
Characterizing Failures in Mobile OSes: A Case Study with Android and Symbian

Amiya Kumar Maji, Kangli Hao, Salmin Sultana, and Saurabh Bagchi
School of Electrical and Computer Engineering
Purdue University, West Lafayette, Indiana, USA
{amaji, khao, ssultana, sbagchi}@purdue.edu

Abstract—As smart phones grow in popularity, manufactur-
ers are in a race to pack an increasingly rich set of features
into these tiny devices. This brings additional complexity in
the system software that has to fit within the constraints
of the devices (chiefly memory, stable storage, and power
consumption) and hence, new bugs are revealed. How this
evolution of smartphones impacts their reliability is a question
that has been largely unexplored till now. With the release
of open source OSes for hand-held devices, such as, Android
(open sourced in October 2008) and Symbian (open sourced in
February 2010), we are now in a position to explore the above
question. In this paper, we analyze the reported cases of failures
of Android and Symbian based on bug reports posted by third-
party developers and end users and documentation of bug
fixes from Android developers. First, based on 628 developer
reports, our study looks into the manifestation of failures
in different modules of Android and their characteristics,
such as, their transience in time. Next, we analyze similar
properties of Symbian bugs based on 153 failure reports. Our
study indicates that Development tools, Web browsers, and
Multimedia applications are most error-prone in both these
systems. We further analyze 233 bug fixes for Android and
categorized the different types of code modifications required
for the fixes. The analysis shows that 78% of errors required
minor code changes, with the largest share of these coming
from modifications to attribute values and conditions. Our
final analysis focuses on the relation between customizability,
code complexity, and reliability in Android and Symbian. We
find that despite high cyclomatic complexity, the bug densities
in Android and Symbian are surprisingly low. However, the
support for customizability does impact the reliability of
mobile OSes and there are cautionary tales for their further
development.

I. INTRODUCTION

In an interview with BBC in February 2008, Andy Rubin,
Google’s director of mobile platforms, commented “There
should be nothing that users can access on their desktop
that they can’t access on their cell phone.” [1]. This vision
of bridging the gap between desktop computers and hand-
held devices, brings with it new challenges in the expanding
smartphone market. As dreams turn into reality, the new
age mobile devices have transformed into miniaturized en-
tertainment consoles connected to the global information
backbone, the Internet. However, every new feature comes
with a cost—cost of new software, cost of memory, cost
of battery consumption, user frustration due to failures,
etc. In this paper, we analyze the “cost” of smartphones
from the point of view of failures. We seek to answer the

question how is the reliability of a mobile operating system
impacted when the developers offer a feature-rich and highly
configurable system, such as Android (from Google and
Open Handset Alliance) and Symbian (from Nokia and
Symbian Foundation). The relation between complexity and
reliability in traditional operating systems has been well
studied [2], [3], [4], [5], [6]. But how the evolution of
smartphones, with the increase in complexity, impacts their
reliability is a question that has been largely unexplored
till now. This kind of system introduces an important ad-
ditional dimension to the question, namely, the significant
resource constraints—computation power, memory, battery,
and display real estate. Their interface with an wide range
of sensors, e.g. camera, accelerometer, and GPS, some of
which may bring in copious streams of data, puts additional
demands on the mobile OS. With the release of Android,
an open-source operating system for mobile devices (open
sourced in October 2008) and Symbian (open sourced in
February 2010), we are now in a position to analyze their
dependability and see what lessons we can draw for modern,
highly customizable, mobile operating systems.

Our case study focuses on Android and Symbian in
part due to the enormous interest shown by cellphone
manufacturers and application developers in them. Symbian
at present holds the largest market share for mobile OSes
on smartphones (46.9%) [7], whereas Android is predicted
to be the second largest mobile OS by 2012 [8]. The
programmability features of both these platforms empower
us with a high degree of flexibility unforeseen in hand-held
devices. We believe that reliability analysis of such platforms
will be of value to the developers and researchers in directing
their efforts at building a user-friendly and robust framework
under tight resource constraints.

Several researchers have analyzed failure characteristics
of popular operating systems like Windows and Linux [4],
[5]. But evaluations of mobile operating systems are rarely
seen. A notable exception is the study of failures in Symbian
OS-based smart phones [9]. However, since Symbian was
not open source at the time of the analysis, the authors
of this earlier study were limited in what they could do.
They used failure logs from 25 smart phones being used by
volunteers participating in the study. Our work is the first of
its kind in that it looks into open-source mobile OSes and
classifies their failures based on a much larger number and

greater diversity of failure reports. However, our findings on
the recovery actions found by users to be most useful are
consistent with those from this earlier study.

In this paper, we analyze the reported cases of failures1

of Android and Symbian based on the bug reports posted
by developers in public forums [10], [11], [12]. Our study
covers the period from when the OS was made open source
till the present (from October 2008 for Android and from
February 2010 for Symbian). Our study looks into the
manifestation of bugs in different software modules of these
two platforms and identifies which modules are reported
to cause the greatest unreliability. Our study indicates that
Development Tools, Web Browsers, and Multimedia appli-
cations are most error-prone in both these systems. We also
present the temporal pattern of bug discovery in Android
and find that new releases introduce significant new bugs
together with fixing some existing bugs. A study of the G1
user forum for the T-Mobile phone running Android [11]
gives us insight about user-visible symptoms of the bugs
and their possible recovery actions.

