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Abstract 
Due to resource constraints and unreliable communication, 
wireless sensor network (WSN) programming and debugging 
remain to be challenging tasks. Deterministic replay is an error 
diagnosis method which has long been proposed for distributed 
systems. However, one of the significant hurdles for applying 
deterministic replay on WSN is posed by the small program 
memory on typical sensor nodes. This paper proposes a 
dependence-based multi-level method for memory-efficient 
tracing and replay. In the interest of portability across different 
hardware platforms, the method is implemented as a source-level 
tracing and replaying tool. To further reduce the code size after 
tracing instrumentation, a cost model is used for making the 
decision on which functions to in-line. A prototype for the tool 
targets C programs is developed on top of the Open64 compiler 
and is tested using several TinyOS applications running on 
TelosB motes. Preliminary experimental results show that the test 
programs, which do not fit the program memory after 
straightforward instrumentation, can be successfully instrumented 
using the new method such that the injected errors can be found.  

Categories and Subject Descriptors D.2.5 [Testing and 
Debugging]: Debugging aids 

General Terms Algorithms, Reliability. 

Keywords  Wireless sensor network; program debugging; 
invariants; dependence analysis; resource constrains. 

1.  Introduction 
Wireless sensor networks (WSN) are gaining increased attention 
for possible use in applications such as structural health 
monitoring, environmental surveillance, scientific observation, 
and others [27][28]. A wireless sensor network typically consists 
of a large number of unattended wireless sensor nodes. Despite 
the increasing efforts [6][20] made to ease the development and 
simulation of WSN applications, sensor network programming 
and debugging is still a difficult task in view of resource 
constraints and unreliable communications of wireless sensor 
nodes.  

Deterministic replay (or record-replay) is an error diagnosis 
method which has long been proposed for distributed systems. 
Under this method, nondeterministic events are recorded 
throughout the system operation. When an error is reported, the 
program can be re-run, with the recorded events restaged to allow 
the programmer to inspect the executed statements and the state 
change they cause such that the source of the error, namely the 
incorrectly written statements or unexpected events causing the 
error, can be located. The replay method significantly reduces the 
amount of information to record at run time. Unfortunately, the 
relatively small program memory poses another significant hurdle 
to the adoption of record-replay on sensor nodes. The popular 
TelosB mote has only 48KB flash memory to store the program. 
This limits the extent to which one can add program statements to 
perform tracing. Lacking sufficient memory, most existing 

schemes for run-time WSN logging record only coarse 
information which is far from sufficient for deterministic replay. 
As a result, it remains difficult to pin-point the source of the errors 
which are detected at run time.  

The aim of this paper is to develop a dependence-based multi-
level tracing and replay scheme to overcome the constraint posed 
by the limited memory on WSN motes.  

Based on our scheme, we develop a source level tracing and 
replaying tool which is independent of the hardware platforms and 
the native compiler. The source-level tracing, compared to 
assembly-level tracing, offers high portability of the tool. It also 
enables the user to take advantage of many existing source-level 
debuggers, such as GNU’s gdb, when replaying on a desktop 
machine.  

We have implemented our tool based on the Open64 C 
compiler [13]. Given the error conditions to be detected at 
runtime, we use the compiler to compute the program slice [19], 
using the error conditions as the slicing criteria. We then partition 
the program slice into multiple levels such that initially lower-
level tracing is performed, targeting only the functions close to 
where error conditions are checked. The tracing level increases as 
farther away functions must be traced in order to find the error 
source. Tracing operations are inserted in the given C program 
before the native compiler converts it to the machine code. In 
addition, our tool generates another C program for later replaying 
on a desktop machine.  

We use TinyOS [12], which is written in nesC [20], as our 
current testing environment for the developed tool. TinyOS is one 
of the most popular operating systems for sensor network 
applications. It has been used by more than 100 research groups 
worldwide. Typically, a TinyOS application consists of a 
scheduler and a group of wired components. The nesC compiler 
first converts the application into a C program which is then 
compiled by the native compiler into machine code executable on 
the specific hardware. We use the same native compiler to 
compile the C program instrumented by our Open64-based tool 
before loading it on the sensor mote for normal execution with 
tracing. When an error is detected, we retrieve the trace and feed it 
to our replaying C program which is executed on a desktop 
machine where many well developed debugging tools, e.g. the 
GNU gdb, can be used to isolate the source of the error. To replay 
the interaction between different motes, we simply start multiple 
processes, one for each mote, feeding each with its own retrieved 
logging information. How to retrieve the logged information from 
a node is out of scope of this paper. We can use one of various 
existing methods [37] such as using a different radio on the same 
node, storing logged information on a nearby node, etc.  

The rest of the paper is organized as follows. Section 2 defines 
the problem addressed by this paper and gives an overview of our 
solution. Section 3 discusses how to reduce instrumentation based 
on dependence information and proves its effectiveness under a 
number of assumptions. Section 4 discusses multi-level tracing in 
case such assumptions are not satisfied. Implementation and 
experimental results are presented in Section 5. After 
summarizing related works on WSN debugging and deterministic 
replay we conclude in Section 6. 



 

 

 
 
 

2.  An Overview 
For a given program, we specify a set of correctness properties 
using predicates defined over a list of program variables under a 
certain system of logic, e.g. temporal logic [21][22]. (The exact 
system of logic used is not of particular concern for this paper.) 
The program is required to satisfy this set of predicates within a 
specified program scope, e.g. the entire program (as long as all 
variables in the predicate are global), individual functions, 
individual program segments, or any point between two specific 
program statements.  

