
Large Scale Debugging of Parallel Tasks with AutomaDeD ∗

Ignacio Laguna2, Todd Gamblin1, Bronis R. de Supinski1, Saurabh Bagchi2,
Greg Bronevetsky1, Dong H. Anh1, Martin Schulz1, Barry Rountree1

1Lawrence Livermore National Laboratory, Computation Directorate,
Livermore, CA 94550

{tgamblin, bronevetsky, ahn1, bronis, schulzm, rountree4}@llnl.gov

2Purdue University, School of Electrical and Computer Engineering,
West Lafayette, IN 47907

{ilaguna, sbagchi}@purdue.edu

ABSTRACT
Developing correct HPC applications continues to be a chal-
lenge as the number of cores increases in today’s largest sys-
tems. Most existing debugging techniques perform poorly
at large scales and do not automatically locate the parts of
the parallel application in which the error occurs. The over-
head of collecting large amounts of runtime information and
an absence of scalable error detection algorithms generally
cause poor scalability. In this work, we present novel, highly
efficient techniques that facilitate the process of debugging
large scale parallel applications. Our approach extends our
previous work, AutomaDeD, in three major areas to iso-
late anomalous tasks in a scalable manner: (i) we efficiently
compare elements of graph models (used in AutomaDeD
to model parallel tasks) using pre-computed lookup-tables
and by pointer comparison; (ii) we compress per-task graph
models before the error detection analysis so that compar-
ison between models involves many fewer elements; (iii) we
use scalable sampling-based clustering and nearest-neighbor
techniques to isolate abnormal tasks when bugs and perfor-
mance anomalies are manifested. Our evaluation with fault
injections shows that AutomaDeD scales well to thousands
of tasks and that it can find anomalous tasks in under 5
seconds in an online manner.

1. INTRODUCTION
As today’s High Performance Computing (HPC) applica-

tions increase in complexity, debugging errors, performance
anomalies, and unexpected behavior in these applications
becomes excessively difficult. A single bug in an HPC ap-
plication often affects multiple processes, so growing appli-

∗Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DEAC52-07NA27344.
(LLNL-CONF-486911)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

cation scales leads to an effect on many processes. Most
existing debugging techniques as implemented in tools like
gdb [13], TotalView [25], or DDT [5] do not automate the
debugging process: developers must manually locate errors
and backtrack through interactions across processes to lo-
cate the root cause. Clearly, this approach is infeasible for
large-scale parallel applications.

We previously developed AutomaDeD [8], a tool that de-
tects errors based on runtime information about control paths
that the parallel application follows and the times spent in
each control block. AutomaDeD can also suggest possible
root causes of detected errors by pinpointing, in a proba-
bilistic rank-ordered manner, the erroneous process and the
code region in which the error arose. Intuitively, the erro-
neous tasks often form a small minority of the full set of
tasks. Hence, they are outliers when we cluster the tasks,
based on their features related to control flow and timing.
Further, in the time dimension, the executions in the first
few iterations are more likely to be correct than in later
iterations, which we also leverage to determine correct or
erroneous labels.

Almost all existing parallel debugging tools (including Au-
tomaDeD [8]) fail to scale to the process counts of today’s
state-of-the-art systems. Three main factors impede scala-
bility. First, the tools include a centralized component that
performs the data analysis. Thus, tools must stream be-
havioral information from all the processes to this central
component so that it can process the information to deter-
mine the error and, possibly, its location. Second, the tools
require huge amounts of data. While many tools optimize
the monitoring part quite well, the cost of shipping all infor-
mation to the analysis engine and the cost of analyzing the
full volume of data remains. While tools such as STAT [15]
reduce the data volume that the central component must
handle, they still must process the full data in their com-
munication structure. Third, the data structures used to
maintain the information are not completely optimized for
the operations that need to be performed for error detection
and localization, such as comparison of information from
processes that belong to the same equivalence class. Small
differences in the cost of one operation, though insignificant
for hundreds of processes, become significant at larger scales.

Due to scaling limitations, many existing techniques [11,
12, 21] collect information at runtime and perform analysis
offline, decoupled from the main application execution. This

approach may allow bug diagnosis only after a long execu-
tion in the erroneous mode. This cost reduces application
throughput and wastes computational resources.

We aim to change the debugging scenario fundamentally.
We propose techniques to perform error detection and diag-
nosis online. In this work, we introduce novel scalable mech-
anisms that allow AutomaDeD to execute online in large-
scale systems1. To achieve this goal, we introduce three
major design and implementation innovations:
Efficient edge comparison allows AutomaDeD to com-
pare per-process graph elements efficiently. Following the
model of our baseline implementation, AutomaDeD repre-
sents each process as a graph in which nodes are MPI calls
or computation blocks between such calls. Edges in the
graph have a transition probability and a time distribution.
We compare edges by representing state information in the
graphs using pointers instead of character strings, so that
AutomaDeD can perform state comparisons with a few ma-
chine instructions (distinct from the baseline, which used
character strings to represent application states). We per-
form optimal comparison of per-edge probability distribu-
tions using a lookup table instead of computing an integral.
Graph compression reduces the time to compare the be-
haviors of processes by merging edge chains, since the dif-
ference between two graphs is the sum of the differences
between their edges. This mechanism reduces data dimen-
sionality so that AutomaDeD can focus first on finding out-
liers (i.e, abnormal processes) using fewer dimensions, and
later focus on the dimensions that a fault most affects (e.g.,
by using just that graph region). Our compression preserves
the basic control structure of the program so that the anal-
ysis provides actionable results.
Scalable outlier detection uses distributed sampling tech-
niques to find the erroneous processes among many parallel
ones with low overhead. We use scalable clustering [10] and
a novel nearest neighbor technique to find outliers efficiently.

