
Statistical Fault Detection for Parallel Applications with AutomaDeD

Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi,
Bronis R. de Supinski, Dong H. Ahn, and Martin Schulz

Abstract

Today’s largest systems have over 100,000 cores, with
million-core systems expected over the next few years.
The large component count means that these systems
fail frequently and often in very complex ways, making
them difficult to use and maintain. While prior work on
fault detection and diagnosis has focused on faults that
significantly reduce system functionality, the wide variety
of failure modes in modern systems makes them likely to
fail in complex ways that impair system performance but
are difficult to detect and diagnose.

This paper presents AutomaDeD, a statistical tool that
models the timing behavior of each application task and
tracks its behavior to identify any abnormalities. If any
are observed, AutomaDeD can immediately detect them
and report to the system administrator the task where
the problem began. This identification of the fault’s initial
manifestation can provide administrators with valuable
insight into the fault’s root causes, making it significantly
easier and cheaper for them to understand and repair
it. Our experimental evaluation shows that AutomaDeD
detects a wide range of faults immediately after they occur
80% of the time, with a low false-positive rate. Further, it
identifies weaknesses of the current approach that motivate
future research.

I. Introduction

The growing size of large-scale systems makes them
increasingly vulnerable to a variety of faults. Today’s
largest systems have over 100,000 nodes, hundreds of
TBs of RAM and provide over a PetaFlop of compute
performance [2], with much larger and more complex
systems expected over the next few years. As their size and

This work partially performed under the auspices of the U.S.De-
partment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. The work of the Purdue authorswas
partially supported by the National Science Foundation under grant CSR-
0916337.

complexity grows, so does the variety of possible failure
modes and the probability that any one component will fail.
Although system administrators are expert at identifying
and repairing faults, the large numbers of system users,
applications and components is expected to overwhelm
them unless they are provided with robust tools that can
detect and characterize system failures.

This paper presents AutomaDeD, a statistical tool that
supports system administrators by detecting faults as they
happen and guiding administrators towards the time and
location of their first manifestation. It statistically models
the timing behavior of large-scale applications and tracks
their behavior online to detect any anomalies, which are
reported to administrators, identifying both the time and
the application tasks when the fault first manifested it-
self. Although AutomaDeD brings administrators closer to
identifying the fault’s root cause, the goal of this work
is to simplify the fault detection and analysis efforts of
administrators and isnot to automatically identify the root
causes of faults. This paper makes the following technical
contributions. First, we describea model to characterize
the timing behavior of applications. Second, we present
methods thataccurately identify when and where the
application first deviates from its normal behavior.

AutomaDeD models the timing behavior of application
tasks by dividing their execution into discrete states and
transitions between them. Since most large-scale applica-
tions are parallelized using the Message Passing Interface
(MPI) [1], AutomaDeD models them at this granularity.
Individual states are mapped to MPI calls or regions of
code interleaved between adjacent MPI calls, including call
stack information to disambiguate calls made in different
contexts. AutomaDeD measures the amount of time spent
by the application in each state before making a transition
(denoted as “transition time”), recording the observed
times as a probability distribution. When AutomaDeD
observes a transition event that takes an unusual amount of
time for its state transition, it flags the event as abnormal
and notifies the administrator of the event’s time and
location, making it significantly easier to identify the
fault’s root cause.



AutomaDeD is evaluated by injecting synthetic errors
into six applications from the NAS Parallel Benchmark
(NPB) suite [3] at random time points and in randomly
chosen tasks. The errors include delays of various lengths,
message drops and repetitions as well as interference
due to execution of an extra CPU- or memory-intensive
thread, which model many real system faults. AutomaDeD
correctly identifies delays and message faults immediately
after they happen 80% of the time. However, our results
also identify limitations in the current approach to be
addressed by additional research.