To understand the root causes of some of the bugs, we
examine the code modifications needed to fix a subset of
the bugs, studying a total of 233 bug fixes for Android.
A large fraction (78%) of the bug fixes needed only small
changes in code, as opposed to significant code modification,
even though the bug reports often indicated significant
modification would be needed. By measuring the number
of environment variables in the Android platform across
its different versions and comparing it with Linux Kernel,
we analyze the customizability of Android. This indicates
Android’s dependence on a few critical variables, which
implies that these environment variables need to be set with
care; else, significant error propagation can occur. We further
measured the code complexity of Android and Symbian
by calculating McCabe Cyclomatic Complexity of some
projects within them. Despite a high value for the maximum
CC, its bug density is lower by an order of magnitude than
what would be indicated by traditional software reliability
estimates.

Our overall message from the study is promising. Both
Android and Symbian have started a creditable approach
of open source mobile OS and provide a radically high
level of customizability both in building and executing the
OS. While this customizability does lead to some loss
of reliability, especially in Development tools and Third-
party applications, such loss can be mitigated by more
rigorous testing. The kernels of both these platforms are
significantly hardened (only few bugs per million lines of
code), however, we need more efforts in improving the
middleware. We believe, if we are to trust the smartphones
of today and tomorrow, openness of their development and

1In this paper, we use the terms error and failure interchangeably since
we consider that all the errors lead to visible failures, either at the developer
or at the end-user level.

testing together with scientific analysis of their failures are
critically needed.

The rest of the paper is organized as follows. We present
an overview of the major components of Android and
Symbian in Section II. Section III illustrates our analysis
of manifestation of bugs in these platforms. In Section IV,
we discuss the results obtained from root cause analysis of
the bugs, analysis of environment variables, and cyclomatic
complexity measures. In the following section, we present
a brief summary of the papers that are relevant to our work
and compare our results. Finally, we conclude the paper
by highlighting the key observations and specifying future
research directions.

II. OVERVIEW OF ANDROID AND SYMBIAN

A. Android

The Android platform is a software stack for mobile
devices that consists of an operating system, middleware
and key applications [13]. Android offers many features
covering the areas of application development, Internet,
media, and connectivity. These features include Application
framework, Dalvik virtual machine, Integrated browser, Op-
timized graphics, SQLite for structured data storage, Media
support for common audio, video, and still image formats,
GSM Telephony, Bluetooth, EDGE, 3G, and WiFi, Camera,
GPS, Compass, and a rich Development environment. The
Android platform primarily consists of five layers:
Applications: This includes a set of core applications
that come with the Android distribution like Email Client,
Messaging application, Contacts application, Calendar, Map
browser, Web browser etc.
Application Framework: This layer has been designed to
facilitate the reuse of components in Android. With the
help of Application Framework elements (such as, Intents,
Content Providers, Views, and Managers) in Android, de-
velopers can build their applications to execute on Android
Kernel and inter-operate among themselves and with existing
applications.
Libraries: Libraries include System C library, Surface Man-
ager, 2D and 3D graphics engine, Media Codecs, the SQL
database Sqlite and the web browser engine LibWebCore.
Android Runtime: The Android runtime consists of two
components. First, a set of Core libraries which provides
most of the functionality available in Java. Second, the
Dalvik virtual machine which operates like a translator
between the application side and the operating system. Every
Android application runs in its own process, with its own
instance of the Dalvik virtual machine.
Linux Kernel: Android uses a modified version of Linux
2.6 for core system services such as Memory Management,
Process Management, Network Stack, Driver Model and
Security. For more information on the Android platform
and a schematic of the Android architecture the readers are
referred to [13].

2

B. Symbian

Symbian OS, currently being used by several leading
mobile phone manufacturers, account for 46.9% of global
smart phone sales, making it the world’s most popular
mobile operating system [7]. It is a lightweight operating
system designed for mobile devices and smart phones, with
associated libraries, user interface, frameworks and reference
implementations of common tools, originally developed by
Symbian Ltd [14].

Since mobile phones’ resources and processing environ-
ments are highly constrained, Symbian was created with 3
design principles: (i) Real time processing, (ii) Resource
limitation, and (iii) Integrity and security of user data. To
best follow these principles, Symbian uses a hard real-time,
multithreaded microkernel, and has a request-and-callback
approach to services. Symbian’s system model is segmented
into 3 main layers [15]:
OS Layer: Includes the hardware adaptation layer (HAL)
that abstracts all higher layers from actual hardware and
the Kernel including physical and logical device drivers. It
also provides programmable interface for hardware and OS
through frameworks, libraries and utilities etc. and higher-
level OS services for communications, networking, graphics,
multimedia and so on.
Middleware Layer: Provides services (independent of hard-
ware, applications or user interface) to applications and other
higher-level programs. Services can be specific application
technology such as messaging and multimedia, or generic
to the device such as web services, security, device manage-
ment, IP services and so on.
Application Layer: Contains all the Symbian provided
applications, such as multimedia applications, telephony and
IP applications etc.

Symbian is optimized for low-power battery-based de-
vices and ROM-based systems. Here, all programming is
event-based, and the CPU is switched into a low power mode
when applications are not directly dealing with an event.
Similarly, the Symbian approach to threads and processes is
driven by reducing memory and power overheads. Readers
are referred to [15] for further details on the Symbian
architecture.

III. ANALYSIS OF BUGS IN ANDROID AND SYMBIAN

Now we characterize the bugs manifested as failures in
Android and Symbian.