Careful integration of the three techniques eliminates any
centralized element in our solution, thus making AutomaDeD
scalable to larger and larger system sizes. This benefit re-
quires that we must carefully sample AutomaDeD’s data so
our input is representative of all processes and we do not
miss sharp discontinuities in process behavior.

Our experiments on a Linux cluster with thousands of
cores show that AutomaDeD scales to thousands of processes
and that it can isolate erroneous tasks in a few seconds. We
demonstrate its error-detection capabilities through fault in-
jections in the NAS Parallel Benchmarks and its scalability
on up to 5,000 AMG2006 [14] processes. AutomaDeD per-
forms the entire error-detection analysis (i.e., abnormal pro-
cess and erroneous code region isolation) in under 5 seconds.

The remainder of this paper is structured as follows. In
Section 2 we present background material on our baseline.
In Section 3 we detail the design of the three novel aspects
in AutomaDeD which improves the operational flow of the
baseline approach. In Section 4 we present detailed exper-
iments that demonstrate the effectiveness and performance
of our scalable error detection techniques.

2. BACKGROUND
In our previous work, we presented AutomaDeD [8], a tool

1We refer to our prior work [8] as baseline instead of Au-
tomaDeD to distinguish it from our current work

Figure 1: Main blocks in the design of AutomaDeD

that allows developers to focus debugging effort on the erro-
neous period of time, parallel task and code region that are
affected by faults in parallel applications. Figure 1 shows the
main building blocks in AutomaDeD. Control flow and tim-
ing information of each task are modeled using semi-Markov
models (SMM). Through non-intrusive runtime monitoring,
AutomaDeD creates an SMM for each task in the appli-
cation. States in an SMM represent communication code
regions, i.e., MPI communication routines, and computation
code regions, i.e., code executed between two MPI commu-
nication routines. A state consists of call stack information
such as the module name and offset of the function calls
that are currently active in the MPI process. This call stack
information is obtained by instrumenting the application dy-
namically using the DynInst tool [2] (or by using the back-
trace API from the GNU C library [3] when DynInst is not
available) at the beginning and at the end of MPI routines
with a PNMPI [24] profiler. Every edge is a tuple (s, d),
representing a transition between source state s and desti-
nation state d. Two attributes are assigned to each edge: a
transition probability that captures the frequency of occur-
rence of the transition, and a time probability distribution
that allows us to model the time spent in the source state
conditioned on the destination state.

The application’s execution is divided into a series of time
periods called phases in which the application repeatedly ex-
hibits the same execution pattern. First, AutomaDeD per-
forms clustering of SMMs to find the phase in which the error
is first manifested. We detect this phase by looking for sharp
deviations in the clustering of SMMs from prior phases.
Then, AutomaDeD performs clustering of the SMMs of the
different tasks in the erroneous phase to determine the erro-
neous task(s). The natural number of clusters in an applica-
tion can be provided by the developer (in cases, the distinct
functionalities of different classes of tasks are obvious, e.g.,
a master-slave application has two clusters), from clusters
of previous phases in the same run (before a fault is man-
ifested), or can be inferred from traces of previous normal
runs. The erroneous tasks are those that deviate from the
normal number of clusters, for example, by creating a sep-
arate cluster with few elements. Finally, AutomaDeD seeks
to determine which code regions in the erroneous task(s) had
the first manifestation of the error. For this purpose, Au-
tomaDeD performs an activity called edge isolation, through

which it identifies the SMM edge that contributed most to
the distance of the erroneous task. In one mode of opera-
tion, multiple SMM edges, ranked by their contributions to
the difference, are provided to the user. Developers can then
target debugging effort to these code regions.

3. DESIGN OF AutomaDeD
In this section, we detail the design of the three novel

aspects of AutomaDeD, which improves on the operational
flow of the baseline that we have just described. In the
improvements, we first show how edges in two graphs corre-
sponding to two different tasks can be efficiently compared.
Next, we show how the graphs corresponding to the SMMs
can be compressed to improve the accuracy of identifying er-
roneous tasks and to reduce the computational cost of this
process. Finally, we describe how identification of abnormal
tasks is done in a scalable manner through two alternate
methods of clustering and nearest-neighbor calculation.

3.1 Efficient Edge Comparison
In the error detection part, AutomaDeD performs pair-

wise comparisons of SMMs. In our previous work [8] we
presented an algorithm to compute the dissimilarity (or dif-
ference) between a pair of SMMs. Its main idea was to find
and add up the differences between corresponding edges in
the two SMMs (that are being compared). An edge (statei,
statej) that is present in two different SMMs, SMM1 and
SMM2, implies that both tasks performed a state transition
of the form statei → statej at some point in the program
execution and we can compute edge differences. If an edge
is present in one SMM but is not present in the other, the
difference is assigned a high weight to highlight control flow
differences that cause this behavior. Computing edge differ-
ences requires two steps to be computed efficiently:
(i) Finding matching edges in two SMMs. In order to com-
pare an edge from an SMM, we must first determine whether
a corresponding edge exists in the other SMM.
(ii) Computing differences of edge attributes. Once we have
found corresponding edges, we compute the difference be-
tween their attributes, i.e., the differences between their
transition probabilities and time probability distributions.

We efficiently perform the first step by representing SMMs
using data structures that allow efficient edge searching. We
use a sorted map of unique keys (a C++ map) to represent
SMMs. The keys are edges and mapped data are edge at-
tributes. This structure supports edge lookups with com-
plexity O(log n), where n is the number of edges.

