2010 29th IEEE International Symposium on Reliable Distributed Systems

Fixed Cost Maintenance for Information
Dissemination in Wireless Sensor Networks

Rajesh Krishna Panta, Madalina Vintila, Saurabh Bagchi
Dependable Computing Systems Laboratory (DCSL), Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907
Email: {rpanta,mvintila,sbagchi}@purdue.edu

Abstract—Because of transient wireless link failures, incremen-
tal node deployment, and node mobility, existing information
dissemination protocols used in wireless ad-hoc and sensor
networks cause nodes to periodically broadcast ‘“advertisement”
containing the version of their current data item even in the
“steady state” when no dissemination is being done. This is to
ensure that all nodes in the network are up-to-date. This causes a
continuous energy expenditure during the steady state, which is
by far the dominant part of a network’s lifetime. In this paper,
we present a protocol called Varuna which incurs a constant
energy cost, independent of the duration of the steady state.
In Varuna, nodes monitor the traffic pattern of the neighboring
nodes to decide when an advertisement is necessary. Using testbed
experiments and simulations, we show that Varuna achieves
several orders of magnitude energy savings compared to Trickle,
the existing standard for dissemination in sensor networks, at the
expense of a reasonable amount of memory for state maintenance.
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I. INTRODUCTION

Wireless ad-hoc and sensor networks use various dissemina-
tion protocols [1], [2], [3], [4] for one-to-many communication
to disseminate information from the fixed infrastructure to
all or a subset of nodes in the network. Examples of such
communication are base station sending code updates for
wireless reprogramming of the network, and sending network
commands or queries to nodes in the network. These dissemi-
nation protocols incur energy expenditure not only during the
information dissemination phase but also during the steady
state when no dissemination is actually being done. The need
for energy expenditure in the steady state arises from the
possibility of dynamic changes to the network topology. Such
changes are caused by the failure-prone nature of radio com-
munications, node mobility, and incremental node deployment.
Unless a network can rule out all these causes of changes to
the network (which it rarely can), then it becomes essential to
perform some state updates to the network in the steady state,
if only to verify that no such change has occurred. For the rest
of the paper, we will use the term steady state to denote the
state when no one-to-many information dissemination is taking
place in the network, though the network will be performing
other functionality, such as data collection from the sensor
nodes toward the base station.

Because of transient failures, nodes may remain discon-
nected from other nodes in the network for some time and may
miss the information dissemination that had occurred during
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that period. After they come out of disconnection, they must
be able to detect the data item inconsistency and then initiate
the process to become up-to-date. Inconsistency of information
may also happen due to incremental node deployment or node
mobility which causes a node to move into a region where its
neighbors have received an update. For ease of exposition, we
are going to refer to all these events that can cause a node to
get out-of-date as topology changes. Importantly, since these
topology changes can happen at arbitrary time points and are
not scheduled, any protocol to keep the network up-to-date
needs to execute on a continuing basis.

Inconsistent data items can have serious consequences. For
example, in wireless reprogramming, running an old version of
the code could lead to wrong computation leading to erroneous
aggregation and finally incorrect data being received at the
base station. Even worse, different versions of the code in the
network can cause the the network to be partitioned.

The traditional way of enhancing the dependability of the
dissemination protocols in the presence of the unpredictable
topology changes is periodic advertisements (or some varia-
tions) of some metadata by each node. For example, this is the
approach used in the Trickle algorithm [S] which is used as
the basic building block by most of the current dissemination
protocols [1], [2], [6]. The metadata, a compact representation
of the data item, has to be such that, by inspecting the
metadata, a node can determine if it needs the corresponding
data item for it to become updated. A common case of
metadata is a monotonically increasing version number for the
data item that the node currently has. When a node hears an
advertisement from a neighbor with a newer version of the data
item than it currently has, both enter the dissemination phase
through which the data item is actually exchanged. The actual
dissemination can be accomplished through one of several
well-known protocols such as Deluge [1], Stream [2], etc.

Radio communication is often the most significant source
of energy consumption in sensor networks. The problem with
periodic advertisements is that the steady state energy cost
increases linearly with the steady state interval, which is the
most dominant phase in a node’s lifetime. In fact, in practice,
learning when to disseminate a data item can be much more
costly than disseminating the data item itself and as a result,
steady state energy cost is several orders of magnitude higher
than the energy cost during actual data item dissemination
phase. For example, Deluge, the default reprogramming pro-
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tocol for TinyOS-based sensor networks, performs periodic
broadcast of the advertisement packets every 2 minutes in
the steady state. Periodic advertisements at this rate for one
day requires the same amount of radio transmissions as
disseminating a 25 KB program code. The steady state energy
cost can be reduced by increasing the advertisement interval.
However, the interval cannot be increased significantly because
it increases the detection latency, the time taken by the nodes
to determine whether they have inconsistent data items. This in
turn increases the probability of the communication between
nodes with different versions of the data item, which is a
serious concern as we have seen above.

Our holy grail is to break this barrier of continuously in-
creasing energy expenditure for state maintenance in the steady
state of the network, and achieve a constant maintenance cost,
independent of the duration of the steady state. We achieve
this goal in the common case through our protocol called
Varuna '. Common case implies reasonable link reliabilities
and reasonable memory allocation for state maintenance. To
achieve this, we make a fundamental observation that if the
neighborhood topology and the metadata of a node have not
changed since its last advertisement transmission, then the
node does not need to send any advertisement message. In
periodic advertisement schemes like Trickle, practically most
of the advertisements in the steady state are, therefore, unnec-
essary. A node can determine trivially whether its metadata
has changed, through a local lookup. However, determining
whether the neighborhood topology has changed is difficult
and requires wireless communication among the neighboring
nodes. The periodic advertisement in Trickle is essentially a
way for a node to check if the neighborhood topology has
changed, and if so, inform the “new” neighbors about its
metadata. In Varuna, on the contrary, a node transmits adver-
tisement messages only when required—either its metadata or
local neighborhood or both have changed. Let us group all
communication arising from a node into two categories—one-
to-many information dissemination kind, and all the others.
We will call this latter category User Application (UA) traffic.
In Varuna, each node observes the communication pattern of
UA packets of its neighbors to determine if its neighborhood
has changed. Advertisement message is transmitted only when
a node hears radio transmission from “new” neighbors.