A. Data Collection

The Android issue reporting site [10] currently contains
more than 8300 bug reports that are categorized into two
types, namely defects and enhancements. We consider these
as the manifestations of faults from an application devel-
oper’s perspective. Our study considers only bugs marked
as defects. Since the “issue” descriptions are stored as
unstructured texts and contained varying amount of details,

we had to go through them manually. To prune the database
further, we used a set of keywords to list bugs containing
those tags. These keywords are—crash, shutdown, freeze,
broken, failure, error, exception, and security. The motiva-
tion behind choosing these keywords is that these events
typically represent significant user inconvenience [9]. The
dataset was also filtered to remove duplicate entries. This
initially gave rise to a list with 758 bugs reported between
Nov 2007 and Oct 2009. Since the bugs between Nov 2007
and Oct 2008 are reported before the official release of
Android we further removed these pre-release bugs. The
final dataset for Android thus consisted of 628 distinct bugs.

To get an understanding of the terminology used in the
issue database, let us consider the bug displayed in Fig. 1.
This is the entry of a bug related to memory exhaustion
(Issue ID 2203) in the Android issue reporting site [10].
The developer claims that when she tries to rotate the
UI of Android more than 20 times, it terminates with an
“OutOfMemoryAlert”. The bug type is specified as “Defect”
and it has medium priority. The “Closed” date in the report
indicates that the bug has been fixed and it will be released
in future (hence, labeled as “FutureRelease”).

Figure 1. A Sample Bug Report on the Android Issue Reporting Site

The different categories of the pruned set of bugs (af-
ter further removing unhelpful categories “Questions” and
“Declined”) with the associated counts are shown in Table
I.

We applied the same methodolgy for collecting bugs from
the Symbian bug tracker [12] which currently has more
than 2700 bugs. Initially the database was queried with the
keywords mentioned earlier. The collected failure reports
were pruned by removing duplicates and entries of type
“enhancement” or “feature”. This gave us a dataset with
size 275 spanning the period May 2009 — April 2010.
After removing the pre-release bugs (before 4 Feb, 2010)
our dataset contained 153 distinct failures. The bugs in our
Symbian dataset have the status of new (the bug has just
been reported), assigned (the bug has been assigned to an
engineer for fixing), proposed (a solution has been proposed
that is awaiting verification), closed/worksForMe (the bug is

3

closed since it could not be reproduced), resolved/fixed (the
bug has been fixed and the suggested resolution is awaiting
verification from the package owner), or closed/fixed (the
bug had been fixed and the fix is in a release or pre-release
version). Table I shows a breakup of the bugs considered in
our analysis for each of the two platforms.

Table I
BREAKUP OF BUGS CONSIDERED IN OUR ANALYSIS

Android Symbian
New 330 New 106
Assigned 13 Assigned 15
Reviewed 67 Proposed 21
NeedsInfo 9 Resolved/Fixed 5
FutureRelease 119 Closed/WorksForMe 2
Released 69 Closed/Fixed 4
Unassigned 2
Unreproducible 19
Total 628 Total 153

Next, we analyze the failure reports from two
viewpoints—the first one is to identify the frequency of
failures in different segments of Android and Symbian,
whereas, the second one is to identify the temporal pattern
in bug discovery. We further classify whether the bugs are
permanent, intermittent, or transient.

B. Location of Manifestation of Errors

From the details of the bugs, we initially identified the
location where a bug is manifested. Notice that ‘location’ has
different interpretations from different perspectives. From a
user’s point of view, the location of a bug is the application
which fails to run correctly, whereas, from a system devel-
oper’s point of view, the location is the exact component
of Android that fails (often found from stack trace). Our
analysis presents categorization of bugs primarily from ap-
plication developers’ perspective, however, a small fraction
of the bugs are also reported by end-users (containing fair
amount of details).

From the bug reports, we first identified 55 different
segments in Android where bugs were reported. By segment,
we mean an individual application or an individual library
at which the bug manifested itself, from an end-user’s
perspective. However, this proved to be too many segments
for getting an understanding of the underlying bugs and
some segments had very few bug reports. Therefore, we
performed an aggregation of some of the related applications
and libraries into aggregated segments. Through this we
arrived at 18 Android segments. ‘Segment’ now represents
a built-in application (e.g. Camera, Web Browser etc.), a
library in Android (e.g. Graphics, SSL etc.), or an aggregate.
The aggregates are: Eclipse, Android Development Tool
(ADT), Android Debug Bridge (ADB) as Development
Tools; GPS and Location Manager as Location Manager; all
the applications that come with Android and are related to

Figure 2. Manifestation of Bugs in Different Segments of Android. The
total number of bugs considered here is 628.

Figure 3. Manifestation of Bugs in Different Segments of Symbian. The
total number of bugs considered here is 153.

Google’s services, such as Gmail, Map, and Market Place
as Google Apps; Networking library and Wi-Fi library as
Networking; Image viewer, Media library, and Media player
as Multimedia. The obtained results for Android is displayed
in Fig. 2. The Y-axis in the graph indicates the count of
distinct bugs that were reported against a segment.

A large collection of applications that did not have enough
severity individually (examples contain failures of Activity
Manager, Content Provider, Memory Manager, SQLite etc.)
were merged to form the largest segment “Others” (91) in
Fig. 2. The next most failure-prone segment in Android
was Development tools (67) followed by other significant
segments such as Web Browser (58), Google Apps (55),
Multimedia (54), Documentation and Installation related
bugs (49), Mail Client (36), and the View System (34). It
is encouraging to find that a relatively few numbers of bugs

4

are related to Kernel and Device drivers (24 of 628), and
the Dalvik and Core Library (26 of 628).