We represent states in an SMM by call stack paths col-
lected when the program calls MPI routines. A call stack
path is the list of function calls that are currently active,
which includes the called functions and the offset into the
functions. In previous versions of AutomaDeD, we used
character strings to represent paths, which incurred a large
overhead when we compared two states. Our current im-
plementation supports a compact representation that uses
unique references and, thus, supports direct comparison of
the references. Further, since references from different tasks
may point to the same call stack path, we exchange the map
between the two tasks to determine a consistent view of the
paths before we compare their SMMs. This permits com-
parisons of edges (which translates to comparisons of pairs
of states) through a few machine instructions (by reference
comparisons) instead of by comparing character strings.

Figure 2: Table of the percent overlap of two normal
distributions (assuming SD1 < SD2)

The second step is the edge-comparison computation. For
this task we must calculate the difference between two time
distributions—calculating the difference of the transition prob-
abilities is trivial since it only involves a subtraction of two
double-type values. We use the Lk-norm method [8] to com-
pute the difference of two probability distributions, which is
based on the following formula:

∫
∞

−∞

|P (x)−Q(x)|kdx, (1)

where P (x) and Q(x) are two continuous probability dis-
tributions of the random variable x (representing time) in
the two edges. We estimate probability distributions with
parametric and non-parametric methods. AutomaDeDuses
normal distributions and histograms as the base models re-
spectively. While histograms provide a better fit for the
observed data than normal distributions, they have signif-
icantly higher memory and computational complexity. We
therefore in the following use a normal distribution since we
emphasize low overhead at scale.

Previous work in statistics [17] has shown that the per-
centage of overlap of any two normal distributions can be
estimated from their parameters, i.e., mean and standard
deviation. A table (or nomogram) as shown in Figure 2
can be computed a priori so that we can obtain the over-
lap of two new distributions by inspecting the table, where
the y-axis is the ratio of the larger standard deviation SD2
to the smaller standard deviation SD1, and the x-axis is
the distance between the means M1 and M2 normalized by
the smallest standard deviation. The key observation is that
the Lk-norm of two normal distributions equals the area that
does not overlap between the two distributions. Therefore,
AutomaDeD uses a similar table to estimate the value of an
Lk-norm calculation without incurring in the high overhead
of numerically estimating the integral in equation (1). The
points in the table that AutomaDeD uses are calculated us-
ing the Lk-norm formula with parameters of two (randomly
selected) normal distributions. Since we must quantize the
values of the parameters for which we store the results in the
table, we only build a table of 500× 500 values and approx-
imate overlapping percents by interpolation. Our experi-
ments show that a table of this size is sufficiently accurate
to distinguish two normal distributions.

3.2 Graph Compression
Motivation. Parallel programs with complex control flow

result in SMM graphs with many edges. For example, in our
experiments with the NAS Parallel benchmarks, graph sizes

Figure 3: Compression approach.

are often on the order of hundreds of edges. Large edge
counts impact the accuracy of isolation of abnormal tasks
in AutomaDeD since the problem directly corresponds to
the problem of detecting outliers (i.e., abnormal tasks) in
a high dimensional space. High dimensional mathematical
spaces create difficulties for unsupervised machine learning
techniques such as clustering and k-nearest-neighbor due to
the curse of dimensionality [7]. Distances between all pairs
of points in high dimensional data tend to become almost
equal—with too many dimensions, deviations from normal-
ity in a few dimensions are not as significant. Thus, Au-
tomaDeD cannot find the abnormal task. An additional
problem associated with SMM graphs of large sizes is that
the overhead of the task isolation phase increases because
the complexity of distance calculations of SMM pairs is pro-
portional to the number of edges. Therefore, we implement
an algorithm that allows AutomaDeD to compress large
SMMs before we perform task isolation.

Which edges can be compressed. We observe that we
can merge a linear chain of states and still retain the gen-
eral control flow structure of the program, i.e., the states and
edges that represent the main program loops are maintained
in the compressed graph. Figure 3 illustrates this idea. The
SMM represents the sample MPI code in the left part of the
figure. We omit the transition probabilities associated with
the edges (and only present the time distributions) for sim-
plicity. The right part of the figure shows the compressed
SMM after we apply our compression algorithm to the origi-
nal SMM. We define a sequence of states as a linear chain of
states with out-degree of one, in which the transition prob-
abilities associated with their outgoing edges are 1.0. The
compression algorithm merges sequences of states keeping
the main control flow structure in the resulting compressed
graph. The sequence of states after Init up until Send are
summarized as only Send, and their edges are all merged
into a single compressed edge.

A compressed edge contains two distributions P and Q
that represent the time spent in the MPI calls and in the
computation blocks of the original graph. Keeping time dis-

Figure 4: Global reduction of edges support.

tributions separate in the compressed edge helps developers
differentiate the parts of the code that are affected by MPI
operations from parts in which the computation code in be-
tween them is the source of the problem.

How to assign attributes to compressed edges. We
merge the time distributions in sequences of edges under the
assumption that the underlying random variables are inde-
pendent, and that normal distributions are used to fit the
observed data. Given two independent random variables T1

and T2 that are normally distributed with parameters µ1, σ1

and µ2, σ2, the new random variable T1+T2 is also normally
distributed with parameters (µ1+µ2), (σ1+σ2). Therefore,
when compressing a sequence of edges, the compression al-
gorithm simply sums the parameters of the distributions in
those edges, keeping distributions for communication (i.e.,
for MPI routines) and for computation blocks separate. As
can be observed in figure 3, a compressed edge has a tu-
ple (P,Q), where P is the cumulative distributions of com-
munication states and Q is the cumulative distributions of
computation states.