In general, a distributed system reacts to events whose timing 
is difficult to predict or specify at the time of program 
development. Also, the developers may not have verified the 
correctness of the program thoroughly under deployment 
conditions, which can be significantly different from the test 
conditions in the lab. Errors, therefore, often exist in WSN 
programs after deployment. However, by inserting assertions to 
the program, violations of certain predicates, i.e. errors, can be 
detected at run time. In order to fully check whether a predicate is 
satisfied, it must be reevaluated every time one of its variables 
gets updated. 

Assuming that the predicates themselves are composed 
correctly, when a predicate gets violated, we know at least one of 
its variables has obtained an incorrect value through some point in 
the program where the variable was updated. That value may be 
the result of earlier operations using incorrect operands, and so on. 
Eventually the error must be traced back to its source through a 
chain of data dependences and control dependences. For the 
purpose of this paper, we consider two possibilities: (a) one or 
more program statements are written incorrectly, and (b) certain 
unexpected events occur, e.g. messages are received with 
incorrect contents. The type (a) errors include the erroneous 
removal of program statements which were supposed to provide 
the correct values, causing a later operation to use values written 
by wrong statements.  

If the entire sequence of executed instructions and operands 
were recorded, then one could follow the dynamic use-def chain 
backward and inspect the program statements along the way until 
the origin of the error is found. The cost of such extensive 
recording is prohibitive in both time and space. Under the record-
and-replay scheme, however, we only need to record all 
nondeterministic events on each mote, which includes all external 
messages, task scheduling decisions, and internal interrupts. On 
current WSNs, all these can be captured by inserting logging 
operations in interrupt handlers written in high-level languages 
such as C. This observation of ours is a key to enabling tracing for 
debugging in the resource-constrained WSNs.  

Since the program on each node in a distributed system such as 
a WSN may run indefinitely, the length of the trace is unbounded. 
With limited storage for the trace, in general one retrieves only a 
tail of the full trace. Replay is therefore often partial in practice. In 
order to enable deterministic replay corresponding to the retrieved 
trace tail, we require the program being considered to satisfy the 
following assumptions: 

• Assumption 1: The program contains no recursive calls. 
• Assumption 2: The infinite running of the program is 

controlled by one or more infinite loops which can be 
recognized at compile time. 
 

Under these two fundamental assumptions, we insert in each 
infinite loop an anchor checkpoint at which we record the values 
of all variables needed to enable replaying the program starting 
from this program point. In order for the replay tool to capture the 
source of the error, the following assumption must also be 
satisfied: 

 
• Assumptions 3: The trace storage is sufficiently large 

such that, when an error is detected, the stored trace will contain 
at least one anchor point prior to the source of the error. 

 
If the above assumption is unsatisfied, then either the trace 

cannot be replayed (because of the lack of any anchor point) or 
the replay will not lead to the source of the error (because the 
error source falls off the trace). In such an unfortunate case, we 
will resort to multi-level tracing which instruments a subset of the 
functions but yet permit the trace to be replayed. One of the main 
goals of this paper is to reduce the storage overhead for tracing, 
thus increasing the chance of capturing the source of the error in 
the stored trace. This is in addition to the objectives to minimize 
the instrumented code size and the increased processing time. 

The information logged must include the execution context for 
each invocation of an interrupt handler so that the replay program 
can restage the invocation of the interrupt handler accurately. The 
type of information to be recorded at run time will be discussed in 
the next section. Since interrupt handlers will be treated 
differently from the other functions, we identify interrupt handlers 
by annotations before applying our instrumentation tool. 
Furthermore, those interrupt routines which take external inputs 
such as radio communication messages are explicitly marked. The 
external inputs can then be recorded at run time, allowing the 
interrupt routine to be replayed. 

     Although our experiments are performed on TinyOS-based 
WSN applications, the proposed methodology and the developed 
tools can be applied to other distributed embedded platforms as 
long as the program is single threaded and the assumptions made 
above are satisfied. Our current toolset also relies on an 
intermediate C code generated from the original program. 
           In the next section, we first discuss how to use dependence 
information to exclude functions irrelevant to the invariants from 
the run-time logging so as to reduce the size of the instrumented 
program. This is followed by a presentation of the instrumentation 
algorithm with relevant guarantees. 

3. Using Dependence Information to Reduce 
Runtime Logging 
The benefit of reducing runtime logging is two-fold. Firstly, a 
longer execution history can be replayed with the same amount of 
data storage for the trace. The time to execute the annotated 
program that is being traced is reduced. Finally, the number of 
instrumented operations to perform tracing is reduced, which 
leads to a smaller code size.  

If a function never has any effect on the kind of errors we 
monitor, i.e. on any of the variables appearing in the predicates 
(also called the invariants) which specify the correctness 
properties, then such a function does not need to be traced at 
runtime. To exclude such functions from tracing, we first compute 
the backward slice [19] using the given set of invariants as the 
slicing criteria. The result of this computation is a set of 
control/data dependence chains which include all operations (such 
as assignments, branching decisions and function calls) having an 
effect on the set of invariants. Each function which contains any 
of these operations will be instrumented to obtain the runtime 



 

 

execution log. Obviously, the main function of the program is 
always instrumented. 

