

Dependence-based Multi-level Tracing and Replay for
Wireless Sensor Networks Debugging

Abstract
Due to resource constraints and unreliable communication,
wireless sensor network (WSN) programming and debugging
remain to be challenging tasks. Deterministic replay is an error
diagnosis method which has long been proposed for distributed
systems. However, one of the significant hurdles for applying
deterministic replay on WSN is posed by the small program
memory on typical sensor nodes. This paper proposes a
dependence-based multi-level method for memory-efficient
tracing and replay. In the interest of portability across different
hardware platforms, the method is implemented as a source-level
tracing and replaying tool. To further reduce the code size after
tracing instrumentation, a cost model is used for making the
decision on which functions to in-line. A prototype for the tool
targets C programs is developed on top of the Open64 compiler
and is tested using several TinyOS applications running on
TelosB motes. Preliminary experimental results show that the test
programs, which do not fit the program memory after
straightforward instrumentation, can be successfully instrumented
using the new method such that the injected errors can be found.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids

General Terms Algorithms, Reliability.

Keywords Wireless sensor network; program debugging;
invariants; dependence analysis; resource constrains.

1. Introduction
Wireless sensor networks (WSN) are gaining increased attention
for possible use in applications such as structural health
monitoring, environmental surveillance, scientific observation,
and others [27][28]. A wireless sensor network typically consists
of a large number of unattended wireless sensor nodes. Despite
the increasing efforts [6][20] made to ease the development and
simulation of WSN applications, sensor network programming
and debugging is still a difficult task in view of resource
constraints and unreliable communications of wireless sensor
nodes.

Deterministic replay (or record-replay) is an error diagnosis
method which has long been proposed for distributed systems.
Under this method, nondeterministic events are recorded
throughout the system operation. When an error is reported, the
program can be re-run, with the recorded events restaged to allow
the programmer to inspect the executed statements and the state
change they cause such that the source of the error, namely the
incorrectly written statements or unexpected events causing the
error, can be located. The replay method significantly reduces the
amount of information to record at run time. Unfortunately, the
relatively small program memory poses another significant hurdle
to the adoption of record-replay on sensor nodes. The popular
TelosB mote has only 48KB flash memory to store the program.
This limits the extent to which one can add program statements to
perform tracing. Lacking sufficient memory, most existing

schemes for run-time WSN logging record only coarse
information which is far from sufficient for deterministic replay.
As a result, it remains difficult to pin-point the source of the errors
which are detected at run time.

The aim of this paper is to develop a dependence-based multi-
level tracing and replay scheme to overcome the constraint posed
by the limited memory on WSN motes.

Based on our scheme, we develop a source level tracing and
replaying tool which is independent of the hardware platforms and
the native compiler. The source-level tracing, compared to
assembly-level tracing, offers high portability of the tool. It also
enables the user to take advantage of many existing source-level
debuggers, such as GNU’s gdb, when replaying on a desktop
machine.

We have implemented our tool based on the Open64 C
compiler [13]. Given the error conditions to be detected at
runtime, we use the compiler to compute the program slice [19],
using the error conditions as the slicing criteria. We then partition
the program slice into multiple levels such that initially lower-
level tracing is performed, targeting only the functions close to
where error conditions are checked. The tracing level increases as
farther away functions must be traced in order to find the error
source. Tracing operations are inserted in the given C program
before the native compiler converts it to the machine code. In
addition, our tool generates another C program for later replaying
on a desktop machine.

We use TinyOS [12], which is written in nesC [20], as our
current testing environment for the developed tool. TinyOS is one
of the most popular operating systems for sensor network
applications. It has been used by more than 100 research groups
worldwide. Typically, a TinyOS application consists of a
scheduler and a group of wired components. The nesC compiler
first converts the application into a C program which is then
compiled by the native compiler into machine code executable on
the specific hardware. We use the same native compiler to
compile the C program instrumented by our Open64-based tool
before loading it on the sensor mote for normal execution with
tracing. When an error is detected, we retrieve the trace and feed it
to our replaying C program which is executed on a desktop
machine where many well developed debugging tools, e.g. the
GNU gdb, can be used to isolate the source of the error. To replay
the interaction between different motes, we simply start multiple
processes, one for each mote, feeding each with its own retrieved
logging information. How to retrieve the logged information from
a node is out of scope of this paper. We can use one of various
existing methods [37] such as using a different radio on the same
node, storing logged information on a nearby node, etc.

The rest of the paper is organized as follows. Section 2 defines
the problem addressed by this paper and gives an overview of our
solution. Section 3 discusses how to reduce instrumentation based
on dependence information and proves its effectiveness under a
number of assumptions. Section 4 discusses multi-level tracing in
case such assumptions are not satisfied. Implementation and
experimental results are presented in Section 5. After
summarizing related works on WSN debugging and deterministic
replay we conclude in Section 6.

2. An Overview
For a given program, we specify a set of correctness properties
using predicates defined over a list of program variables under a
certain system of logic, e.g. temporal logic [21][22]. (The exact
system of logic used is not of particular concern for this paper.)
The program is required to satisfy this set of predicates within a
specified program scope, e.g. the entire program (as long as all
variables in the predicate are global), individual functions,
individual program segments, or any point between two specific
program statements.