II. Approach

AutomaDeD consists of both on-line and off-line mech-
anisms. A PNMPI-based [8] monitoring layer is inserted
between the application and the MPI library and at runtime
observes and times the application’s state transitions. It(i)
builds a probability distribution of each transition’s timing
behavior and (ii) evaluates the probability of each runtime
transition event, given the observed distribution of times
of that transition. Each event’s probabiity is converted into
an alarm value that measures the likelihood that the event
truly indicates a system fault. If the event’s alarm is above
a given threshold (the event is considered “alarming”), it
is reported to the administrator for detailed review.

This paper evaluates the design space of AutomaDeD by
focusing on an offline variant of the tool that records events
to a trace file before applying several analysis variants.

A. Time Distribution Algorithms

We consider two representations for the probability
distribution of times spent in application states: Gaussian
distributions and empirical histograms. Gaussian distribu-
tions are an easy to use and efficient formalism that is
supported by a rich theory. However, its constraints make
it a poor representation for multi-modal or asymmetric
timing behavior. The former can occur when different code
within a compute region is executed at different times and
the latter occurs when the time that precedes a transition
is consistent except for spikes due to system or network
interference.

Histograms provide a more detailed fit to the observed
data. The basic approach divides the observed data points
into a number of equal-sized buckets. The probability of
a particular bucket is the fraction of data points within it.
Since timing data may have outliers orders or magnitude
above the median, equal-sized buckets can aggregate most
data points into a single bucket, providing poor resolution.
We therefore used variable-sized buckets via an online
clustering algorithm, as shown in Figure 1. We assign
each new data point to its own bucket. If the resulting

Time Values

Time Values

Histogram
Bucket 
Counts

Data
Samples

Gaussian Tail

Line Connectors

Fig. 1. Example of histogram construction

number of buckets rises above a threshold, we merge the
two buckets with the closest means. We derive a continuous
probability distribution from the discrete histogram by
linearly connecting adjoining bucket counts and modeling
the regions beyond the smallest and largest buckets using
the lower and upper halves of Gaussian distributions,
which model the probability of observing new extreme
values.

The basic tradeoff between these two distributions is
that Gaussians are cheaper (in terms of computation and
memory cost to create and to query) and more constrained
while histograms are more expensive but very flexible.
Evaluating both options provides significant information
about the basic tradeoffs of this design parameter, thus
illuminating the potential of other statistical models such
as mixed-Gaussian distributions and Kernel Density Meth-
ods [9].

B. Fault Detection Algorithm

1) Initializing Probability Distributions: The Au-
tomaDeD fault detection approach begins by identifying
the source of data that defines the transition probability
distributions. If AutomaDeD has a set of application sam-
ple runs available, it follows thesupervised approach,
where it assembles the transition probability distributions
from the transition events observed in those runs. If no
sample runs are available, AutomaDeD builds the probabil-
ity distributions from the given run itself. In theonline
approach for each application evente AutomaDeD first
computes the distributions based on the events beforee,
using them to evaluatee’s probability. In theofflne
approach AutomaDeD builds the distributions from all the
events in the given run and then uses them to compute
the probabilities of all of the run’s events.offline
presents an idealized variant ofonline that uses all the
information available from a single application run.

By default the above approaches use all events to build
each transition’s probability distribution. However, since
this include many outlier events (e.g. some transitions take
longer due to system interrupts) as well as occasional
faults, the resulting probability distributions do not ac-



curately represent their transition’s normal behavior. Au-
tomaDeD controls for this by filtering out each transition’s
longest and shortest events before creating its probability
distribution. The filtered versions of the above algorithms
are denotedsupervisedFilt(f), onlineFilt(f)
and offlineFilt(f), respectively, wheref is the
percentage of longest/shortest times that are filtered out.

2) Computing Alarm Measures:AutomaDeD detects
faults by looking for events that have a low probability
given their transition’s probability distribution. The degree
to which an event with probabilityp is indicative of a fault
is measured by the alarm metric−log(p). The logarithm
provides high resolution for events that are very close to
0 and the negation ensures that lower probabilities are
mapped to larger alarm values.

