
Intrusion Detection in Voice-over-IP
Environments

YU-SUNG WU, VINITA APTE1, SAURABH BAGCHI

Dependable Computing Systems Lab

School of Electrical & Computer Engineering. -Purdue University

465 Northwestern Avenue

West Lafayette, IN 47907

USA

Email: {vapte,ywsu,sbagchi}@purdue.edu
Telephone: +1 765-494-3362
Fax: +1 765-494-2706

SACHIN GARG

Yahoo Labs, India

Email: gsachin@yahoo-inc.com

NAVJOT SINGH

Avaya Labs

Email: singh@avaya.com

1 The first two authors contributed equally to the paper. The order of these two author names is
not significant.

1

Abstract
In this article, we present the design of an intrusion detection system for VoIP networks. The first
part of our work consists of a simple single-component intrusion detection system called SCIDIVE.

In the second part, we extend the design of SCIDIVE and build a distributed and correlation-based
intrusion detection system called SPACEDIVE. We create several attack scenarios and evaluate the
accuracy and efficiency of the system in the face of these attacks.

To the best of our knowledge, this is the first comprehensive look at the problem of intrusion
detection in VoIP systems. It includes treatment of the challenges faced due to the distributed
nature of the system, the nature of the VoIP traffic, and the specific kinds of attacks at such
systems.

Keywords: Intrusion detection, Voice over IP system, Cross-protocol detection,
Stateful detection, Correlation-based IDS, SIP, RTP.

Introduction
Voice over IP (VoIP) systems are gaining in popularity as the technology for
transmitting voice traffic over IP networks. While VoIP technology is set to
revolutionize communications, and is already being used by a number of
traditional telephone companies to connect their regional offices, on a smaller
scale it can also be a useful solution for businesses looking to trim their telephone
expenses. As the popularity of VoIP systems increases, they are being subjected to
different kinds of intrusions, some of which are specific to such systems, and
some of which follow a general pattern of attacks against an IP infrastructure.
There have been enormous strides made in the field of intrusion detection systems
(IDS) for different components of the information technology infrastructure.
Some of the IDSs are generic in nature and can be customized with detection rules
specific to the environment in which they are deployed (e.g., Snort [7] and
Prelude [10]), and some are tools specifically targeted to an environment or to
specific classes of intrusions, such as IBM Tivoli Intrusion Manager for MQSeries
products [11]. VoIP systems pose several new challenges to IDS designers. First,
these systems employ multiple protocols for call management and data delivery.
Second, the systems are distributed in nature and employ distributed clients,
servers, and proxies. Third, the attacks against such systems span a large class,
from denial of service to billing fraud. Finally, the systems are heterogeneous and
typically under several different administrative domains, e.g., the proxy server
may be provided by the service provider and the client managed by the home
organization.
In this article, we present our work in the design and deployment of an intrusion
detection system for VoIP networks. The initial goal of our work was to build a
local, single-component VoIP IDS. We call this system SCIDIVE (pronounced as
Skydive). SCIDIVE is structured to detect different classes of intrusions, including,
masquerading, denial of service, and media stream-based attacks. It can be

2

installed at multiple points – clients, servers, or proxies, and can, without
substantial system customization, be extended for detecting new classes of attacks.
The IDS can handle client mobility, an important design goal of VoIP protocols
such as SIP, and does not flag false alarms for such situations. SCIDIVE can
operate with both classes of protocols that compose VoIP systems – call
management protocols (CMP), e.g., the Session Initiation Protocol (SIP) [2], and
media delivery protocols (MDP), e.g., the Real Time Transport Protocol (RTP)
[3]. SCIDIVE proposes two critical abstractions for VoIP IDS – stateful detection
and cross-protocol detection. Stateful detection denotes the functionality of
assembling state from multiple packets and using the aggregated state in the rule-
matching engine. The reassembly functionality is applicable to packets of both
CMP and MDP and can be configured to handle packets spread out arbitrarily far
apart in time. Some existing IDSs provide support for reassembly, but they are
restrictive and applicable only to specific protocols. For example, Snort’s stream4
module can reassemble TCP packets that belong to the same session. Cross
protocol detection denotes the functionality of matching rules that span multiple
protocols, e.g., detecting a pattern in a SIP packet followed by one in a succeeding
RTP packet followed by one in an RTCP packet. The aggregation across protocols
can be chained in an arbitrarily long manner and spread out in time. This
abstraction is powerful for VoIP systems because they involve multiple protocols
and several attacks are based on sequences that cross protocol boundaries. There
are very few systems today that support cross-protocol detection. One of the
notable ones is WebSTAT [12] for detecting attacks against web servers by
correlating protocols in a vertical stack, e.g., application level (web server) and
operating system log. Since VoIP systems use multiple application layer protocols,
horizontal cross-protocol correlation is required.
The architecture of SCIDIVE uses a Distiller, through which all incoming network
traffic passes and which translates packets into protocol dependent information
units called Footprints. The Footprints that belong to the same session are
grouped into Trails. The Event Generator maps Footprints into Events which are
matched by the Rule Matching Engine against a Ruleset. According to the stateful
and cross-protocol philosophies, the Events can potentially have state information
and encapsulate information from multiple packets. The rules considered are
misuse-based, as opposed to the complementary philosophy of anomaly-based
rules. The classic tradeoffs between the two approaches also hold here⎯misuse-
based detection cannot deal with novel types of attacks, while anomaly-based
rules can have large amount of false positives.
SCIDIVE is demonstrated on a sample VoIP system that comprises SIP clients and
SIP proxy servers. The system uses SIP Express Router for the proxy and three
different kinds of clients – KDE’s KPhone [13], Microsoft Windows Messenger
[14], and XTen’s X-Lite IP Telephony client [9]. The protocols used are SIP for
call management and RTP for real-time audio data transfer. In our experiments, an
instance of SCIDIVE is associated with each client. Four different types of attacks
are simulated on the system and the effectiveness and efficiency of SCIDIVE
analyzed.
VoIP systems involve multiple components and are distributed in nature. These
components are widely spread and often fall under different administrative
domains. Since SCIDIVE uses local, single-component based detection, it cannot
detect an attack that manifests itself at multiple components. Therefore, in the
second part of our work, we extend the design of SCIDIVE and build a distributed
and correlation-based intrusion detection system called SPACEDIVE. SPACEDIVE

3

also uses the concepts of stateful and cross-protocol detection. It further proposes
the abstraction of correlation based IDS and provides a rule language to express
correlated rules. Correlation based IDS’s have the goal of clustering alerts from
multiple detectors (in our case, the detectors resident on the different VoIP
components) to come up with a combined alert or the determination of an attack.
The correlation may be of information gathered from peer entities or entities at
different levels. SPACEDIVE is demonstrated on a sample VoIP system that
comprises SIP clients and SIP servers spread over two domains. Moreover, our
testbed is in the form of a hierarchy of components that respects administrative
domains and is thus suitable for deployment in real-world settings. Several attack
scenarios are created and the accuracy and the efficiency of the system evaluated
with rules meant to catch these attacks.
In summary, the contributions and the advantages of SPACEDIVE can be specified
as follows:
1) SPACEDIVE presents the architecture of a hierarchical correlation based IDS

that is well suited to detecting attacks in VoIP applications. The ability to
match rules remotely makes the system less prone to DoS attacks launched
against VoIP components or their hosts.

2) SPACEDIVE provides a language to specify rules for local matching and remote
matching. SPACEDIVE’s architecture makes the matching of rules efficient and
scalable, both essential features for a VoIP system.

SPACEDIVE anticipates the growing trend of peer-to-peer VoIP systems and its
architecture is well suited to detecting intrusions on the basis of information
exchanged on a peer-to-peer basis. Additionally, we present a taxonomy of attacks
against VoIP systems. Some notable attacks from this taxonomy are redirect
attacks, toll frauds, call interception attacks, etc. We propose the end-to-end
matching paradigm as a powerful approach for detecting a large class of these
attacks. Yet another contribution of this work is our rule language that extends
Snort’s rule language and customizes it for a VoIP IDS.
The taxonomy of attacks and the rule language can be the starting point for much
needed research and development in VoIP IDS.

VoIP Overview
Voice over IP (VoIP) systems provide facilities for setting up and managing voice
communications based on one of two main call management protocols: H.323 [1]
and SIP. H.323 is the most widely deployed standard in VoIP communications,
but SIP is increasing in popularity due to its simplicity and corresponding ease of
implementation. With both protocols, endpoints or terminals, which may be
physical phones (hardphones) or software programs executing on a general-
purpose computer (softphones), send and receive RTP packets that contain
encoded voice conversations. Since voice calls may be made between IP phones
and phones on the Public-Switched Telephone Network (PSTN), gateways often
perform transparent translation between IP and non-IP based networks. Such
gateways may implement protocols for media gateway management such as
MGCP [4] and MEGACO/H.248 [5]. Within an H.323 network, an optional
gatekeeper may be present. The gatekeeper performs several functions including
authorizing network access, assisting in managing quality of service, and
providing address-translation services. Also, multipoint controllers may be present
to manage multipoint conferences between three or more terminals or gateways.
SIP networks also include additional types of servers.