The problem with the above observation is that it is im-
possible to determine the change in neighborhood topology
based solely on communication pattern of the neighbors. For
example, application-specific decisions at a node may cause it
not to use a link to its neighbor. Therefore, we complement the
first observation with a second one. It is critically necessary for
a node to be up-to-date only when it is communicating with
other nodes. This is so that stale metadata is localized to the
out-of-date node only and is not propagated to other nodes. At
worst, the out-of-date node may have to discard the results of
some local computation that it might have performed while it

'Varuna is a God in the Hindu pantheon who maintains order in the
universe.
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was out-of-date. Varuna achieves a constant steady state energy
expenditure at the cost of a small amount of state maintenance
(of the order of 100 Bytes) through which each node keeps
track of which nodes it has heard UA packets from, since it
last got updated.

Our contributions in the paper are:
1. We present the first protocol for maintenance of up-to-date
information in a multi-hop wireless network that does not incur
a monotonically increasing cost (in terms of energy) with the
length of the steady state period.
2. We show how a reasonable amount of local state mainte-
nance can avoid the energy cost of transmissions to determine
when a node is (possibly) out-of-date.
3. Our experimental and simulation results show that the actual
gains realized over the current state-of-the-art is two orders of
magnitude, for a steady state duration of just few days. This
benefit grows linearly with increasing duration.

II. TRICKLE OVERVIEW AND PROBLEMS

Trickle is the standard steady state algorithm for one-to-
many information dissemination in sensor networks [1], [2],
[6], [3] and forms our reference comparison point. In Trickle,
each node broadcasts its advertisement message once every
time interval randomly chosen from [r/2,7] if it has not
heard more than k identical advertisements in that interval.
An advertisement contains the metadata about the data item
the node has. The metadata in this context is the version
number of the data item. When a node hears an advertisement
with different metadata than its own, it sets 7 7;. When
it hears advertisement with same metadata as its own, it
keeps on doubling 7 in the successive intervals. A protocol
like Deluge [1] which uses Trickle for code dissemination
stops this increment after reaching some threshold, 7 = 7.
The suppression of advertisement broadcast (if a node has
heard more than k identical advertisements in an interval)
is necessary to ensure that redundant advertisements are not
broadcast and the scheme is scalable with high node density.
Clearly, without loss, collision, and with perfect time syn-
chronization of the interval 7 among the sensor nodes, the
number of advertisement broadcasts in any time interval within
a single hop is bounded by k. The authors of Trickle show that
with these practical conditions, the number of advertisement
broadcasts in a single period 7 is O(logN) where N is the
number of nodes within a single hop. However the number of
advertisements in a given period 7'(>> 7) is O(T). This linear
increase in maintenance cost with time results in continuous
energy drain in the steady state.

The steady state energy cost can be reduced by increasing
the advertisement period. However, this has several problems.
First, the increase in the advertisement period also increases
the detection latency, the time taken by a node to realize that it
is out-of-date. Detection latency and steady state energy cost
have an inverse relationship—a smaller advertisement period
decreases the detection latency but increases the maintenance
cost and vice-versa. Trickle handles this tradeoff by decreasing
the advertisement period when data item inconsistency is
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Fig. 1.  If advertisement interval is greater than code download time,
inconsistent nodes may communicate.

detected and increasing it when nodes are up-to-date. Thus,
Trickle decreases the propagation time during the dissemi-
nation phase and reduces the maintenance cost during the
steady state. To ensure acceptable detection latency, advertise-
ment interval cannot be increased arbitrarily. In Deluge, the
maximum interval is 2 minutes by default. Second, although
increasing the advertisement period reduces the energy cost,
this is only a constant order improvement. The steady state
cost still increases linearly with the steady state duration.

Third, if advertisement interval is greater than the time
required by a node to download the code, this makes it possible
to have communication between the nodes with different
versions of the code. As shown in Figure 1, let us suppose
that a node n; goes into a transient disconnection state during
the time interval [¢1, t3] during which it misses a code update.
We define a node to be in disconnection state if it has no
functioning incoming and outgoing link. Let its neighbor
no download the new code during this interval. Since the
advertisement interval is large, ng and n; may exchange UA
packets before the next advertisement, i.e. before they detect
the code inconsistency. As mentioned earlier, this may result
in undesired network behavior. To avoid this problem, the
advertisement interval must be less than the code download
time of a node. Code download time of a node is generally
in the order of few minutes. Thus the advertisement interval
cannot be made arbitrarily large, which increases the steady
state energy cost. In this discussion, we have used Trickle
as an example. All one-to-many information dissemination
protocols in wireless networks today suffer from the problem
mentioned above—monotonically increasing energy cost with
the duration of the steady state.

III. STRAWMAN SOLUTION PROPOSALS

Without loss of generality, we present Varuna with respect
to wireless code dissemination in sensor networks. Varuna,
however, is applicable to any one-to-many dissemination pro-
tocol in wireless ad-hoc networks. We first explore several
intuitively appealing approaches that can reduce the mainte-
nance cost for the steady state interval and point out the flaw
that besets each approach.