This set of functions, however, does not yet include those 
interrupt handlers which may have an effect on the invariants. In 
microcontroller execution, interrupts are the basic source of non-
determinism. For example, a TinyOS application is interrupt 
driven. It runs in two contexts, the task context and the async 
context. The transition from the task context to the async context 
can happen only as the result of an interrupt causing control to 
transfer to an interrupt handler, interrupting any currently running 
task.  Conversely, the transition from async context to task context 
occurs when the interrupt handlers completes, at which time 
TinyOS takes one of the following actions: (i) process the next 
pending interrupt if any, (ii) continues the execution of the task 
that was interrupted, (iii) start the next task in the queue, and (iv) 
go idle.  

Since it is infeasible to predict when a particular interrupt may 
happen, we instrument all those interrupt handlers whose 
execution may modify global variables on which the invariants 
depend. 

3.1 What to log 

After we determine the set of functions to instrument, we insert 
operations into the source code of these functions to record the 
following pieces of information. We shall prove in this section 
that this set of information is sufficient for accurate replay. (The 
necessity of the information is self evident.) 

LOG type 1 (Function entry/return) -- A function always has a 
single entry but may have multiple returns. We use N_RETi, 
where i is an integer, to indicate which return statement is 
executed.  If this is a function entry, it marks whether it is an 
interrupt handler and, if so, the name of the function.  

LOG type 2 (Global variable update count) – In order to 
prepare for replaying interrupt routines, when an interrupt routine 
is invoked at run time, a global-variable reference counter, 
denoted by #gv_reference, is written to the log, after which the 
count is reset to zero. Immediately after the exit of the interrupt 
routine, #gv_reference is reset to zero again. For any other 
functions, #gv_reference is reset to zero both at the entry and at 
the exit. Every reference (read or write) to a global variable is 
followed by an increment of #gv_reference.  This count will be 
used during the replay to help determine where in the program to 
replay specific interrupt routines. 

LOG type 3 (Task scheduling) – If task scheduling order is 
random, then we need to record the task that is scheduled to next. 
However, TinyOS uses a FIFO task queue. Hence, as long as the 
invocations of the interrupt routines are replayed accurately, this 
type of information does not need to be recorded. 

LOG type 4 (Anchor points) – As discussed previously, at 
each anchor point, we record all variable values which are needed 
in order for the program to replay from here.  

LOG type 5 (non-deterministic inputs) – It is necessary to 
record non-deterministic input for future replay. In TinyOS, the 
messages received from radio communication and the sensor data 
arriving from the bus belong to this type. Note that the interrupt 
handlers export such input by writing it to a global variable. Since 
the interrupt handlers which take external input are explicitly 
marked, we add operations in such handlers to save their global 
variables to the trace. 

 3.2 How to replay 

Our replay program is written automatically by the compiler at the 
source code level. At the same time as the code is instrumented 
for tracing, the compiler stages record-handling in the replay 

program. For each operation inserted to the instrumented mote 
program to write LOG type i to the trace, we insert a 
corresponding operation, readLOG(typei), in the replay program.     
The replay program is essentially the original C program with 
these calls inserted.  

The main program, however, looks quite different from the 
original main program. It starts by calling readLOG(type4), which 
looks through the recorded trace for the first anchor point and 
gives a pointer to the loop to be executed next. At the beginning 
of such an anchored loop, all variables needed to continue the 
execution are retrieved from the recorded trace. After this, the 
replay program simply executes the original C program statements 
until it meets the inserted readLOG library calls. For each log 
type, the read library call executes according to the following 
description. 

• readLOG(type1) – This is encountered either at the 
beginning of a program or right before a return. This routine 
looks ahead in the trace and checks to see whether the next log 
is for an interrupt handler’s entry. If so, it remembers the 
#gv_reference at which the interrupt handler is invoked. The 
readLOG routine returns, and the replay program, after 
resetting #gv_reference to zero, continues to execute until 
reaching the triggering #gv_reference, at which time it calls 
the interrupt handler. If the next log is not for an interrupt 
handler, then the readLOG(type1) routine simply returns, 
letting the replay program continues execution until seeing the 
next readLOG. 

• readLOG(type2) – see above. 
• readLOG(type3) – If the tasks are scheduled randomly, 

the replay program reads LOG type 3 in order to determine 
which task to execute. 

• readLOG(type4) – A flag indicates whether this is the 
first anchor point encountered. If so, according to the pre-
determined format, this readLOG routine reads in all variable 
values before starting to execute the first statement at the 
anchor point. If this is not the first anchor encountered by the 
replay program, all recorded variables at this point are skipped. 

• readLOG(type5) – The replay must be at the entry of an 
interrupt handler which takes external input. This readLOG 
routine reads in the saved global variables to allow the 
interrupt handler to be replayed. 
 
We have two alternatives for handling hardware-dependent 

code in interrupt routines, the write operations to hardware 
registers by the interrupt handlers, to be specific. Our first option 
is to remove all hardware dependent code for replay. The impact 
of interrupts will be on the values of certain global variables. 
(Similar handling is performed in certain TinyOS simulators 
[6][24].) This however misses the opportunity to trace the error 
source further when a message containing wrong contents is 
received and saved to a hardware register by a low-level interrupt 
handler. Only when the second interrupt handler, posted by the 
first one, copies the wrong contents from a hardware register to a 
global variable will the error be located by backward tracking 
from a violated invariant.  A remedy for this omission is to write a 
preprocessor customized for the hardware platform which 
converts references to hardware registers to global variables.  

Statements which do not affect the invariants are deleted from 
the replayed program. The sliced code execution techniques [10] 
are utilized in this part.  After these treatments, the resulting code 
for replay can be compiled and executed on an ordinary desktop 
machine. 