A similar analysis of the Symbian bugs initially resulted
in a distribution of 153 bugs in 41 segments (“packages”
in Symbian terminology). To get a better understanding
we again combined the related packages into a single
segment, e.g., the packages wrttools, web, websrv, and
webuis as Web; the packages podcatcher, mm, graphics,
imagingext, mmappfw, and musicplayer as Multimedia; the
packages homescreen and homescreensrv as HomeScreen.
This resulted in 15 segments of which only 3 are individual
packages (these are messaging, contacts, and organizer) and
the rest represent groups of related packages.

It can be seen from Fig. 3 that the segment Web (31) is
most bug prone in Symbian followed by Multimedia (22).
Bugs related to building of Symbian packages (19), bugs
in the Development tools (12), and bugs in Kernel and
OS Services (12) are also significant in number. During
our analysis, we observed another interesting pattern in
Symbian—as many as 59 bugs in our data set (38.6% of
all the bugs) were due to build/compilation errors, missing
files, missing references, etc. We denote these types of bugs
as “build” bugs. Some of the packages contained significant
numbers of “build” bugs. Examples include web (8 of 31),
Multimedia (6 of 22), Development tools (5 of 12), and UI
softwares (4 of 8). We display the relative counts of “build”
bugs and “runtime” bugs by splitting the bars in Fig. 3. Note
that the “Build Pkg” in Fig. 3 represents bugs specific to the
named package and it forms only a fraction of the “build”
bugs. The number of “build” bugs in Android did not have
such prominence, hence, we do not display the breakup in
our analysis. We attribute the large number of build bugs
in Symbian to its recent release and believe that these will
have less prominence in future releases.

By comparing Fig. 2 and Fig. 3 it can be seen that of
the top 6 bug prone segments in both the platforms, 4
are identical. These are Web browser (Web in Symbian),
Multimedia, Development tools and Doc-Install (Build in
Symbian). Interestingly, web browsing and multimedia are
perhaps the most significant features of a smartphone as
perceived by the users. Unfortunately, these are also most
failure prone leading to dissatisfaction of users as seen in
numerous posts in the user forums. We further note that the
Web browsers in both Android and Symbian are built from
the WebKit engine. This raises concern about the reliability
of third-party applications that are used in the mobile OSes.
Apart from WebKit, SQLite, SSL, and Graphics (based on
OpenGL) were also found to be error prone in Android.

The presence of large number of bugs in Development
tools in both these platforms (10.67% and 7.84% of all
bugs in Android and Symbian respectively) draws special
attention to this segment. We believe, the efficiency and
reliability of these development environments will be a key
factor in determining which platform has a larger developer

community. Moreover, faults in the development environ-
ment can significantly affect the performance of applications
and may even be responsible for creating security holes
(e.g., a development tool that does not check for known
vulnerabilities like SQL Injection and Cross-site scripting).
An encouraging finding from our analysis is that both the
platforms have lesser number of errors in the lower layers—
Dalvik and Core, Kernel and Drivers in Fig. 2 and Kernel
and OS service, Driver services in Fig. 3—compared to
application level failures. Android, which comes with more
applications than Symbian, also has more application level
failures (like Mail client and Google apps in Fig. 2).

C. Temporal Analysis of Bugs

In this section, we present two types of statistics about
failures in mobile OSes. The first one looks at persistence of
the bugs – i.e. whether these are environment-dependent or
not and transient or non-transient. The other statistic finds
out the pattern of bug discovery and fixes with different
releases.

1) Persistence of Bugs: From the failure reports, we
found that only a few bugs in Android were transient (10) or
intermittent (49). Most of the failures are permanent (566)
in nature and need to be fixed by modifying the Android
code. A few bugs (3) could not be categorized due to lack
of sufficient information. It may be noted here that the
actual number of transient and intermittent bugs may be
much higher as users often refrain from reporting them.
Furthermore, many non-permanent bugs were also declined
by Android engineers as they could not be reproduced.
Similar analysis with the Symbian bugs indicated that only
4 were intermittent bugs and the rest (149) were permanent.
We observe that the large number of permanent bugs in both
systems (90.12% in Android and 97.38% in Symbian) may
be due to the fact these are new operating systems and their
codebases are not yet stable.

2) Discovery of Bugs over Time: We counted the numbers
of bugs reported every month to find the temporal pattern
in bug discovery. The result of the analysis for Android
is shown in Fig. 4. Since Symbian has been open-sourced
recently (3 months ago), there is insufficient data for tem-
poral analysis. The labels 1–6 in the figure indicate various
releases of Android. All the pre-release bugs have been
combined into a single column. It can be observed that the
peak occurs in Oct 2009, one month after the release of
Android 1.6. (Since, Android 2.0 was released on October
26, 2009, we do not consider bugs in October 2009 to be
a consequence of this release.) It can also be observed that
the Dec 2008 surge follows the release of Android 1.0 R2
and May 2009 surges follows the release of Android 1.5.
This points to the fact that each release fixes some bugs and
creates new bugs. We observed similar pattern in G1 user
forums where many customers complained that they faced
new failures after updating their firmware. The heights of the

5

bars are non-monotonic over time, whereas in the ideal case
they should be decreasing. This also points to the need for
a feature to roll back to a previous version when users face
problems on their specific smartphone after upgrading. Due
to the lack of version information in most bug reports, we
cannot quantify how many bugs were fixed and how many
new bugs were generated through the release of an Android
version.