A. Piggybacking metadata in UA packets

Instead of periodically advertising the metadata, a node
can piggyback the metadata in each UA packet transmission
because the energy cost of piggybacking is significantly lower
than transmitting a separate advertisement packet. However,
since metadata can be quite large, piggybacking reduces the
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number of bytes available in a packet for the application. For
example, in Deluge, for each user application, the metadata
is 12 bytes and, for disseminating multiple applications, the
metadata is even larger. Instead of piggybacking the entire
metadata, only a hash value of the metadata can be piggy-
backed. However, this is again a constant order improvement
and the overhead energy cost due to piggybacking in each
UA packet transmission increases linearly with the steady-state
time like in Trickle. A much simpler approach would be for
the neighboring nodes to exchange their metadata before every
wireless communication. Obviously, the energy cost increases
linearly with the number of communications in such scheme
and thus violates our requirement for constant cost quiescent
period.

B. Checking neighborhood periodically

As mentioned above, if a node’s metadata and neighborhood
have not changed since its last advertisement transmission, it
does not need to advertise its metadata. A node can check
if its metadata has changed using local information, without
communicating with its neighbors. For verifying if its neigh-
borhood has changed, instead of energy-intensive proactive
verification by broadcasting advertisement messages periodi-
cally as in Trickle, a node can simply listen for UA packet
transmissions from its neighbors. However, it is generally
impossible for a node to derive the information about the
change in neighborhood solely using the traffic pattern from
its neighbors. Various application-specific decisions may cause
a node not to use a particular link, making it impossible for its
neighbor to know if its neighborhood has changed. However,
it is practically sufficient for a node to verify the freshness
of its metadata, not with all nodes in its neighborhood, but
only with the node with which it has communication (i.e., a
node from which it receives a UA packet or to which it sends
a UA packet). When the nodes are not communicating, the
consequence of not being up-to-date is localized to the out-
of-data node only and is thus not as serious.

C. Staying up-to-date only with communicating nodes

An intuitive scheme would be for each node to maintain a
neighbor table consisting of ids of the nodes from which it
has heard UA packets in the last threshold time duration, call
it the refresh interval, Trgr. In the next Trpp interval, if a
node n receives a UA packet from a node n, which does not
exist in its neighbor table, n; and no exchange advertisements
through which they determine if they are up-to-date with
respect to each other. If they are, then n; accepts the UA
packet from ny. Otherwise, n; and ng enter the dissemination
state through which their information is made consistent. If
n1 cannot exchange the metadata with no after a set number
of attempts (due to link failures), it discards the UA packet
from n9y and goes back to the steady state.

In this scheme each node essentially checks if its neigh-
borhood has changed since the last Trpp interval using the
already existing UA packet transmissions of the neighboring
nodes. This scheme significantly reduces the steady state
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Fig. 2. Correctness issue if Trpr > Top.

energy cost because a node needs to advertise its metadata
only when its neighbor table—a measure of neighborhood
topology—changes. As long as the neighbor table does not
change and the node has itself not received an update, adver-
tisements are not transmitted.

The problem with this scheme is the difficulty in choos-
ing Trepr properly. It should be sufficiently large so that
with a high likelihood, a node hears UA packets from all
its neighbors within each Trpp. Otherwise, the node will
needlessly perform the advertisement exchange, only to realize
that both were up-to-date. In the extreme case when the
neighbor table changes every Trpr interval, this scheme is
equivalent to Trickle with advertisement period equal to Trg .
Furthermore, Trgr cannot be increased arbitrarily—if Trpp
is larger than the time to download the code T-p by a node,
this scheme fails. Figure 2 illustrates this. Here a node n; goes
into the disconnection state for time interval [t1,¢s] during
which its neighbor ny downloads the new version of the
code, which n; misses. n; receives a UA packet from ng
in the previous Trrp interval and since Trpr > Tcop, let
us suppose np receives a UA packet from ng in the current
Trrr interval also. As a result, nq thinks that it is up-to-date
with respect to ng since its neighbor table has not changed.
The code inconsistency, thus, goes undetected for a potentially
unbounded period of time.

D. Informing neighbors of code downloads

The above correctness problem can be solved by having
each node piggyback a Code Downloaded (CD) bit in each
UA packet transmission for Trgp interval, each time after
downloading the new version of the code. For example, in
Figure 2, when n; comes out of disconnection, if it hears
a UA packet from ng in the current Trpp interval, it will
have the CD bit turned on. Then n; realizes that it has not
downloaded the new version of the code in the last Trer
interval, but ng has. Thus the code inconsistency is detected.

However, even with this revised scheme, Trgpr cannot be
made larger than Trgp, the minimum time interval between
two consecutive reprogramming procedures. Figure 3 illus-
trates this. Here ngy and n; download version v,, of the code
in the current Trpr interval. But after that, n; goes into the
disconnection state for interval [t1,t2]. During this time, ng
downloads v,,41 version of the code, which 11 misses. When
ny comes out of disconnection, it receives a UA packet from
no with CD bit turned on and believes that it is up-to-date
with ng because nq also downloaded code in the current Trgr
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Fig. 3. Trpr. the refresh interval cannot made larger than Trpp, the
minimum time between two successive code downloads, for correctness
reasons.

interval. Hence the code inconsistency goes undetected again
for a potentially unbounded time.

Instead of piggybacking the CD bit, if ny had piggybacked
“the number of times the code was downloaded in the current
Trer” or “the latest version of the code downloaded in
Trer”, n1 would have detected the inconsistency. But this
is generally not possible since a sensor node may be running
multiple applications and thus it would need to explicitly say
which versions of which applications were downloaded in
the last Trgr interval. This information is too large to be
piggybacked in every UA packet for a “large” Trgp interval.