Note that the bookkeeping on #gv_reference to enable source-
level tracing and replay does not cost much more than the 



 

 

operations to save the loop counts in the assembly code in order 
for the replay program to be able to continue correct execution 
after an interrupt handler exits. Recording the return address in the 
trace alone is insufficient. As a matter of fact, if the function 
contains irreducible cycles in its control flow graph, it is not 
obvious how to count loop iterations so the replay can continue 
correctly after returning from an interrupt handler. 

 Before we prove the correctness of the scheme presented in 
this section, we remind the reader that, for each violated invariant, 
the error eventually must be traced back to a wrong value 
propagated through a use-def chain to the invariant. If not for the 
nondeterministic events at run time such as interrupts, it would be 
a trivial matter to show that the use-def chains observed during 
replay is identical to that exhibited by the mote program. Our 
proof thus focuses on the impact of the nondeterministic events.  

 
Theorem 3.1:  Suppose an incorrect program statement causes 

an invariant to be violated at run time. Under the record-replay 
scheme described above, the same incorrect program statement 
will cause the same invariant to be violated in the replayed 
program.  

Proof: The LOG type 3 ensures that the order in which tasks 
are scheduled from the task queue is exactly the same when 
executed by the replay program as by the mote program. We just 
need to prove that interrupts do not cause the programmer to 
observe incorrect use-def chains during replay.  

 
Fig 1. An illustration for Proof of Theorem 3.1 

 
 First, suppose the incorrect statement execution S and the 

invariant violation Inv are both outside any interrupt routine. As 
illustrated by Figure 1(a), the #gv_reference value at the time S 
must be the same in the mote program and the replay program. If 
no interrupts occur between these two at run time, then the replay 
program will find the last interrupt routine prior to Inv before it 
replays S.  
      Conversely, as illustrated by Figure 1(b), if an interrupt, irpt, 
occurs between S and Inv, then the programmer must pay 
attention to irpt only if it is part of the use-def chains between S 
and Inv. This, however, is possible only if irpt first reads a global 
variable, x, computed outside irpt such that x depends on S and 
then writes to a global variable y on which Inv depends. (Both 
dependences are by transitivity, and x may be the same variable as 
y.) Consider two possibilities: (i) #gv_reference recorded by irpt 
is greater than the value at the time of S. S will be replayed before 
irpt in this case. (ii) #gv_reference is reset to zero due to other 
functions called between S and irpt. The replay program will 
replay S before these called functions and therefore before irpt. 
Furthermore, the #gv_reference match ensures that the replay 
program invokes irpt between the correct pairs of consecutive 

references to any global variables. In both cases, the correct use-
def chains will be observed. 

Next, consider three other possibilities: a) S is outside any 
interrupt routine but Inv is inside an interrupt routine irpt. There 
must be a global variable, x, which, by transitivity, depends on S, 
is read inside irpt and eventually leads to the violation of Inv. b) S 
is within an interrupt routine irpt, and Inv is outside any interrupt 
routine. There must be a global variable, x, written between S and 
the end of irpt such that x depends on S, by transitivity, and x is 
read after the exit from irpt which eventually leads to the violation 
of Inv.  

For both a) and b), by reasoning about #gv_reference and LOG 
type 1, we can prove that the order between S, write to x, Inv will 
be preserved in replay regardless whether the write to x is inside 
any interrupt routine or not. The order will also be preserved no 
matter whether the write to x happens to yet another interrupt 
routine. Details are omitted. 

Finally, suppose S is in an interrupt routine irpt1 and Inv is in 
another interrupt routine irpt2. There must be a global variable, x, 
written in irpt1 and another, y, read in irpt2 such that the value of 
y depends on x by transitivity and x is depends on S by transitivity. 
(It is possible for x and y to be the same variable.) Again, by 
reasoning about #gv_reference and LOG type 1, it can be proven 
that the order between S, write to x, read of y, and Inv will be 
preserved during replay regardless whether other interrupt 
routines are invoked. Details are also omitted. □ 

4. Multi-level Tracing 
Theorem 3.1 uses Assumption 3 made in Section 2. If that 
assumption is not satisfied, then when an error is detected, we 
either cannot find an anchor point to replay the program or cannot 
find the error source during replay. This can happen if the storage 
for logging is small or the error happens a long time before it is 
detected (through the violation of a predicate). To enable replay 
under such a circumstance, we present multi-level tracing in this 
section. Rather than instrumenting the whole program, we divide 
the program functions into different levels based on how “far 
away” they are from the invariants being checked. Naturally, 
another benefit of multi-level tracing is the relaxed requirement 
on program memory size. Nonetheless, with multi-level tracing, 
we no longer have the guarantee that the error source will be 
found, but at least we have partial traces to narrow the search. 

Multi-level tracing follows an iterative procedure described 
below. 

4.1 An Iterative Tracing and Replay Procedure 

For the purpose of defining the levels of tracing, we build a graph 
based on the dependence information computed previously. For 
convenience of implementation, we wrap each invariant-checking 
operation in an invariant-checking function and insert a call to this 
function everywhere the invariant must be checked. 

 

Definition 4.1 Given a set of invariants, the invariant-based 
Program Function Dependence Graph (PFDG) for a program is a 
set of nodes, each representing a function whose execution 
directly or indirectly affects whether the invariants hold, and a set 
of edges of two kinds, namely the calling edges and the 
dependence edges. A calling edge <f1,f2,C> is drawn if f1 is 
directly called by f2. Dependence edges are drawn according the 
construction rule below. 