For Symbian, the counts of bugs in the months following
its release are: 42 in Feb 2010, 63 in Mar 2010, and 48
in April 2010. Though this data is insufficient to draw any
significant conclusions, the initial release of Android also
showed similar pattern in bug discovery (27 in Nov 2008,
41 in Dec 2008, and 21 in Jan 2009).

Figure 4. Discovery of Bugs over Time for Android

D. Analysis of User Forums

Besides the developers reports, we also studied publicly
available data on the T-Mobile G1 user forums for incidence
of Android failures [11]. Our analysis considered threads
related to Messaging, Google Applications, Phone & Data
Connection, and Operating System & Software Development.
It was observed that most of the reports in the user fo-
rums are trivial questions or suggestions for enhancements.
Therefore we discarded these messages from our dataset.
The final list consisted of 105 distinct failures. The failures
are frequently reported for Mail Client (15), SD Card
(11), Media Player (9), Messaging (9), GPS and Location
Manager (8), Web browser (8), Android Marketplace (6),
and Calendar (5). This result is not identical to that when
we considered the failure reports from a wider audience
(Section III-B). This may indicate that the scope of problems
in the different modules varies with the hardware device
being used. We further noted that the common user-initiated
recovery actions are—Restart application, Wait for some
time, Restart phone, Modify settings, Factory reset, Take out
battery, Update firmware, and Use third-party software. For
example, many users reported that the location displayed
in the GPS of Android is 1-2 miles away from where they

actually were. Waiting for sometime, rebooting the phone, or
doing factory reset may solve the problem, but they do not
work on every G1 phone. These findings about user-initiated
recovery actions are consistent with those in the prior work
on the Symbian OS [9] in terms of the categories.

IV. ANALYSIS OF CODE MODIFICATIONS AND FIXES

The statistics presented in the previous section primarily
considered manifestation of failures. Though valuable for
identifying the impact of bugs in various segments of mobile
OSes, it does not give any indication about how these bugs
originated. It is therefore necessary to study the root causes
of the bugs and to correlate the user-visible failures with
these root causes. This may also help us in identifying
error propagation. With these objectives, we studied the code
modifications in some of the bug fixes and gained useful
insights about the failures. Of the two mobile OSes analyzed
in this paper, we have details of bug fixes only for Android
[16].

A. Data Collection

For this work, we looked into the Android code repos-
itories to study the bug fixes. The code reviews stored
in [16] presented us with the details of the fixed bugs.
It is to be noted that the failures analyzed in this sec-
tion have some overlap with the failures studied in sec-
tion III but do not form a strict subset. Several bug-
fixes were found which did not appear in the Issue list-
ing site and vice-versa [10]. Our dataset for this analy-
sis contains 233 bug-fixes from 29 projects in the An-
droid repository. These bugs were fixed during the period
October 2008 to October 2009. The significant projects
within this collection, in terms of the number of bugs,
are kernel/common, kernel/msm, kernel/omap,
platform/framework, platform/dalvik, plat-
form/build, platform/system, and some applica-
tions in platform/packages. An exhaustive listing of
all the Android projects may be found in [17]. In the
following sub-section, we present our analysis of root causes
of these bugs.

B. Categorization of Code Modifications

It was observed from the bug-fixes that most of the bugs
(179 of 233) required only few lines of code changes.
Among the minor modifications, we further identified what
types of code changes were most frequent. We categorize
different types of code modifications as follows.
1. Major: Fixes that involve modifications of more than 10
lines of code, or modifications at more than 5 places in the
source file(s).
2. Add/modify attr val: Update the value assigned to a
variable (e.g. the code A.x=B.y is corrected as A.x=C.z)
or declare a new variable.

6

Figure 5. Different Types of Code Modifications. Total number of
modifications considered for this analysis was 233.

3. Add/modify cond: Add some new checks (if-stmt), or add
a missing else clause, or modify the condition expression.
4. Modify settings: Update system constants or include
modification in the makefiles, application configuration files
etc.
5. Add/modify func call: Introduce a new function call, or
modify the arguments of an existing invocation.
6. Lock problems: Bug was caused because a critical segment
was not locked or a lock was not removed and deleted upon
exit.
7. Add/modify lib ref: Bug was caused because code was
accessing some non-existent or incorrect libraries or classes.
8. Modify data type: Update the datatype of a variable.
9. Preprocess change: Introduce a preprocessor directive
(e.g. adding an ifdef).
10. Reorganize code: Change the order of execution of
certain code blocks.
11. Others: The bug fixes that could not be placed under
any of the above-mentioned categories are considered here.

In our analysis, some fixes contained multiple changes
(e.g. some bugs needed both modification of settings and ad-
dition of new attribute values), hence, they were considered
under both the categories. We show the breakup of the dif-
ferent bug fix categories in Fig. 5. We observe that only 22%
of the fixes required major changes. These modifications pri-
marily include addition of new functions, data structures, and
constants. Among the rest, most of the fixes were of the type
Add/modify attr value (16%) and Add/modify cond (15%).
The large percentage of Add/modify attr val (16%) arises
due to the fact that some applications/drivers in Android are
still undergoing major code revisions. The list of changes
may be seen from the release notes of different versions of
Android. Within the sizable category Add/modify cond, we
observed several instances where an if-stmt did not have
a corresponding else clause. This resulted in exceptional
cases not being handled correctly. Detailed specification of
the program behavior could have avoided such errors. It

is known that introducing new conditional statements adds
to the cyclomatic complexity of a program. Hence, while
implementing these fixes, the designers must be careful so
that understandability and testability of the resulting code
is not altered significantly, e.g., if a fix introduces a high
degree of nesting for conditional statements, the designers
may try to simplify by reorganizing the code.