Distributed nature of the merge process. The com-
pression algorithm involves two steps; we now discuss our
completely distributed implementation of both steps. First,
AutomaDeDmust determine the set of edges that are present
in all the tasks or, if we have determined task equivalence
classes, the set present within all tasks within an equiva-
lence class. Our edge compression algorithm only targets
such edges for compression. AutomaDeD does not compress
edges that are not common in all SMMs to avoid eliminat-
ing abnormal transitions that may be present in only a few
tasks. Second, the compression happens locally and concur-
rently at each task using the above set of edges.

Figure 4 illustrates this idea. We define an edge’s support
as the number of tasks in which it appears. We first apply a
reduction operation that collects local information from all
tasks and applies an aggregation operation on that informa-
tion. The operation that the reduction performs sums the
edge support of local graphs. At the end of the reduction,
the edges of states 1–4 have a support of four (because they
are present in all graphs), while edges of states 4–7 only have
support of three. After we perform the reduction, the root
process (i.e., the one that initiates the reduction) broadcasts
the reduced graph to all tasks so that every task has the set
of edges to compress, i.e. those with support of four for this
example. We implement the reduction with a binomial tree,
which has logarithmic complexity in terms of the number
of tasks. We cannot use MPI Alleduce since the tasks can
contribute different numbers of edges.

DFSCompress (State s t a t e) {
i f (i sNotF ina lStat e (s t a t e)) {

ne i ghbor s = getNeighbors (s t a t e)
for each n in ne i ghbor s {

Edge edge (s tate , n)
i f (edgeHasNotBeenVisited (edge)) {

addEdgetoQueue (edge)
i f (isHeadOrTai l (n)) {

mergeEdgesInQueue ()
DFSCompress (n)

}
}

}
} else {

mergeEdgesInQueue ()
}

}

Figure 5: Depth-first-search compression algorithm.

The second step compresses the local graph for edges that
are globally supported. We use a modified version of the
depth-first-search algorithm to traverse the graph. The main
idea of the algorithm is that we can merge sequences of states
until we find the beginning or the end of a loop. The algo-
rithm assumes that the SMM graph is represented as an
adjacency list so that we can find state neighbors for each
state as the graph is traversed.

Figure 5 shows the compression algorithm’s pseudocode.
We define a loop-head state as the first state in a loop, and
loop-tail state as the last state in a loop. As we traverse
the graph, we store edges in a queue until the mergeEd-

gesInQueue() function is called in loop-heads, loop-tails or
in the last state. This function merges edges as described
previously in Figure 3 keeping probability distributions for
communication and computation code regions separate. The
complexity of the algorithm is O(number of edges).

Need for iterative drill-down due to graph compres-

sion. Due to graph compression, when AutomaDeD ini-
tially provides the characteristic edge(s) that likely caused
the task to become anomalous, the granularity can be more
coarse than in the baseline. The granularity can be a com-
pressed edge, which includes multiple edges from the origi-
nal graph. However, AutomaDeD keeps the original graph
and the compressed graph in memory. For the task that we
determine is anomalous, we perform edge isolation locally
using the fragment of the original graph that corresponds
to the part of the compressed graph that we determined
is anomalous. For example, if edges {e1, e2, e3} were com-

pressed into an edge e(c) and the initial iteration of the edge
isolation flagged e(c) as the anomalous edge, the next it-
eration can work on {e1, e2, e3} and diagnose at the same
granularity as baseline. We preserve the advantage of edge
compression—AutomaDeD does not perform any communi-
cation of the potentially large original graph to other pro-
cesses and does not have to perform task isolation on the
original graph. The minor disadvantage is that edge isola-
tion requires two iterations.

3.3 Scalable Outlier Detection
The typical use case of AutomaDeD isolates abnormal

tasks of time that the application fails. This usage can be
challenging since AutomaDeD must extract a few abnormal
tasks from many normal tasks. Naive techniques such as

comparing each task against each other to find the most dis-
similar task do not scale well since the complexity of these
methods is quadratic with respect to the number of tasks.

We implement two scalable approaches to isolate abnor-
mal tasks: (1) clustering, using CAPEK’s algorithm, which
first finds clusters and then determines abnormal tasks as
indicated by the largest distances from their cluster cen-
ters; and (2) nearest-neighbor, in which determines abnor-
mal tasks based on the largest distances from their near-
est neighbors. In both approaches, we sample a constant
number of data points (i.e., tasks) and perform the analysis
treating the sample set as representative of the entire set of
points. Thus, we avoid having an unmanageable linear al-
gorithmic complexity with respect to the number of points;
both approaches scale with a complexity of the log of the
number of tasks. Figure 6 illustrates the idea behind the
two algorithms, which the next sections describe in detail.

3.3.1 Clustering
We have developed a novel outlier-detection technique

based on CAPEK, a scalable clustering algorithm designed
for large-scale, distributed data sets like those generated by
parallel performance tools [10]. CAPEK finds groups, or
clusters within distributed data sets, which gives us infor-
mation about the structure of our data. For each cluster,
CAPEK also determines a representative, or medoid mi, and
we can find outliers by finding the objects (SMM) in the data
set that are furthest from their representative medoids.

Formally, CAPEK is a K-Medoids method. K-Medoids
methods take a set of objects X, a dissimilarity function
d : X × X → R and a number of clusters k ∈ N as in-
put. They produce a clustering, a set of disjoint clusters
C = C1, . . . , Ck ⊆ X such that

⋃k

i=1 Ci = X and a set of
medoids M = m1, . . . ,mk such that mi ∈ Ci. Each mi is
the representative element for cluster Ci. These methods
attempt to minimize

∑k

i=1

∑
xj∈Ci

d(xj,mi), the total dis-

tance from each object to its representative medoid. The ba-
sic version of CAPEK requires the user to specify the num-
ber of clusters, k. It also allows the user to search for an ideal
k using the Bayesian Information Criterion (BIC) [22]. The
intuition behind this algorithm is that the medoids, mi, will
be approximately centered within their clusters, and they
are thus good representatives for the clusters as a whole.

