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Wireless reprogramming of sensor nodes is an essential requirement for long-lived networks since software
functionality needs to be changed over time. During reprogramming, the number of radio transmissions
should be minimized, since reprogramming time and energy depend chiefly on the number of radio trans-
missions. In this article, we present a multihop incremental reprogramming protocol called Zephyr that
transfers the delta between old and new software versions, and lets the sensor nodes rebuild the new soft-
ware using the received delta and the old software. Zephyr reduces the delta size by using application-level
modifications to mitigate the effects of function shifts. Then it compares the two binary images at the byte
level to generate a small delta, that is then sent over the wireless network to all the nodes. For the wide
range of software change cases that we used as benchmarks, Zephyr transfers 1.83 to 1987 times less traffic
through the network than Deluge (the standard nonincremental reprogramming protocol for TinyOS) and
1.14 to 49 times less traffic than an existing incremental reprogramming protocol by Jeong and Culler [2004].
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1. INTRODUCTION

Large-scale sensor networks may be deployed for long periods of time. During this time
the requirements from the network or the environment in which the nodes are deployed
may change. This can require modifying the application executing on the sensor nodes,
or providing the application with a different set of parameters. We will collectively refer
to both of these changes as reprogramming. Once deployed, it may be very difficult to
manually reprogram the sensor nodes because of the scale (possibly hundreds of nodes)
and the embedded nature of the deployment, since the nodes may be located in places
that are difficult to access physically. The most relevant form of reprogramming is
remote multihop reprogramming using the wireless medium which reprograms the
nodes as they are embedded in their sensing environment. Since the performance of
the sensor network is degraded (possibly reduced to zero) during reprogramming, it is
essential to minimize the time required to reprogram the network. Also, as the sensor
nodes have limited battery power, energy consumption during reprogramming should
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be minimized. Since reprogramming time and energy depend chiefly on the amount
of radio transmissions, the reprogramming protocol should minimize the amount of
information that needs to be wirelessly transmitted during reprogramming.

In practice, software running on a node evolves, with incremental changes to func-
tionality, or modification of the parameters that control current functionality. Thus
the difference between the currently executing code and the new code is often much
smaller than the entire code. This makes incremental reprogramming attractive be-
cause only the changes to the code need to be transmitted, and the new application can
be reassembled at the node from the existing application and the received changes. The
goal of incremental reprogramming is to transfer a small delta, the difference between
the old and the new software, so that reprogramming time and energy are minimized.

The design of incremental reprogramming protocol for sensor nodes poses several
challenges. Many operating systems do not support dynamic linking of software com-
ponents on a sensor node. For example, the standard release of TinyOS [tinyos], one of
the widely used operating systems for sensor nodes, does not provide this feature. This
rules out the straightforward transfer of only those components that have changed
and dynamically linking them at the node. The second class of operating systems,
represented by SOS [Han et al. 2005] and Contiki [Dunkels et al. 2004], do support
dynamic linking. However, their reprogramming support also does not handle changes
to the kernel modules. Moreover, the specifics of the position-independent code strat-
egy employed in SOS limit the kinds of changes to a module that can be handled. In
Contiki, the requirement to transfer the symbol and relocation tables to the node for
runtime linking increases the amount of traffic that needs to be disseminated through
the network.

In this article, we present a fully functional incremental multihop reprogramming
protocol called Zephyr. It transfers the changes to the code, does not need dynamic
linking on the node, and does not transfer symbol and relocation tables. Zephyr uses
an optimized version of the Rsync algorithm [Tridgell 1999] to perform byte-level com-
parison between the old and the new code binaries. As we will show, even an optimized
difference computation at the low level generates large deltas because of changes in
the position of application components. Therefore, before performing byte-level com-
parison, Zephyr performs application-level modifications, the most important of which
is to use function call indirections to mitigate the effects of changes in the location of
functions caused by software modification.

We implement Zephyr on TinyOS and demonstrate it using real multihop networks
of Mica2 [xbow] nodes and through simulations. Zephyr can also be used with SOS or
Contiki to upload incremental changes within a module. We evaluate Zephyr for a wide
range of software change cases—from a small parameter change to almost complete
application rewrite—using applications from both the TinyOS distribution and various
versions of a real-world sensor network application called eStadium [eStadium] that
has been deployed at the Ross-Ade football stadium at Purdue University. Our exper-
iments show that Deluge [Hui and Culler 2004], Stream [Panta et al. 2007], and the
incremental protocol by Jeong and Culler [2004] need to transfer up to 1987, 1324, and
49 times more number of bytes than Zephyr, respectively. This translates to a propor-
tional reduction in reprogramming time and energy for Zephyr. Furthermore, Zephyr
enhances the robustness of the reprogramming process in the presence of failing nodes
and lossy or intermittent radio links typical in sensor network deployments because of
the significantly smaller amount of data that it needs to transfer across the network.

Our contributions in this article are as follows.

(1) We present a technique that uses optimized byte-level comparisons and leads to
small deltas.
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(2) We present application-level modifications that increase the structural similarity
between different software versions, also leading to small delta.

(3) We present techniques that support modification of any part of the software (i.e.,
kernel and user code), without requiring dynamic linking on sensor nodes.

(4) We present the design, implementation, and demonstration of a fully functional
multihop reprogramming system. Most previous work has concentrated on some
of the stages of the incremental reprogramming system, but has not delivered a
functional complete system.

The rest of the article is structured as follows. Section 2 surveys the related work.
Section 3 gives a brief overview of various stages of Zephyr. Section 4 discusses the
byte-level comparison and explains why such comparison alone is not sufficient. Section
5 presents the application-level modifications. Section 6 explains additional high-level
optimizations to further reduce the delta size. Section 7 discusses the delta distribution
method. Section 8 explains the testbed and the simulation setups and results. Section
9 presents the mathematical analysis of Zephyr. Section 10 concludes.

2. RELATED WORK

The problem of reconfiguration of sensor networks has been an important theme with
the community. We discern three streams of work in this area. First is the class of
work that provides virtual machine abstractions on sensor nodes. Second is the design
for reconfigurability in sensor operating systems that do not support dynamic linking
and loading. Third is reconfigurability in systems that do support dynamic linking and
loading. We discuss these three streams in order here.

Several systems such as Mate [Levis and Culler 2002], VM* [Koshy and Pandey
2005b], ASVM [Levis et al. 2005], and Darjeeling [Brouwers et al. 2009] provide vir-
tual machines that run on resource-constrained sensor nodes. They enable efficient
code updates, since the virtual machine code is more compact than the native code.
However, they trade off, to different degrees, less flexibility in the kinds of tasks that
can be accomplished through virtual machine programs and less efficient execution
than native code. Zephyr can be employed to compute incremental changes in the
virtual machine byte codes and is therefore complementary to this class.

TinyOS is the primary example of an operating system that does not support loadable
program modules in the standard release. Several protocols provide reprogramming
with full binaries, such as Deluge [Hui and Culler 2004], Stream [Panta et al. 2007],
Freshet [Krasniewski et al. 2008], MOAP [Stathopoulos et al. 2003], and MNP [Kulka-
rni and Wang 2005]. To support incremental reprogramming, Jeong and Culler [2004]
use Rsync to compute the difference between the old and new program images. How-
ever, because it is built on top of XNP [Inc 2003], it can only reprogram a single-hop
network and does not use any application-level modifications to handle changes in func-
tion locations. We compare the delta size generated by their approach and use it with
an existing multihop reprogramming protocol to compare their reprogramming time
and energy with Zephyr. In Reijers and Langendoen [2003], the authors modify Unix’s
diff program to create an edit script to generate the delta. They identify that a small
change in code can cause many address changes resulting in a large delta. Koshy and
Pandey [2005a] use slop (empty) regions after each function in the application binary
to allow functions to grow without changing the positions of other functions. However,
the slop regions lead to fragmentation and inefficient use of the Flash memory. Also
when the functions expand beyond the allocated space, they need to be relocated else-
where, causing the function references to change and size of the delta script to increase.
The designers of Flexcup [Marron et al. 2006] present a mechanism for linking compo-
nents on the sensor node without support from the underlying OS. This is achieved by
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sending the compiled image of each changed component, along with the new symbol
and relocation tables, to the nodes. Flexcup has been demonstrated only in an emulator
and makes extensive use of Flash. Also, the symbol and relocation tables can grow very
large, resulting in large updates. Recently, a threading architecture, called TOSThreads
[Klues et al. 2009], has been incorporated in the latest release of TinyOS. In addition
to providing multithreaded programming environment for sensor devices, it also al-
lows dynamic linking of TinyOS modules. Zephyr can still be useful in such systems to
transfer the difference between the old and new versions of the loadable modules.

Reconfigurability is simplified in OSes like SOS [Han et al. 2005] and Contiki
[Dunkels et al. 2004]. In these systems, individual modules can be loaded dynami-
cally on the nodes. Some modules can be quite large, and Zephyr enables the upload
of only the changed portions of a module. Specific challenges remain in the matter of
reconfiguration in individual systems. SOS uses position-independent code, and due
to architectural limitations on common embedded platforms, the relative jumps can
only be within a certain offset (such as 4KB for the Atmel AVR platform). Contiki
disseminates the symbol and relocation tables, which may be quite large. Typically
these tables make up 45% to 55% of the object file [Koshy and Pandey 2005a]. Zephyr,
while currently implemented in TinyOS, can also support incremental reprogramming
in these OSes by enabling incremental updates to changed user and kernel modules.