4

Figure 1: SIP-based VoIP Environment
A proxy server forwards requests, possibly after performing some processing or
translation. A redirect server is used to support mobile clients and performs
address translation for an accepted request and returns the new address to the
originator of the request. Both proxy and redirect servers may be used to
implement call forwarding and other similar services. User agent clients send
requests to user agent servers to initiate calls. The user notifies a registrar of his
current location to allow others to contact him. The registrar is often combined
with a proxy or redirect server.
Suppose that a user Bob wants to call another user Alice. Bob begins by sending a
SIP INVITE message to its own proxy server that contains Alice’s SIP address in
the destination field. Bob’s proxy server then does a lookup (this could be a DNS
lookup, a simple table lookup etc) to locate Alice’s proxy server and then
forwards the INVITE to Alice. When Alice receives the INVITE and is willing to
accept the call from Bob, she sends a SIP OK message back to Bob using the
same path. Once this call setup is complete, Alice and Bob can exchange voice
data encoded in the form of RTP packets directly.
Both H.323 and SIP provide protocols for call setup, management, and media
delivery. Voice is encoded using a negotiated codec and delivered using RTP over
UDP/IP for both protocols. However, call setup and management are handled
quite differently. H.323 relies on the H.225.0 [15] and H.245 protocols [16],
whereas SIP uses a much simpler set of request messages: INVITE, ACK,
OPTIONS, BYE, CANCEL, and REGISTER. SIP provides a globally reachable
address to which callees bind using SIP REGISTER method. The INVITE
message is used by a user client agent wishing to initiate a session, which can be
responded to with an OK, followed by an ACK. To tear down a connection, a
BYE message is sent. CANCEL cancels a pending INVITE. The OPTIONS
message is used to query or change optional parameters of the session, such as,
encryption. Some common SIP error messages are described in Table 1.

Table 1: Sample SIP Error Messages

301 Moved permanently - Redirect

302 Moved temporarily - Redirect

403 Forbidden

SIP
Client

SIP
ClientRTP

S I P

S I P

SIP
Gateway

PSTN

S I P Proxy and
Redirect Servers

SIP
Client

SIP
ClientRTP

S I P

S I P

SIP
Gateway

PSTN

S I P Proxy and
Redirect Servers

5

404 Not Found

408 Request Timeout

480 Temporarily Unavailable

500 Server Internal Error

Figure 2: Sample SIP message exchange

INVITE

Ringing

OK

ACK

Conversation over RTP

BYE

OK

INVITE

Ringing

OK

ACK

Conversation over RTP

BYE

OK

VoIP Vulnerabilities
One of the main advantages of a VoIP system is the convergence of voice and
data networks with voice being conveyed over a data network. While this offers
advantages in cost and ease of management, the use of the data network in a
converged system makes the voice network vulnerable to the same vulnerabilities
suffered by the data network. This includes well-known attacks such as denial of
service attacks as well as authentication attacks. In addition, a voice network
introduces potential vulnerabilities related to toll fraud, privacy, and denial of
service attacks based on degrading the quality of service of the voice conversation.
A major source of vulnerabilities lies in the protocols used to set up and manage
calls. Both H.323 and SIP transmit packet headers and payload in clear text
without a per-message integrity check (e.g. digitally signed), which allows an
attacker to forge packets that manipulate device and call states. For example, such
forged packets can prematurely terminate calls, redirect calls, or facilitate toll
fraud. Some efforts are currently underway to develop encrypted signaling, but no
solution has found widespread adoption. Some of the security features are built
into SIP, such as, end-to-end or hop-by-hop encryption of the SIP traffic. Some
other solutions rely on lower layer security primitives, such as, IPSec. However, a
concern regarding use of any of the security primitives is the computation load on
the end points, some of which are very resource constrained. It also relies on the
deployment and use of keys, which requires the adoption of a key management
infrastructure to which the different VoIP service providers must agree. This has
turned out to be a challenging deployment issue so far. .
In addition to vulnerabilities present in the signaling protocols, the RTP protocol
for media delivery also introduces several vulnerabilities due to the absence of
authentication and encryption. Even if Secure RTP (SRTP) is used, the system

6

would still be vulnerable to smart DoS attacks, as the extra encryption-decryption
time required for each SRTP packet only worsens the situation. Each RTP packet
header contains a sequence number that allows the recipient to play back voice
packets in the proper order. However, an attacker can easily inject artificial
packets with higher sequence numbers that will cause the injected packets to be
played in place of the real packets. Also SPIT (Spam over Internet Telephony) is
predicted to become a problem as VoIP systems become more widespread.

Attacks Taxonomy
We can classify the possible attacks into two broad categories:
(i) Generic Attacks, (ii) VoIP-Specific Attacks

Generic Attacks
We classify the generic attacks into four categories: Denial of Service (DoS)
attacks, Buffer Overflow, Unauthorized access, and Attack on the operating
system. These kinds of attacks are well-known in traditional computing
environments, but also affect VoIP environments, since they share several
protocols, and hence their vulnerabilities.

VoIP-specific Attacks
Signal Protocol Attack: Such attacks exploit vulnerabilities in the signaling
protocol. For example, the SIP protocol contains holes in the subset related to
invite messages.
Redirect Attacks: A redirect attack might change a voicemail address or a call
forwarding address to the address of a hacker, thereby opening a channel to abuse.
Call Interception: An unauthorized person could monitor and intercept voice
packets, perhaps reading and stealing or corrupting them.
This is an example of a passive attack and is outside the purview of SPACEDIVE.
Toll Fraud: An unauthorized person could monitor and intercept call setup
packets, gaining sufficient information to allow her to masquerade as a legitimate
user and make fraudulent calls.

SCIDIVE Architecture
VoIP applications involve multiple protocols and each of these protocols has

its own protocol states that need to be well-synchronized in order to keep the
VoIP applications running correctly. As the end goal all attacks against VoIP is to
cause disruptions to these applications, we found that it would be handy for our
IDS to have the capability to detect the disruptions from the protocols and the
corresponding states. To achieve this, the IDS’s rules must possess the ability to
express the combination of the protocol and the states of interest. Most existing
IDS solutions, such as Snort, provide only a generic architecture in which the IDS
itself does not pay much attention to the application level protocols and the
corresponding state information. Consequently, the user has to construct detection
rules from the ground to capture these application level contexts for performing
detection. This creates problems in directly applying these IDS solutions
effectively to a VoIP system.

The design of the SCIDIVE architecture and its corresponding components is
meant to facilitate the process of detecting VoIP related attacks by utilizing both

7

the protocols and the state information. We propose a new IDS methodology in
SCIDIVE in which each rule could harvest the stateful information of VoIP sessions
for matching malicious patterns – Stateful Detection. It could also harvest packets
from different protocols involved in a VoIP protocol for detection – Cross
Protocol Detection. Note that the SCIDIVE architecture is not specific to the
signaling protocol or the media protocol; it just assumes that there are two distinct
protocols for these two functions. Thus, either H.323 or SIP can be used for the
signaling protocol. However, in our current implementation, the parser for the
rules has been created for SIP and our discussion hereon will assume SIP as the
signaling protocol.

SCIDIVE Components: Footprints, Trails, Events, Rules

Figure 3: SCIDIVE Architecture

Figure 3 presents an overview of the SCIDIVE architecture. In SCIDIVE, incoming
network flows first pass through the Distiller, which translates packets into
protocol dependent information units called Footprints. The Distiller is
responsible for doing IP fragmentation, reassembly, decoding protocols, and
finally generating the corresponding Footprints. A Footprint is a protocol
dependent information unit, which, for example, could be composed of a SIP
message or an RTP packet. Footprints that belong to the same session are grouped
into Trails. In Figure 2 we have three Trails that correspond to two SIP sessions
and one RTP session. The Event Generator maps footprints into a single event.
For example, we can map two out of order RTP Footprints into an event called
RtpJitter. Event Generator is hard-coded and seamlessly coupled with internal
structures for best possible performance. In general, it is just a layer of abstraction,
which correlates the information in footprints and concentrates the information
into a single event. It helps performance by hiding some computationally
expensive matching, e.g., by triggering the ruleset at the moment of interest
instead of triggering it upon each incoming RTP Footprint.
Ruleset is triggered by a sequence of Events, e.g., we can define a rule for
detecting RTP flow [event 1] after a session is torn down [event 2]. The matching
in the Ruleset is based on Events that can potentially encapsulate information
from multiple packets and can bear state information. Besides the information that
Events provide, the Ruleset can also perform the matching based on crude

8

information directly from the Trails in case no suitable Event is available. For
example, we might be interested in knowing who prematurely tears down the
session. To achieve this, we probably need to have a look at the corresponding
SIP Footprint to identify the ID and IP address of the originator. This direct access
however will cause some degree of inefficiency.