CAPEK has several advantages that make it well-suited
for clustering SMM data. First, CAPEK is sampled, from
which it derives its massive scalability. Traditional sequen-
tial clustering algorithms have quadratic or linear runtime,
but CAPEK uses all processors for analysis to achieve loga-
rithmic runtime, which makes our analysis feasible at scale.
Other algorithms, such as the hierarchical clustering that
baseline uses [8], do not readily support sampling, and thus
do not scale to the system sizes that CAPEK supports.

Second, unlike K-Means methods [9, 18, 19], K-Medoids
does not require that we can define algebraic operations,
such as addition and scalar division, on the data. K-Means
methods discover the synthetic means, or centroids, of their
clusters using these operations, but we cannot directly cal-
culate a “mean” SMM.

Finally, K-Medoids methods produce flat partitions of the
data, which simplifies outlier detection. With hierarchical
clustering, for example, we must choose the level in a clus-
tering tree to describe clusters and outliers best. However,
this complicated process does not scale. With a flat parti-

Figure 6: Clustering and Nearest-Neighbor methods to isolate abnormal tasks.

tion, we can detect outliers using standard deviation, which
is straightforward and fast to compute. Our clustering-based
outlier detection algorithm is:
(1) Perform clustering: We obtain a clustering C using
CAPEK, which provides copies of the medoids mi for all
clusters to each process.
(2) Find distances from each task to its medoid: Each
task computes the distance dji from its local SMM xj to its
representative, mi. As CAPEK guarantees, this medoid will
be the representative nearest to xj .
(3) Normalize distances using standard deviation:
Using parallel reductions within each cluster, we compute
the standard deviation σi for each cluster in logarithmic
time. We then normalize each process’s dji to obtain d′ji =
dji/σi, which allows us to find outliers in data sets that may
exhibit several different “normal” behaviors.
(4) Find top-k outliers: d′ji is a measure of how far each
SMM is from its representative; we now find the top k val-
ues of d′ji in parallel. The corresponding SMMs are the
“most different” from their representatives. We gather these
SMMs, which we report as outliers. We can trivially find
the top k SMMs in logarithmic time by computing k paral-
lel reductions in sequence.

3.3.2 Nearest Neighbor
Our nearest-neighbor (NN) method classifies outlier tasks

based on dissimilarities between tasks and their nearest neigh-
bors. The main idea is that an abnormal task will be far from
its nearest neighbor, while normal tasks will be close to each
other so their pair-wise NN distances are small. To make NN
scalable, we only perform NN distance calculations against
a constant number of sample tasks, rather than against all
tasks. When we calculate NN distances, a sample task re-
moves itself from the sample tasks to avoid picking itself as
its nearest neighbor. Our NN outlier detection algorithm is:
(1) Sampling: We locally generate a set of random indices
that represent task ranks each task using a deterministic
pseudorandom number generator with the same seed. After
this step, each process can determine if it is a sample task.
(2) Broadcasting of samples: Each sample task broad-
casts its SMM. After this step, each task can compare its
SMM to the sample SMMs in order to find its NN distance.
(3) Find NN distance: Each task compare its SMM to
those of the sample tasks. The SMM of the smallest distance
corresponds to the NN task. Finally, we perform a global

reduction at the root task to find the k most abnormal tasks.
NN may not isolate abnormal tasks if a fault affects multi-

ple tasks simultaneously. To illustrate this problem, suppose
that the normal clustering of the tasks in an application is
two clusters, but a fault creates a third cluster with a few
similar abnormal tasks. Suppose also that we sample two
tasks t1 and t2 from this abnormal cluster. We will deter-
mine that t1 and t2 are each other’s nearest neighbor. The
distance values for each case will be low values and these
tasks will not appear in the top-k rank of outliers (or abnor-
mal tasks), which will prevent AutomaDeD from isolating
them. The clustering approach avoids this problem because
the abnormal tasks will belong to one of the normal clusters
(because of the BIC methodology to select cluster configu-
rations) and have high distances to the cluster medoid.

3.3.3 Abnormal Edge Isolation
Our previous work [8] presented mechanisms to detect the

code region in which a fault is first manifested after task
isolation. The characteristic transition is the edge that con-
tributes most to the distance of the abnormal task. We easily
extend this concept to multiple rank-ordered transitions or-
dered by their contributions to the difference. In this work
we implement a modified version of one of these techniques.
we perform for the two outlier detection methods as follows:
(1) Clustering : After clustering, each task has the medoid
of its cluster. We compare the abnormal task’s SMM to the
medoid’s SMM and sort the edges in ascending order of their
dissimilarities. We flag the top-k edges as abnormal.
(2) NN : After the task isolation phase, we compare the ab-
normal task SMM to all sample SMMs. As in the clustering
method, we sort edges by their dissimilarities and flag the
top-k edges as abnormal.

After we perform graph compression on the SMM (and
have isolated the abnormal task), AutomaDeD keeps a copy
of the original SMM in memory and performs edge isola-
tion using that SMM. Since we must compare edges between
graphs of the same nature—always between uncompressed
graphs for this case—the abnormal task must have the orig-
inal SMM of the other tasks. We fulfill this requirement
by sending the original graph from the compared task(s) to
the abnormal task. This additional step incurs a small over-
head; for example, for the clustering method we only send
one graph (from the medoid task) to the abnormal task.

