8 variables has a depth of at least 3. This increases the 
time it takes to perform the tree rollup. 

Resilience to DoS 
DoS attacks are crucial ones in VoIP systems since secure VoIP protocols such as 
SRTP [6] do not protect against them and the traffic is delay-sensitive. The 
objective of this experiment is to test the resilience of a VoIP client to a DoS 
attack in the baseline system and equipped with SPACEDIVE. A malicious client M 
sends garbage RTP packets to a receiver A concurrently with a legitimate sender 
client B. Client A requires service at the rate of 64 kbps for acceptable voice 
quality. This is used to normalize the quality of service in the presence of the 
client M. 
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Figure 23: Resilience to DoS Attacks 
 
Figure 23 shows the degradation in the quality as M is able to pump more DoS 
traffic to A. Since SPACEDIVE is configured to drop garbage RTP packets (from 
M), A’s degradation in quality is much less steep. However, the processing to 
match the rule for RTP packets causes some degradation 
 

Detection False Positive Rates  
 
Table 9: False Positive Rates from each SPACEDIVE detection rule with respect to four different 
legitimate call traces. 
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  v4 v5 v6 v7 

  f.p. a.t. r.i. f.p. a.t. r.i. f.p. a.t. r.i. f.p. a.t. r.i. 

Call Hijacking 0.00% 0 450 0.00% 0 450 0.00% 0 461 0.00% 0 452 
Man in the 

middle 0.00% 0 450 0.00% 0 450 0.00% 0 461 0.00% 0 452 

BYE 0.23% 1 426 0.24% 1 423 0.00% 0 442 0.23% 1 437 
Compromised 

SIP Proxy 0.00% 0 526 0.00% 0 524 0.00% 0 517 0.00% 0 515 
DoS in RTP 

Streams 3.18% 31 976 3.90% 38 974 1.94% 19 978 2.79% 27 967 
 
a.t. : Number of alerts triggered 
r.i. : Number of rule instantiations 
f.p. : False Positive rate =(a.t.)/(r.i)

Here we test the five detection rules in SPACEDIVE against 4 call traces collected 
over different time periods from a closed attack-free environment consisting of 
two SIP proxy servers and 192 phone clients. These call traces are numbered v4-
v7. In terms of the average call duration, the respective values for the call traces 
are {v4:2.79, v5:4.53, v6:4.02, v7:5} (unit: minutes). In terms of the average 
inter-arrival time between consecutive phone calls, the values are {v4:3.6, v5:3.71, 
v6:4.79, v7:5.48} (unit: minutes). The call traces include the network packets 
collected by tcpdump [17] from the system. The detection result is presented in 
Table 9. The false alarm rate is defined as the number of alarms triggered over the 
number of rule instantiations. 
Here a detection rule is instantiated when any of the rule components in the 
corresponding detection rules (Table 3, Table 4, Table 5, Table 6) is generated by 
a RMEL. For the DoS Attack Detection rule (Table 7), the rule is instantiated 
every time a RTP packet is sniffed and inspected by SPACEDIVE. The number of 
rule instantiations from “Compromised SIP Proxy” is the number of calls placed, 
as the rule is instantiated by the very first INVITE message from a phone call. The 
number of rule instantiations from “Call Hijacking” and “Man in the middle” is 
the number of connected calls, as the rule is instantiated by the OK message or the 
call established state. Since a callee can be busy or unavailable, the number of rule 
instantiations from “Call Hijacking” and “Man in the middle” is always less than 
or equal to the number from “Compromised SIP Proxy”. The rule for detecting 
“BYE Attack” is instantiated by the BYE message and can be seen as the number 
of connected phone calls that were torn down gracefully. For the “DoS in RTP 
Streams” rule, the number of rule instantiations corresponds to the number of RTP 
streams found in the call trace. Since RTP streams are bidirectional, we found 
roughly 1000 RTP streams out of the call traces each of which consists of 
approximately 500 calls. 
Overall, we found that the false positive rates from SPACEDIVE rules used in 
detecting the three SIP based attacks are very low (< 0.5%). The false positive 
rates from the “DoS in RTP Streams” are slightly higher but still low (< 4%). The 
higher false positive rates from the DoS detection rule in Table 7 are 
understandable since RTP streams carry huge traffic and jitters can occur 
normally even when DoS attacks are not present. The false positive rate can be 
decreased by assigning a higher RTP sequence number gap threshold to flag an 
alarm. However, a tradeoff is that the number of false positives can be undesirably 
brought down as well.  
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Table 10: Number of false alarms from default Snort rules for the four different legitimate call 
traces 
 

  v4 v5 v6 v7 

[1:402:7] ICMP Destination Unreachable Port Unreachable 3823 5535 8413 5535 

[1:1417:9] SNMP request udp 51 61 37 61 

[1:1419:9] SNMP trap udp 32 54 73 54 

[1:1384:8] MISC UPnP malformed advertisement 1222 1768 2691 1768 

[1:527:8] BAD-TRAFFIC same SRC/DST 124 224 242 224 

[1:553:7] POLICY FTP anonymous login attempt 0 1 1 1 

 
Table 10 shows the number of alerts with respect to the four legitimate VoIP call 
traces from the default Snort rules (v 2.2.0 Build 30). These alerts are all false 
positives. Here [x:y:z] is the corresponding Snort rule ID and revision number. 
Compared to the number of alerts seen from SPACEDIVE rules (Table 9), the false 
positives from Snort rules are significantly higher. Thus, unmodified Snort is not 
suitable for VoIP attack detection since the high alert rates can overwhelm a 
system administrator. 
 

Conclusion and Future Work 
We have presented the design and implementation of a stateful and cross-protocol 
IDS for VoIP systems called SCIDIVE. We further extend the design principles of 
SCIDIVE to build a distributed and correlation based IDS for VoIP systems - 
SPACEDIVE. SPACEDIVE places local rule matching engines (RMEL) at individual 
VoIP components and a remote rule matching engine (RMER) for each domain to 
correlate events across components. The RMEL leverages the fast packet matching 
capability of Snort and augments Snort’s rule language to perform stateful and 
cross-protocol detection. SPACEDIVE presents a flexible, easy to parse, high level 
rule language to match network events. Several attack scenarios are presented and 
classified to bring out the power of a correlation based IDS for VoIP. The design 
is implemented in a testbed and demonstrated to increase the resilience of a VoIP 
client to DoS attacks. The cost of the rule matching is also quantified. 
In ongoing work, we are looking at techniques to reduce false alarms from the 
RMEL’s through correlation, use of the RMEH to have rules private to an 
organization, and negotiation protocol between the RME’s automatically 
generated from the rulebase. Another important area of our ongoing research is 
that of peer-to-peer VoIP systems. Peer-to-peer VoIP systems have a great 
potential for wide-spread deployment – an example is the popular Skype system. 
We are also looking at ways to detect Spam in VoIP systems. Finally, we are 
investigating the effectiveness of our system in presence of secure protocols – for 
example, secure RTP (SRTP).  
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