C. Tension between Customizability and Reliability

The presence of 11% Modify settings bugs motivated us
to delve deeper into the Android code base and analyze
the flexibilty provided by Android runtime environment to
the upper layer applications. The customizability claim is
buttressed by the fact that Android may be adapted for a
wide range of mobile hardware (people have even used it
to run notebooks), it incorporates virtual machine, Sqlite for
data storage, and the fact that people may use their phone
to write programs.

We observed that a large chunk of the failures requir-
ing Modify Settings surfaced during building (compiling)
the Android source code. This resulted in modifications
of the Makefiles to support new architectures and APIs,
modification of environment variables, changing application
permissions etc. Note that many of the application configu-
ration files are also generated during the build process itself.
Hence, we consider that Modify settings errors relate to cus-
tomizability of the system, where customizability is defined
to include both the process of building the system and of
executing the system. However, this category of bugs only
covers a subset of the errors caused by the need to support
customizability. According to our categorization, if a new
condition needs to be introduced to handle a configuration
parameter, that would be classified under Add/Modify cond,
while some support for customizability may necessitate large
changes in the software (considered under the category Ma-
jor). Thus, the percentage of bugs to support customizability
is non-trivial. This suggests that customizability does have
some negative impact on the reliability. But this is not
egregiously high for the level of customizability supported
by Android. Further, improvements in software practices,
especially targeted at the problematic segments that we have
identified here, plus a natural maturing of the code base
(recollect that we are talking of something that has been
open sourced for only about a year and a half) will likely
bring these bug incidences down.

D. Analysis of Environment Variables

We observe that applications often read system con-
figurations and locations of various executables from the
environment variables defined in the runtime kernel. These
parameters, though not comprehensive, are a significant
indicator of a framework’s customizability. Extending from
the conclusions in the previous section, we counted the
number of environment variables defined in the Android

7

Table II
COUNT OF ENVIRONMENT VARIABLES AND THEIR REFERENCES IN

DIFFERENT VERSIONS OF ANDROID AND THE LINUX KERNEL

env vars Total refs Max ref
Android 1.1 62 819 577
Android 1.5 63 854 584
Android 1.6 76 1545 584
Android 2.0 82 2083 592

Linux Kernel
2.6.32 127 953 158

platform and compared it with a standard Linux Kernel
(version 2.6.32). We wrote a script to scan the source codes
of different versions of Android to find the occurrence
of export or setenv keywords. We then built lists of
environment variables for each of the Android versions
and the Linux Kernel. Next, we counted the references to
each environment variable and summed them up. Though a
variable may be referred multiple times within a single line,
we consider these as a single reference. The results obtained
from our analysis are presented in Table II. “Max ref” is
the maximum number of references to a single environment
variable in the entire code base.

The number of environment variables in different versions
of Android is steadily increasing. Though this number (82
in Android 2.0) is lower than in the Linux Kernel (127),
it is still significant considering that Android is built as
a mobile OS and runs on devices with more constrained
resources than the Linux kernel. Also, the growth in the
number of references to environment variables between
February 09 (Android v. 1.1) and October 09 (Android v.
2.0), 154%, is striking evidence of the rapid march toward a
customizable mobile OS. More than 85% of the references
to all the environment variables were made from codes in
external/ folder in Android which includes third-party
libraries and built-in applications.

In Fig. 6, we illustrate the distribution of the number of
references to environment variables. The number of variables
with reference count of zero indicates that a large number
of environment variables were not referenced outside the
line where they were defined or “exported”. We also noted
that majority of the references were made to only a few
of the variables (less than 5). For example, in Android
1.6, the environment variables DESTDIR, MK, CFLAGS,
and LDFLAGS are referenced 584, 308, 194, 117 times
respectively. The maximum reference count for a single
environment variable was much higher in Android than
in Linux Kernel. The references to environment variables
in Linux Kernel are almost evenly distributed, whereas,
Android is more dependent on a few critical variables.
This indicates in Android a possibility of significant error
propagation if these key environment variables happen to
be incorrectly set. As a corollary, Android will benefit from
building in reasonableness checks for these key environment

Figure 6. Distribution of References to Environment Variables

variables.

E. Cyclomatic Complexity and Number of Bugs

Cyclomatic complexity, which measures the number of
linearly independent paths through a program’s source code,
is frequently used as a metric of code complexity. To
understand the relation between cyclomatic complexity and
bug density in Android and Symbian, we selected a set
of projects (packages) in these two platforms that had
the maximum number of bugs. Since, the Android issue
reporting site [10] does not contain the root cause of a bug,
we considered the bug counts in section IV for computation
of bug density. For Symbian, we found that each bug was
assigned to its corresponding project. Hence, the bug density
in Symbian is computed with the counts presented in Fig. 3.
We computed cyclomatic complexities (CC) of these projects
(packages) with Understand 2.0—a source code analysis and
metrics generation tool [18]. The unit for computation of
cyclomatic complexity is a function, as is typically done.
Source codes for these projects (packages) were downloaded
from Android [17], and Symbian [19] repositories. Note,
that the Android repository gives us the latest source codes,
whereas, our bug pool is older than the source code. Hence,
the calculated bug density is not completely consistent.
Nevertheless, this gives an approximate measure of code
complexity in Android and may be used to suggest improve-
ments in code quality. Table III and Table IV show the results
obtained from our analysis.