3) Computing Alarm Thresholds:Events are reported if
their alarm values are above a certain threshold. Thresholds
are chosen to minimize the chance of mis-identifying
normal behavior as a fault in a set of base runs (this set is
independent of the sample runs used in thesupervised
algorithm and is required for all three algorithms). Specif-
ically, AutomaDeD appliessupervisedFilt(1) on
these base runs, computing probability distributions and
evaluating alarms of their events. AutomaDeD sets the de-
tection threshold to be the maximum alarm value observed
across all tasks and all runs.

4) Fault Detection:AutomaDeD detects faults by eval-
uating the alarm values of each observed event, using
one of the above mechanisms (supervised, online
or offline) to determine the transition probability dis-
tributions. Events that have alarms that exceed the given
threshold are reported to the administrator. However, since
the same system fault may trigger a storm of abnormal
events, AutomaDeD filters the set of reported events. Time
is divided into short, non-overlapping windows. Windows
that contain no alarming events are discarded and the
remaining windows are merged if they are adjacent. Au-
tomaDeD reports only the first alarming event or the first
alarming event on each task for each merged window.
This minimizes the number of reports for each fault and
captures the fault’s propagation through the application,as
indicated by the order in which alarms are observed on
different processes.

III. Experimental Evaluation

A. Fault Injection Types

We empirically evaluate the effectiveness of Au-
tomaDeD by injecting synthetic faults into six applications
in the NAS Parallel Benchmark suite: BT, CG, FT, MG,
LU and SP [3]. We omitted EP because it performs almost
no MPI communication and IS because it uses MPI in

only a few locations in the code, making MPI-based state
demarcation inappropriate. Our fault injector, built on top
of PNMPI, dynamically injects a wide array of software
faults at random MPI calls during MPI application runs. It
supports three main classes of faults:

• Local transient stall; emulated via a finite loop of 1,
5 or 10 seconds (STALL)

• MPI message loss and duplication; emulated by drop-
ping (DROP_MESG) or repeating (REP_MESG) a sin-
gle MPI message,

• Extra CPU- or Memory-intensive thread; emulated by
starting up a thread with a perpetual-increment loop
(CPU_THR) or a loop that randomly reads from/writes
to a 1GB region of memory (MEM_THR), that interfere
with the remainder of the application’s execution.

Our experiments ran each benchmark with input size
A and 16 tasks. We executed all tasks on four-socket,
quad-core nodes (the Hera cluster at LLNL), with 2.3Ghz
Opteron processors and 32GB RAM per node. We injected
each fault type into a random task and MPI operation type
(Blocking and Non-Blocking Sends and Receives, All-to-
Alls, etc.), ensuring that over the entire experiment, each
task and MPI operation type was injected with each fault
type. For each case, we performed at least 10 random
injection runs, totaling approximately 1,000 injection ex-
periments per application. In each run we injected a single
fault into a random instance of the target operation type
on a random task.

B. Fault Detection Results

We evaluate the accuracy of AutomaDeD in detecting
injected faults and the tasks where they were injected to
within 10ms of their occurrence. When AutomaDeD fails
to do this, it may be for the following reasons

• noDetect - no transition events were identified as
faulty,

• preDetect - the event identified by AutomaDeD
occurred before the injected fault, or

• postDetect - the event identified by AutomaDeD
occurred more than 10ms after the injection

We evaluate AutomaDeD with and without sample runs.
Using sample runs corresponds to the case when the
developer can execute an application multiple times to
establish its normal behavior. We evaluate two types of
sample runs. For each applicationA theFaultFree(A)
set consists of 20 runs with no injected faults, which
models an ideal set of sample runs. TheFault10(A,
F) set includesFaultFree(A) as well as 2 additional
runs ofA in which fault F was injected. This set models
the more common case where application runs are affected
by infrequent system faults (in this case∼10% of the runs
are affected). Experiments that do not use sample runs are



denotedNoSample. Reported data for analyses that use
filtering focuses onf=10%, which performed better than
smaller values off.

noDetect preDetect Fault Detect(1ms) Task Detect(1ms) Delayed Detection

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

supervised supervFilt(10) supervised supervFilt(10) supervised supervFilt(10) supervised supervFilt(10)