 
Construction Rule for Dependence Edges: 
. 



 

 

Suppose operation u in function f1 has direct control/data 
dependence on another operation d in function f2 and this 
dependence is a link in a dependence chain originating from an 
invariant. We draw a directed dependence edge from f1 to f2, 
denoted by (f1, f2, D) if one of the following is true: 

• Function f1 calls f2 (u takes place when f2 returns to f1) 
• Function f2 calls f1 (d takes place before f1 is called) 
• Functions f1 and f2 are both directly called by a third 

function g 
However, if none of the above is true, then f1’s dependence on 

f2 is passed along through a number of function calls and returns. 
For the purpose of our tracing algorithm, we draw a chain of 
dependences to make it clear how this dependence is propagated 
through a call chain. This is described below.  

If there is a call chain from g to f1 and another from g to f2 
such that no other node belongs to both call chains, we say g is an 
closest common ancestor of f1 and f2. We find all closest 
common ancestors of f1 and f2 in the call graph. 

Next, for each closest common ancestor of f1 and f2, say g, we 
find two of its callees, g1and g2, one in the path from g to f1 the 
other in the path from g to f2. We draw a chain of dependence 
edges connecting f1 all the way to g1 along the first call chain. 
Next we draw another chain of dependence from g2 to f2, 
opposite the direction of the other call chain. Finally, we connect 
these two chains of dependences by the edge (g1, g2, D)      □ 
     By following call edges and dependence edges, all 
dependences can be found in this graph by transitivity. Unless 
specified otherwise, functions mentioned in the rest of the paper 
refer to those in the invariant-based PFDG, and all variables 
mentioned will be those used in the invariants or those affecting 
the variables in the invariants. 

 
Example: 

 
f { 
    f1();// 
    inv(); //use x 
} 
 
f1{ 
  f2();//define x 
 

In the example above, inv() is assumed to be an invariant-
checking function. We have call edges (inv, f, C), (f2, f1, C) and 
dependence edges (f1, f2, D) and (inv, f1, D). 
     Figure 2 shows another piece of program and its invariant-
based PFDG. Here the function Inv_fun() is an invariant-checking 
function and function f3() and f4() both modify some variables 
used in the invariants.  

 

 
 

 
 

Fig 2. An example of invariant-based PFDG  
(Solid arcs represent call (C) edges and dotted arcs represent 

dependence (D) edges. In this example, an operation within 
Inv_fun() uses a value passed from the caller f4() and another 

value passed from the caller f3().) 
 

Definition 4.2 In an invariant-based PFDG, a sequence of 
connecting edges is called a canonical path if the sequence 
originates from an invariant-checking function inv and is 
composed by a prefix � � ����� �	� 
�� ��	� ��� 
��  ����	� ��� 
�, 
with calling edges only, and a postfix 
� � ���� �	� ��� ��	� ��� ���  ����	� ��� �� , with dependence 
edges only. The prefix or the postfix may be empty, but not both. 

 
Definition 4.3 In an invariant-based PFDG, a function f is said to 
be at the level n (� � ���if, among all canonical paths ending with 
f, the shortest path has the length n.  
 
The reason for us to require each canonical path to have clearly 
separated prefix and postfix is to have a clearly defined set of 
functions where we can record variable values for replaying. In 
order to make replay possible, in addition to the four types of logs 
discussed in the previous section, we need to record additional 
information for boundary functions defined below. 

 
Definition 4.4 In an invariant-based PFDG, a function f is said to 
be a boundary function for level-n tracing if there exist an n-long 
canonical path ending with f which consists of call edges only.  
 

In our iterative debugging procedure, what to be included in 
level-n tracing depends on the result of tracing and replay at the 
lower levels. Our iterative procedure can start with any level m, as 
long as all functions at levels m or lower are all included for 
instrumentation. Without loss of generality, we assume the 
procedure starts at level 1. The functions to be instrumented 
include all level-1 functions and all interrupt handlers which may 
modify any global variables used by any level-1 functions.  

Obviously, for level-1 tracing, all immediate callers of an 
invariant-checking function are boundary functions. At the entry 
of each boundary function we record the entire calling context at 
run time, i.e. all global variable values and the arguments passed 
to the function. For all non-boundary level-1 functions, i.e. those 
non-interrupt functions connected by D edges from an invariant-
checking function only, logs of types 1-3 are recorded but not the 
entire calling context. For all interrupt functions that receive 
external inputs, logs of type 5 are also recorded. 

If an instrumented function calls a higher-level function g 
(which is not instrumented), g’s return value (if any) and the 

1. f1 {
2.   f3();
3.   f4();
3.    Inv_fun();
4. }

1. f3 {
2.      Inv_fun();
3. }

1. f2 {
2.   f3();
3. }

1. f0 {
2.  if (expr1) {
3.       f1();
4.     }else{
5.       f2();
6.     }
7. }

 Inv_fun();

f1()

f2()

f3()f4()

f0()



 

 

global variables written by g when g returns are recorded. Nothing 
else in g is recorded no matter what non-instrumented routines are 
called within g. At replay, the program statements in g are not 
replayed, but its return value and modified global variables are 
used to continue the execution of g’s caller. This way, we limit the 
size of the instrumented code and the recorded trace. 

Note that, during replay, the level-1 functions may be executed 
multiple times while the program statements belonging to higher-
level functions are skipped in between. 