Cross-protocol Methodology for Detection
We propose a powerful abstraction for intrusion detection systems in general, and
VoIP IDSs in particular, namely, cross-protocol detection. An IDS that uses cross-
protocol detection accesses packets from multiple protocols in a system to
perform its detection. This methodology is suitable to systems that use multiple
protocols and where attacks spanning these multiple protocols are possible. There
is the important design consideration that such access to information across
protocols must be made efficiently.
A VoIP system incorporates multiple protocols. A typical example is the use of
SIP to establish a connection, followed by use of RTP to transfer voice data. Also,
RTCP and ICMP are used to monitor the health of the connection. VoIP systems
typically have application level software for billing purposes and therefore may
have accounting software and a database.
To motivate the need for cross-protocol detection, we introduce a synthetic
example of a billing fraud attack. Since VoIP systems have been gaining in
popularity only of late, there are very few instances of actual attacks in databases
such as CERT [15] and Bugtraq [16]. In our synthetic scenario, the attack is
launched by the attacker exploiting a vulnerability in the SIP proxy. She sends a
carefully crafted SIP message to fool the proxy into believing the call is initiated
by someone else. The proxy initiates the accounting software with the information
about the incorrect source for the call. This allows the attacker to make calls
without being charged. Using the cross-protocol methodology for detection, one
can create a cross-protocol rule to look at the SIP messages, the transaction
messages between the accounting software and the database, and the RTP flows
later on. Specifically, each of the following three conditions must hold.

1. The SIP message should follow the correct format.
2. When the accounting software sends out a transaction to denote a call from

user A to user B, check if user A has sent a SIP Call Initialization message
to user B. If user A has not set up the call with a legitimate SIP Call
Initialization message, then this condition will be violated.

3. Check the source/destination IP addresses of the subsequent RTP flows.
Together with information from DNS and SIP Location Servers, we can
reconfirm that each RTP flow has a corresponding legitimate call setup.

In SCIDIVE, cross-protocol detection is achieved through keeping multiple trails for
different sessions. In our example, we can have (i) a ‘SIP trail’ which tracks all
the SIP messages in the session between user A and user B; (ii) an ‘RTP trail’
which tracks all the RTP packets in the session between A and B; and (iii) an
‘Accounting trail’ which tracks relevant accounting transactions in this session
between A and B. Then, we can define three events based on the three trails
corresponding to the three conditions above. The first event is “an incorrectly
formatted SIP message in the SIP trail”, which could be an indication of an
attempt to exploit the vulnerability in the SIP proxy. The second event is “a
transaction in the Accounting trail that has no matching call initialization message
in the SIP trail”. The third event is “either the source or destination IP addresses
of the RTP packet without a matching address in the SIP packet”. The third event

9

is specialized to take mobility into account, which will be indicated by a SIP
REINVITE message with an update of state at the SIP Registrar that maintains
location information. In the Ruleset, we can put a rule called Billing Fraud, which
is triggered by a combination of these three events. An advantage of creating a
rule based on a sequence of three events is improving the accuracy of the alarm
because the rule is based on three facets of the attack. It is perceivable that relying
solely on Event 1 or Event 3 to signal ‘Billing Fraud’ alarm will result in false
alarms. Also, bugs or temporary system failures might cause Event 2. Therefore,
relying solely on Event 2 will possibly give us false alarms.

Stateful Methodology for Detection
A second abstraction useful for VoIP systems in particular is stateful detection.
Stateful detection implies building up relevant state within a session and across
sessions and using the state in matching for possible attacks. It is important that
the state aggregation be done efficiently so that the technique is applicable in high
throughput systems, such as VoIP systems.
A VoIP system maintains considerable amount of system state. The client side
maintains state about all the active connections – when the connection was
initiated, when it can be torn down, and what the properties of the connection are.
The server side also maintains state relevant to billing, such as the duration of the
call. To motivate the need for stateful detection, we introduce a synthetic example
of a DoS attack and a password guessing attack. An unauthorized user client
keeps sending unauthenticated REGISTER requests to bombard the SIP proxy and
ignores the 401 UNAUTHORIZED reply error message from the SIP proxy. If the
user client keeps sending the same request to the server, it can be seen as a type of
DoS attack on the SIP proxy. Along with the UNAUTHORIZED reply message, the
proxy sends a challenge phrase to the client. If the client keeps sending requests
with different values in the challenge response field, this could be seen as a type
of attack that is trying to break the authentication key by brute force. In either case,
it would be helpful for detection if the system can look at the series of user client
requests and the subsequent server responses. Since 4XX responses are not
uncommon in a normal session, a traditional IDS like Snort with a rule to detect
multiple 4XX responses may flag a large number of false alarms. For example,
most user clients send an unauthenticated REGISTER request to the server,
presuming that the SIP Proxy does not require authentication. Later, the server
sends a 401 response along with a challenge phrase to the client to indicate that
authentication is required. The client should then send a new REGISTER request
to the server along with the correct response phrase to continue the registration
process. If the IDS does not isolate 4XX error messages from different sessions
and doesn’t correlate 4XX error messages with requests, it is likely it will make
false verdicts based on unrelated 4XX error messages. In SCIDIVE, Footprints that
belong to a session are structured and kept in a single trail. Therefore, the history
of all the state transitions of each session can be easily tracked. To handle the two
attack scenarios above, we can set up the following two events – (i) an event
“DoS via repeated SIP requests”, which represents continuous, alternating SIP
requests and 4XX error messages in a particular session; (ii) an event “Password
guessing” which represents continuous, alternating SIP requests with different
challenge responses and 401 Unauthorized reply error messages in a particular
session. Flagging of the two events indicates two different kinds of attacks that
may have different responses. In the first case, the response may be to identify the
source of the attacker and block her IP address while in the second case, it may be

10

important to take more stringent measures to ensure the security of the system,
such as changing the authentication password to a longer one.

Placement of SCIDIVE Components

The SCIDIVE architecture has a great deal of flexibility in terms of the placement of
its components. For example, it is possible to deploy the SCIDIVE IDS only on the
SIP client side for detecting anomalies in the VoIP traffic in and out of the client.
A more aggressive approach would be to deploy the SCIDIVE IDS on all the
components – Clients, SIP Proxy, and Registrar server – in a VoIP system. For
example, in the Billing attack scenario outlined earlier in the section “Cross-
protocol Methodology for Detection”, we need to deploy the IDS on the SIP
Proxy and the Accounting Server to detect Event 1 and Event 2. Also we need to
deploy the IDS close to both clients to monitor RTP flows to detect Event 3. It
seems a logical path to use multiple SCIDIVE IDS and an alert correlation engine to
give better detection accuracy. The actual gains, impacts on the system
performance, and costs for doing so are explored in the next part in the system
called SPACEDIVE.

Prototype and Experiments
An IDS prototype is built to instantiate the SCIDIVE architecture for VoIP systems.
We implement four attacks against the VoIP system, instantiate rules in SCIDIVE
for detecting the attacks, and perform analysis of the detection efficiency. For
simplicity, the IDS is placed at each client for the experiments here. This
configuration is shown in Figure 4 and is referred to as an End-point based IDS
architecture.

Figure 4: IDS Engine sits on or close to the end-point

Internet

IDS

IDS Protected Area

SIP
Proxy

Hub Internet

IDS

IDS Protected Area

SIP
Proxy

Hub

Testbed
Our testbed comprises the following:
• Proxy : SIP Express Router from www.iptel.org
• Clients : Kphone from www.wirlab.net; Windows Messenger from Microsoft;
X-Lite from www.xten.com
Figure 5 depicts the topology of our testbed. The IDS is connected to a hub
through which the traffic of Client A can be seen. Although the prototype IDS can
also see the traffic of Client B and the SIP Proxy, it does not look into those traffic
for any purpose, thus mimicking an end-point based IDS.

11

Figure 5: Testbed with client phones, proxy servers, network elements, attacker host and the IDS

Attacks and Demonstration of the IDS
We implement four attacks to demonstrate the functionality of the IDS. Three of
the four attacks are based on the vulnerabilities in the signaling protocol, i.e., SIP.
They are BYE attack, Fake Instant Messaging, and Call Hijacking. The fourth is
based on the vulnerabilities in the media transport protocol, which is the RTP
attack. A summary of the attacks is presented in Table 2. Details of the attacks are
presented in the following sections.

Table 2: Summary of Attacks

Name of

Attack
Protocols

Involved
Cross-

protocol or
not?; If yes,
how?

Stateful
or not?; If
yes, how?

Rule Snippet

BYE
Attack

SIP, RTP Yes; Detect no
RTP traffic
once SIP BYE
has been seen.

Yes;
Monitor
session to
determine
when it has
been torn
down.

No RTP traffic
should be seen
after a SIP
BYE from a
particular
user agent.

Fake
Instant
Messaging

SIP, IP Yes; Check the
source IP
addresses of
incoming IM
messages (SIP
Message)

No; Check the IP
addresses of
all the
incoming
messages. The
address should
stay the same
within a time
period.

Call SIP, RTP Yes; Detect no Yes; No RTP traffic

12

Hijacking RTP traffic
once SIP
REINVITE has
been seen.

Monitor
session to
determine
when it has
been
redirected.

should be seen
after
a SIP BYE from
a particular
user agent.

RTP
Attack

RTP, IP Yes; Check the
source IP
address of RTP
packets.

Yes. Check
if the
sequence
numbers in
consecutive
packets
increase as
expected.

Check if RTP
packets come
from
legitimate IP
address and if
the sequence
number
increases
appropriately.