4. EXPERIMENTS AND RESULTS

4.1 Fault Injection
We empirically evaluate the effectiveness of AutomaDeD’s

techniques by injecting faults that commonly occur in par-
allel applications. We inject faults into six applications of
the NAS Parallel benchmark suite: BT, SP, CG, FT, LU
and MG [6]. We omit EP because it performs almost no
MPI communication and IS because it uses MPI only in a
few code locations. Since their MPI profiles produce small
SMMs, monitoring at the granularity of MPI calls does not
suit these applications. Our injector [8] uses PNMPI to in-
ject a wide range of software faults into random MPI calls
during MPI application runs. We focus our fault injection
campaign on the following performance faults:
• CPU_INTENSIVE: CPU-intensive code region, emulated by
a triply nested loop.
• MEM_INTENSIVE: Memory-intensive code region, emulated
by filling a 1GB buffer with data at random locations.
• HANG: Local deadlock, emulated by making a process in-
definitely suspend execution.
• TRANS_STALL: Transient stall, emulated by making a pro-
cess suspend execution for 5 seconds.

In these experiments, we run the benchmarks at a moder-
ate scale: 512 processes for CG, FT, LU and MG, and 529
processes for BT and SP, with input size B. We use six-core
nodes (the LLNL Sierra cluster), with 2.8 GHz Intel Xeon
processors and 24 GB of RAM per node. Each experiment
injects a single fault into a single random task during MPI
communication operations (e.g., blocking and non-blocking
sends and receives, all-to-all, broadcasts and barriers). For
each benchmark, fault type, and detection technique, we
perform 10 runs, for a total of 960 experiments.

4.2 Fault Injection Results
When we inject a fault, AutomaDeD performs the error-

detection analysis by default at the end of the run during
MPI_Finalize. For some benchmarks, the SMM created at
the end of the run can be quite large, even after compression.
For example, in LU and MG, the compression algorithm can
only compress the graph to around 120 edges (from orig-
inally around 250 edges), which is still a large number of
edges for the outlier detection techniques to work accurately.
In these cases, AutomaDeD divides the run into phases to
reduce the size of per-phase SMMs to a manageable size and
performs the analysis in the faulty phase. In our prior work,
we presented a technique to detect the abnormal phase in a
run [8]. For these experiments, we assume that AutomaDeD
is provided with the faulty phase, which the user can pin-
point or our prior algorithm can detect. In cases where a
fault causes the application to suspend execution and it does
not allow the creation of a new SMM at the end of a phase or
during MPI_Finalize, such as in the HANG fault, the analysis
is executed when AutomaDeD does not observe any state
transitions for a “long” period of time; a parameter that can
be configured by the user or estimated by AutomaDeD from
previous runs (by taking the maximum transition time). In
our experiments, we use 60 seconds for this parameter.

We use two metrics to evaluate error-detection and local-
ization quality: process-isolation recall—the fraction of runs
in which the process in which we inject the fault is in the top-
5 abnormal processes that the task-isolation method (sepa-
rately clustering or NN) outputs; edge-isolation recall—for

Benchmark Original Compressed Comp. Ratio
BT 207 55 3.76
SP 179 55 3.25
CG 129 66 1.95
FT 21 4 5.25
LU 46 29 1.59
MG 81 33 2.45

Table 1: Edge counts for fault injection experiments.

cases in which AutomaDeD correctly isolates the abnormal
processes, the fraction of runs in which the code region in
which we inject the fault is in the top-5 abnormal edges.

Figure 7 shows the task isolation results for the baseline
(without compression) and the compression approach, for
the two outlier detection methods. Table 1 shows graph
sizes for the baseline and the compression method for faults
that do not suspend the execution of the program. When
the program’s execution is suspended due to a hang or seg-
mentation fault, the size of the graph can vary depending
on the number of transitions observed in the last snapshot
time and is therefore not meaningful.

As we observe in the figure, compressing the SMM im-
proves the accuracy of detecting the anomalous process in
both the NN and the clustering methods. For example, in
the NN method when we inject the CPU_INTENSIVE fault in
BT, recall in the baseline approach is about 85% whereas
with compression it is 100%. In the clustering method, for
the same benchmark and fault, recall is improved from 60%
in baseline to 90% with compression. Compression improves
process-isolation recall because the dimensionality reduction
that results from merging contiguous edges eliminates noisy
(unimportant) dimensions from the analysis and allows Au-
tomaDeD to focus its power on the significant dimensions.

These results also suggest that the NN method detects
errors better than the clustering method for half of the tested
benchmarks, while both perform equally well for the other
half. However, we expect clustering to have better accuracy
than NN for cases in which a fault manifestation affects more
than one process, as previously discussed.

Figure 8 shows the edge isolation results. AutomaDeD
provides a high overall edge-isolation recall for most injected
faults. If AutomaDeD correctly detects the faulty task in the
previous step, it can guide the developer, with a high accu-
racy, to the code region in which the fault first manifests
itself as a timing abnormality. This positive result demon-
strates that the compression of the graph does not affect this
step, nor does the sampling approach that we used to make
NN or clustering scalable. Thus, our sampling strategy is
probably unbiased and provides representative samples.

4.3 Performance Results
We evaluate the performance improvement achieved by

calculating Lk-norm values using a pre-computed table. Fig-
ure 9 shows times for the baseline case (estimating integral
(1)) and the pre-computed case. We measure the time to cal-
culate the dissimilarity between two SMMs while we vary the
number of edges in the SMMs. The use of a pre-computed
table improves performance significantly. For example, for
two large SMMs of 1000 edges, the dissimilarity calculation
takes 0.45 seconds when computing Lk-norms online, while
it takes 10 milliseconds in the pre-computed case.

Figure 7: Task-isolation results for NN and clustering.

Figure 10: Time to isolate tasks and edges for the AMG2006 benchmark.