Any scheme that uses threshold (refresh) time intervals to
check if the neighborhood has changed between such intervals
has a fundamental performance problem—since UA can be
arbitrary, no matter how large a Trpp is chosen, a neighbor
can be such that it sends UA packet at every other Trpp
interval, causing the neighbor table to change in every Trpr
interval. As a result, the node needs to advertise in every Trpr
interval and thus, the energy expenditure of such scheme is
equivalent to Trickle with advertisement period equal to Trg .

I'V. VARUNA DESIGN

Based on the above observation that a node cannot de-
termine if its neighborhood topology has changed by moni-
toring the communication pattern for a finite time duration,
we arrive at a very simple maintenance algorithm, called
Varuna, that does not use the notion of refresh interval. The
above approaches (Sections III-B and III-D) try to make
sure that the code inconsistency is detected when nodes with
different versions of the code communicate. Varuna relaxes
this requirement and, instead, guarantees that the following
invariant is satisfied—When a node receives a packet from
another node with a lower version of the metadata than its
own, the metadata inconsistency is detected by the receiving
node. This invariant also implies that Varuna achieves eventual
consistency—even though a node n; may not detect inconsis-
tency while it is receiving packets from a node ny which has
a higher version of the metadata than n,, eventually when ng
receives the packet from n;, the inconsistency is detected. We
believe this relaxed form of consistency is satisfactory in most
application contexts and is necessary in practice to achieve a
constant cost of state maintenance. With Varuna’s invariant,
information does not flow from out-of-date nodes to up-to-
date nodes, and thus, the erroneous result is not propagated in
the network. Note that base stations (or nodes close to them)
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can be assumed to be always up-to-date. Thus, erroneous
results from out-of-date nodes will not be collected by the base
station. The relaxed invariant of Varuna is sufficient to most
practical application contexts where sensor nodes report the
sensed values to base stations or fixed infrastructure. Before
presenting a formal description, we first present an overview of
Varuna. Figure 4 shows the state transition diagram of Varuna.

A. Design Overview

Each node maintains a neighbor table consisting of the ids of
the nodes from which it has received any packet since the last
time it updated its metadata (i.e. downloaded the new version
of the code). When a node is booted up or its metadata is
updated, the neighbor table is cleared and the node goes to the
Quiescent state. When a node n; receives a UA packet from a
node ng, it checks if nq exists in its neighbor table. The case
of overflow of the neighbor table is discussed later. If ny exists
in the table, n; accepts the packet. If it does not, n; suspects
that it (or ny) May be Out Of Date (MOODy) and goes to
the MOODy state where it tries to verify if no has the same
version of the metadata as that of n;. We will shortly explain
how this is done. If n; finds that both have same version of
the metadata, it inserts ns in its neighbor table, goes to the
Quiescent state, and accepts the packet from ns. Otherwise,
it goes to the Disseminate state. In the Disseminate state, the
out-of-date node receives the new version of the code from the
up-to-date node(s) using any one of the available dissemination
protocols [1], [2], [6], [7], [8]. Varuna’s design is orthogonal
to that of the dissemination protocol and it can work with any
of them.

Verifying if metadata is up-to-date: In the MOODy state,
ny broadcasts Advertisement packet containing its metadata,
source id, and a field called dest set to ns. Let v,f“ (i
1,2,...,n) represent the version numbers of n application
codes (or data items) present in node k. When no receives
the Advertisement packet with dest set to its node id, it
compares the received metadata with its own. If ng finds
that it needs an update (ie. v;? < wv;' for any i), it
broadcasts a ReqToDisseminate packet and transitions to the
Disseminate state. When n; and other neighbors of no receive
the ReqToDisseminate packet, they also go to the Dissemi-
nate state. If ny finds that it does not need an update (i.e.
U;’? > v?l for all 7), it broadcasts an Advertisement packet
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with dest set to NULL. When n; receives this advertisement
packet, it verifies if it needs an update. If it does not (i.e.
vt = v for all ), it goes back to the Quiescent state,
adds no to its neighbor table, and accepts the packet received
from no. If ny needs an update (ie. v;* < v;* for any 1),
it broadcasts a ReqToDisseminate packet. Neighbors of n;
(including ns) go to the Disseminate state after receiving this
packet. Advertisement and ReqToDisseminate messages are
transmitted using random backoff intervals—[0,ADV_RAND]
and [0,DISS_RAND] respectively, to avoid collisions due to
concurrent transmissions from nearby nodes.

The use of dest field in the broadcast Advertisement mes-
sage avoids the transmission of redundant advertisements in
the neighborhood of the MOODy node n;. A node which
receives the advertisement message with dest set to NULL or
dest not set to its own id will reply with its own advertisement
message only if required (i.e. either the receiver or the sender
needs an update) and suppression threshold has not been
reached. For example, when neighbors of a MOODy node ny
other than no hear advertisement from nq with dest set to no,
they do not advertise if they don’t have to—i.e. if v = v
for all 4, where n € N(n;) and N(n;) is the set of neighbors
of my except ny. If any node in N(ni) needs an update
(i.e. v < vt for any 4), it broadcasts ReqToDisseminate
and goes to the Disseminate state. Otherwise, if a node n
in N(n1) finds that ny needs an update (i.e. v}' > v;* for
any ¢) , n broadcasts its advertisement message if it has not
heard more than k (suppression threshold) advertisements with
same metadata as its own since it heard the advertisement
from n;. Because of this advertisement suppression, which is
borrowed from Trickle, Varuna scales well with varying node
density. When nsy receives advertisement from n; with dest set
to me, it replies by broadcasting its Advertisement message
with dest set to NULL, irrespective of whether it is up-to-
date with n;. This is because n; wants confirmation about
the freshness of its metadata with respect to no that caused
ny; to become MOODy. Similarly, when ny replies with its
metadata broadcast with dest set to NULL, neighbors of ng
will not broadcast advertisement if their metadata is same as
ny’s. If they do not match, the neighbor node behaves similarly
to the behavior when it heard the advertisement from n; with
dest=ns. In this scheme, even if n; and ns have the same
but outdated versions of the data item, their neighbors help
them detect the inconsistency and make them transition to the
Disseminate state where they can be updated.