BYE Attack

Figure 6: Schematic of BYE Attack

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

BYE

Detect orphan RTP flow.
Specifically, RTP flow (the
gold line) should stop
before Client A sees the
‘BYE’

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

BYE

Detect orphan RTP flow.
Specifically, RTP flow (the
gold line) should stop
before Client A sees the
‘BYE’

In this attack scenario, we have three SIP User Agents {A, B, and Attacker}. We
also have a SIP Proxy for setting up the connections. The goal of the BYE attack
is to prematurely tear down an existing dialog session, which can be viewed as a
kind of Denial-of-Service attack. In Figure 6, SIP UA A and SIP UA B have an
ongoing dialog session. Later, Attacker sends a faked BYE message to A. After
that, A will believe that it is B who wants to tear down the connection by sending
the BYE message. A will stop its outward RTP flow immediately, while B will
continue to send RTP packets to A, since B has no notion that the connection
should be terminated.
In order to detect this attack, we create a rule that detects orphan RTP flow.
Specifically, if it is indeed B who wants to stop the connection, then A should not
see the RTP flow from B after getting the BYE message. Thus, in the IDS, we
create a rule which signals an alarm when seeing new RTP Footprints in the RTP
Trail that corresponds to the flow from B after seeing a BYE SIP Footprint.
Although the attack itself occurs only within the signaling protocol (SIP), our
detection rule spans SIP and RTP and provides an illustration of the importance of
cross-protocol detection.

13

Fake Instant Messaging

Figure 7: Schematic of a Fake Instant Messaging Attack

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]Fake IM –
A will believe
this message is
from B, though
it is actually
from C

IM

Compare the source IP addresses
of all messages and look for
discrepancies…(i.e. within a
period, all messages from B
should bear the same source IP
address.)

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]Fake IM –
A will believe
this message is
from B, though
it is actually
from C

IM

Compare the source IP addresses
of all messages and look for
discrepancies…(i.e. within a
period, all messages from B
should bear the same source IP
address.)

In addition to IP Phone Call setup, SIP also supports Instant Messaging. By faking
the header of an instant message appropriately, the attacker can forge a message to
A and mislead it into believing the message is from B. Our rule for detecting this
attack looks at the IP addresses of the messages. Under most circumstances,
within a period, messages from B should bear the same source IP address.
Therefore, once we find a message from B which carries a different IP address, it
would be an indication that this message is a fake one. The rule takes rate of user
mobility into account and allows for changes in the IP address according to the
maximum rate of user motion. Indeed, this rule is not perfect. If the attacker is
able to spoof its IP address, then this rule will not work. However, based on the
Host-based architecture, this is probably the best we can do. This leads to interests
in research on a more ambitious architecture like deploying IDS on both client
ends.

Call Hijacking

Figure 8: Schematic of Call Hijacking Attack

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

Re-Invite

Detect orphan RTP flow.
Specifically, RTP flow (the
gold line) should stop
before Client A sees the
‘Re-Invite’

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

Re-Invite

Detect orphan RTP flow.
Specifically, RTP flow (the
gold line) should stop
before Client A sees the
‘Re-Invite’

14

A direct impact of this attack is that B will experience a continued silence since A
is no longer sending its voice data to B. For this part, the Call Hijacking attack can
be seen as a kind of Denial-of-Service attack. A more subtle impact is that if the
attacker were able to emulate the voice data of B, then after successfully
redirecting the call, A would not be able to distinguish between B and the attacker.
This could lead to issues of confidentiality and breach of privacy since the
attacker will be able to listen to what A is saying.
To detect this attack, we use a similar approach as for the BYE attack. Intuitively,
if the REINVITE message is indeed from B, then A should not see any RTP flow
from B after that. By detecting orphan flows, we are able to determine whether
it’s a legitimate REINVITE message or a malicious one.

RTP Attack

Figure 9: Schematic of an RTP Attack

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

Junk RTP
packet

Have sanity check on the
RTP flow. (e.g. whether
these packets come from
the correct IP address and
whether the sequence
number increases nicely.)

SIP UA [A]
SIP:enterprise@sam

SIP Proxy
Sam.xxx.com

SIP UA [B]
SIP:typhoon@sam

SIP UA [Attacker]

Junk RTP
packet

Have sanity check on the
RTP flow. (e.g. whether
these packets come from
the correct IP address and
whether the sequence
number increases nicely.)

All the attacks mentioned earlier are signaling based attacks. The RTP attack on
the contrary is based on the vulnerabilities in media transport. In this attack, the
attacker sends RTP packets whose contents are garbage (both the header and the
payload are filled with random bytes) to one of the persons in a dialog. In this
example, the attacker sends garbage bytes to A. Since these garbage packets will
corrupt the jitter buffer in the IP Phone client, depending on different
implementations, this attack could result in intermittent voice conversation or in
crashing the client. For example, in our experiment, X-Lite will crash after this
attack while the effect on Microsoft Messenger is intermittent voice conversation.
This attack also leads to degradation in QoS (jitter) and in the voice quality. The
rule we use for detecting this attack is that the sequence number in succeeding
RTP packets should increase regularly. Specifically, if we see two consecutive
packets whose sequence numbers have a difference greater than 50, the IDS will
signal an alarm. The gap between sequence numbers can also be seen in a DoS
attack free environment, which can be caused by abrupt network traffic
congestion or high CPU utilization on a phone. For example, we have seen cases
where the sequence number jumped by hundreds due to crashed phone clients.
However, these are not so common as seen in our testbed, and the number 50 is
empirically chosen such that the false positive rate is kept low enough (e.g. < 4%

15

in our experiment). A larger difference value will further decrease the false
positive rate but can decrease the sensitivity in detecting DoS attacks as well.

Performance Evaluation

In this section, we comment on the performance of the IDS system with respect to
three metrics: (1) the detection delay, D, which is defined as the time from when
an attack/intrusion is made to the time it is detected, (2) the probability of false
alarm, Pf, which is defined as the probability that the IDS flags an intrusion when
none has occurred, and (3) the probability of missed alarm, Pm, which is defined
as the probability that the IDS system does not flag an intrusion when one occurs.
The goal is to make the reader aware of the variables that affect these metrics and
give an idea of practical values. Detailed performance evaluation with numerical
computation is the subject of ongoing work.

BYE and Call Hijacking attack
In both these attacks, the IDS rule looks at the SIP signaling event (BYE or
REINVITE) and monitors the media stream following this event to detect an
intrusion. Specifically, the arrival of an RTP packet at the original RTP port from
the original sender flags an intrusion.

Detection Delay

Figure 10: Detection Delay

Measuring from the time the SIP message is received, it includes the time up to
the arrival of the RTP packet from the original sender. Obviously, the time
depends on the frequency of RTP packets. A typical period employed is 20
milliseconds. However, the RTP packet arrival depends also on the network
conditions. Specifically, the delay distribution of packets from the sender to the
receiver would cause this quantity to change. Figure 10 outlines the various
timing variables involved. Let the time of the last RTP packet arrival be T1 (before
the fake BYE/REINVITE message arrival). Also, without loss of generality, let
this message originate from the sender at time 0. Then T1 is the transport delay of
this RTP packet. Further, let Tsip be the time of arrival of the SIP message. Let T2

16

be the time of arrival of the RTP packet, which originated 20 ms after the previous
RTP packet. We assume that the fake SIP message was generated after the 1st
RTP packet but before the 2nd RTP packet. When the SIP message is received, the
IDS system starts looking for RTP packets for a total duration of “m”
milliseconds. Obviously, T1, T2 and Tsip are random variables and m is a fixed
value. The detection delay D is a function of these four parameters as D = T2 − Tsip,
where T2 = 20 + Nrtp and Tsip = Gsip + Nsip . Nrtp and Nsip are the random variables
associated with the network delay for each packet. While the second RTP packet
is generated 20 milliseconds after the origin, the fake SIP message is generated
between the two RTP packets with a distribution given by Gsip. Therefore, D = 20
+ Nrtp − (Gsip − Nsip). Given the distributions of these random variables, it is
possible to compute the detection delay distribution. Under the simplest of
assumptions, where the fake SIP message is generated with a uniform distribution
in (0,20), and the network delay is assumed to be independent and identical for all
packets, the expected detection delay is 10 milliseconds, which is half of the RTP
packet generation period.

Probability of Missed Alarm

Since the detection depends on monitoring after a SIP message arrival and since
this monitoring interval is necessary finite (‘m’ milliseconds), there is a
probability that the IDS system may not detect the intrusion. For instance, if the
subsequent RTP packet(s) from the original sender are lost (somewhere in the
network) and no RTP packet arrives within the monitoring interval, then no alarm
will be raised. Referring to Figure 10, the probability is given by :
Pf = Pr{T2 > Tsip + m} = Pr{Nrtp −Gsip − Nsip > m −20}.