Distinct from Zephyr, in Panta and Bagchi [2009], we show that further orthogonal
optimizations are possible to reduce the delta size, for example, by mitigating the effect
of shifts of global data variables. One of the drawbacks of Zephyr is that the latency
due to function call indirection increases linearly with time. This is especially true
for sensor networks because typical sensor applications operate in a loop: sample the
sensor, perform some computations, transmit/forward the sensed value to other nodes,
and repeat the same process. In Panta and Bagchi [2009], we solve this while loading
the newly rebuilt image from the external flash to the program memory by replacing
each jump to the indirection table with a call to the actual function by reading the
function address from the indirection table. In this way, we can completely avoid the
function call latency introduced by Zephyr.

There is a long history of dynamic linking in server and desktop applications [Levine
2000] and with Java [Czajkowski 2000; Serrano et al. 2000]. While reducing the volume
of code is a concern, JavaSpec and QS [Serrano et al. 2000] operate on bytecode with
symbolic labels, and all of these operate on a classfile granularity which encompasses
multiple functions. Compilers for general-purpose systems have the ability to generate
position-independent code, and do so to support dynamically linked shared libraries
[Levine 2000].

3. HIGH-LEVEL OVERVIEW OF ZEPHYR

Figure 1 is the schematic diagram showing various stages of Zephyr. First Zephyr per-
forms application-level modifications on the old and new versions of the software to
mitigate the effect of shifts in the function locations (hereafter called function shifts)
so that the similarity between the two versions of the software is increased. Next the
two executables are compared at byte level using a novel algorithm derived from the
Rsync algorithm [Tridgell 1999]. This produces the delta script which describes
the differences between the old and new versions of the software. These computations
are performed on the host computer. The delta script is then transmitted wirelessly to
all nodes in the network in the delta distribution stage. In this stage, first the delta
script is injected by the host computer to the base node (a node physically attached
to the host computer via, say, a serial port). The base node then wirelessly sends the
delta script to all nodes in the network, in a multihop manner if required. The nodes
save the delta script in their external flash memory. After the sensor nodes download
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Fig. 1. Overview of Zephyr.

the delta script, they build the new image using the delta and the old image and store
it in the external flash. Finally the bootloader loads the newly built image from the
external flash to the program memory and the node runs the new software.

We describe these stages in the following sections. We first describe byte-level com-
parison and show why it is not sufficient and thus motivate the need for application-
level modifications.

4. BYTE-LEVEL COMPARISON

We first describe the Rsync algorithm [Tridgell 1999] and then our extensions to reduce
the size of the delta script that needs to be disseminated.

4.1. Application of Rsync Algorithm

The Rsync algorithm was originally developed to update binary data between comput-
ers over a low-bandwidth network. Rsync divides the files containing the binary data
into fixed size blocks and both the sender and the receiver compute the pair (Checksum,
MD4) over each block. If this algorithm is used as is for incremental reprogramming,
then the sensor nodes need to perform an expensive MD4 computation for each block
of the binary image. We modify Rsync such that all the expensive operations regard-
ing delta script generation are performed on the host computer and not on the sensor
nodes. The modified algorithm runs on the host computer only and works as follows:
(1) The algorithm first generates the pair (Checksum, MD4 hash) for each block of
the old image and stores it in a hash table whose key is the checksum. (2) The check-
sum is calculated for the first block of the new image. (3) The algorithm checks if this
checksum matches the checksum for any block in the old image using a hash-table
lookup. If a matching block is found, Rsync checks if their MD4 hashes also match. If
MD4 hashes also match, then this block is considered as a matching block. Note that if
two blocks do not have the same checksum, then MD4 is not computed for this block.
This ensures that the expensive MD4 computation is done only when the inexpensive
checksum matches between the two blocks. If no matching block is found then the
algorithm moves to the next byte in the new image and the same process is repeated
until a matching block is found. While the probability of collision is not negligible for
two blocks having the same checksum, with MD4 the collision probability is negligible.
To ensure the correctness of our scheme in the rare case when two different blocks have
the same MD4 hash, Zephyr performs a byte-by-byte comparison when MD4 hashes
match. Since this algorithm runs on a powerful host computer, this is not a problem.

After running this algorithm, Zephyr generates a list of COPY and INSERT com-
mands for matching blocks and nonmatching portions respectively (the size of the
nonmatching portions may not be equal to the block size):

COPY <oldOffset> <newOffset> <len>
INSERT <newOffset> <len> <data>
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Fig. 2. Finding superblock.

The COPY command copies len number of bytes from oldOffset at the old image to
newOffset at the new image. Note that len is equal to the block size used in the Rsync
algorithm. The INSERT command inserts len number of bytes, that is, data, to newOff-
set of the new image. Note that this len is not necessarily equal to the block size or its
multiple.

4.2. Rsync Optimization

With the Rsync algorithm, if there are n contiguous blocks in the new image that match
n contiguous blocks in the old image, n COPY commands are generated. We change
the algorithm so that it finds the largest contiguous matching block between the two
binary images. Note that this does not simply mean merging n COPY commands into
one COPY command. As shown in Figure 2, let the blocks at the offsets x and x + 1 in
the new image match those at the offsets y and y+1, respectively, in the old image. Let
blocks at x through x + 3 of the new image match those at z through z+ 3, respectively,
of the old image. Note that blocks at x and x + 1 match those at y and y + 1 and also
at z and z+ 1. The Rsync algorithm creates two COPY commands as follows: COPY 〈y〉
〈x〉 〈B〉 and COPY 〈y + 1〉 〈x + 1〉 〈B〉, where B is the block size. Simply combining these
2 commands as COPY 〈y〉 〈x〉 〈2*B〉 does not result in the largest contiguous matching
block. The blocks at the offsets z through z + 3 form the largest contiguous matching
block. We call contiguous matching blocks a superblock and the largest superblock the
maximal superblock. The optimized Rsync algorithm finds the maximal superblock
and uses that as the operand in the COPY command. Thus, optimized Rsync produces
the single COPY command as COPY 〈z〉 〈x〉 〈4*B〉 for the example just given. Figure 3
shows the pseudocode for optimized Rsync. Its complexity is O(n2), where n is the
number of bytes in the image. This is not a concern because the algorithm is run on
the host computer and not on the sensor nodes, and is run only when a new version
of the software needs to be disseminated. As we will show in Section 8.2, optimized
Rsync running on the desktop computer took less than 4.5 seconds for a wide range of
software change cases that we experimented with.

4.3. Drawback of Using Only Byte-Level Comparison

To see the drawback of using optimized Rsync alone, we consider two cases of software
changes.

Case 1. Changing Blink application: Blink is an application in the TinyOS distribu-
tion that blinks an LED on the sensor node every second. We change the application
from blinking a green LED every second to blinking it every two seconds. Thus, this
is an example of a small parameter change. The delta script produced with optimized
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Fig. 3. Pseudocode of optimized Rsync that finds maximal superblock.

Rsync is 23 bytes long which is small and congruent with the actual amount of change
made in the software.

Case 2. We added four lines of code to Blink. The delta script between the Blink
application and the one with these four lines added is 2183 bytes. The change made in
the software for this case is slightly more than that in the previous case, but the delta
script produced by optimized Rsync in this case is disproportionately larger.

When a single parameter is changed in the application, as in Case 1, no part of the
already matching binary code is shifted. All functions start at the same location as in
the old image. But with the few lines added to the code (as in Case 2), the functions
following the added lines are shifted. As a result, all the calls to those functions refer
to new locations. This produces several additional changes in the binary file resulting
in the large delta script.

The boundaries between blocks can be defined by Rabin fingerprints as is done in
Pucha et al. [2007] and Muthitacharoen et al. [2001]. A Rabin fingerprint is the polyno-
mial representation of the data modulo a predetermined irreducible polynomial. These
fingerprints are efficient to compute on a sliding window in a file. It should be noted
that a Rabin fingerprint can be a substitute for a byte-level comparison only. Because
of the content-based boundary between the chunks in Rabin fingerprint approach, the
editing operations change only the chunks affected by these edits even if they change
the offsets. Only the chunks that have changed need to be sent. But when the function
addresses change, all the chunks containing calls to these functions change, and need to
be sent explicitly. This results in a large delta, comparable to the delta produced by the
optimized Rsync algorithm without application-level modifications. Also the anchors
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that define the boundary between the blocks have to be sent explicitly. The chunks in
Rabin fingerprints are typically quite large (8KB compared to less than 20 bytes for
our case). As we can see from Figure 6, the size of the difference script will be much
larger at 8KB than at 20 bytes.

5. APPLICATION-LEVEL MODIFICATIONS

The size of the delta script produced by a byte-level comparison is not always consistent
with the extent of the change made in the software. This is a direct consequence
of neglecting the structure of the code at the application level of the software and
using only the binary comparison for generating the delta script. So we need to make
modifications at application level so that the subsequent stage of byte-level comparison
produces delta script that is congruent in size with the amount of software change. One
way of tackling this problem is to leave some slop (empty) space after each function as
in Koshy and Pandey [2005a]. With this approach, even though a function expands (or
shrinks), the location of the following functions will not change as long as the expansion
is accommodated by the slop region assigned to that function. But this approach wastes
program memory, and thus is not desirable for memory-constrained sensor nodes. Also,
this approach creates a host of complex management issues such as what should be
the size of the slop region (possibly different for different functions), and what should
be done with the empty memory space caused by relocation of functions when they
expand beyond the assigned slop region. Choosing too large of a slop region means
wasting too much memory, and too small a slop region means functions frequently
need to be relocated, leading to large differences in the binary images. Another way of
mitigating the effect of function shifts is by making the code position independent [Han
et al. 2005]. Position-Independent Code (PIC) uses relative jumps instead of absolute
jumps. However, not all architectures and compilers support this. For example, the
AVR platform allows relative jumps within 4KB only and for MSP430(used in Telos
nodes), no compiler is known to fully support PIC.