Retries to deal with link failures: In the MOODy state, n;
may not receive any response to its Advertisement message
from no even though n; had received a UA packet from neo
that triggered n; to be MOODy. The link between n; and no
may be functional in only one direction (ng to ni), no or n;
may have moved after no’s UA packet is received by n, or ng
may have had a transient node failure. If n; does not receive
any response, it re-broadcasts the Advertisement message after
every 7 interval for Thoop, duration. If no response is
received during Throopy, N1 returns to the Quiescent state



and discards the UA packet received from ns.

Dealing with a full neighbor table: A node inserts a new
neighbor in its neighbor table in the next available slot as
long as the neighbor table is not full. When the table is full, it
replaces the least recently used (LRU) neighbor with the new
neighbor. The LRU node is the one from which it has not
received any packet for the longest duration. Thus, in addition
to the neighbor id, a neighbor table entry must contain the last
time the node received a UA packet from this neighbor. An
important design point of Varuna is that there is no notion of
refresh time interval for clearing off the local state. Rather,
Varuna uses a neighbor table which is cleared in its entirety
when the node receives a code update or it is turned on.

B. Formal Protocol Description

Here we describe the local rules followed by each node in
Quiescent and MOODy states. In the Disseminate state, nodes
follow any of the current protocols used for dissemination
[1], [2], [6]. Conceptually, the gain due to Varuna arises
from the fact that a node spends most of its time in the
Quiescent state, where it does not transmit any advertisement
packet. It transitions to the MOODy state only when there is
some likelihood that neighborhood topology has changed and
therefore it is worthwhile for the node to check if it needs to
be updated. Varuna intelligently controls when the transitions
to the more expensive MOODy state need to happen.
Quiescent State:

Q.1: When a node goes to the Quiescent state upon booting
up or updating its metadata, it clears its neighbor table.

Q.2: When a node n; receives a UA packet from a node ng,
ny checks if ngy exists in its neighbor table. If it exists, n;
accepts the packet. Otherwise, n, goes to the MOODy state
to verify if no is up-to-date with ny.

Q.3: If a node hears an Advertisement from a neighbor which
is up-to-date with it, the neighbor is added to the neighbor
table if it does not already exist in the table.

Q.4: If a node ny receives an Advertisement packet from a
node n; with dest set to no, it compares the received metadata
with its own. If ny needs an update (i.e. v;'* < v'* for any 1),
ngy broadcasts ReqToDisseminate packet, after a time interval
randomly chosen from [0, DISS_RAND], and goes to the
Disseminate state. Otherwise, it broadcasts an Advertisement
packet with dest set to NULL.

Q.5: If a node n3 hears an Advertisement from a node n;
with dest set to NULL or dest other than ng, it compares
the received metadata with its own. If it finds that it has
the same version of the metadata as the received one, it
ignores the Advertisement message. If they are different and
ng needs an update (i.e. v;"® < v]"* for any i), ng broadcasts
ReqToDisseminate, after a time interval randomly chosen
from [0, DISS_RAND], and goes to the Disseminate state.
Otherwise, if the metadata are different but n; needs an update
(i.e. vt < v for any i), ng broadcasts Advertisement packet
with dest set to NULL, after a random time from the interval
[0, ADV_RAND], conditioned on advertisement suppression.
Advertisement suppression implies that if the node has heard
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more than k advertisements with the same metadata as its own,
then it will not broadcast its advertisement message.

Q.6: If a node receives a ReqToDisseminate packet, it goes to
the Disseminate state.

MOODy state: Let n; be the node which transitions to the
MOODy state after receiving a UA packet message from a
node no that does not exist in n1’s neighbor table.

M.1: As long as n; does not receive any Advertisement from
no, it broadcasts an Advertisement with dest set to no after
every T interval, conditioned on advertisement suppression.
M.2: If nq does not receive any Advertisement message from
no for Thyroopy, it goes back to the Quiescent state and
discards the packet received from ns.

M.3: If ny receives an Advertisement message from no,
it checks its metadata with that of no. If they match (i.e.
vt = wu;? for all 4) and the neighbor table is not full, n,
adds ng to its neighbor table, goes to the Quiescent state,
and accepts the UA packet received from no. If the neighbor
table is full, n; replaces the LRU node in its neighbor table
with ngy, goes to the Quiescent state, and accepts the UA
packet received from n,. If the metadata don’t match and
if ny finds that it needs an update (ie. v]' < v for
any 1), ni broadcasts ReqToDisseminate packet, after a time
interval randomly chosen from [0,DISS_RAND], and goes to
the Disseminate state.

M.4 Same as Q.5.

M.5 Same as Q.6.

C. Eventual consistency

Varuna ensures that if a node receives a packet from another
node with a lower version of the metadata than its own,
the metadata inconsistency is detected by the receiving node.
So, in Varuna, communication from a node with a higher
version of the metadata to another node with a lower version
of the metadata can happen, without the nodes detecting the
inconsistency. For example, as shown in Figure 5, let n; go to
disconnection state in the time interval [t1, 2], during which
its neighbor ny downloads a new version of the code. After
ny comes out of disconnection, let it receive a UA packet,
U A, from ng. ny finds ng in its neighbor table since n; had
earlier received U Ay from ng. Since receiving U Ay, nq has
not cleared its neighbor table as its metadata has not changed.
Thus the communication from a node with a higher version of
the code (here ng) to a node with lower version (here ny) goes
undetected. However, Varuna ensures eventual consistency—
when ng receives UAs from n, after some time, ng does
not find ny in its neighbor table as it has been cleared after
downloading the code. Thus n; goes to the MOODy state
and detects the code inconsistency. Varuna does not rely on
any specific application traffic characteristic. As long as nodes
send some application traffic, the above guarantee of Varuna
holds.