Gauss Histogram Gauss Histogram

NoFault Fault10

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

online onlineFilt(10) offline offlineFilt(10) online onlineFilt(10) offline offlineFilt(10)

Gauss Histogram

NoSample

Fig. 2. Average accuracy across all applications and fault
types

Figure 2 shows the detection accuracy of all con-
figurations, averaged over all the applications and fault
types. It illustrates that the use of sample runs produces
significantly better results than with no such runs. Further,
AutomaDeD is more accurate when provided fault-free
runs (60% 10ms fault detection rate) than when some
runs are faulty (< 50% detection rate). In constrast, the
NoSample configuration of AutomaDeD produced gener-
ally poor results that peak at< 40% accuracy. Filtering and
the choice of probability distribution have a relatively small
effect on the accuracy ofsupervised (Fault10 and
FaultFree)) and a large effect onNoSample, which
performs significantly better with filtering and somewhat
better with Histogram than with Gaussian. Finally, Au-
tomaDeD’s accuracy in identifying the faulty task within
10ms of injection is only a few percent below than its accu-
racy for fault detection. This means that when AutomaDeD
successfully detects a fault within this time frame, it is
very likely to correctly identify the faulty task. Detections
after 10ms typically happened multiple seconds after the
injection, meaning that they did not accurately identify the
fault.

Figures 3, 4 and 5 provide a detailed view on Au-
tomaDeD’s accuracy on thread injection faults (CPU_THR
and MEM_THR), stalls(STALL) and message faults
(DROP_MESG and REP_MESG), respectively. This data
focuses on Histograms due to their superior accuracy.

AutomaDeD has limited accuracy on thread injection
faults, peaking at 60% accuracy withFaultFree and
filtering (supervisedFilt(10)). OnNoSample Au-

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

CPU_THR

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

MEM_THR

noDetect preDetect Fault Detect(1ms) Task Detect(1ms) Delayed Detection

Fig. 3. Average accuracy forCPU_THR andMEM_THR

tomaDeD only detects faults withofflineFilt(10)
and even then fails to reach 20% accuracy.

AutomaDeD performs significantly better at detecting
delays, showing 75% to 88% accuracy withFaultFree
and filtering as the stall ranges from 1 sec to 10 sec.
Further, when no sample runs are provided, AutomaDeD is
50% to 60% accurate when usingofflineFilt(10).
However, theonline algorithms still perform poorly.

For message faults (DROP_MESG andREP_MESG) Au-
tomaDeD exhibits consistently high accuracy when sample
runs are provided, reaching above 80% withFaultFree
runs and 77% withFault10 runs. However, when these
runs are not provided, AutomaDeD either detects prema-
turely or not at all.

Finally, Figure 6 presents the false positive rate of each
of the above configurations. This was measured by running
the AutomaDeD on each of theNoFault sample runs
to see if AutomaDeD identified any events as alarming.
The data shows that while filtering has higher detection
accuracy, it also has a higher false positive rate: 20% when
usingNoFault sample runs. In contrast, using no filtering
results in no false positives. This can be attributed to the
fact that the detection thresholds were picked using the
supervised algorithm that used 1% filtering. Since the
un-filtered algorithm is trained on a more variable set of
transition times, it is more conservative, producing lower
alarm values for the same events. In contrast the algorithms
that used 10% filtering detect more aggressively, resulting
in better detection rates as well as false positives. We are
currently trying to quantify the tradeoff between detection
accuracy and the false positive rate to enable users to adjust
AutomaDeD’s detection sensitivity to fit their need.



0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

STALL-1

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

STALL-5

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

STALL-10

noDetect preDetect Fault Detect(1ms) Task Detect(1ms) Delayed Detection

Fig. 4. Average accuracy forSTALL

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

REP_MESG

0%

20%

40%

60%

80%

100%

supervised supervFilt(10) online onlineFilt(10) offline offlineFilt(10) supervised supervFilt(10)

Fault10 NoSample FaultFree

DROP_MESG

noDetect preDetect Fault Detect(1ms) Task Detect(1ms) Delayed Detection

Fig. 5. Average accuracy forDROP_MESG and
REP_MESG

IV. Prior Work
The classical approach to fault detection focuses on the

fail-stop [7] model where components are assumed to fail
in a way that causes them to stop all interactions with the
rest of the system. Fault detection in such components is
assumed to be done by custom-designed logic inside the
component, enabling other components to detect faults by
using simple tools such as periodic heartbeat monitors [10].