5.1. Function Call Indirections

For the byte-level comparison to produce a small delta script, it is necessary to make
structural adjustments at application level to preserve maximum similarity between
the two versions of the software. For example, let the application shown in Figure 4(a)
be changed such that the functions f un1, f un2, and f unn are shifted from their original
positions b, c, and a to new positions b′, c′, and a′, respectively. Note that there can be
(and generally will be) more than one call to a function. When these two images are
compared at byte level, the delta script will be large because all the calls to these func-
tions in the new image will have different target addresses from those in the old image.

The approach we take to mitigate the effects of function shifts is as follows: Let the
application be as shown in Figure 4(a). We modify the linking stage of the executable
generation process to produce the code as shown in Figure 4(b). Here calls to functions
f un1, f un2, . . . , f unn are replaced by jumps to fixed locations loc1, loc2, . . . , locn, respec-
tively. In common embedded platforms, the call can be to an arbitrarily far-off location.
The segment of the program memory starting at the fixed location loc1 acts like an
indirection table. In this table, the actual jumps to the functions are made. When the
call to the actual function returns, the flow of the control is directed back to the line
following the call to locx(x = 1, . . . , n). The location of the indirection table is kept fixed
in the old and the new versions to reduce the size of the delta.

When the application shown in Figure 4(a) is changed to the one where the functions
f un1, f un2, . . . , f unn are shifted, during the process of building the executable for the
new image, we add the following features to the linking stage: When a call to a function
is encountered, the linker checks if the indirection table in the old file contains the entry
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Fig. 4. Program image: (a) without indirection table and (b) with indirection table.

for that function (we also supply the old file (Figure 4(b)) as an input to the executable
generation process). If it does, then it creates an entry for this function in the indirection
table in the new file at the same location as in the old file. Otherwise it assigns a slot
in the indirection table for the function (call it a rootless function) but does not yet
create the slot. After assigning slots to the existing functions, it checks if there are any
empty slots in the indirection table. These would correspond to functions which were
called in the old file but are not in the new file. If there are empty slots, it assigns these
slots to the rootless functionss. If there are still some rootless functions without a slot,
then the indirection table is expanded with new entries to accommodate these rootless
functions. Thus, the indirection table entries are naturally garbage collected and the
table expands on an as-needed basis. As a result, if the user program has n calls to a
particular function, they refer to the same location in the indirection table and only
one call, namely the call in the indirection table, differs between the two versions. On
the other hand, if no indirection table were used, all the n calls would refer to different
locations in the new application than in the old one.

This approach ensures that the segments of the code, except the indirection table,
preserve the maximum similarity between the old and new images because the calls
to the functions are redirected to the fixed locations even when the functions have
moved in the code. The basic idea behind function call indirections is that the location
of the indirection table is fixed and hence the target addresses of the jump to the table
are identical in the old and new versions of the software. If we do not fix the location
of the indirection table, the jump to the indirection table will have different target
addresses in the two versions of the software. As a result, the delta script will be large.
In situations where the functions do not shift (as in Case 1 discussed in Section 4.3)
Zephyr will not produce a delta script larger than optimized Rsync does without an
indirection table. This is due to the fact that the indirection tables in the old and the
new software match and hence Zephyr finds the large superblock that also contains
the indirection table.
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The linking changes in Zephyr are transparent to the user. She does not need to
change the way she programs. The linking stage automatically makes the preceding
modifications. We use linker command language to implement function call indirec-
tions. Zephyr does introduce one level of indirection during function calls, but the
overhead of function call indirection is negligible because each such indirection takes
only few clock cycles (e.g., 8 clock cycles on the AVR platform).

As mentioned before, Koshy and Pandey [2005a] allocate fixed extra space for each
function. This has some drawbacks. First, it wastes program memory. Second, if a
function expands beyond its allocated space, it needs to be reallocated somewhere else
in the program memory. This creates “holes” in the program memory. Note that other
existing functions cannot be moved to these holes since this changes the address of
those functions and the delta script becomes larger. Reallocation of the function also
causes the address of the reallocated function to change between the old and new
versions of the software, increasing the size of the delta script. Koshy and Pandey
[2005a]’s approach can be modified such that when a function (say f 1) expands beyond
the allocated region (say R1) in program memory, we can use a “jmp” statement at the
end of R1 to direct the flow of control to a new region, say R2. This modification to
Koshy and Pandey [2005a] uses Zephyr’s concept of indirection, but in a less elegant
and more complicated manner because of the following reasons. Let us assume that
in the next round of reprogramming the function f 1 expands further such that it no
longer fits in the added region R2. So we again need to redirect the flow of the control
from the end of region R2 to another region R3. With this approach, a single function
would be scattered at many disjoint places in program memory. This is conceptually not
elegant, and also increases execution time due to the possible chaining of a sequence of
jumps. We believe that our approach is more elegant and scalable because it requires
only one level of indirection. Furthermore, if the function f 1, which is currently using
regions R1, R2, R3, . . . , Rn, shrinks such that it only needs a small part of R1, then this
modified scheme leaves holes in the program memory. Note that “old” functions cannot
be moved to these holes since this changes the locations of these functions, and hence
the size of the delta script would be increased. The functions, which are newly added to
the latest version of the software, can be moved to these holes. However, it adds an extra
management overhead; we need to keep track of which regions in program memory
are free, how large is each free region, how much program memory space is needed
by newly added function, etc. Also in this modified scheme, it is unclear how much
space should be allocated to added regions like R2. If a small region is allocated, the
probability of the function expanding beyond R2 in the next round of reprogramming
becomes high. If a large region is allocated, program memory is wasted. We believe
that Zephyr provides a simple, elegant, and yet very effective solution compared to the
aforesaid modification to Koshy and Pandey [2005a].

5.2. Pinning the Interrupt Service Routines

It should be noted that changes in the application software can cause changes not only
in the positions of the user functions but also the positions of interrupt service routines.
Such routines are not explicitly called by the user application. In most microcontrollers,
there is an interrupt vector table at the beginning of the program memory, typically
after the reset vector at 0x0000. Whenever an interrupt occurs, the control goes to
the appropriate entry in the vector table that causes a jump to the required interrupt
service routine. Zephyr does not change the interrupt vector table to direct the calls to
the indirection table (as described earlier for the normal functions). Instead it modifies
the linking stage to always put the interrupt service routines at fixed locations in the
program memory so that the targets of the calls in the interrupt vector table do not
change. This further preserves the similarity between the versions of the software. This
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approach is based on the assumption that interrupt service routines generally do not
change. If interrupt service routines change, it does not cause a correctness problem,
but causes the delta script to be larger.

6. METACOMMANDS FOR COMMON PATTERNS OF CHANGES

After the delta script is created through the aforesaid techniques, Zephyr scans through
the script file to identify some common patterns and applies the following optimizations
to further reduce the delta size.

6.1. CWI Command

In many cases, the delta script has the following sequence of commands:
COPY <oldOffset=O1> <len=L1> <newOffset=N1>
INSERT <newOffset> <len=l1> <data1>
COPY <oldOffset=O2> <len=L2> <newOffset=N2>
INSERT <newOffset> <len=l1> <data2>
COPY <oldOffset=O3> <len=L3> <newOffset=N3>
INSERT <newOffset> <len=l1> <data3>

and so on. Let Li indicate a large value, and li a small value. Here, small INSERT com-
mands are present in between large COPY commands. Here we have COPY commands
that copy large chunks of size L1, L2, L3, . . . from the old image followed by INSERT
commands with very small values of len= l1. Further O1 + L1 + l1 = O2, O2 + L2 + l1
= O3, and so on. In many software change cases that we evaluated, we found that two
blocks in two versions of the image match perfectly, except at few places where a single
byte operand of some instructions differs. In other words, if the blocks corresponding
to INSERT commands with small len had matched, we would have obtained a very
large superblock. So Zephyr replaces such sequences with the COPY WITH INSERTS
(CWI) command.

CWI <oldOffset=O1> <newOffset=N1>
<len=L1+l1+...+Ln> <dataSize=l1>
<numInserts=n> <addr1> <data1>
<addr2> <data2> ... <addrn> <datan>

Here dataSize = l1 is the size of datai (i = 1,2. . . , n), numInserts=n is the number of
(addr,data) pairs, and datai are the data that have to be inserted in the new image at
the offset addri. This command tells the sensor node to copy the len = L1 + l1 + · · · +
Ln number of bytes of data from the old image at offset O1 to the new image at the
offset N1, but to insert datai at the offset addri (i = 1, 2,. . . , n).