Note that Varuna’s eventual consistency property is different
from that of Trickle. In Varuna, an out-of-date node eventually
learns that it needs an update when it communicates with an
up-to-date node. In Trickle, this realization happens when the
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out-of-date node receives an advertisement from the up-to-date
node. In other words, Trickle tries to ensure that an outdated
node knows that it needs an update irrespective of whether
it is communicating with other nodes or not. Varuna relaxes
this consistency requirement—in the worst case?, the outdated
node knows that it needs an update when it sends a UA packet
to the up-to-date node. The energy saving of Varuna is due to
the relaxation of the consistency requirement. As mentioned
earlier, one consequence of this relaxed consistency guarantee
is that if an outdated node takes very long time to communicate
with the up-to-date node, the results of the local computations
may be lost in Varuna. This problem can also happen in
Trickle if the advertisement interval is large. Our thesis in
this paper is that in most practical sensor network contexts,
Varuna’s consistency guarantee is satisfactory to achieve the
goal of huge energy savings, which is probably one of the most
important aspects of sensor networks. Furthermore, unlike in
Varuna, in Trickle a node with a lower version of the code can
communicate with a node with a higher version of the code
(and vice-versa), without them detecting the inconsistency, as
illustrated in Figure 1.

D. Fixed steady state cost

In Varuna, after a node downloads a new version of the code,
it verifies its changed metadata with each of its neighbor only
once. After this verification, if the neighbor table does not
overflow, no further advertisements are necessary. So, in the
common case, Varuna incurs fixed cost in the steady state,
independent of the steady state interval. However, in some
cases, a node may need to advertise occasionally due to the
poor neighbor problem, which we define as follows. In some
large networks, a node may occasionally receive a UA packet
from “far neighbors” with very poor link reliabilities. Let us
call such neighbors poor neighbors. This triggers the node
to be MOODy. Since the MOODy node tries to verify the
freshness of its metadata with a poor neighbor for a finite
time duration (T3700Dy), the probability that it will succeed
is low. As a result, the node goes back to the Quiescent state
without success, and the poor neighbor is not added to the
neighbor table. Every time a node receives a UA packet from
the poor neighbor, though it happens rarely due to the low link
reliability, it incurs the cost of transitioning to and back from
the MOODy state.

The poor neighbor problem occurs very rarely because of
various reasons. First, for the MOODy node to be unsuccessful

2This is the worst case scenario because in Varuna, a node can learn that it
needs an update before it sends the UA packet to the up-to-date node if it hears
advertisement from an up-to-date node, say, in response to the advertisement
request from some other node.
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in verifying the freshness of its metadata with the poor neigh-
bor, the link reliability between them should be very poor.
This means that the node will hear from the poor neighbor
very rarely in the first place. Second, according to rule Q.3,
whenever a node overhears an Advertisement packet with the
same metadata as its own, it adds that neighbor to its neighbor
table if it does not already exist in the table. This means that
a node n, gets multiple opportunities to add a poor neighbor
ngy to its neighbor table—not only when n; hears directly
from ns, but also when ny broadcasts an advertisement in
response to an advertisement message from a neighbor of
ngy. This in turn means a stray message from ny does not
necessarily cause mp to transition to the MOODy state and
expend energy. If overhearing is not possible due to duty-
cycling (to save energy), the performance of Varuna degrades.
Note that overhearing is possible even with many duty-cycling
MAC protocols in sensor networks.

Varuna’s advantage over Trickle is even more pronounced
in networks for rare event detection. Nodes generate packets
rarely in response to the occurrence of certain events. Thus
in Varuna, nodes need to verify their metadata very rarely.
The effect of the poor neighbor problem is also significantly
reduced. Trickle, however, needs to advertise periodically. The
period cannot be chosen to be as large as the average event
occurrence period because if events occur faster than the
estimated average, the likelihood of communication between
the inconsistent nodes increases, as shown in Figure 1.

E. State maintenance cost

Trickle does not require any state maintenance, while in
Varuna, each node maintains a neighbor table. The amount of
memory available in low cost commercially available sensor
nodes has been increasing (512 bytes RAM in Rene mote to
256KB RAM in IMote2), and this trend is likely to continue
in future. Thus this tradeoff makes sense because reducing
the energy consumption and increasing the network lifetime
are, generally, more important than saving some memory.
Neighbor table is a localized data structure and its size does
not increase with the size of the network, but with the size
of the neighborhood of the node. Also, as we will show
from our experiments, for most practical deployments, the
neighbor table consumes less than 200 bytes of memory.
For “very large” and “very dense” networks, less than 600
bytes are enough. Consider the memory available in current
sensor nodes: TelosB, micaz, IMote2, IRIS, BTNode, and
SunSPOT have 10KB, 4KB, 256KB, 8KB, 180KB, 512KB
RAM, respectively. Furthermore for many sensor networks,
neighbor table is a fundamental already existing data structure.
It is used by many protocols and services—MAC protocols
[9], AODV based routing protocols [10], 6LoWPAN [11]
standard, ZigBee, and many other applications. Thus, Varuna
can leverage the existing data structure. The size of the
neighbor table can be adjusted dynamically based on runtime
observations of the table overflow.



TABLE 1
PARAMETERS FOR THE EXPERIMENT.