It was observed that in Android many projects in
kernel/* have large overlap in their code files. As a
result, the Max cyclomatic complexity and Source Lines
of Code (SLOC) of these projects are similar or identical.
Qualitatively, the bug density is quite low for both these
systems indicating a high standard of code development,
even though these are relatively new software projects. For
reference, the pre-release bug density in Windows XP was
2.66 × 10−3 [20]. Furthermore, the bug density in the
Kernel and OS Services of Symbian was lower compared
to Android Kernel.

In standard literature, it is suggested that cyclomatic
complexity of functions should be limited to 20 for man-

8

Table III
CYCLOMATIC COMPLEXITY AND BUG DENSITY OF DIFFERENT PROJECTS IN ANDROID

Projects Bug Density × 104 No. of bugs Source LOC Avg. Cyclomatic Max Cyclomatic
kernel/omap 0.04 21 5,311,427 1.12 4,973
kernel/msm 0.06 29 4,724,260 5.60 4,973
kernel/common 0.07 31 4,688,175 5.82 4,973
dalvik 0.18 14 771,865 2.23 766
development 0.46 10 216,344 2.18 169
framework/base 0.79 51 645,978 2.40 221
packages/apps/camera 1.33 2 14,962 2.15 20
packages/apps/mms 1.74 4 23,013 2.02 46
system/core 1.90 13 68,798 4.31 167
hardware/msm7k 2.42 3 12,382 4.00 23

Table IV
CYCLOMATIC COMPLEXITY AND BUG DENSITY OF DIFFERENT SEGMENTS IN SYMBIAN

Segments (Fig. 3) Bug Density × 104 No. of bugs Source LOC Avg. Cyclomatic Max Cyclomatic
Kernel and OS Services 0.03 12 3,684,192 3.02 1,470
Security 0.08 6 752,148 2.29 134
Multimedia 0.12 22 1,866,577 2.44 558
Web 0.17 31 1,807,828 3.01 2,442
HomeScreen 0.38 10 263,305 2.25 149
Build Pkg 0.63 19 299,868 2.24 268

ageability of code. Hence, the Max. cyclomatic complexity
figures presented in the table may initially appear erroneous.
A careful examination of the source code, however, revealed
that some functions extensively use macros inline, each of
which contains multiple if-else statements. When the macros
are replaced by the preprocessor with their corresponding
codes this gives rise to high cyclomatic complexity. Such in-
lining is the main reason for our high cyclomatic complexity
in both these tables. We further noted that large case-switch
statements were, in many cases, responsible for cyclomatic
complexity above 100. The presence of long case-switch
statements necessitates the creation of extensive code doc-
umentation explaining each of the cases. Verifying that all
the cases have been handled properly is a challenging task.
Going forward, as mobile OSes increases in complexity,
developers will need to pay careful attention to managing
the long switch statements.

Average cyclomatic complexity (CC) per function, on the
other hand, was significantly lower (between 1.12 and 5.82
in Android and between 2.24 and 3.02 in Symbian). This is
primarily due to the presence of a large number of default
and inherited functions which have complexity 1. We also
measured the CC of the Linux kernel (version 2.6.32). This
system consisting of 6,082,112 lines of source code had a
maximum CC of 4,973 which is identical to the Android
kernel. This can be explained by the fact that Android kernel
is built using a modified version of Linux kernel (v2.6). It
was observed that the max CC in Symbian Kernel and OS
Services is much lower than that in Android and the Linux
Kernel, while their average CCs are comparable.

V. RELATED WORK

The goal of research in software reliability analysis has
been to classify software errors, as well as to characterize
various properties of failures. Such characterization enables
us to not only assess the effects of failures but also to
prevent and detect new bugs. Reliability literature over the
years contains the results of many research efforts directed
at analyzing bug reports for popular operating systems [2],
[4], [5], [6]. In one of the early works on OS reliability,
Sullivan et al. [2] analyzed defects of the MVS operating
system based on empirical failure records documented by
field IBM staff. This work categorized defects as overlay
(errors that corrupt memory) and regular (those that do not
corrupt memory). The frequency and effects of both types
of errors were analyzed.

Chou et al. , in [4], presented their finding on OS errors by
compiler attachments, which checks code for certain types
of bugs, and counts bug density. The work discovered the
correlation of different types of bugs with directories, func-
tion size, and file age. Our work looks into similar problem
with different scope: instead of compiler attachments, our
research is based on the developers’ view and how bugs are
fixed. In [6], the authors highlight the failure characteristics
of BlueGene/L supercomputer by correlating data obtained
from event loggers. Applying similar concept of failure event
loggers, Cinque et al. [9] performed one of the few pieces of
work that focuses on mobile OS reliability. In this work, the
authors attached fault event loggers to a set of 25 Symbian
OS based mobile phones to record failure events and panics
(kernel-generated warnings for Symbian). Through this, the
authors unveiled characteristics of the panics (burst, etc.)

9

and the relation between panics and user-visible failures.
However, since Symbian was not open-sourced at the time of
this analysis, their research was limited to the manifestation
of failures. Our paper extends the scope beyond these
findings by classifying failures according to their root causes
in the source code (for Android). We also present an analysis
on customizability and complexity of a mobile OS (Android)
which is distinct from previous work.