6.2. REPEAT Command

This command is useful for reducing the number of bytes in the delta script that are
needed to transfer the indirection table. As shown in Figure 4(b), the indirection table
consists of the pattern jmp fun1, jmp fun2, ... where the same string of bytes (say S1 =
jmp) repeats, with only the addresses for fun1, fun2, etc., changing between them. So
Zephyr uses the following command to transfer the indirection table.

REPEAT <newOffset> <numRepeats=n>
<addr1> <addr2> ... <addrn>

This command puts the string S1 at offset newOffset in the new image followed by
addr1, then S1, then addr2, and so on until addrn. Note that the CWI command could
have also been used for this case, but since string S1 is fixed, fewer bytes are needed
using the REPEAT command. This optimization is not applied if the addresses of the
call instructions match in the indirection tables of the old and new images. In that
case, the COPY command is used to transfer identical portions of the indirection table.
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6.3. No Offset Specification

We note that if we build the new image on the sensor nodes in a monotonic order,
then Zephyr does not need to specify the offset in the new file in any of the previous
commands. Monotonic means Zephyr always writes at location x of the new image
before writing at location y, for all x < y. Instead of the new offset being provided, a
counter is maintained and incremented as the new image is built, and the next write
always happens at this counter, allowing the newOffset field to be dropped from all the
commands.

We find that for Case 2, where some functions are shifted due to the addition of few
lines in the software, the delta script produced with the application-level modifications
is 280 bytes compared to 2183 bytes when optimized Rsync is used without application-
level modifications. The size of the delta script without the metacommands is 528 bytes.
This illustrates the importance of application-level modifications in reducing the size
of the delta script and making it consistent with the amount of actual change made in
the software.

7. DELTA DISTRIBUTION STAGE

One of the factors that we considered for the delta distribution stage was to have as
small a delta script as possible even in the worst case when there is a huge change in
the software. In this case there is little similarity between the old and the new code
images, and the delta script basically consists of a large INSERT command to insert
almost the entire binary image. To have a small delta script even in such extreme cases,
it is necessary that the binary image itself be small. Since the size of the binary image
transmitted by Stream [Panta et al. 2007] is almost half the size of that of Deluge
[Hui and Culler 2004], Zephyr uses the approach from Stream, with some modifica-
tions for wirelessly distributing the delta script. The core data dissemination method
of Stream is the same as in Deluge. Deluge uses a monotonically increasing version
number, segments the binary code image into pages, and pipelines the different pages
across the network. The code distribution occurs through a three-way handshake of
advertisement, request, and code broadcast between neighboring nodes. Unlike Del-
uge, Stream does not transfer the entire reprogramming component every time a code
update is done. The reason for this requirement in Deluge is that the reprogramming
component needs to be running on the sensor nodes all the time so that the nodes can
be receptive to future code updates and these nodes are not capable of multitasking
(running more than one application at a time). Stream solves this problem by stor-
ing the reprogramming component in the external flash and running it on demand,
whenever reprogramming is to be done.

Distinct from Stream, Zephyr divides the external flash as shown in the right side
of Figure 5. The reprogramming component and delta script are stored as image 0 and
image 1, respectively. Image 2 and image 3 are the user applications: one old version
and the other current version which is created from the old image and the delta script
as discussed in Section 7.1. The protocol works as follows.

(1) Let image 2 be the current version (v1) of the user application. Initially all nodes in
the network are running image 2. At the host computer, delta script is generated
between the old image (v1) and the new image (v2).

(2) The user gives the command to the base node to reboot all nodes in the network
from image 0 (i.e., the reprogramming component).

(3) The base node broadcasts the reboot command and itself reboots from the repro-
gramming component.

(4) The nodes receiving the reboot command from the base node rebroadcast the re-
boot command and themselves reboot from the reprogramming component. This is
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Fig. 5. Image rebuild and load stage. The right side shows the structure of external flash in Zephyr.

controlled flooding because each node broadcasts the reboot command only once.
Finally, all nodes in the network are executing the reprogramming component.

(5) The user then injects the delta script into the base node. It is wirelessly transmitted
to all nodes in the network using the usual 3-way handshake of advertisement,
request, and code broadcast, as in Deluge. Note that unlike Stream and Deluge,
which transfer the application image itself, Zephyr transfers only the delta script.

(6) All nodes store the received delta script as image 1.

As mentioned before, Zephyr uses a simple flooding scheme to send reboot commands
to all nodes in the network. This method is generally sufficient to ensure that all nodes
receive the reboot command. Note that every node broadcasts the reboot command
once, before rebooting from the reprogramming component (i.e., img-0 as shown in
Figure 5). So, even if a node does not receive the reboot command from one of its
neighbors due to, say, poor link quality between them, it may receive the command
from other neighbor(s). However, due to very poor link reliability with all neighbors, or
hardware/software faults, some nodes may not be able to receive the reboot command.
To address this issue, Zephyr provides an “eventual consistency” property, similar to
our previous work, Stream [Panta et al. 2007].

Let us call the nodes which do not receive reboot command from any of its neighbors
the faulty nodes. In Zephyr, sensor nodes use the Trickle [Levis et al. 2004] algorithm to
periodically advertise their metadata consisting of the version number of the program
images that they possess (img-0 through img-3 in Figure 5). When the faulty nodes
eventually recover from their faults, they will receive the advertisement message from
their neighbors and learn that they do not possess the latest version of the binary image.
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This causes the faulty node to broadcast its advertisement message immediately and
reboot from the reprogramming component (img-0). If the neighbors of the faulty node
are executing img-0 (this happens if they have not yet completed downloading the new
version of the application image), the faulty node starts downloading the new image
from its neighbors according to the Deluge algorithm. If the neighbors of the faulty node
are not executing img-0 (this happens if they have already downloaded the new version
of the application image and have already started running the new image), they find
that their faulty neighbor is not up-to-date and hence reboot from img-0 to bring the
faulty node up-to-date. Then the faulty node downloads the delta and and builds the
new image. Note that due to inherent failure-prone nature of sensor networks, many
prior works [Levis et al. 2004; Hui and Culler 2004; Panta et al. 2007] have shown that
eventual consistency is a satisfactory solution. Hence Zephyr follows this approach.

7.1. Image Rebuild and Load Stage

After the nodes download the delta script, they rebuild the new image using the script
(stored as image 1 in the external flash) and the old image (stored as image 2 in
the external flash). The image rebuilder stage consists of a delta interpreter which
interprets the COPY, INSERT, CWI, and REPEAT commands of the delta script and
creates the new image which is stored as image 3 in the external flash.

The methods of rebooting from the new image are slightly different in Stream and
Zephyr. In Stream, a node automatically reboots from the new code once the code
update has completed and it has satisfied all other nodes that depend on this node to
download the new code. This means that different nodes in the network begin executing
the new version of the code at different times. However, for Zephyr, we modified Stream
so that all the nodes reboot from the new code after the user manually sends the reboot
command from the base station (as in Deluge). We made this change because in many
software change cases, the size of the delta script is so small that a node (say n1)
nearer to the base station quickly completes downloading the code before a node (say
n2) further away from the base station even starts requesting packets from n1. As a
result, n1 reboots from the new code so fast that n2 cannot even start the download
process. Note that this does not, however, pose a correctness issue. After n1 reboots
from the new code, it will switch again to the reprogramming state when it receives an
advertisement from n2. This, however, incurs the performance penalty of rebooting from
a new image. Our design choice has a good consequence: all nodes come up with the
new version of the software at the same time. This avoids the situation where different
nodes in the network run different versions of the software. When a node receives the
reboot command, its bootloader loads the new software from image 3 of the external
flash to the program memory (Figure 5). In the next round of reprogramming, image 3
will become the old image and the newly built image will be stored as image 2. As we
will show in Section 8.3, the time to build the image is negligible compared to the total
reprogramming time.

7.2. Dynamic Page Size

Stream divides the binary image into fixed sized pages. The remaining space in the last
page is padded with all 0s. Each page consists of 1104 bytes (48 packets per page with
23 bytes payload in each packet). With Zephyr, it is likely that in many cases, the size of
the delta script will be much smaller than 1104 bytes. For example, we have delta script
of sizes of 17 bytes and 280 bytes for Case 1 and Case 2, respectively. Also, as we will
show in Section 8.2, during the natural evolution of the software, it is more likely that
the nature of the changes will be small or moderate and, as a result, delta scripts will
be much smaller than the standard page size. After all, the basic assumption behind
any incremental reprogramming protocol is that in practice, the software changes are
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generally small and the similarities between the two versions of the software can be
exploited to send only small delta. When the size of the delta script is much smaller
than the page size, it is wasteful to transfer the whole page. So, we change the basic
Stream protocol to use dynamic page sizes.

When the delta script is being injected in to the base node, the host computer informs
it of the delta script size. If it is less than the standard page size, the base node includes
this information in the advertisement packets that it broadcasts. When other nodes re-
ceive the advertisement, they also include this information in the advertisement pack-
ets that they send. As a result, all nodes in the network know the size of the delta script
and they make the page size equal to the actual delta script size. So, unlike Deluge or
Stream which transmit all 48 data packets per page, Zephyr transmits only the required
number of data packets if the delta script size is less than 1104 bytes. Note that the
granularity of this scheme is the packet size, that is, the last packet of the last page may
be padded with zeros. But this results in sufficiently small wastage that we did not feel
justified in introducing the additional complexity of dynamic packet sizes. Our scheme
can be further modified to advertise the actual number of packets in the last page to
minimize the wastage. For example, in the case where the delta script has 1105 bytes, it
would transfer two pages, the first page with 48 packets and the second with 1 packet.