Since the invariant-checking functions are always replayed, 
violation of invariants will always be detected. The programmer, 
using debugging tools such as GNU’s gdb, can follow the 
program execution and produce a replayed execution trace. The 
statements along the trace leading to the error can be examined, 
which will have one of the two outcomes: the faulty statements 
(or the unexpected events) which cause the error are found, or 
such statements (or events) lie outside the level-1 trace. In the 
former case, debugging is done. In the latter case, the execution 
path extends beyond the level-1 trace. Mapping this non-ending 
path back to the invariant-based PDFG, we obtain a subset of 
canonical paths which are called error-hiding paths from level-1 
tracing. 

 Next, we inductively assume level-(n-1) tracing has not led to 
the discovery of the source of the error but has marked error-
hiding paths from all level-m tracing (m < n). We present the 
following algorithm for level-n tracing. 

 
Algorithm 4.1 Determine which functions should be 

instrumented for level-n tracing 
Steps: 

1. Let S be the set of functions to be instrumented. 
2. Add all functions in the error-hiding paths from level-m 

tracing (m < n) to S. 
3. Add every level-n function which is immediately 

reachable from any error-hiding path (i.e. can be connected by 
a single edge from a node in the path) to S.  

4. Add all invariant-checking functions and to S. 
□ 
Among all functions in S, we find the boundary functions for 

level-n tracing according to the invariant-based PDFG. We add 
recording operations in these functions to record the entire calling 
context. The rest of the instrumentation follows the same 
discussion in the case of level-1 tracing. 

In practice, one can be flexible when using our iterative tracing 
procedure. If the original program size is too large for even level-
1 tracing described above, one can a subset of level-1 functions as 
long as the side-effect of their callees are recorded to allow replay 
to continue. The invariant-checking functions must always be 
executed for tracing, so that the error can at least be detected. If 
the subset chosen for level-1 tracing does not lead to the discovery 
of the error source, another subset is chosen, and so on. On the 
other hand, if the size of the original program is small, one can 
start with level-m tracing, with m > 1. The relationship between 
the original code size, the available program memory and the 
choice of m is not explored further in this paper. 

4.2 Termination of the Iterative Tracing Procedure 

If the replay for the level-n tracing does not lead to the discovery 
of the error source and neither does it repeat any of the previous 
execution paths, then the execution paths used for the next level 
tracing will accumulate further. The tracing may also lead to the 
violation of another invariant, the level-1 tracing for the new 
violation will then be mixed with tracing for the previous 

violations. All these may theoretically cause the instrumented 
code size to exceed the available program memory. 

However, if we assume that the error-hiding path found in 
level-m tracing always repeats itself in level m+1 tracing, then, 
obviously, the iterative tracing and replay will eventually expose 
the error source by replay, as long as the instrumentation of all 
functions in the error-hiding paths always fit in the program 
memory. Note that the program memory required in this case will 
usually be significantly less than full instrumentation, because we 
instrument along a single path. Also note that, even though under 
nondeterministic external inputs the program may take different 
execution paths in each deployment or each tracing, the function 
call/dependencel paths leading to the violation of the invariant, 
i.e. the error-hiding path, may still be the same. Our assumption 
here, therefore, accommodates nondeterministic behavior to a 
certain degree, even though it is not ideal. 

4.3 Decision on Whether to Inline a Function 

To further reduce the code size after tracing instrumentation, we 
notice that we can reduce the number of logs of type 1 if we inline 
function calls. Of course, interrupt handlers cannot be inlined. On 
the other hand, if a function is called in more than one place in the 
program, then inlining may increase the program size due to 
duplication of the function body. Fortunately, the inlining 
decisions for different functions are independent and the cost 

model is simple. For each function, let originalS  be the code size 

before instrumentation and funcInstrS _  be the increased code size 

due to inserted operations to write LOG types 2, 3 and 4. (Type 5 
is recorded in interrupt handlers only, which are never in-lined.) 

Further, let callS  the increased code size due to inserted 

operations to write LOG type 1. For inlining to be beneficial for 
the function under consideration, we must have 
 

( originalS �+ funcInstrS _ ) n < callS                             ��� 
5. Implementation and Experiments 

5.1 Implementation 

We have implemented a preliminary version of the proposal 
tool targeting WSN applications based on TinyOS 2x executed on 
TelosB motes. A TelosB has 48KB program memory and 1MB 
external flash memory for data. The program analyses and 
transformations proposed in this paper are incorporated in an 
Open64 C compiler [13] which is a widely used compiler 
infrastructure that supports a rich set of code analysis and 
transformation features. 

Figure 3 shows the framework of our dependence-based multi-
level tracing and replaying tool. A TinyOS application written in 
the nesC language, with invariants specified for certain program 
scopes, is first preprocessed by a tool to automatically insert the 
invariant checking operations in the nesC program. The program 
is then compiled by a nesC [20] compiler (version 1.2.9) into a C 
program which is analyzed by a customized Open64 C compiler 
for dependence information before being transformed by the same 
compiler into two copies of programs. One is a C program 
instrumented with the LOG writing operations and the other is 
another C program for replay on desktop machines. The C 
program with LOG writing instrumentation is finally compiled by 
the native compiler to run on TelosB. 