0%

20%

40%

60%

80%

100%

online onlineFilt(10) offline offlineFilt(10) offline offlineFilt(10)

NoSample FaultFree

False Positive Rate

Fig. 6. False Positive Rate onFaultFree set of runs

Modular Redundancy [5] presents an alternative ap-
proach where each component is replicated and the output
of the replicas is compared. Any disagreement is tagged
as a fault. Although this method provides accurate and
fully automated fault detection, it is expensive and can be
inefficient for non-deterministic components.

Model-based fault detection [4] works by having de-
signers model their systems as a set of equations and
dependencies. This makes it possible to derive the system’s
externally-visible behaviors that indicate faults. While
very effective when manual analysis is cost-effective, this
methodology is not appropriate for fault analysis in general
computing systems.

The work most similar to our approach has been per-
formed by the log analysis community, which analyzes
system and application logs to detect and predict system
failures. In particular, the NodeInfo algorithm [6] detects
faults by looking for log terms that have low enthropy
(appear rarely in the logs), enabling the authors to identify
several previously unknown failure modes.

V. Conclusion

As large-scale systems grow in size, they become more
complex and less reliable. This makes them difficult to
manage, forcing system administrators to spend significant
amounts of effort to detect and identify the root causes
of system failures. This paper presents AutomaDeD, a
new tool that creates a statistical model of application
behavior and uses this model to detect the time and task
where the application’s behavior deviates from norm. Our
experimental evaluation shows that AutomaDeD can be
a useful tool for system administrators, reaching 80%
accuracy in detection faults within 10ms for a variety
of faults. However, its performance can still be poor for
some faults and it can only provide good accuracy when
provided with a set of sample runs of the application on
which to train. In our ongoing work we are extending
AutomaDeD to provide high accuracy on a wider variety of
faults and to develop novel training mechanisms to make
it possible for AutomaDeD to provide high accuracy with
less training.



References

[1] MPI Forum. http://www.mpi-forum.org.
[2] Top 500 Supercomputer Sites. http://www.top500.org.

http://www.top500.org.
[3] BAILEY, D., BARTON, J., LASINSKI, T., AND SIMON , H. The NAS

Parallel Benchmarks. RNR-91-002, NASA Ames Research Center,
Aug. 1991.

[4] I SERMANN, R. Model-based Fault-detection and Diagnosis status
and Applications.Annual Reviews in Control 29(2004), 71–85.

[5] LYONS, R., AND VANDERKULK , W. The Use of Triple-Modular
Redundancy to Improve Computer Reliability.IBM Journal of
Research and Development 6, 2 (1962), 200.

[6] OLINER, A., A IKEN , A., AND STEARLEY, J. Alert Detection in
System Logs. InIEEE International Conference on Data Mining
(ICDM) (Dec. 2008).

[7] SCHLICHTING, R., AND SCHNEIDER, F. B. Fail-Stop Processors:
An Approach to Designing Fault-Tolerant Computing Systems.
ACM Transactions on Computer Systems 1, 3 (1982), 222–238.

[8] SCHULZ, M., AND DE SUPINSKI, B. R. PNMPI Tools: A Whole
Lot Greater Than the Sum of Their Parts. InACM/IEEE Supercom-
puting Conference (SC)(2007), ACM, pp. 1–10.

[9] SILVERMAN , B. W. Density Estimation for Statistics and Data
Analysis. Chapman & Hall, 1986.

[10] STELLING , P., DEMATTEIS, C., FOSTER, I., LEE, C. K. C.,AND
VON LASZEWSKI, G. A Fault Detection Service for Wide Area
Distributed Computations.Cluster Computing 2, 2 (1999), 117–
128.