Probability of False Alarm

Figure 11: Probability of False Alarm

Although rare, it is possible for a valid BYE message to arrive before the RTP
packet if, for instance, they take a different route, as shown in Figure 11. In this
case, the IDS system will raise a false alarm. In order to compute this probability,
we assume that the sender generated the valid SIP BYE/REINVITE immediately
(with zero delay) after it has sent out the last RTP packet. In that case, the false
alarm probability is given as Pf = Pr{Nsip < Nrtp}. If the density function and
distribution function of Nrtp and Nsip is assumed to be identical and independent

17

denoted by fN(t) and FN(t) respectively, then the false alarm probability

is . ∫
m

0

NN dt (t)(t)fF

SPACEDIVE
As an extension of SCIDIVE, we propose the design of a system called SPACEDIVE
to serve as a correlation-based IDS for VoIP systems. The implementation
provides an instantiation of the design principles, which are applicable to the
design of any IDS for VoIP applications. Our solution centers on three basic
design principles.
Rule matching engine at the local and remote levels. The system includes rule
matching engines located at the individual VoIP components (local rule matching
engine, or RMEL) as well as remote rule matching engines (RMER). Thus fast
matching of local attack patterns can be done together with correlation of attack
patterns arising from multiple sources. The placement of the RME’s is flexible as
is the generation and transfer of information needed for the RMER’s.
Cross protocol and stateful detection. These principles were present in our earlier
version of the system, SCIDIVE and are maintained in the distributed architecture
as well. To recap, stateful detection denotes the functionality of assembling state
from multiple packets and using the aggregated state in the rule-matching engine.
Cross protocol detection denotes the functionality of matching rules that span
multiple protocols. However, SCIDIVE did not provide any rule language for
specifying these patterns while SPACEDIVE does. Thus the system takes the
rulebase as an input easing the task of applying SPACEDIVE to new deployments.
Integration with Snort. SPACEDIVE needs to examine packets coming in at a host
executing a VoIP component. The packet rate may be high and therefore fast
matching of the rules locally and fast processing to generate events for correlation
are required. The Snort IDS is well known for its efficiency in examining
incoming packets and SPACEDIVE leverages the Snort functionality. To avoid
performance loss, SPACEDIVE is built into Snort using part of its low-level
functionality (examining and processing packets) and adding to it (e.g., to build
state to support stateful detection) and building completely the high level
functionality specific to the VoIP environment.
The typical process flow for the detection of an attack in SPACEDIVE is as follows.
At the local rule matching engine (RMEL), an incoming packet is sniffed and
passed through local rules. These local rules are specified in a language derived
from Snort’s and augmented with constructs to create state. The match generates
an event for the local event trail and optionally state associated with the event. An
event parser next parses the local events to optionally generate a network event. A
network event is synonymous with an event that needs to be aggregated with
events from other VoIP components for matching at an RMER. At the RMER,
there exists a rulebase for network events specified in a high level language
introduced in this paper. The network events from the individual RMEL’s can be
either pushed to or pulled by the RMER, depending on the nature of the event and
the rulebase at the RMER.

18

SPACEDIVE Design

SPACEDIVE Design Hierarchy
The SPACEDIVE design can be broken down in two parts – the local-level design
and the network-level design. Local-level design involves a single VoIP
component (client, proxy, etc.) and has the local Rule Matching Engine (RMEL).
Network–level design takes into consideration all the components deployed in one
domain or across multiple domains and the interactions between them and
provides the remote Rule Matching Engine (RMER). Providing separate IDSs at
the local level and at the network level plays a large part in keeping SPACEDIVE
scalable.

SPACEDIVE Local Level Design

Figure 12: Local Level Design

Rule Matching Engine - (RMER)

Snort Rule
Matching Engine

RME Extension
VoIP State
Repository

Snort packet sniffing / reassembly / decoding

SIP / RTP
packets parser

Original
Snort
Rules

Extension
Rules

Local Event Trail

Network Event Trail

Event Parser

Existing Snort
Functionalities

Added
SPACEDIVE

Functionalities

Rule Matching Engine - (RMER)

Snort Rule
Matching Engine

RME Extension
VoIP State
Repository
VoIP State
Repository

Snort packet sniffing / reassembly / decoding

SIP / RTP
packets parser

SIP / RTP
packets parser

Original
Snort
Rules

Extension
Rules

Extension
Rules

Local Event TrailLocal Event Trail

Network Event TrailNetwork Event Trail

Event ParserEvent Parser

Existing Snort
Functionalities
Existing Snort
Functionalities

Added
SPACEDIVE

Functionalities

Added
SPACEDIVE

Functionalities

Figure 12 shows the SPACEDIVE components at the local level. The components
below the dashed line represent an instance of SPACEDIVE installed on each VoIP
component and integrated with Snort. The sniffing module makes use of the
libpcap library to read packets received over the network. Currently, Snort
understands 4 protocols: IP, TCP, UDP, and ICMP. We have modified Snort so
that it now identifies SIP and RTP packets too.
The State Repository stores the current state of the system. State comprises the
status of an ongoing session – i.e. connecting, established, terminated, etc., the
status of a node, e.g., if the node has moved, or the reception of a particular type
of packet (e.g. a SIP BYE message). The Event Trail keeps track of events,
specified using the low level rule language detailed later in the section titled “Low
Level Rule Language”. The event trail contains events ordered by session ID. For
events that have no associated session ID, such as RTP packets, the timestamp is
used for ordering. The Processing Engine determines whether a pre-defined event
has occurred and records it in the event trail. It also updates the state of the rule

19

variables in the State Repository. The Event Parser takes the event trail as input
and generates a trail of “Network Events”. What constitutes a Network Event is
specified in the RMER, which disseminates the pertinent network event definitions
to the local RMEs. The RMER uses the Network Event Trail to correlate events
across the different components of the network.

Low Level Rule Language
Since the RMEL is built on Snort, we make use of the Snort rule language to
match incoming packets at each VoIP component to generate the local events. A
rule can be broken down into two basic parts, the rule header and options for the
rule. The rule header contains the action to perform, the protocol that the rule
applies to, and the source and destination addresses and ports. The rule options is
used to create a descriptive message to associate with the rule, as well as check a
variety of other packet attributes by making use of Snort's extensive library of
plug-ins.
The general form of a local rule is: action proto src_ip src_port direction dst_ip
dst_port (options).
There are four major categories of rule options:
meta-data These options provide information about the rule but do not have any
effect during detection
payload These options all look for data inside the packet payload and can be
inter-related
non-payload These options look for non-payload data
post-detection These options are rule specific triggers that happen after a rule has
“fired.”
Some important rule options are ‘content’ (allows the user to set rules that search
for specific content in the packet payload and trigger response based on that data)
and ‘priority’ (assigns a severity level to rules.)
When a packet comes in, its source and destination IP addresses and ports are
compared to the rules in the ruleset. If any of them are applicable to the packet,
then the options are compared to the packet. If these comparisons return a match,
then the specified action is taken.
The native rule language of Snort is not well-suited for VoIP stateful or cross-
protocol detection. Snort provides limited capability for remembering state both
within a VoIP session for a given protocol (e.g. SIP) and across protocols (e.g.
SIP & RTP). To make up for this, we add constructs to the existing rule language
so that it is better-suited for detecting attacks targeted to VoIP environments that
span packets in a session and different protocols. Next, we provide a brief
description of the new constructs.
1. sip. This construct is used to identify a SIP call session, which includes all the

SIP messages used in a phone call between two parties.
2. var. This construct is used to set the integer value of a variable in case of a

rule match. This is used as a way of keeping state. The var construct belongs
to the ‘options’ part of a Snort rule.

3. Event. The event construct is used to create event trails. It tells Snort to record
an event when the corresponding rule-match occurs. An event can be triggered
on a combination of rule matches according to the following constructs.

I. And/Or/Not – Logical Constructs. These constructs are used to
trigger an event based on logical combinations of rule matches;

20

II. Before/After – Temporal Constructs. The Before and After
constructs are used to trigger events based on a temporal sequence of
rule matches.

4. Net_Event. This construct follows the same syntax as ‘Event’ except that it is
used to represent a network event as opposed to a local event.

5. Protocol-specific constructs. To detect certain attacks we need to look into
specific fields in the header of a protocol. For example, we may need to know
the window of allowable sequence numbers for an RTP packet. This leads us
to define a construct called ‘seqwin’ that represents the in-range sequence
numbers of RTP. This means that now SPACEDIVE needs to parse the VoIP
protocols (currently SIP and RTP) in addition to the four protocols (IP, ICMP,
TCP, UDP) Snort is currently able to parse. This is more difficult especially
for RTP, because RTP packets do not have a fixed length and they do not
contain any string identifier to identify them as RTP packets. SPACEDIVE uses
the port numbers negotiated via SIP to identify an RTP session. Currently, we
limit our SIP parsing to the session id and the RTP port fields contained in the
SDP header of SIP since these fields suffice for the range of attacks we
consider; while in the case of RTP, we parse the entire header.