 

 

 
                           Fig 3 Framework of dependence-based multi-level tracing and replay for WSN debugging 

 
 

Each invariant inserted in the WSN application specifies 
certain correctness property based on local information only. If a 
property concerns a global behavior, it is first decomposed into a 
set of “local” invariants before they are inserted in the nesC 
program. In this paper, we consider only those global properties 
that can be decomposed into a set of local ones. The issue of 
decomposing global properties into logical expressions over local 
properties has been discussed extensively in literature and will not 
be addressed in this paper. 

Currently, we use a trace buffer of the size of 2KB in the RAM 
for LOG recording which is transferred to the external flash 
memory when the buffer is full.  

5.2 Experiment 

For experiments, we have used the following three test cases. 
 
• TC1 (BlinkC) -- This is a published TinyOS 2x 

application. We modified it slightly by inserting a long 
runnng task which increases the latency of Timer.fire(). 
We insert an invariant which requires that the frequency 
of three LED’s blinking must follow a user specified 
pattern.  

• TC2 (TestSerialCO2) -- This application monitors indoor 
CO2 data in multiple locations inside a building, We 
insert an invariant requiring that, from each mote, the 
base station must receive a new piece of CO2 reading 
every 10 seconds or less. 

• TC3 (EasyCollectionC) -- This is a published code which 
implements the Collection Tree Protocol. We insert 
invariants require that the data must be sent in sequence.  

 
To show the potential for dependence-based tracing, Table 1 

compares the number of the functions traced using the 
dependence information with those without such information. The 
data indicate that, with a single invariant consisting of fewer than 
3 variables, from 40% to 85% functions (not including interrupts 
handlers) can be skipped for tracing. However, the number of 
functions to be traced remains to be large for the test cases TC2 
and TC3.  

Figure 4 shows how many functions can be inlined to reduce 
the size of instrumented code for each test case. Based on the 

result, over 70% of the functions are called only once and, based 
on the simple cost model, can be inlined. Table 2 lists the code 
size under different instrumentation schemes in comparison with 
the original code size, ���������� . For the baseline code size, 
Sbaseline, we include the inserted operations to record all types of 
log information without taking advantage of dependence 
information. The data show that the baseline size is too large for 
the program memory on TelosB motes. The column Sno-inlining 
shows the remaining code size if we do not trace functions which 
have no effect on the invariants. It is much smaller than the 
baseline size, but still large. Take TC2 for example, the size of its 
Sno-inlining is 46694, which is very close to the Telosb memory 
boundary size 48K. The column Sinline shows the code size after 
selective inlining. After inlining, the code size is decreased 
further. Of course, if many invariants are checked in the same 
program or some invariants involve many variables, then the use-
def chains may cover more functions and the instrumented 
program size may increase. In the worst case, the code size may 
be too large to fit in the program memory, in which case multi-
level tracing will be needed. 
 
Table 1 Functions Instrumented Using Dependence 
Information as a Fraction of the Total Functions 
Test case  # of traced functions # of total functions % 

TC1 46 299 15.38 

TC2 605 1499 40.36 

TC3 604 1385 43.61 

 
 

Table 2 Code Size (bytes) 

 ��������� Sbaseline Sno-inlining Sinline 

TC1 2650 ������ �����
 

�����
 

TC2 26102 �����
 

�����
 	�	�� 

TC3 18670 �����
 	�	�� 	����

 

 



 

 

 
Figure 4 Inlined functions as a fraction of the total 

 

 
Fig 5 Comparing average execution time between two message 

send operations with and without Instrumentation for TC3  

 
Fig 6 Comparing average trace size between two message send 

operations with different levels of instrumentation for TC3 

 

 
Fig 7 The execution time between two message send operations 

when errors occur in TC3 

 

For each call to a task function which does not contain an 
anchor point, the storage used for log trace is 4 bytes (2 bytes for 
function entry and 2 bytes for function return). At each anchor, 
each saved variable requires a record of 5 bytes, including 2 bytes 
for the variable name, 1 byte for the variable type, and 2 bytes for 
the variable value. To save a nondeterministic input or the current 
#gv_reference value, each variable also takes 5 bytes. The extra 
time spent to record the log for a task function call is under a 
microsecond on the TelosB, if the function contains no anchor 
point. An anchor point typically consumes 13.3 microseconds to 
record the variables in the case of TC3. 

 
We used TC3 for the multi-level tracing and replay 

experiments. In this program, we send a piece of data (called a 
message) from the mote every 50ms. When a TinyOS program 
sends a message, it first checks to see whether the send-busy flag 
is raised (which indicates that the send buffer being full). If not, it 
is unsafe for the program to start sending a message. If the 
frequency of messages is low, failure to check the send-busy flag 
may not cause lost messages because the buffer is more likely to 
be free anyway. However, at a higher frequency, e.g. when the 
motes communicate frequently to form a cluster or to execute a 
security protocol, the chance for the buffer to become full 
increases, so do lost messages. We injected a programming error 
which lets the sender send the message without checking the send-
busy flag first. We then load various versions of the instrumented 
code on the motes to execute, as separate experiments.  

The run-time overhead due to instrumentation increases with 
the number of instrumented functions. For TC3, we measure the 
time interval between two Send.sendDone events. At each event a 
message in the send queue is sent. Fig 5 compares the average 
time interval for no instrumentation (No_Instr), level-1 
instrumentation (Instru_L1), level-2 instrumentation (Instru_L2), 
and level-3 instrumentation (Instru_L3).  Fig 6 shows the recorded 
trace size for each kind of instrumentation. From these figures, we 
observe that, until errors occur, the instrumented code does not 
incur much overhead in time and space.  