8. EXPERIMENTS AND RESULTS

In order to evaluate the performance of Zephyr, we consider a number of software
change scenarios. The software change cases for standard TinyOS applications that we
consider are as follows.

Case 1. Change the Blink application from blinking a green LED every second to
blinking it every 2 seconds.

Case 2. Add a few lines added to the Blink application.
Case 3. Change the Blink application to CntToLedsAndRfm: CntToLedsAndRfm is

an application that displays the lowest 3 bits of the counting sequence on the LEDs as
well as sends them over radio.

Case 4. Change CntToLeds to CntToLedsAndRfm: CntToLeds is the same as Cnt-
ToLedsAndRfm except that the counting sequence is not transmitted over radio.

Case 5. Change Blink to CntToLeds.
Case 6. Change Blink to Surge: Surge is a multihop routing protocol. This case

corresponds to a complete change in the application.
Case 7. Change CntToRfm to CntToLedsAndRfm: CntToRfm is the same as Cnt-

ToLedsAndRfm except that the counting sequence is not displayed on the LEDs.
In order to evaluate the performance of Zephyr with respect to natural evolution of

the real-world software, we considered a real-world sensor network application called
eStadium [eStadium] which is deployed in Ross Ade football stadium at Purdue Uni-
versity. eStadium applications provide safety and security functionality, infotainment
features such as coordinated cheering contests among different parts of the stadium us-
ing the microphone data, information to fans about lines in front of concession stands,
and so forth. We considered a subset of the changes that the software had actually gone
through during various stages of refinement of the application.

Case A. Change an application that samples battery voltage and temperature from
an MTS310 [xbow] sensor board to one where a few functions are added to also sample
the photo sensor.

Case B. During the deployment phase, we decided to use opaque boxes for the sensor
nodes. So, a few functions were deleted to remove the light sampling features.

Case C. In addition to temperature and battery voltage, we added the features
for sampling all the sensors on the MTS310 board except light (e.g., microphone,
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accelerometer, magnetometer). This was a huge change in the software with the
addition of many functions. For accelerometer and microphone, we collected mean and
mean square values of the samples taken during a user-specified window size.

Case D. This is the same as Case C but with addition of few lines of code to get
microphone peak value over the user-specified window size.

Case E. We decided to remove the feature of sensing and wirelessly transmitting to
the base node, the microphone mean value since we were interested in the energy of
the sound which is given by the mean square value. A few lines of code were deleted
for this change.

Case F. This is same as Case E except we added the feature of allowing the user to
put the nodes to sleep for a user-specified duration. This was also a huge change in the
software.

Case G. We changed the microphone gain parameter. This is a simple parameter
change.

We can group the preceding changes into 4 classes.

Class 1 (Small change SC). This includes Case 1 and Case G where only a parameter
of the application was changed.

Class 2 (Moderate change MC). This includes Case 2, Case D, and Case E. They
consist of the addition or deletion of few lines of the code.

Class 3 (Large change LC). This includes Case 5, Case 7, Case A, and Case B where
few functions are added or deleted or changed.

Class 4 (Very large change VLC). This includes Case 3, Case 4, Case 6, Case C,
and Case F, where the software has changed completely (the goal of the software has
changed). For example, in Case 6, the goal of the software is changed from periodically
blinking an LED to perform routing.

These classes of software changes are based on the degree of the change that the
software has undergone at application level. Many of the previous cases involve changes
in the OS kernel as well. Strictly speaking, in TinyOS, there is no separation between
OS kernel and application. The two are compiled as one large monolithic image that is
run on the sensor nodes. So, if the application is modified such that new OS components
are added or existing components are removed, then the delta generated would include
OS updates as well. For example, in Case C we change the application that samples
temperature and battery voltage to one that samples microphone, magnetometer, and
accelerometer sensors in addition to temperature and battery. This causes new OS
components to be added: the device drivers for the added sensors.

8.1. Block Size for Byte-Level Comparison

We modified Jarsync [jarsync], a Java implementation of the Rsync algorithm, to
achieve the optimizations mentioned in Section 4.2. From here onward, by “semiopti-
mized Rsync,” we mean the scheme that combines two or more contiguous matching
blocks into one superblock. It does not necessarily produce the maximal superblock.
By “optimized Rsync” we mean our scheme that produces the maximal superblock but
without the application-level modifications.

As shown in Figure 6, the size of the delta script produced by either Rsync or op-
timized Rsync depends on the block size used in the algorithm. Recollect that the
comparison is done at the granularity of a block. As expected, Figure 6 shows that the
size of the delta script is largest for Rsync and smallest for optimized Rsync. Figure 6
also shows that as the block size increases, the size of the delta script produced by
Rsync and semi-optimized Rsync decreases until a certain point after which it has an
increasing trend. The size of the delta script depends on two factors: (1) the number of
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Fig. 6. Delta script size versus block size.

commands in the delta script and (2) the size of the data in the INSERT command. For
Rsync and semi-optimized Rsync, for block size below the minima point, the number
of commands is high because these schemes find lots of matching blocks but not (nec-
essarily) the maximal superblock. As block size increases in this region, the number
of matching blocks and hence the number of commands drops sharply, causing the
delta script size to decrease. However, as the block size increases beyond the minima
point, the decrease in the number of commands in the delta script is dominated by the
increase in size of new data to be inserted. As a result, the delta script size increases.

For optimized Rsync, there is a monotonic increasing trend for the delta script size
as block size increases. There are, however, some small oscillations in the curve, as a
result of which the optimal block size is not always one byte. The small oscillations
are because increasing the block size decreases the size of maximal superblocks and
increases the size of data in INSERT commands. But sometimes the small increase in
the size of the data can contribute to reducing the size of the delta script by reducing
the number of COPY commands. Nonetheless, there is an overall increasing trend for
optimized Rsync. This has the important consequence that a system administrator
using Zephyr does not have to figure out the block size to use in uploading code for
each application change. She can use the smallest or close to smallest block size and
let Zephyr be responsible for compacting the size of the delta script. In all further
experiments, we use the block size that gives the smallest delta script for each scheme:
Rsync, semi-optimized Rsync, and optimized Rsync.

8.2. Size of Delta Script

The goal of an incremental reprogramming system is to reduce the size of the delta
script that needs to be transmitted to sensor nodes. A small delta script translates
to less reprogramming time and energy due to fewer packet transmissions over the
network and small number of external flash writes on the node. Figure 7 and Table I
compare the delta script produced by Deluge, Stream, Rsync, semi-optimized Rsync,
optimized Rsync, and Zephyr. Table I also compares Zephyr with ZephyrWOMetaCmds:
the case where all application-level modifications are used except metacommands. For
Deluge and Stream, the size of the information to be transmitted is the size of the binary
image, while for the other schemes it is the size of the delta script. Deluge, Stream,
Rsync, and semi-optimized Rsync take up to 1987, 1324, 49, and 6 times more bytes
than Zephyr, respectively. Note that for cases belonging to moderate or large change,
the application-level modifications of Zephyr contribute to significantly reducing the
size of delta script compared to optimized Rsync. Optimized Rsync takes up to nine
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Fig. 7. Size of data transmitted for reprogramming.

Table I. Comparison of Delta Script Size of Various Approaches

Deluge : Zephyr Stream : Zephyr Rsync : Zephyr SemiOptRsync : Zephyr OptRsync : Zephyr ZephyrWOMetaCmds : Zephyr
Case 1 1400.82 779.29 35.88 6.47 1.35 1.35
Case 2 85.05 47.31 20.81 11.75 7.79 1.99
Case 3 4.52 2.80 2.06 1.80 1.64 1.38
Case 4 4.29 2.65 1.96 1.72 1.57 1.30
Case 5 8.47 4.84 3.03 2.22 2.08 1.39
Case 6 1.83 1.28 1.14 1.11 1.07 1.05
Case 7 29.76 18.42 8.34 5.61 3.87 1.52
Case A 7.60 5.06 3.35 2.66 2.37 1.6
Case B 7.76 5.17 3.38 2.71 2.37 1.61
Case C 2.63 1.82 1.50 1.39 1.35 1.16
Case D 203.57 140.93 36.03 14.36 7.84 2.33
Case E 243.25 168.40 42.03 17.66 9.01 2.43
Case F 2.75 1.83 1.50 1.36 1.33 1.18
Case G 1987.2 1324.8 49.6 6.06 1.4 1.4

Deluge, Stream and Rsync represent prior work.

times more bytes than Zephyr. These cases correspond to function shifts in the software.
As a result, application-level modifications have great effect in these cases. In practice,
these are probably the most frequently occurring categories of changes in the software.
Case 1 and Case G are parameter change cases which do not shift any function. As
a result, we find that delta scripts produced by optimized Rsync without application-
level modifications are only slightly larger than the ones produced by Zephyr. Also,
even for very large software change cases (like Cases 6, F, and C), Zephyr is more
efficient compared to other schemes. In summary, application-level modifications have
the greatest effects in moderate and large software change cases, a significant effect in
the very large software change case (in terms of absolute delta size reduction), and a
small effect on the very small software change cases.