Sample Rule: Suppose that an attack pattern consists of packet A containing the
string “DESTROY” followed by packet B containing the string “ERASE”.
Assume that packet A is on port 5000 and packet B is an RTP packet on port 6000.
Then we construct the rule as follows, which will log an event in the local event
trail if both packets are found.
var r1; var r2;
alert udp any 5000 -> any any (content:”DESTROY”; var:r1);
alert rtp any 6000 -> any any (content:”ERASE”; var:r2);
event (r1 AND r2);

SPACEDIVE Network Level Design

Figure 13: Rule Matching Engine Hierarchy

LAN1

LAN1

RMER

LAN2LAN2

RMEH

RMEL RMEL

RMEL RMEL

RMER

LAN1

LAN1

RMER

LAN2LAN2

RMEH

RMELRMEL RMELRMEL

RMELRMEL RMELRMEL

RMER

At the network level, SPACEDIVE views the system as composed of multiple VoIP
domains, each with its own RMER (Figure 13).
The RMER’s perform remote rule matching from network events generated by
each RMEL in its domain. Each RMER comes with a configuration script that
gives it the following information – the IP address and hostname of all the clients,

21

servers, and proxies in its domain. The RME uses this configuration information
for network level rule matching.
We have developed a high-level rule language for specifying network level events
in the RMEs. At the network level a rule R can be represented as:

R = ((wherei:whati) conni) response (i= 1, …, N)

In R, wherei denotes the location of event i, whati denotes the network level event
i, conni is the connective between the events and may be AND, OR, NOT,
BEFORE, AFTER, or NULL. The clause response indicates the response to be
taken in the case of a match and is currently limited to an alert or dropping a
packet. The RME extracts the event specifications (whati) from the rule pertaining
to a particular node (wherei) and disseminates them to that node at start-up. These
event specifications are then used by the event parsers in the RMEL’s to generate
network events. For example, consider a VoIP call established between clients A
and B. An attacker C sends a faked SIP BYE message to A to make it believe that
B wants to tear down the connection. Since B does not know of this attack, it will
continue sending RTP packets to A. To detect this attack, we look for an orphan
RTP flow at A after the BYE message is received. We can frame the high level
rule as:
(clientA:RTP_Flow) AFTER (clientB:BYE_Sent) alert
To make the detection infrastructure scalable, the RMEs may be arranged in a
hierarchy as shown in Figure 13 correlating information across domains. In this
hierarchy, RMEH is a higher level RME that can look at rules corresponding to
multiple administrative domains. Driven by the realization that different parts of a
VoIP system may be owned by different organizations, SPACEDIVE has the
capability to accommodate multiple peer-level RMER’s. The policies and the
resultant rules in each administrative domain may be encapsulated within the
RMEL’s and the RMER without the need to share them. A third-party organization
may own the RMEH which matches for rules that affect multiple organizations.

Algorithms in SPACEDIVE

Local Level Event Generation – Efficient Matching

AND

rv4OR

AND rv3

rv1 rv2

AND

rv4True

(a) (b)

AND

rv4OR

AND rv3

rv1 rv2

AND

rv4OR

AND rv3

rv1 rv2

AND

rv4True

AND

rv4True

(a) (b)
Figure 14: Example rule processing at RMEL

At the local level, all rules specified in the rules file are parsed to form an
expression tree. For example, consider the rule event ((rv1 AND rv2) OR rv3 AND
rv4). The corresponding expression tree for this rule is shown in Figure 14.

22

Each variable (rv1, rv2, rv3, rv4) in the rule will have a pointer to the root of this
expression tree stored with it. Note that a variable may be involved in multiple
rules. In that case, we store a list of root pointers with each variable.
Whenever a variable is set to 1 after a rule match, we need to evaluate the
expression tree. For example, in the above case, when rv3 is set to 1, we find that
the value of the OR expression (the parent of rv3) becomes TRUE, irrespective of
the values of rv1 and rv2. So we can simplify the tree structure by rolling up the
sub-tree rooted at the OR as shown in Figure 14.
Assuming a total of r rules and an average of v variables in each rule, the total
number of variables at RMEL is V=r.v. The search operation is O(log V) time
using binary search. Let H be the height of the original expression tree before any
roll-up. The worst case for locating the variable in the tree is when the tree is
unbalanced with height H = v-1. To locate a variable in the expression tree of
height i, we need O(i) operations. In the worst case, we assume that setting each
variable in the tree to 1 decreases the height of the tree by just one, i.e. no tree
roll-up is possible at any stage. This would happen for example if all the
connectives are AND. Thus, to evaluate the entire expression we get a complexity

O(∑) = O(H.logV + H2) = O(v.logV + v2) = O[v.log v + v.log r + v 2].

If r < v, then the operation is O(v2).
=

+
H

i
iV

1
)(log

Network Level Event Generation
The event parser is loaded with a rules file at start-up by pushing this information
from the RMER that tells it what events to look for in generating the network
events. It then matches these rule definitions with the local event trail to generate
network events. The search through the event trail is linear, not logarithmic, since
the events are generated at runtime and the sorting to enable binary search is not
possible. Consider that the RMER manages M RMEL’s. Let us assume the number
of remote events for each RMEL follows a uniform distribution U(LR, UR). Let
the buffer size for the local event trail be L. In the worst case, there will be UR
rules, the local event trail buffer is full, and each rule will have to be checked
against the entire buffer. This gives a worst case complexity for the remote event
generation as O(UR×L).

Processing at RMER
The RMER also generates an expression tree from the high level rules. The rules
are pointed to by a hash table of size M, each entry corresponding to an RMEL.
Assuming r rules at the RMER, the number of what clauses (equal to the number
of nodes in the expression tree for one rule) is h = kM/r, where k = ½(LR+UR).

Therefore the cost of matching one rule is O(∑) = O(h2).
=

+
h

i
ic

1
)(

23

Demonstration and Experiments

Experimental Testbed

Figure 15: SPACEDIVE Testbed

InternetInternetRMEH

SIP Gateway

SIP Proxy and
Registrar

RMER

SIP Gateway

SIP Proxy and
Registrar

RMERDomain 2

Domain 1

InternetInternetRMEH

SIP Gateway

SIP Proxy and
Registrar

RMER

SIP Gateway

SIP Proxy and
Registrar

RMERDomain 2

Domain 1

Figure 15 shows the layout of our testbed. To realistically simulate a VoIP
environment, we have built a testbed with two domains. This enables us to
demonstrate intra domain calls as well as inter-domain calls. Each domain has a
SIP gateway, a proxy server, a registrar server, clients and support servers like
FTP, DNS etc. The SIP clients and servers are equipped with the SPACEDIVE IDS.
We use the SIP Express Router (ser) [8] for the SIP servers. Ser can be configured
as a SIP registrar or proxy server. Our SIP clients are Windows based and use X-
Lite [9]. In the testbed, we have the gateway, registrar and proxy server running
on the same machine. We deploy RMEH in domain 1 though in practice it can
belong to either domain or be in a separate domain altogether.

Workload
The normal workload consists of the scenario where client 1 from domain 1
makes a call to client 2 in domain 2. When client 1 initiates a call, a SIP request is
sent to the SIP server (either a proxy or a redirect server) in domain 1 with the
addresses of the caller and the callee. If a proxy server is used, client 1 sends an
INVITE request to the proxy server, the proxy server determines the path, and
then forwards the request to client 2. Client 2 responds to the proxy server, which
in turn, forwards the response to client 1. The proxy server forwards the
acknowledgments of both parties. A session is then established between the two
clients. The communication between the caller and the callee happens through
RTP packets. The SIP Gateways provide call control.

Attack Scenarios
This section describes several possible attack scenarios on a VoIP system. In all
the attack scenarios, S1, S2 are two SIP proxies overseeing two different domains,

24

A and B are legitimate clients, while H is a malicious client. To compare and
contrast the power of a local IDS (SCIDIVE) and SPACEDIVE, we give the steps in
detecting each attack scenario by the two systems. Fragments of the relevant rules
from SPACEDIVE are also given.
At the end of the section, we classify the attack scenarios in two dimensions and
summarize the detection in the two systems.

Call Hijacking

Figure 16: Call Hijacking

In the Call Hijacking attack, we assume that H is at a place on the network where
she can sniff the traffic from B. A possible case is that B and H happen to be
using the same network hub. In the attack, H first sends a busy transfer request to
server S2 such that any call to B will be transferred to H when B is busy. Now A
places a call to B. H is able to sniff the Invite message from S2 to B and responds
with a ‘B is busy’ message back to S2 before B is able to reply to S2.
S2 sends a new invite message to H, thinking that B is busy and the call should be
transferred to H. Although B’s ok message will eventually go to S2, many server
implementations will regard this as a noisy reply. On Openser, with the default
configuration, this ok message will also be forwarded to A, which is then ignored
by the X-Lite client. Thus H hijacks the conversation and can collect confidential
information that A wants to pass to B.
SPACEDIVE Detection: A SPACEDIVE rule checks if the OK reply from B goes
correctly all the way from B to A. The correlation is done across events at B, S2,
S1, and A. This falls in the general class of rule called end-to-end matching in
SPACEDIVE, where the correlation is done across events at each component in the
path. This is a powerful rule class and can detect many different kinds of
attacks.(Rules in Table 3)

Table 3: Rules to Detect the Call Hijacking Attack

Component Rule Snippet
A alert sip any any -> any any (var:rv1;

content:INVITE;); net_event (rv1;)
B alert sip any any -> any any (var:rv2;

content:OK;); net_event (rv2;)
S2 alert sip any any -> any any (var:rv3;

content:OK;); net_event (rv3;)

S2 BS1A H

Invite

Invite
Invite

B is busy

Set Busy Transfer

Invite

OK from B

OK from H
OK from H

OK from H

S2 BS1A H

Invite

Invite
Invite

B is busy

Set Busy Transfer

Invite

OK from B

OK from H
OK from H

OK from H

25

RME (A:SIP_SESSION_ESTB) AND (B:SIP_OK) AND
(NOT(S2:SIP_OK)) alert

Man in the middle attack: intercepting outgoing calls

Figure 17: Man in the middle attack

In this attack, we assume H is on the route between S2 and B. The goal for H is to
intercept outgoing calls from B. The INVITE messages are authenticated through
a challenge-response mechanism. As B places an outgoing call, the attacker H
forwards the INVITE messages and the challenge-responses between S2 and B
until the authentication phase is completed.
Then H fakes a ‘404 Not Found’ message back to B such that B thinks A is not
present. In effect a call is established between H and A with H representing itself
as B.
SCIDIVE Detection: SCIDIVE is not able to detect this attack, since the message
exchanges that happen at A, S1, S2, and B can all be part of a legitimate call
signaling process. Furthermore, since H is the malicious client, SCIDIVE cannot be
placed on H.
SPACEDIVE Detection: This can be detected by SPACEDIVE with an end-to-end
matching rule for the OK message going correctly all the way from A to B
through S1 and S2. (Rules in Table 4)