Once an error occur but is not yet detected, the execution time 
is increased. Fig 7 collects the data from different time intervals 
leading to detected invariant violation. The code is traced at level 
3. The time interval is lengthened due to the following reason. 
When the send-busy flag is raised, the sender is not supposed to 
send a message. With the injected error, the sender initiates a 
message send operation nonetheless. It then finds itself unable to 
post the sending task because the buffer is full. Eventually a 
queued message leaves the buffer, which triggers a 
Send.sendDone() event. As a result, the time interval between two 
Send.sendDone() is increased even without the instrumentation. 

6. Related Work 
Methods for error diagnosis and debugging for wireless sensor 

networks can be loosely classified into three categories, 
simulation/emulation, interactive debugging, and run-time 
logging. 

A number of previous efforts [4][6][9][37] based on 
simulation or emulation support  features ranging from parallel 
debugging to GUI-based debugging for programmers to simulate 
program execution on large-scales networks. Due to limited 
testing scope and rather significant difference between the 
simulation environment and the real operation environment, 
however, many unanticipated errors can still occur in systems 
deployed after simulation/emulation.  
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Interactive debugging [7][14] allows programmers to interact 
with sensor nodes by sending commands. The set of commands 
usually include those which set break points, watch points, and 
initiate step-by-step tracing.  This methodology works particularly 
well if the programmer already knows what kind of errors will 
happen and where are the places to look. Otherwise, the step-by-
step execution can be quite slow and tedious, with no guarantee 
that the anticipated error will surface in the debugging mode. In 
other circumstances, especially when the number of motes to be 
debugged simultaneously is large, it seems much more convenient 
to have execution traces ready when an error is detected. 

Run-time logging has gained increased importance recently. 
The critical questions encountered when adopting this approach 
include what kind of errors should be monitored, where and how 
to log information for later debugging, and how to analyze the 
logged information to find out the error cause. Among recent 
efforts, Sympathy [1] focuses on data-collection applications. The 
matrics generated by each node are sent to a data sink, and a 
decision tree is applied to the collected data to find the failures. 
Dustminer [2] is a tool for uncovering bugs in networked sensing 
applications due to nondeterministic and incorrect interactions 
between different nodes. This tool collects a sequence of events 
and uses data mining techniques to recognize abnormal behaviors. 
PAD [3] is a light-weight packet marking scheme for collecting 
necessary hints, and it uses a probabilistic inference model 
residing at the sink to capture unique features of the sensor 
networks. Passive Distributed Assertions [11] allows the 
programmer to define certain properties of a distributed system. 
The state information of each affected node is collected and 
analyzed through a separately-deployed sniffer network. PD2 [8] 
focuses on the data flows generated by an application. It relates 
poor application performance to significant data losses or 
latencies of certain data flows (called problematic data flows) as 
they go through the software modules on individual nodes and 
through the network.  
         Replay has long been widely used for bug reproduction. As 
mentioned in the introduction, this approach has mainly been used 
on resource-rich distributed and parallel systems. We briefly 
describe software-only deterministic replay techniques, given that 
our work is software-only. A typical and popular idea is to record 
all possible factors (referred to as non-determinism) that affect the 
program’s execution before re-executing the program. The idea is 
straightforward, but potential overhead is large.  

       A significant number of prior efforts have focused on how to 
reduce the overhead in terms of space and execution time [32-34]. 
As an example, iDNA [35] developed by Microsoft logs memory 
instruction input values and maintains a copy of user-level 
memory, which is used to identify system-call side-effects. This 
tool is OS-independent, and it handles side-effects such as DMA 
transfers and direct-mapped I/O. Its log file is large. PinPlay [36] 
developed by Intel is a framework for deterministic capture and 
reproducible analysis of parallel programs. PinPlay is based on the 
Pin dynamic instrumentation. It has been used to identify the 
sources of nondeterminism in serial and parallel programs, and it 
employs several ways to control the non-determinism. It can also 
be integrated with other Pintools, many of which are used for 
selecting reproducible simulation points and for simulation and 
tracing on large parallel programs running on multiprocessors. 
Another use of these Pintools is to support repeatable debugging. 
PinPlay is OS-independent and quite high overhead.  

       PRES [30] is an attempt to significantly lower the production-
run recording overhead by recording only partial replay 
information. Based on the recorded sketching, the tool navigates a 
non-deterministic execution space several times, trying to 
reproduce the errors. After several replay attempts, PRES can then 
reproduce the error with 100% probability on every subsequent 
replay for diagnostic purpose. ODR [31] addresses the output-
failure replay problem by using output-determinism rather than 
value-determinism. That is, it generates a run that exhibits the 
same outputs as the original rather than an identical replica in 
order to achieve low-overhead recording of multiprocessor runs. 

       However, the replay approaches mentioned above cannot be 
used practically on WSNs due to resource limitation and the 
presence of interrupts, which motivates the work presented this 
paper. 

7. Conclusion and Future Work 
In this paper, we have presented a multi-level tracing method 
based on dependence information. Our experiments show that the 
approach has made it possible to instrument several test programs 
on WSN under the stringent program memory constraint and find 
injected errors. 

 Although our current experiments are performed on TinyOS-
based applications, the proposed methodology and tool can be 
applied to all embedded systems which satisfy the assumptions 
made in the introduction. It can also be extended to a broader 
range  of embedded systems.  

Several improvements are considered for future work. We 
plan to cover a larger set of realistic errors. More experiments are 
needed to apply the tool to additional WSN applications and other 
types of distributed embedded systems. 
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