Ty a U[0,60sec] (11, 7h) (2sec,2min)
T 4,8,and 20sec k 2
ADV_RAND 1,2,and 5sec TrnooDy 1min

FE. Detection latency

Traditionally, detection latency is defined as the time dura-
tion from the instant when a node becomes out-of-date to the
instant when it knows that it is out-of-date. Clearly, higher
advertisement rate and UA packet rate decrease detection
latency in Trickle and Varuna, respectively. However, one of
the basic ideas of Varuna is that nodes need not be up-to-date
with all neighbors all the time. Rather, information should
not flow from a lower version node to a higher version node.
Thus, in this context, a more suitable definition of detection
latency is the time interval from when an out-of-date node
communicates with an up-to-date node for the first time to the
instant when it realizes that it is out-of-date. As is obvious
from Varuna’s design, this detection latency is zero, because
whenever an out-of-date node communicates, its inconsistency
is detected. Even with this new definition of detection latency,
for Trickle this is still a function of advertisement period.

V. IMPLEMENTATION AND EVALUATION

We implement Varuna on TinyOS-2.1. In order to evaluate
the performance of Varuna and compare it with Trickle, we
perform testbed experiments using TelosB sensor nodes. For
large scale evaluation, we use TOSSIM [12] simulations.
We run the network in the steady state. This means in the
experiments no information dissemination is taking place.
This is a valid experimental method because the only job
of Varuna is to let the node know when it needs to go to
the disseminate state. Varuna does not have any impact on
the actual dissemination. We use steady state energy cost as
a metric to compare Varuna and Trickle. Since the energy
cost is directly proportional to the number of advertisement
transmissions in the steady state, we use the total number of
advertisement packets transmitted by all nodes in the network
as a measure of steady state energy cost. We also quantify the
memory cost for state maintenance in Varuna for various node
densities and network sizes. Each entry in the neighbor table
takes 6 bytes (2 bytes for neighbor-id and 4 bytes for the time
when this neighbor was last heard from).

A. Testbed Results

We compare Trickle and Varuna using a 30-node testbed of
TelosB nodes arranged in a 5X6 grid. The output transmission
power of each node is set to the minimum possible value.
Each node broadcasts UA packets after every 774 interval
uniformly distributed between 0 and 60 seconds. Table I shows
the values of the parameters used in the experiments.

1) Comparison of steady state energy cost: Figure 6-
a compares the number of advertisement transmissions by
Trickle and Varuna as a function of steady state time. In
this experiment, each node allocates a neighbor table of size
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30, i.e. 180 bytes. As expected, the steady state energy cost
increases linearly with time in Trickle. However, in Varuna, it
does not increase after some time because once a node verifies
the freshness of its metadata with each of its neighbors, it
does not need to transition to the MOODy state and advertise
anymore. In just 1 day, the steady state energy cost in Trickle
is about 8 and 11 times more than that of Varuna for node
spacing, d 10 ft and d = 5 ft, respectively. A simple
extrapolation of the data in Figure 6-a shows that in one month,
Trickle consumes about 223 and 336 times more energy than
Varuna, for d = 10 ft and 5 ft, respectively. Note that in
our experiments nodes are not duty-cycled. With duty cycling,
identical energy savings due to Varuna will take longer to be
realized, increasing in inverse proportion to the duty cycle.
If we had data dissemination in our experiments, this would
not have changed the results. In both Varuna and Trickle, a
node would have realized it is out-of-date and transitioned
to the Disseminate state, at which point the same protocol
would have been used. Varuna incurs the same cost whether
a node determines it is out-of-date or up-to-date. Varuna’s
contribution is to provide a low cost way for the node to
determine either of these two conclusions.

When the distance d between successive nodes in the grid
is increased, the energy consumption increases both in Trickle
and Varuna. The increase in d (equivalently, decrease in
node density) causes the link quality to be poor between the
neighboring nodes. As a result, in Trickle, a node may not
hear k£ or more identical advertisement broadcasts in its neigh-
borhood, even though that many may have been broadcast
in reality. Consequently, the node will not suppress its own
advertisement. This leads to more redundant advertisements
for d=10ft than d=5ft. In Varuna, poor link qualities cause
many retransmissions of advertisement packets in the MOODy
state and thus the energy cost is higher for the sparser network.

2) Effect of neighbor table size: In the above experiment,
Varuna incurs fixed cost in the steady state because the
neighbor table does not overflow as it is sufficiently large.
If the neighbor table is small, a node n; may need to evict
an LRU node ny from the neighbor table to accommodate a
“new” neighbor ng. Later, when n receives a UA packet from
ny , np goes to the MOODy state (even though nsy is up-to-
date with n1) as ny does not exist in its neighbor table. So, the
steady state energy cost cannot be a fixed value if the neighbor
table is small. Figure 6-b shows the steady state energy cost in
Varuna for different neighbor table sizes for d =10 ft. When
the size of the neighbor table is 30, the steady state energy cost
is fixed. But when the neighbor table is 10 or 20, it increases
linearly with time. Although not shown in the figure, obviously
the slope of this linear relationship increases with the increase
in the UA packet reception rate because UA packet reception
causes the node to be MOODy if the source of the UA
packet is not in the neighbor table. For small or moderate size
networks, the neighbor table can be made sufficiently large to
ensure fixed energy cost in the steady state. In the next section,
our simulation results show that, even for very large and dense
networks, the memory requirement for state maintenance is
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reasonable. It is fundamentally because the neighbor table size
does not grow with the network size. Rather, it grows with
increasing number of nodes in a neighborhood, or equivalently,
the network density.

Figure 6-c shows how the actual neighbor table occupancy
(the number of entries in the neighbor table) varies with
time. The neighbor table occupancy shown in this graph is
an average over all nodes in the network. When 30 slots are
allocated for the neighbor table, on average each node uses
about 26 slots, but with 10 or 20 slots, the occupancy reaches
the capacity and there is overflow. Thus, 10 or 20 slots are
not sufficient, which causes the linear increase in steady state
energy consumption shown in Figure 6-b.