Table 4: Rules to Detect the Man in the Middle Attack

Component Rule Snippet
S1 alert sip A any -> any any (var:rv1; content:OK;);

net_event (rv1;)
S2 alert sip S1 any -> any any (var:rv2; content:OK;)

net_event (rv2;)
B alert sip S2 any -> any any (var:rv3; content:OK;)

net_event (rv3;)
RME (S1:SIP_OK) AND (S2:SIP_OK) AND (NOT(B:SIP_OK))

alert

S2 HS1A B

Invite

Challenge

Invite
Invite

Invite with Response to
challenge

Challenge

Invite with
Response to

challenge

Invite
404 Not Found

OK

OK
OK

S2 HS1A B

Invite

Challenge

Invite
Invite

Invite with Response to
challenge

Challenge

Invite with
Response to

challenge

Invite
404 Not Found

OK

OK
OK

26

BYE Attack

Figure 18: BYE Attack

S2 BS1A H

Invite

Invite
Invite

OK from B

BYE for B
BYE for B

BYE for B

OK from B

OK from B

OK from A
OK from A

OK from A

S2 BS1A H

Invite

Invite
Invite

OK from B

BYE for B
BYE for B

BYE for B

OK from B

OK from B

OK from A
OK from A

OK from A

In this attack, H’s goal is to prematurely tear down a current call session between
A and B. For the attack, H sends a BYE to A, which will trick A into tearing
down the dialog with B. Here, either the session is not secure, or if it is secure, H
is able to masquerade as B through some vulnerability in the system.
SPACEDIVE Detection: This can be detected by SPACEDIVE with an end-to-end
matching rule for the BYE message from B→S2→S1→A. In this attack scenario,
the part of B→S2 is missing. (Rules in Table 5)

Table 5: Rules to Detect the BYE Attack

Component Rule Snippet
S2 alert sip B any -> any any (var:rv1; content:BYE;)

net_event (rv1;)
S1 alert sip S2 any -> any any (var:rv2; content:BYE;)

net_event (rv2;)
A alert sip S1 any -> any any (var:rv3; content:BYE;)

net_event (rv3;)
RME (NOT(S2:SIP_BYE)) AND (S1:SIP_BYE) AND (A:SIP_BYE)

alert

Compromised SIP Proxy

S2 BS1A H

Invite B

Invite B

OK from B

OK from B

H hacked into S2 and
controls S2

S2 BS1A H

Invite B

Invite B

OK from B

OK from B

H hacked into S2 and
controls S2

27

Figure 19: Compromised SIP Proxy

Assume a hybrid system with SIP based VoIP telephony and traditional PSTN
telephony. The accounting of the relaying calls is done at the SIP proxy S2.
Therefore, only authorized users from the VoIP side are able to make calls to a
PSTN phone. Here, we assume that the attacker H exploits a vulnerability at S2,
such that by sending a malformed INVITE message, she is able to impersonate B
and place a call to the PSTN phone.
SCIDIVE Detection: A SCIDIVE IDS at S2 may use signature based rule checking
to decide whether the incoming INVITE message contains malformed data. A
weakness of this approach is that the signature is very specific and there may be a
large number of ways of exploiting vulnerabilities in S2 through malformed
INVITE messages.
SPACEDIVE Detection: In SPACEDIVE, detection components installed on both S2
and B check whether B did send out the INVITE message. (Rules in Table 6)

Table 6: Rules to Detect a Compromised SIP Proxy

Component Rule Snippet
S1 alert sip A any -> any any (var:rv1;

content:INVITE;)
net_event (rv1;)

S2 alert sip S1 any -> any any (var:rv2;
content:INVITE;)
net_event (rv2;)

B alert sip S2 any -> any any (var:rv3;
content:INVITE;)
net_event (rv3;)

RME (S1:SIP_INVITE) AND (S2:SIP_INVITE) AND
(NOT(B:SIP_INVITE)) alert

Denial of Service (DoS) Attack
An attacker can launch a denial of service attack by flooding the servers signaling
port, flooding the media proxy’s listening port or by flooding the clients media or
signaling port.
SPACEDIVE Detection: SPACEDIVE can detect a DoS attack targeted at a client’s
media port. To detect a DoS attack launched on host A we have the rule as shown
in Table 7.

Table 7: Rule to Detect a DoS Attack

Rule Snippet
alert rtp any any → A any (seqwin:50; var:rv;); net_event (rv;)

This rule will generate an alert if the RTP sequence numbers of two consecutive
packets in the same session are off by +50 or -50 units. Thus, if one packet has
sequence number of 400 and the next one has anything greater than 450 or less
than 350, SCIDIVE will flag an alarm. The detection in SCIDIVE follows the same
principle though the rule has to be hard coded in the system.

Table 8: Classification of attack scenarios

Attack Scenario Mitigated by secure VoIP
protocol; Dependent on

Detected by
SCIDIVE;

28

position of malicious
client

Detected by
SPACEDIVE

Call hijacking YES; YES YES; YES
Man in the middle NO; YES NO; YES

Bye Attack YES; NO YES; YES
Compromised SIP

proxy NO; NO NO; YES

Billing fraud YES; NO MAYBE; YES

In Table 8, we classify the attack scenarios in two dimensions – whether secure
VoIP protocols can nullify the attack and whether the attack is dependent on
position of H vis-à-vis A and B. A “Yes” indicator in a column indicates the
attack is more difficult to execute. Finally, the table gives whether the attack
scenario can be detected in SPACEDIVE and SCIDIVE.
Note that all the above attacks are active attacks. SPACEDIVE cannot detect
passive attacks like eavesdropping. This is an inherent limitation of the current
IDS technology in general.

Experimental Results

Timeline for correlated detection

Figure 20: Experimental Setup

A B
SIP

PROXY
X

H

S2

S1
S0

RME R

A B
SIP

PROXY
X

H

S2

S1
S0

RME R

A B
SIP

PROXY
X

H

S2

S1
S0

RME R

For this experiment, we use the Man in the Middle Attack to demonstrate the
timeline of the correlated detections among SPACEDIVE components. The layout
of the testbed is shown in Figure 20. We use an Openser SIP proxy (say, X) and
two X-Lite SIP softphones on A and B. The attacker H, which is a simple home
made proxy, relays the traffic between B and X. We have SPACEDIVE RMEL’s
deployed on A, B, and X, and the RMER on a separate host. B first tries to make
an outbound call to A and begins by authenticating with X. The authentication
process ends with an INVITE message from X to B. Until this point, H faithfully
relays all messages exchanged between X and B. After this, H immediately sends
a ‘404 Not Found’ message back to B and stops relaying any message between B
and X. Once A gets the INVITE message, she will reply with an OK message,
which should go all the way back to B for establishing the call. However, since H
has sent the ‘404 Not Found’ message instead of the OK message to B, B will

29

never see an OK message and will assume that A is not present on the other side.
The way we detect this attack is by putting local rules at S0, S1, and S2 such that
when an OK message is seen, the local detector will send an event to the RMER.
The rule at RMER is then to check whether there are three OK messages from S2,
S1, and S0 in sequence within a bounded time window – we use a configurable
window of 4 ms from the time the first event is received. In this case, S0 does not
see the OK message, which will then trigger the man in the middle detection alert.
The timeline for these detections is shown in Figure 21.

Local event
detection at S2

Local event
detection at S1 Attack detected

at RME R

Time (ms)

t = 0 t=3.6 t=5.2

Local event
detection at S2

Local event
detection at S1 Attack detected

at RME R

Time (ms)

t = 0 t=3.6 t=5.2

Figure 21: Timeline for Remote Rule Matching (times are not drawn to scale)

Performance of rule matching
In this experiment we compared the rule matching overhead of SPACEDIVE for
different rule types. We tested four categories of rules, each of which involves
content matching for a string in the payload.
Type 0 is rule matching in Snort, while Type 1 is a vanilla Snort rule matched in
SPACEDIVE. Type 2 rules use the var construct to set the value of a variable in
the state repository. Type 3 rules are ones that use the event construct to create a
local event in the event trail. We show cases of using 1, 2, 4, and 8 variables to
construct the event. Figure 22 shows the comparative performance of the four
categories of rules.

0

10

20

30

40

50

60

Typ
e 0

Typ
e 1

Typ
e 2

Typ
e 3

 - 1
 va

ria
ble

Typ
e 3

 - 2
 va

ria
ble

s

Typ
e 3

 - 4
 va

ria
ble

s

Typ
e 3

 - 8
 va

ria
ble

s

Rule Type

Ti
m

e
(µ

s)

Figure 22: Processing time for classes of SPACEDIVE rules.