Comparison with other incremental approaches. Rsync represents the algorithm used
by Jeong and Culler [2004] to generate the delta by comparing the two executables
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without any application-level modifications. We find that Jeong and Culler [2004] pro-
duce up to 49 times larger delta script than Zephyr. As mentioned before, in Koshy
and Pandey [2005a]’s approach, the program memory is fragmented and used less ef-
ficiently than in Zephyr. Flexcup [Marron et al. 2006], though capable of incremental
linking and loading on TinyOS, generates high traffic through the network because of
large symbol and relocation tables. Also, Flexcup is implemented only on an emulator
whereas Zephyr runs on the real sensor node hardware.

To describe function shifts, Reijers and Langendoen [2003] augment the delta script
with a patch list command: a list of {begin address, end address, offset}-tuples, each
of which describes the offset by which each function is shifted in the new version of
the user application. More specifically, this command says that all functions which lie
between {begin address, end address} are shifted by the offset bytes in the new version.
The patch list command incurs an overhead of 2 + 6 ∗ count bytes (2 bytes for count:
the number of patch lists; 2 bytes each for begin address, end address, and offset). The
patch list command is useful for small software change scenarios where many functions
are shifted by the same offset and thus can be described by a few patch lists. However,
for many practical software change cases, different functions are shifted by different
offsets (e.g., software change cases 3, 4, 5, 6, 7, B, C, and F in our experiments). In
such cases, the overhead due to the patch list command can be significant because of
the increase in the number of patch lists required to express the shifts in all functions
between old and new versions of the code.

The patch list command can also significantly increase the size of the delta script
(although patch list command can be thought of as a part of the delta script, we catego-
rize COPY, INSERT commands as delta script, and patch lists as patch list command,
for convenience of explanation). Note that in Reijers and Langendoen [2003], when
executing a COPY command, a node checks for each word that it copies if the previ-
ous word is the opcode of a patchable instruction, the instruction that uses function
address. If so, and if the copied word lies in the range covered by one of the entries
in the patch list, the node adds the corresponding offset to the copied word. However,
implementing this is difficult as well as architecture dependent. This is because it is
not always possible to distinguish a patchable instruction by just looking at the op-
code in the binary executable. For example, while pushing a task in the task queue,
TinyOS uses ldi statements to load registers r24 and r25 with the address of the task
(a function). By just looking at the binary code, it is not possible to say whether the
operand of ldi instruction is a function address or say some constant. As a result, im-
plementation in Reijers and Langendoen [2003] does not look for patchable instruction.
Instead it patches all binary words that lie in the {begin address, end address} range.
As a consequence, the node ends up performing many “mispatches” as acknowledged
by the authors. To correct these mispatches, Reijers and Langendoen [2003] use RE-
PAIR commands (these are used for other purposes also) in the delta script, thereby
increasing the size of the delta script. This is illustrated by the fact that for most of
the software change cases used in Reijers and Langendoen [2003], the decrease in the
size of the delta script is not as significant as in our experiments. Furthermore, Rei-
jers and Langendoen [2003] assume that the function address is always preceded by
an instruction opcode (for simplifying the identification of the patchable instruction).
This, however, is dependent on the microcontroller architecture and may not be true
for many architectures. For example, in ATmega128, as mentioned earlier, the second
operand of the ldi statement can be the function address. We believe that Zephyr offers
an elegant solution without all these complications and overhead.

Apart from these core differences, Reijers and Langendoen [2003] do not present an
implementation of a complete incremental reprogramming system. They focus mainly
on the generation of the difference, and not on actual dissemination. Zephyr, on the
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other hand, is a complete usable incremental reprogramming system. Furthermore,
Reijers and Langendoen [2003] present an evaluation of their system with very few
software change scenarios, whereas in this article, we present a comprehensive evalu-
ation of Zephyr.

In the software change cases that we considered, the time to compile, link (with
the application-level modifications), and generate the executable file was at most 2.85
seconds, and the time to generate the delta script using optimized Rsync was at most
4.12 seconds on a 1.86 GHz Pentium processor. These times are negligible compared to
the time to reprogram the network, for any but the smallest of networks. Furthermore,
these times can be made smaller by using more powerful server-class machines. TinyOS
applies extensive optimizations on the application binaries to run it efficiently on the
resource-constrained sensor nodes. One of these optimizations involves inlining of sev-
eral (small) functions. We do not change any of these optimizations. In systems which
do not inline functions, Zephyr’s advantage will be even greater since there will be more
function calls. Zephyr’s advantage will be minimal if the software change does not shift
any function. For such a change, the advantage will be only from the optimized Rsync
algorithm. But such software changes are very rare, for example, when only the values
of the parameters in the program are changed. Any addition/deletion/modification of
the source code in any function except the one which is placed at the end of the binary
will cause all following functions to be shifted.

8.3. Testbed Experiments

We perform testbed experiments using Mica2 [xbow] nodes for grid and linear topolo-
gies. For the grid network, the transmission range Rtx of a node is set such that

√
2d <

Rtx < 2d, where d is the separation between the two adjacent nodes in any row or col-
umn of the grid. The linear networks have the nodes with Rtx such that d < Rtx < 2d,
where d is the distance between adjacent nodes. Due to fluctuations in transmission
range, occasionally a nonadjacent node will receive a packet. In our experiments, if a
node receives a packet from a nonadjacent node, it is dropped, to achieve a truly multi-
hop network. This kind of software topology control has been used in other works also
[Kamra et al. 2006; Panta et al. 2008]. A node situated at one corner of the grid or end
of the line acts as the base node. We provide a quantitative comparison of Zephyr with
Deluge [Hui and Culler 2004], Stream [Panta et al. 2007], Rsync [Jeong and Culler
2004], and optimized Rsync without application-level modifications. Note that Jeong
and Culler [2004] reprogram only nodes within one hop of the base node, but we used
their approach on top of a multihop reprogramming protocol to provide a fair com-
parison. The metrics for comparison are reprogramming time and energy. We perform
these experiments for grids of size 2 × 2 to 4 × 4 and linear networks of size 2 to 10
nodes. We choose four software change cases, one from each equivalence class: Case
1 for Class 1 (SC), Case D for Class 2 (MC), Case 7 for Class 3 (LC), and Case C for
Class 4 (VLC). Note that in the evaluations that follow, Rsync refers to the approach
by Jeong and Culler [2004].

8.3.1. Reprogramming Time. Time to reprogram the network is the sum of the time to
download the delta script and the time to build the new image. The time to download
the delta script is the time interval between the instant t0, when the base node sends
the first advertisement packet, to the instant t1 when the last node (the one that takes
the longest time to download the delta script) completes downloading the delta script.
Since clocks maintained by the nodes in the network are not synchronized, we cannot
take the difference between the time instant t1 measured by the last node and t0
measured by the base node. To solve this synchronization problem, we use the approach
of Panta et al. [2008], which achieves this with minimal overhead traffic.
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Fig. 8. Comparison of reprogramming times for grid and linear networks. The last graph shows the time to
rebuild the image on the sensor node.

Figure 8 (except for the last graph) compares reprogramming times of other ap-
proaches with Zephyr for different grid and linear networks. Table II compares the
ratio of reprogramming times of other approaches to Zephyr. It shows minimum, max-
imum, and average ratios over these grid and linear networks. As expected, Zephyr
outperforms nonincremental reprogramming protocols like Deluge and Stream sig-
nificantly for all the cases. Zephyr is also up to 12.78 times faster than Rsync, the
approach of Jeong and Culler [2004]. This illustrates that the Rsync optimization and
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Table II. Ratio of Reprogramming Times of Other Approaches to Zephyr

Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Deluge : Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1
Stream : Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.54 2.23 1.46
Rsync : Zephyr 1.03 8.17 2.55 5.66 12.78 8.07 5.22 10.89 6.50 1.34 1.71 1.42

Optimized Rsync : Zephyr 1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

the application-level modifications of Zephyr are important in reducing the time to re-
program the network. Zephyr is also significantly faster than optimized Rsync without
application-level modifications for moderate, large, and very large software changes.
In these cases, the software changes cause function shifts. So, these results show that
application-level modifications greatly mitigate the effect of function shifts and reduce
the reprogramming time significantly. For the small change case where there are no
function shifts, Zephyr, as expected, is only marginally faster than optimized Rsync
without application-level modifications. In this case, the size of the delta script is very
small (17 and 23 bytes for Zephyr and optimized Rsync, respectively) and hence there
is little room for improvement. Since Zephyr transfers less information at each hop,
Zephyr’s advantage will increase with the size of the network. The last graph in Figure 8
shows the time to rebuild the new image on a node. It increases with the increase in
the scale of the software change, but is negligible compared to the total reprogramming
time.

8.3.2. Reprogramming Energy. The most important factors that contribute to energy
consumption during reprogramming are radio communications and flash writes. Ob-
viously, the energy cost due to radio transmissions and receptions are directly propor-
tional to the number of packets that are transmitted by all nodes in the network for
reprogramming. As mentioned earlier, the downloaded delta script is first stored in
the external flash by each sensor node. The new image, which is built using the delta
script and the old image, is also stored in the external flash. Then the new image is
loaded from from external flash to the flash program memory by the bootloader. Thus
the number of flash program memory accesses for loading the new image from external
flash is independent of the number of packets received by the sensor node, and is same
for all reprogramming protocols because ultimately each protocol is creating the same
new version of the program. However, the number of external flash accesses (to store
the delta script) is directly proportional to the number of packets received by the sensor
node. Thus, the total number of packets transmitted by all nodes in the network during
reprogramming is a good measure of the energy cost due to radio transmissions and
receptions, as well as flash writes. In this section, we first compare different proto-
cols in terms of total number of packets transmitted by all nodes in the network for
reprogramming.