We evaluate AutomaDeD at larger scales and measure the
time to perform the entire error-detection analysis ending in
the edge isolation. We measure the individual times for each
part of the analysis: compression, edge- and task-isolation,
as we vary the number of tasks to more than 5,000. For this
experiment we use the Algebraic MultiGrid (AMG) 2006
benchmark from the Sequoia benchmark suite [1], a scalable
iterative solver and preconditioner for solving large struc-
tured sparse linear systems. We run experiments in the
same cluster as our fault injection experiments. The analy-
sis uses the SMM that corresponds to the entire execution
AMG. Figure 10 shows the results of these experiments. The
graph size without compression is (on average) 192 edges,
and with compression is 158, with a compression ratio of
192/158 = 1.22.

As we observe from Figure 10, we can apply AutomaDeD
at increasingly large scales with relatively little overhead for
the error-detection analysis. For example, for runs of 5,832
tasks, the analysis takes less than 5 seconds for both the
NN and the clustering methods. Graph compression only
incurs a small overhead, on the order of 170 milliseconds
for the largest runs. However it substantially improves the
accuracy of error detection, as in the fault injection results

(Figure 7). Compression requires little time because the
core of the computation is performed locally in each process
with a relatively small number of edges, (e.g., less than 250
edges for the AMG benchmark and the NAS Parallel Bench-
marks). Despite compression decreasing edge support, this
collective operation communicates little data since pairs of
states in edges are represented as pointers (instead of strings
as in our baseline).

The edge isolation step in NN (around 440 milliseconds)
is larger than in the clustering method (around 4.5 millisec-
onds) because it compares edges of the abnormal processes
to multiple sample SMMs, while the clustering method only
compares edges of the abnormal process to one sample SMM,
i.e., the medoid SMM. However, as the edge isolation re-
sults show, comparing edges to only one sample SMM suf-
fices to produce a similar edge-isolation recall. These re-
sults demonstrate that the scalable techniques implemented
in AutomaDeD make it suitable for online analysis in pro-
duction runs. That is, AutomaDeD could be applied at mul-
tiple points in time as the application executes (possibly for
several days) to find erroneous tasks and code regions.

To see the trend of the analysis time, we compute trend
curves of the total time as Figure 11 shows. Logarithmic

Figure 8: Edge-isolation with NN and clustering.

Figure 9: Lk-norm computation times.

curves accurately model the observed data, which matches
our expectation that the cost of our analysis scales loga-
rithmically with system size. The algorithmic complexity of
the techniques in the outlier detection step, which has an
O(log n) scaling, dominate this cost. Evaluating the equa-
tions of the trend curves, the analysis would take 8.67 sec-
onds for 10,000 tasks, and 11.29 seconds for 100,000 tasks,
for the clustering method. While we realize that such ex-
trapolations are problematic and not always accurate, they
do show that there should be no inherent limits to scaling
our approach and that AutomaDeD has the potential to be
appropriate as an online tool at our target large scales.

5. RELATED WORK
Traditional debugging techniques, including sequential de-

buggers such as gdb and “printf debugging,” require that
users manually trace the origins of their coding error. Tradi-
tional parallel debuggers, such as DDT [5] and TotalView [25],
extend these techniques to allow tracing of multiple pro-
cesses. They provide convenient interfaces to the state of
these processes, but the main procedure of identifying er-
rors remains manual. Overall, the traditional techniques re-
quire a significant amount of user experience, intuition and
time, and thus are largely ineffective for debugging of large,
complex parallel applications.

Several debugging tools detect bugs in large-scale applica-
tions without relying on much manual effort. These typically
focus on detecting violations of deterministic and statistical

Figure 11: Trend lines for the total analysis time.

properties of the applications. Deterministic tools can val-
idate certain properties at runtime; any violation of these
properties during an execution is reported as an anomaly.
For example, FlowChecker [12] focuses on communication-
related bugs in MPI libraries that these applications use. It
extracts information on the application’s intentions of mes-
sage passing (e.g., by matching MPI Sends with MPI Re-
ceives) and at runtime checks whether the data movement
conforms to these intentions. Bug localization follows di-
rectly: the data movement function that caused a discrep-
ancy is the location of the bug.

Statistical tools [8, 11, 20] detect bugs by deriving the ap-
plication’s normal behavior and looking for deviations from
it. For example, if the behavior of a process is similar to the
aggregate behavior of a large number of other processes, then
it is considered correct and different behaviors are consid-
ered incorrect. AutomaDeD [8] and Mirgorodskiy et al. [20]
both monitor the application’s timing behaviors and focus
the developer on tasks and code regions that exhibit unusual
behaviors. These tools focus on function call traces to iden-
tify the trace that is most different from other traces. Au-
tomaDeD provides a more flexible framework for represent-
ing the application’s timing behavior based on SMMs and
does not assume that all processes behave identically, while
Mirgorodskiy et al. can incorporate developer-provided in-
formation into their analysis. DMTracker [11] uses data
movement related invariants, tracking the frequency of data
movement and the chain of processes through which data
moves. It builds invariants that describe normal data move-
ments and signals alerts when it detects a data movement
that does not conform to them.

While the above tools are effective in their own domains,
their primary weakness is that their designs do not consider
scalability. Typically, these tools collect trace data during
the application’s execution and write it to a central location.
They then process the data to detect potential problems. In
contrast, our system analyzes the application’s behavior on-
line, without any central bottlenecks. In this respect the
closest prior work to ours is STAT [4, 15, 16], which pro-
vides scalable detection of task equivalence classes based
on the functions that the processes execute. STAT uses
MRNet [23], a tree-based overlay network, to gather and to
merge stack traces across tasks and presents the traces in a
call-graph prefix tree that identifies task equivalence classes.
STAT removes problems associated with a central bottleneck
by reducing the trace data as part of a computation being

performed within the overlay network through a custom re-
duction plug-in. STAT focuses primarily on the state of the
application once an error manifests itself whereas we focus
on scalable analysis of the entire application execution.