30

As seen from the figure, rule matching for Type 1 rules incurs negligible overhead.
Type 2 rules involve about 8% overhead over Type 0. Type 3 rules with 1 variable
fare almost the same as Type 2 rules. This is quite intuitive, since the expression
tree for one variable is just a single node (the root of the tree). As expected, the
performance cost increases with the number of variables. For a Type 3 rule with 8
variables, the overhead is, on an average about 40%. This results from the fact
that an expression tree with 8 variables has a depth of at least 3. This increases the
time it takes to perform the tree rollup.

Resilience to DoS
DoS attacks are crucial ones in VoIP systems since secure VoIP protocols such as
SRTP [6] do not protect against them and the traffic is delay-sensitive. The
objective of this experiment is to test the resilience of a VoIP client to a DoS
attack in the baseline system and equipped with SPACEDIVE. A malicious client M
sends garbage RTP packets to a receiver A concurrently with a legitimate sender
client B. Client A requires service at the rate of 64 kbps for acceptable voice
quality. This is used to normalize the quality of service in the presence of the
client M.

0

0.25

0.5

0.75

1

0 100 200 300 400 500 600
Data rate of malicious node (kbps)

Q
ua

lit
y

(N
or

m
al

iz
ed

)

Quality (without SpaceDive)

Quality (with SpaceDive)

Figure 23: Resilience to DoS Attacks

Figure 23 shows the degradation in the quality as M is able to pump more DoS
traffic to A. Since SPACEDIVE is configured to drop garbage RTP packets (from
M), A’s degradation in quality is much less steep. However, the processing to
match the rule for RTP packets causes some degradation

Detection False Positive Rates

Table 9: False Positive Rates from each SPACEDIVE detection rule with respect to four different
legitimate call traces.

31

 v4 v5 v6 v7

 f.p. a.t. r.i. f.p. a.t. r.i. f.p. a.t. r.i. f.p. a.t. r.i.

Call Hijacking 0.00% 0 450 0.00% 0 450 0.00% 0 461 0.00% 0 452
Man in the

middle 0.00% 0 450 0.00% 0 450 0.00% 0 461 0.00% 0 452

BYE 0.23% 1 426 0.24% 1 423 0.00% 0 442 0.23% 1 437
Compromised

SIP Proxy 0.00% 0 526 0.00% 0 524 0.00% 0 517 0.00% 0 515
DoS in RTP

Streams 3.18% 31 976 3.90% 38 974 1.94% 19 978 2.79% 27 967

a.t. : Number of alerts triggered
r.i. : Number of rule instantiations
f.p. : False Positive rate =(a.t.)/(r.i)

Here we test the five detection rules in SPACEDIVE against 4 call traces collected
over different time periods from a closed attack-free environment consisting of
two SIP proxy servers and 192 phone clients. These call traces are numbered v4-
v7. In terms of the average call duration, the respective values for the call traces
are {v4:2.79, v5:4.53, v6:4.02, v7:5} (unit: minutes). In terms of the average
inter-arrival time between consecutive phone calls, the values are {v4:3.6, v5:3.71,
v6:4.79, v7:5.48} (unit: minutes). The call traces include the network packets
collected by tcpdump [17] from the system. The detection result is presented in
Table 9. The false alarm rate is defined as the number of alarms triggered over the
number of rule instantiations.
Here a detection rule is instantiated when any of the rule components in the
corresponding detection rules (Table 3, Table 4, Table 5, Table 6) is generated by
a RMEL. For the DoS Attack Detection rule (Table 7), the rule is instantiated
every time a RTP packet is sniffed and inspected by SPACEDIVE. The number of
rule instantiations from “Compromised SIP Proxy” is the number of calls placed,
as the rule is instantiated by the very first INVITE message from a phone call. The
number of rule instantiations from “Call Hijacking” and “Man in the middle” is
the number of connected calls, as the rule is instantiated by the OK message or the
call established state. Since a callee can be busy or unavailable, the number of rule
instantiations from “Call Hijacking” and “Man in the middle” is always less than
or equal to the number from “Compromised SIP Proxy”. The rule for detecting
“BYE Attack” is instantiated by the BYE message and can be seen as the number
of connected phone calls that were torn down gracefully. For the “DoS in RTP
Streams” rule, the number of rule instantiations corresponds to the number of RTP
streams found in the call trace. Since RTP streams are bidirectional, we found
roughly 1000 RTP streams out of the call traces each of which consists of
approximately 500 calls.
Overall, we found that the false positive rates from SPACEDIVE rules used in
detecting the three SIP based attacks are very low (< 0.5%). The false positive
rates from the “DoS in RTP Streams” are slightly higher but still low (< 4%). The
higher false positive rates from the DoS detection rule in Table 7 are
understandable since RTP streams carry huge traffic and jitters can occur
normally even when DoS attacks are not present. The false positive rate can be
decreased by assigning a higher RTP sequence number gap threshold to flag an
alarm. However, a tradeoff is that the number of false positives can be undesirably
brought down as well.

32

Table 10: Number of false alarms from default Snort rules for the four different legitimate call
traces

 v4 v5 v6 v7

[1:402:7] ICMP Destination Unreachable Port Unreachable 3823 5535 8413 5535

[1:1417:9] SNMP request udp 51 61 37 61

[1:1419:9] SNMP trap udp 32 54 73 54

[1:1384:8] MISC UPnP malformed advertisement 1222 1768 2691 1768

[1:527:8] BAD-TRAFFIC same SRC/DST 124 224 242 224

[1:553:7] POLICY FTP anonymous login attempt 0 1 1 1

Table 10 shows the number of alerts with respect to the four legitimate VoIP call
traces from the default Snort rules (v 2.2.0 Build 30). These alerts are all false
positives. Here [x:y:z] is the corresponding Snort rule ID and revision number.
Compared to the number of alerts seen from SPACEDIVE rules (Table 9), the false
positives from Snort rules are significantly higher. Thus, unmodified Snort is not
suitable for VoIP attack detection since the high alert rates can overwhelm a
system administrator.

Conclusion and Future Work
We have presented the design and implementation of a stateful and cross-protocol
IDS for VoIP systems called SCIDIVE. We further extend the design principles of
SCIDIVE to build a distributed and correlation based IDS for VoIP systems -
SPACEDIVE. SPACEDIVE places local rule matching engines (RMEL) at individual
VoIP components and a remote rule matching engine (RMER) for each domain to
correlate events across components. The RMEL leverages the fast packet matching
capability of Snort and augments Snort’s rule language to perform stateful and
cross-protocol detection. SPACEDIVE presents a flexible, easy to parse, high level
rule language to match network events. Several attack scenarios are presented and
classified to bring out the power of a correlation based IDS for VoIP. The design
is implemented in a testbed and demonstrated to increase the resilience of a VoIP
client to DoS attacks. The cost of the rule matching is also quantified.
In ongoing work, we are looking at techniques to reduce false alarms from the
RMEL’s through correlation, use of the RMEH to have rules private to an
organization, and negotiation protocol between the RME’s automatically
generated from the rulebase. Another important area of our ongoing research is
that of peer-to-peer VoIP systems. Peer-to-peer VoIP systems have a great
potential for wide-spread deployment – an example is the popular Skype system.
We are also looking at ways to detect Spam in VoIP systems. Finally, we are
investigating the effectiveness of our system in presence of secure protocols – for
example, secure RTP (SRTP).

33

34

References
[1] ITU-T, “Packet-based multimedia communications systems,” Recommendation H.323, February

1998.
[2] M. Handley et. al., “SIP: Session Initiation Protocol,” RFC 2543, March 1999.
[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A Transport Protocol for Real-

Time Applications,"IETF, RFC 3550, July 2003,
[4] M. Arango et. al., “Media Gateway Control Protocol (MGCP) Version 1.0,” RFC 2705, October

1999.
[5] F. Cuervo et. al., “Megaco Protocol Version 1.0,” RFC 3015, November 2000.
[6] M. Baugher et. al.“The Secure Real-time Transport Protocol (SRTP),” RFC 3711, March 2004
[7] The Snort Intrusion Detection System, www.snort.org
[8] SIP Express Router (ser), http://www.iptel.org/ser/
[9] X-Lite, http://xten.com/index.php?menu=X-Series
[10] “Prelude Hybrid IDS,” Available at: http://www.prelude-ids.org
[11] IBM Software, “IBM Tivoli Intrusion Manager,” Available at:

http://www.ibm.com/software/tivoli/products/intrusionmgr/
[12] Giovanni Vigna, William Robertson, Vishal Kher, Richard A. Kemmerer, “A Stateful Intrusion

Detection System for World-Wide Web Servers,” Proceedings of the 19th Annual Computer
Security Applications Conference, December 8-12, 2003, Las Vegas, Nevada.

[13] Debian GNU/Linux, “KDE K-Phone,” Available at: http://www.wirlab.net/kphone/
[14] Microsoft, “MSN Messenger v. 6.1,” Available at: http://messenger.msn.com/
[15] ITU-T, “Call Signaling protocols and media stream packetization for packet-based multimedia

communication systems,” Recommendation H.225.0, February 1988.
[16] ITU-T, “Control protocol for multimedia communication,” Recommendation H.245, September

1988.
[17] tcpdump/libpcap, Available at: http://www.tcpdump.org/