Figure 9 and Table III compare the number of packets transmitted by Zephyr with
other schemes for grid and linear networks of different sizes. The number of bytes
transmitted by all nodes in the network for reprogramming by Deluge, Stream, Rsync,
and optimized Rsync is up to 215, 146, 38, and 22 times more than that by Zephyr.
The fact that Rsync:Zephyr>1 indicates that Zephyr is more energy efficient than the
incremental reprogramming approach of Jeong and Culler [2004]. The application-
level modifications are significant in reducing the number of packets transmitted by
Zephyr compared to optimized Rsync without such modifications. Note that in cases
like Case 7 and Case D (moderate to large change class), application-level modifications
have the greatest impact where the functions get shifted. Application-level modifica-
tions preserve maximum similarity between the two images in such cases, thereby
reducing the reprogramming traffic overhead. In cases where only some parameters of
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Fig. 9. Comparison of number of packets transmitted during reprogramming.

Table III. Ratio of Number of Packets Transmitted During Reprogramming by Other Approaches to Zephyr

Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Deluge : Zephyr 90.01 215.39 162.56 40 204.3 101.12 12.27 55.46 25.65 2.51 2.9 2.35
Stream : Zephyr 53.76 117.92 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7
Rsync : Zephyr 2.47 7.45 5.38 6.66 38.28 21.09 3.28 12.68 6.69 1.50 1.78 1.60

Optimized Rsync : Zephyr 1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

the software change without shifting any function, the application-level modifications
achieve a smaller reduction. But the size of the delta is already very small and hence
reprogramming is not resource intensive in these cases. Even for very large software
changes, Zephyr significantly reduces the reprogramming traffic.

As mentioned before, radio communication is a major source of energy consumption
during reprogramming. The energy cost due to radio communication can be grouped
into three categories: (1) Idle listening energy cost, E1: It is the energy consumption
due to nodes listening to the wireless medium when there is no packet transmission in
their neighborhood. (2) Energy cost due to transmission and reception of unnecessary
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packets, E2: By unnecessary packets, we mean (a) the corrupt packets, (b) code packets
that a node has already downloaded, and (c) the code packets which a node does not
store upon reception. Note that in Zephyr, like in Deluge, a node downloads code packets
in a monotonic order; it downloads packets of a page x before packets of page y, for all
x < y. This is done to avoid the state maintenance overhead. (3) Energy cost due to
transmission and reception of necessary packets, E3: By necessary packets, we mean
the code packets that a node stores upon reception.

The underlying MAC protocol affects energy costs E1, E2, and E3. Low-Power Lis-
tening (LPL) MAC protocols [Buettner et al. 2006; Polastre et al. 2004; El-Hoiydi and
Decotignie 2005] cause the sensor nodes to put the radio transceiver to sleep mode for
most of the time and wake it up periodically for a short period of time to sample the
channel to check if there is any radio transmission in their neighborhood. Idle listen-
ing energy cost is significantly reduced by duty-cycling LPL MACs because the time
duration for which the radio is turned on without any packet transmission or recep-
tion is limited to short channel sampling periods. The asynchronous LPL MACs (like
BMAC [Polastre et al. 2004] and XMAC [Buettner et al. 2006]) avoid the need for time
synchronization among nodes by having the transmitter transmit a (long) preamble
sequence before each packet transmission such that the preamble duration is at least
as long as the sleep period of the nodes. The long preamble ensures that when a node
wakes up to sample the channel, it is guaranteed to to hear the preamble. When a node
hears a preamble, it turns its radio on until the packet is received. Thus the energy
cost is incurred not only during packet transmission and reception, but also during
preamble transmission and reception.

The energy costs E2 and E3 are due to transmission and reception of both preambles
and actual packets (unnecessary packets for E2 and necessary packets for E3). Note
that E2 also includes the energy cost due to a node keeping its radio on after receiving
a preamble for a packet that it later finds it is not interested in. Let NP be the total
number of packets transmitted by all nodes in the network during reprogramming. It
is the sum of all necessary and unnecessary packets. Clearly, the energy costs E2 and
E3 are directly proportional to NP . Thus the total number of packets transmitted by all
nodes in the network during reprogramming provides a measure of E2 and E3. From
Figure 9, we see that Zephyr reduces the number of packets transmitted compared to
other protocols.

Each node spends some time (say t) in transmitting and receiving necessary and
unnecessary packets. t also includes preamble duration. During rest of the time period
(say, TR − t, where TR is the total reprogramming period), the node samples the channel
periodically (without detecting radio transmission in its neighborhood) according to its
duty-cycling schedule. Thus, the reprogramming period TR provides a measure of idle
energy cost E1. Figure 8 shows that Zephyr requires significantly less time to reprogram
the network compared to other protocols.

Next we present a simplified mathematical analysis to complement the qualitative
argument that we presented earlier: the total number of packets transmitted by all
nodes in the network is a measure of the energy costs E2 and E3, and the reprogramming
period is a measure of the energy cost E1. To simplify the analysis, we consider a single-
hop network. Let us suppose this network takes TR time to be reprogrammed. Suppose
that NP is the total number of packets transmitted by all nodes in the network during
reprogramming. The upper bound1 of the time period t spent by each node in the
network for receiving and transmitting necessary and unnecessary packets (including

1This is an upper bound because (a) a node may not turn its radio on for the entire preamble duration if it
detects the preamble at an instant other than the exact start of the preamble, and (b) during the periodic
channel sampling, a node may miss the preamble because of bad link conditions.

ACM Transactions on Sensor Networks, Vol. 7, No. 4, Article 30, Publication date: February 2011.



Efficient Incremental Code Update for Sensor Networks 30:25

preamble) is

t = NP ∗ tp, (1)

where tp is the time to transmit a single packet. tp is given by

tp = tP R + tDAT A, (2)

where tP R is the time to transmit the preamble and tDAT A is the time to transmit the
actual (data) packet. To calculate tP R and tDAT A, let us consider XMAC, which is the LPL
MAC used by TinyOS. As mentioned before, in LPL MAC schemes, before transmitting
a packet, each node transmits a preamble which is at least as long as the sleep period
to ensure that its neighbor receives the preamble and hence keeps its radio on to
receive the actual data packet. In XMAC, the length of the preamble is reduced (for
unicast packets) because during the preamble period, a sender node transmits a series
of strobe packets containing the receiver’s address with a gap between the successive
strobe packets. When the receiver node wakes up and detects the strobe packet, it
sends an ACK during the gap between two successive strobe packets. Upon receiving
the ACK, the sender node stops transmitting the strobe packets and immediately
sends the actual data packet. Note that during reprogramming, most of the packets
are broadcast (except request packets). Hence, in XMAC, the preamble strobe packets
have to be sent for the entire sleep period to make sure that all neighbors receive the
broadcast packet. As a result, the preamble duration (tP R) in XMAC is equal to the
sleep period. The sleep period depends upon duty cycle and time required by the radio
transceiver to sample the channel. Let tcs be the channel sampling period. Since duty
cycle is given by dc = tcs/(tcs + tP R), thus the preamble period is given by

tP R = tcs(1 − dc)
dc

. (3)

tcs should be long enough to ensure that it does not lie in the gap between the preamble
strobe packets, and thus the receiver does not miss the preamble strobe packet. For
this, tcs should be slightly longer than the gap between the strobe packets. Let us
approximate tcs as

tcs = TACK + TT A, (4)

where TACK is the time required by the receiver to transmit the ACK packet and TT A
is the turnaround time: time required by the radio transceiver to switch from receive
mode to transmit mode. Time to transmit actual data packet depends on the size of
the packet and the data rate supported by the radio transceiver. Assuming packet size
= 36 bytes (the default packet size in TinyOS) and data rate = 250kbps (for IEEE
802.15.4-based radios like CC2420), time to transmit a single data packet is 1.152 ms.
Thus total time to transmit a single packet, tp, is the sum of the preamble and actual
data packet durations.

tp = 1.152 ∗ 10−3 + (TACK + TT A)(1 − dc)
dc

(5)

Substituting tp from Eq. (5) in Eq. (2), we get t, the time spent by each node for receiving
and/or transmitting necessary and unnecessary packets. Thus the energy costs E2 and
E3 incurred by all nodes in the network for transmitting and receiving necessary and
unnecessary packets is

E2 + E3 = t ∗ P ∗ N, (6)

where P is the transmission or receive power and N is the total number of nodes in
the network. Note that for most of the currently used radio transceivers like CC2420
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Fig. 10. Comparison of Zephyr with other approaches for a 5 node single-hop network. (a) reprogramming
time; (b) number of packets transmitted during reprogramming; (c) idle energy (E1); (d) receive/transmit
energy (E2 + E3). MAC duty cycle is 2%.

Table IV. Parameter Values Used for Analysis, based on CC2420 Datasheet

Parameter Value
Data rate 250 Kbps (for IEEE 802.15.4 radio)

TT A (Turnaround time) 192 us
TACK (Time to send an ACK) 352 us (Time to transmit 11 byte ACK, based on IEEE 802.15.4 standard

P (Transmit or Receive power) 52.2 mW

[cc2420], the transmit and receive powers are almost equal. For example, for CC2420,
transmit power is 52.2 mW (at 0 dBm) and receive power is 56.4 mW. Hence, we have
simplified the calculation and used a single value for transmit and receive power.