Our work is also comparable to the failure modes catalog
for wireless applications presented by Jha et al. [21]. In this
work, the authors created a catalog for risk based testing of
wireless applications based on observed and predicted fail-
ures. Our work also tries to estimate the likelihood of failure
at different segments of a mobile OS which can be used for
risk analysis. Comparing to this catalog [21], most of the
bugs observed in our analysis were found under the category
“Product Elements” which deals with mobile middleware,
platform, synchronization, memory management etc.

VI. CONCLUSION AND FUTURE WORK

Our work is a step toward the failure characterization
of an OS for mobile phones. We presented a measurement
based failure analysis of two operating systems—Android
and Symbian—by studying publicly available bug databases.
The key findings are: (1) Most of the bugs (more than 90%)
in both these platforms are permanent in nature, suggesting
that the codebases are not yet mature. (2) The Kernel layer
in both the platforms are sufficiently robust, however, much
effort is needed to improve the Middleware (Application
Framework and Libraries in Android). (3) Development
tools, Web, Multimedia, and Build failures are most prevalent
in both the platforms. This suggests the necessity for a better
mobile application development tools and need for caution in
using third-party libraries. (4) Android offers a great degree
of customizability in both the build and the execution pro-
cesses. This customizability comes at a cost for a significant
fraction of bugs—between 11% and 50% (assuming all of
Modify settings, Add/modify cond, Preprocess changes, and
Major changes are due to customizability). At present, the
percentage of build errors is also high in Symbian (38.6%).
(5) According to our analysis, a significant minority of
the bugs in Android (22%) needed major code changes.
Among various types of code modifications, fixing variable
assignments and control flow update (adding if-else clause)
are most widespread.

Our study also highlights the significant contributions of
Android and Symbian in the field of mobile OS develop-
ment. Both these platforms have established well-defined
and well-maintained open mechanisms for reporting and
dealing with bugs, without which a study like ours would not
have been possible. This level of transparency is a pioneering
and creditable effort in the smartphone world.

Our future work will focus on analyzing the propagation
of errors among various layers, more specifically, between

the Middleware and the applications. We also want to
more fully explore the relationship between customizability,
complexity, and reliability in a mobile operating system.

REFERENCES

[1] Google bets on Android future.
http://news.bbc.co.uk/2/hi/technology/7266201.stm

[2] M.Sullivan and R.Chillarege, “Software Defects and their Impact
on System Availability - A Study of Field Failures in Operating
Systems,” In Proc. of 21st International Symposium on Fault- Tolerant
Computing (FTCS), P. 2–9, 1991.

[3] S.Chandra and P.M.Chen. “Whither Generic Recovery from Applica-
tion Faults? A Fault Study using Open-Source Software,” In Proc. of
the 30th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2000, P. 97–106, 25-28 June 2000.

[4] A.Chou, J.Yang, B.Chelf, S.Hallem, and D.Engler. “An Empirical
Study of Operating Systems Errors,” In Proc. of 18th ACM Symposium
on Operating Systems Principles (SOSP), P. 73–88, 2001

[5] W.Gu, Z.Kalbarczyk, R.K.Iyer, and Z.Yang. “Characterization of Linux
Kernel Behavior under Errors,” In Proc. of International Conference on
Dependable Systems and Networks (DSN), 2003, P. 459–468, 22-25
June 2003.

[6] Y.Liang, Y.Zhang, M.Jetta, A.Sivasubramaniam, and R.Sahoo. “Blue-
Gene/L Failure Analysis and Prediction Models,” In Proc. of Interna-
tional Conference on Dependable Systems and Networks (DSN), 2006,
P. 425–434, 25-28 June 2006.

[7] Gartner Says Worldwide Mobile Phone Sales to End Users Grew 8
Per Cent in Fourth Quarter 2009; Market Remained Flat in 2009.
http://www.gartner.com/it/page.jsp?id=1306513

[8] Gartner Inc., “Android to overtake iPhone in 2012,” October 2009,
http://www.computerworld.com/s/article/9139026/
Android_to_grab_No._2_spot_by_2012_says_Gartner

[9] M.Cinque, D.Cotroneo, Z.Kalbarczyk, and R.Iyer. “How do Mobile
Phones Fail? A Failure Data Analysis of Symbian OS Smart Phones,”
In Proc. of International Conference on Dependable Systems and
Networks (DSN), 2007, P. 585–594, 25-28 June 2007.

[10] Android bug listing. http://code.google.com/p/android/
issues/list

[11] T-Mobile G1 Forum. http://forums.t-mobile.com/tmbl/?
category.id=Android

[12] Symbian Bug Tracker. http://developer.symbian.org/bugs/

[13] What is Android? http://developer.android.com/guide/
basics/what-is-android.html

[14] Symbian OS on Wikipedia.
http://en.wikipedia.org/wiki/Symbian_OS

[15] Symbian System Model.
http://developer.symbian.org/wiki/index.php/Sym
bian_System_Model

[16] Android Code Review. https://review.source.android.
com/Gerrit #all,merged,n,z

[17] Android Source Code Repository. http://android.git.
kernel.org/

[18] Understand 2.0: A source code analysis tool. http://www.sci-
tools.com/ products/understand/

[19] Symbian Source Code Repository.
http://developer.symbian.org/main/source/packag
es/index.php

[20] O.H.Alhazmi, Y.K.Malaiya, and I.Ray, “Measuring, Analyzing and
Predicting Security Vulnerabilities in Software Systems,” Computers
& Security Journal, Volume 26, Issue 3, May 2007, pp. 219–228.

[21] A.Jha and C.Kaner, “Bugs in the brave new unwired world,” Pacific
Northwest Software Quality Conference, Portland, OR, October 2003.

10