6. CONCLUSION
We have implemented novel techniques in AutomaDeD

that enables it to achieve scalability by optimizing it at dif-
ferent levels of its procedures. First, we minimize the time
to compare elements of task models by using efficient data
structures and approximation methods. Second, we reduce
the sizes of the models to an appropriate magnitude, which
eliminates noisy dimensions when finding the task affected
by a fault. Finally, we use sampling-based techniques such
as CAPEK’s clustering and scalable nearest neighbor to deal
with the increasing number of parallel tasks that are present
in today’s largest systems. Our implementation scales eas-
ily to thousands of tasks and it can identify erroneous tasks
and code regions in a few seconds. With this performance,
AutomaDeD can be used not only in debugging runs, but
also in production runs in an online manner in which Au-
tomaDeD’s analysis would be applied periodically as the ap-
plication runs (e.g., at boundaries of application phases) to
detect problems automatically.

For future work, we will explore capturing more applica-
tion information to detect a wider range of faults such as
memory-related problems. We will also explore mechanisms
to automate the detection of abnormal phases of execution
in a scalable way by making use of previous correct runs of
the same application.

7. REFERENCES
[1] Algebraic MultiGrid (AMG) 2006 Benchmark.

https://asc.llnl.gov/sequoia/benchmarks.

[2] DynInst - An Application Program Interface (API) for
Runtime Code Generation.
http://www.dyninst.org/.

[3] The GNU C Library. http://www.gnu.org/.

[4] D. H. Ahn, B. R. D. Supinski, I. Laguna, G. L. Lee,
B. Liblit, B. P. Miller, and M. Schulz. Scalable
Temporal Order Analysis for Large Scale Debugging.
In Supercomputing Conference, 2009.

[5] Allinea Software. Allinea DDT the Distributed
Debugging Tool.
http://www.allinea.com/index.php?page=48.

[6] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The
NAS Parallel Benchmarks. RNR-91-002, NASA Ames
Research Center, Aug. 1991.

[7] C. M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[8] G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski,
D. Ahn, and M. Schulz. AutomaDeD:
Automata-Based Debugging for Dissimilar Parallel
Tasks. In 2010 IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
231 –240, 2010.

[9] E. W. Forgy. Cluster Analysis of Multivariate Data:
Efficiency vs. Interpretability of Classifications.
Biometrics, 21:768–769, 1965.

[10] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler,
and D. A. Reed. Clustering Performance Data
Efficiently at Massive Scales. In Proceedings of the
24th ACM International Conference on
Supercomputing, ICS ’10, pages 243–252, New York,
NY, USA, 2010. ACM.

[11] Q. Gao, F. Qin, and D. K. Panda. DMTracker:
Finding Bugs in Large-scale Parallel Programs by
Detecting Anomaly in Data Movements. In
ACM/IEEE Supercomputing Conference (SC), 2007.

[12] Q. Gao, W. Zhang, and F. Qin. FlowChecker:
Detecting Bugs in MPI Libraries via Message Flow
Checking. In ACM/IEEE Supercomputing Conference
(SC), 2010.

[13] GDB Steering Committee. GDB: The GNU Project
Debugger.
http://www.gnu.org/software/gdb/documentation/.

[14] V. E. Henson and U. M. Yang. BoomerAMG: A
Parallel Algebraic Multigrid Solver and
Preconditioner. Appl. Numer. Math., 41(1):155–177,
2002.

[15] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski,
M. Legendre, B. P. Miller, M. Schulz, and B. Liblit.
Lessons Learned at 208K: Towards Debugging Millions
of Cores. In ACM/IEEE Supercomputing Conference
(SC), pages 1–9. IEEE Press, 2008.

[16] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski,
B. P. Miller, and M. Schulz. Benchmarking the Stack
Trace Analysis Tool for BlueGene/L. In International
Conference on Parallel Computing: Architectures,
Algorithms and Applications (ParCo), 2007.

[17] J. M. Linacre. Overlapping Normal Distributions.
Rasch Measurement Transactions, 10(1):487–8, 1996.

[18] S. P. Lloyd. Least Squares Quantization in PCM.
Technical Note, Bell Laboratories. IEEE Transactions
on Information Theory, 28:128–137, 1967, 1982.

[19] J. MacQueen. Some Methods for Classification and
Analysis of Multivariate Observations. In L. M. Le
Cam and J. Neyman, editors, Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297. Univeristy of
California Press, June 21-July 18 1967.

[20] A. Mirgorodskiy, N. Maruyama, and B. Miller.
Problem Diagnosis in Large-Scale Computing
Environments. In ACM/IEEE Supercomputing
Conference (SC), pages 11–23, 2006.

[21] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller.
Problem Diagnosis in Large-Scale Computing
Environments. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM.

[22] D. Pelleg and A. Moore. X-Means: Extending
K-Means with Efficient Estimation of the Number of
Clusters. In Proceedings of the 17th International
Conf. on Machine Learning, pages 727–734, 2000.

[23] P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A
Software-Based Multicast/Reduction Network for
Scalable Tools. In SC ’03, 2003.

[24] M. Schulz and B. R. de Supinski. PNMPI Tools: A
Whole Lot Greater than the Sum of Their Parts. In
SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–10, New York,

NY, USA, 2007. ACM.

[25] TotalView Technologies. TotalView Debugger.
http://www.totalviewtech.com/productsTV.htm.