TR − t is the time period spent by nodes in not receiving or sending packets. During
this time it incurs idle listening energy cost due to periodic sampling of the wireless
medium. The idle listening energy cost E1 for N nodes is given by

E1 = (TR − t) ∗ P ∗ dc. (7)

We conduct testbed experiments to find reprogramming time and total number of
packets transmitted by all nodes in the network during reprogramming for a 5-node
single-hop network of mica2 nodes. Figure 10(a) and (b) show reprogramming time
and number of packets transmitted, respectively, for four software change cases, one
from each equivalence class: Case 1 for Class 1 (SC), Case D for Class 2 (MC), Case 7
for Class 3 (LC), and Case C for Class 4 (VLC). We see that Zephyr significantly
reduces reprogramming time and number of packet transmissions. We then use the
mathematical analysis presented previously to find the transmission and reception
energy cost (E2 + E3) and idle listening energy cost (E1). Parameter values used for our
computations are shown in Table IV. All of these values are computed using CC2420
datasheet [cc2420]. We use 2% duty-cycle value in our calculations. The results are
plotted in Figure 10(c) and (d). As expected, they show that transmission/reception
and idle listening energy costs are directly proportional to the total number of packets
transmitted by all nodes in the network during reprogramming and reprogramming
time, respectively.
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Fig. 11. Size of indirection table for various software change cases.

Fig. 12. Simulation results for (a) reprogramming time and (b) number of packets transmitted during
reprogramming (Case D, i.e., Class 2 (MC)).

8.4. Size of Indirection Table

Zephyr needs to allocate extra space in program memory for storing the indirection
table. Figure 11 shows the size of the indirection table for various software change
cases mentioned before. The size of the indirection table is directly proportional to the
number of functions in the software.

8.5. Simulation Results

We perform TOSSIM [Levis et al. 2003] simulations on grid networks of varying size
(up to 14 × 14) to demonstrate the scalability of Zephyr and to compare it with other
schemes. Figure 12 shows the reprogramming time and number of packets transmitted
during reprogramming for Case D (Class 2 (MC)). We find that Zephyr is up to 92.9,
73.4, 16.1, and 6.3 times faster than Deluge, Stream, Rsync [Jeong and Culler 2004],
and optimized Rsync without application-level modifications, respectively. Also, Deluge,
Stream, Rsync [Jeong and Culler 2004], and optimized Rsync transmit up to 146.4, 97.9,
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16.2, and 6.4 times more packets than Zephyr, respectively. Most software changes in
practice are likely to belong to this class (moderate change), and we see that application-
level modifications significantly reduce the reprogramming overhead. Zephyr inherits
its scalability property from Deluge since none of the changes in Zephyr (except the
dynamic page size) affects the network or is driven by the size of the network. All
application-level modifications are performed on the host computer and the image
rebuilding on each node does not depend upon the number of nodes in the network.

8.6. Best- and Worst-Case Scenarios

In the best case, when there is no change in the software, Zephyr needs a single COPY
command in the delta script as follows.

COPY 0 <image_size>

Here 0 is the offset in the old image. It says “copy image size number of bytes from old
offset 0 to the new image”. Note that we do not need to mention the offset in the new
image as mentioned in Section 6.3. This delta script takes 5 bytes. However, this best
case example is just hypothetical because when there is no change in the software, there
is no need for (incremental) software update. So, we do not include this hypothetical
case scenario in the experimental evaluation section. The small change (SC), moderate
change (MC), large change (LC), and very large change (VLC) software change cases
evaluated in this article represent the realistic spectrum of the best-case to the worst-
case scenarios, with SC representing the best case and VLC representing the worst
case. Furthermore, we believe that most of the software change cases are of SC or
MC types and thus they represent the average cases. Ideally, the worst-case scenario
would be the one where the two versions of the software are completely different.
However, in practice, some portions of the software (e.g., driver code, core operating
system code, etc.) rarely change, or even if they change, they are very rarely entirely
different from the previous version. So, the VLC cases presented in this article are good
measures of practical worst-case scenarios for Zephyr. In the hypothetical worst-case
example where the two versions of the software are completely different, Zephyr uses
the following command in the delta script.

INSERT <software_size> <entire_software_image>

In this hypothetical example, the size of the delta script in Zephyr is 3 bytes more than
the size of the binary image. The entire binary image is what would be sent by earlier
works, such as Stream [Panta et al. 2007].

9. ANALYSIS

The main idea of function call indirections is that if the positions of NS functions
have changed in the new software and these shifted functions are called CS times
in the new program code, Zephyr’s technique of function call indirections causes only
NS function calls in the indirection table to be different between the two versions of
the software. On the other hand, CS function call statements are different in the
baseline case. Typically CS � NS and thus function call indirection reduces the size of
the delta script significantly. The effectiveness of function call indirection depends on
the number of times the shifted functions are called in the new program.

In this section, we analyze the effect of function call indirection and the metacom-
mands in reducing the size of the delta script. First we define a few terms. Two function
call statements in the old and new programs are said to be identical if they call the
same function. The target addresses in the identical function call statements may or
may not be same. We use an attribute called Preserved Similarity Index (PSI) to quan-
tify the amount of similarity preserved in the new version of the software with respect
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Fig. 13. Preserved Similarity Index (PSI) for different software change cases.

to the old version due to function call indirections. We define PSI as

PSI = CS

C
, (8)

where CS is the number of identical function call statements in the new software that
would have different target addresses than those in the old software (due to the change
in the position of the corresponding functions) if function call indirections were not used.
C is the total number of identical function call statements in the old and the new images.
Note that CS ≤ C and hence the PSI values lie between 0 and 1. A high PSI value means
that the amount of similarity preserved by function call indirections is also high. For
example, if PSI = 1, then without function call indirections, all the identical function
call statements in the old and new images use different target addresses, whereas
with function call indirections they have same target addresses (except the ones in the
indirection table). Note that PSI = 0 means that even without function call indirections,
the identical call statements would have same target addresses because the locations
of the corresponding functions are not changed by the software modification. Hence, in
this case, there is no advantage due to Zephyr’s function call indirections. Figure 13
shows the PSI values for different software change cases discussed in Section 8. For
Case 1 and Case G where only a single parameter in the software is changed, PSI = 0
as expected. Note that for most of the cases, PSI has a very high value. This suggests
that most of the software change cases cause many functions to be shifted and hence
without function call indirections, the number of identical function call statements
with different target addresses in the two versions of the software is high. This causes
the delta script to be large. This explains the observation that byte-level comparison
alone is not sufficient and application-level modifications are necessary to create a
small delta script.

As shown in Figure 14, let us consider two code segments, one in the old and one
in the new new version of the software, which are identical except that the target
addresses of n identical function call statements are different. Without function call
indirections and metacommands, we need (n + 1) COPY commands and n INSERT
commands to describe the difference between these code segments. Thus the delta
script for these two identical code segments is (n + 1) ∗ 7 + n ∗ 7 = 14n + 7 bytes
long (since each COPY and INSERT command takes 7 bytes assuming that the target
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Fig. 14. Without function call indirections, the difference between the identical code segments require n+ 1
COPY commands and n INSERT commands in the delta script.

addresses of the function call statements is 2 bytes). With function call indirections,
Zephyr needs only one COPY command which requires only 5 bytes (if we do not use
newOffset as explained in Section 6.3). However, Zephyr also needs to describe, in the
delta script, the difference between the corresponding segments in the indirection table.
With the REPEAT command, this can be done with 3 + 2n bytes. Note that the CWI
command is not necessary in this context. Thus Zephyr saves 12n − 1 bytes compared
to the scheme that uses only byte-level comparison without function call indirections
and metacommands. In other words, function call indirections and metacommands
decrease the size of the delta script by approximately 12 times the number of times the
shifted functions are called in the new program code. To evaluate the effect of function
call indirections only (without metacommands), let us assume that the baseline case
takes 5 bytes each for COPY and INSERT commands (i.e., newOffset is not used). Then
the delta script for these identical code segments takes (n + 1) ∗ 5 + n ∗ 5, whereas
Zephyr takes 5 bytes for COPY command and 3 + 2n bytes for the REPEAT command.
Thus function call indirections save 8n−3 bytes compared to the scheme that uses only
byte-level comparison without function call indirections. Note that these savings are
the worst-case figures, since the number of function references are generally higher
than the number of functions. As a result, the REPEAT command needs less than
3 + 2n bytes in Zephyr.

10. CONCLUSIONS

In this article, we presented a multihop incremental reprogramming protocol called
Zephyr that minimizes the reprogramming overhead by reducing the size of the delta
script that needs to be disseminated through the network. We use techniques like
function call indirections to mitigate the effect of function shifts for reprogramming of
sensor networks. Our scheme can be applied to systems that do not provide dynamic
linking on the nodes (like the standard release of TinyOS), as well as to incrementally
upload the changed modules in operating systems like SOS and Contiki that do provide
the dynamic linking feature. Our experimental results show that for a large variety of
software change cases, Zephyr significantly reduces the volume of traffic that needs to
be disseminated through the network compared to existing techniques. This leads to
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reductions in reprogramming time and energy. As future work, we are investigating
the use of multiple nodes as the source of the new code instead of a single base node to
further speed up reprogramming.
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