B. Simulation Results

In small and moderate size networks, the size of the
neighbor table can be made sufficiently large. In order to
find the appropriate size of the neighbor table to ensure fixed
steady energy cost in large networks, we perform TOSSIM
[12] simulations on a 20x20 grid network. Distance d between
the grid points is taken as 5ft, 10ft, and 20ft. The values of
various parameters used for the simulation experiments are
same as those used for testbed experiments (Table I). In our
simulations, all UA packets are broadcast. In practice, not all
UA traffic is of broadcast nature. If the amount of broadcast
traffic is less, then as explained in Section IV-D, the number
of MOODy transitions of the node, steady state energy cost,
and the necessary neighbor table size are all reduced.

As Figure 7-a shows, the steady state energy cost increases
linearly with time in Trickle, whereas it is fixed in Varuna for
d =10ft and 20ft, for a neighbor table size of 50 slots. Trickle
consumes about 5 and 147 times more energy than Varuna in
one day and one month, respectively, for d =20ft. For a dense
network with d=5ft, Figure 7-b shows that a neighbor table of
100 slots is required to achieve fixed steady state energy cost in
Varuna. For the dense network, Trickle’s performance is better
than for the sparse network because of its good advertisement
suppression mechanism. But as the steady state time increases,
Varuna outperforms Trickle. Figure 7-c shows the steady state
energy cost for various values of neighbor table size and d =10
ft. Identical to the conclusion from the testbed experiments,
if the neighbor table is kept sufficiently large, the steady state
energy cost becomes independent of time in Varuna.
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Figure 7-d, e, and f show the actual neighbor table size
occupancy for d =5ft, 10ft, and 20ft. For sparse network with
d =20ft, neighbor table with less than 10 slots is sufficient.
For a denser network with d =10ft, less than 30 slots are
sufficient. For a very dense network with d =5ft (and the
large 400 node network), less than 100 slots (i.e. less than
600 Bytes) are sufficient.

In the TOSSIM simulation model, each node has a transmis-
sion radius of 50ft, and the bit error rates are modeled using
the empirical results from TinyOS experiments. To evaluate
the size of the neighbor table necessary to ensure fixed steady
state energy cost for different node densities, we introduce
the notion of density factor. It is the ratio of actual network
node density (nodes/ft?) to comnnectivity density (nodes/ft?).
Connectivity density is the node density in a minimally
connected network where every pair of neighboring nodes
are at the farthest possible distance that allows direct one-
hop communication between them. For example, in the grid
network for our TOSSIM simulation, connectivity density is
4/2500 nodes/ft? since a square of 50ft side requires four nodes
at four corners of the square to be minimally connected. Thus,
density factor is also a measure of node redundancy in the
network. For example, if density factor is &, then the network
has k times more nodes than that minimally required for
connectivity. For our experiments with d =20ft, 10ft, and 5ft,
density factors are 6.25, 25, and 100, respectively. Note that
because of failures and the fact that sensing range is generally
smaller than the transmission range, a minimally connected
network is generally not suitable for practical deployments.
Nevertheless, a redundancy of factor 100 (for d =5ft) will
likely be more than sufficient for most deployments. For such
a deployment, a neighbor table of 100 slots is sufficient. Figure
7-g shows how the size of the neighbor table required for fixed
steady state energy cost in Varuna increases with the density
factor. This relationship looks linear and we plan to investigate
this further in our future work.

VI. RELATED WORK

Reliable data dissemination using unreliable wireless chan-
nels has been the focus of several research efforts. This is
more challenging in sensor networks where transient failures
occur more frequently and unpredictably than in other types
of wireless networks. Also energy consumption is a major
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concern. Various protocols have been proposed for information
dissemination in sensor networks. Drip [13] disseminates
network parameters to the network nodes; Marionette [4]
distributes network queries for debugging; [1], [2], [6] dissem-
inate code binaries; Tenet [14] disseminates tasks. All these
protocols use Trickle [5] or some modified form of the Trickle
algorithm. Trickle’s design achieves fast and energy efficient
distribution of the data items in the dissemination phase under
varying node densities. Dip [3] reduces the size of the metadata
that has to be transmitted in an advertisement message if the
information to be disseminated consists of several sub data
items. However the steady state energy expenditure of all of
these protocols increases linearly with the steady state time,
the most dominant phase in the lifetime of a network. To the
best of our knowledge, Varuna is the first protocol to address
the issue of steady state resource expenditure.

VII. CONCLUSIONS

To maintain data item consistency, existing systems cause
nodes in the network to advertise their metadata periodically in
the steady state when no dissemination is actually being done.
As a result, the steady state energy cost increases linearly
with the steady state time—the most dominant part of a
node’s lifetime. We presented the design and implementation
of Varuna, whose steady state cost is independent of the
steady state interval for most practical cases. Varuna achieves
energy savings of several orders of magnitude compared to
the existing standard algorithm called Trickle, as demonstrated
through our testbed and simulation results. The tradeoff in
Varuna are the memory requirement for storing neighbor table
and guarantee of a relaxed invariant that information cannot
flow from a higher version node to a lower version node. As is
evident from our experiments, even for a very dense network
with 100x redundancy, the memory requirement is reasonable
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for the currently available commercial sensor nodes. Also, in
most sensor network deployments, the flow of information
from up-to-date nodes to out-of-date nodes for some time
(before it is eventually detected by Varuna) is acceptable. The
possibly erroneous information does not affect the up-to-date
nodes, and cannot force wrong decisions at the base station,
which can be assumed to be always up-to-date.
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