In general, a distributed system reacts to events whose timing
is difficult to predict or specify at the time of program
development. Also, the developers may not have verified the
correctness of the program thoroughly under deployment
conditions, which can be significantly different from the test
conditions in the lab. Errors, therefore, often exist in WSN
programs after deployment. However, by inserting assertions to
the program, violations of certain predicates, i.e. errors, can be
detected at run time. In order to fully check whether a predicate is
satisfied, it must be reevaluated every time one of its variables
gets updated.

Assuming that the predicates themselves are composed
correctly, when a predicate gets violated, we know at least one of
its variables has obtained an incorrect value through some point in
the program where the variable was updated. That value may be
the result of earlier operations using incorrect operands, and so on.
Eventually the error must be traced back to its source through a
chain of data dependences and control dependences. For the
purpose of this paper, we consider two possibilities: (a) one or
more program statements are written incorrectly, and (b) certain
unexpected events occur, e.g. messages are received with
incorrect contents. The type (a) errors include the erroneous
removal of program statements which were supposed to provide
the correct values, causing a later operation to use values written
by wrong statements.

If the entire sequence of executed instructions and operands
were recorded, then one could follow the dynamic use-def chain
backward and inspect the program statements along the way until
the origin of the error is found. The cost of such extensive
recording is prohibitive in both time and space. Under the record-
and-replay scheme, however, we only need to record all
nondeterministic events on each mote, which includes all external
messages, task scheduling decisions, and internal interrupts. On
current WSNs, all these can be captured by inserting logging
operations in interrupt handlers written in high-level languages
such as C. This observation of ours is a key to enabling tracing for
debugging in the resource-constrained WSNs.

Since the program on each node in a distributed system such as
a WSN may run indefinitely, the length of the trace is unbounded.
With limited storage for the trace, in general one retrieves only a
tail of the full trace. Replay is therefore often partial in practice. In
order to enable deterministic replay corresponding to the retrieved
trace tail, we require the program being considered to satisfy the
following assumptions:

• Assumption 1: The program contains no recursive calls.
• Assumption 2: The infinite running of the program is

controlled by one or more infinite loops which can be
recognized at compile time.

Under these two fundamental assumptions, we insert in each
infinite loop an anchor checkpoint at which we record the values
of all variables needed to enable replaying the program starting
from this program point. In order for the replay tool to capture the
source of the error, the following assumption must also be
satisfied:

• Assumptions 3: The trace storage is sufficiently large

such that, when an error is detected, the stored trace will contain
at least one anchor point prior to the source of the error.

If the above assumption is unsatisfied, then either the trace

cannot be replayed (because of the lack of any anchor point) or
the replay will not lead to the source of the error (because the
error source falls off the trace). In such an unfortunate case, we
will resort to multi-level tracing which instruments a subset of the
functions but yet permit the trace to be replayed. One of the main
goals of this paper is to reduce the storage overhead for tracing,
thus increasing the chance of capturing the source of the error in
the stored trace. This is in addition to the objectives to minimize
the instrumented code size and the increased processing time.

The information logged must include the execution context for
each invocation of an interrupt handler so that the replay program
can restage the invocation of the interrupt handler accurately. The
type of information to be recorded at run time will be discussed in
the next section. Since interrupt handlers will be treated
differently from the other functions, we identify interrupt handlers
by annotations before applying our instrumentation tool.
Furthermore, those interrupt routines which take external inputs
such as radio communication messages are explicitly marked. The
external inputs can then be recorded at run time, allowing the
interrupt routine to be replayed.

 Although our experiments are performed on TinyOS-based
WSN applications, the proposed methodology and the developed
tools can be applied to other distributed embedded platforms as
long as the program is single threaded and the assumptions made
above are satisfied. Our current toolset also relies on an
intermediate C code generated from the original program.
 In the next section, we first discuss how to use dependence
information to exclude functions irrelevant to the invariants from
the run-time logging so as to reduce the size of the instrumented
program. This is followed by a presentation of the instrumentation
algorithm with relevant guarantees.

3. Using Dependence Information to Reduce
Runtime Logging
The benefit of reducing runtime logging is two-fold. Firstly, a
longer execution history can be replayed with the same amount of
data storage for the trace. The time to execute the annotated
program that is being traced is reduced. Finally, the number of
instrumented operations to perform tracing is reduced, which
leads to a smaller code size.

If a function never has any effect on the kind of errors we
monitor, i.e. on any of the variables appearing in the predicates
(also called the invariants) which specify the correctness
properties, then such a function does not need to be traced at
runtime. To exclude such functions from tracing, we first compute
the backward slice [19] using the given set of invariants as the
slicing criteria. The result of this computation is a set of
control/data dependence chains which include all operations (such
as assignments, branching decisions and function calls) having an
effect on the set of invariants. Each function which contains any
of these operations will be instrumented to obtain the runtime

execution log. Obviously, the main function of the program is
always instrumented.

This set of functions, however, does not yet include those
interrupt handlers which may have an effect on the invariants. In
microcontroller execution, interrupts are the basic source of non-
determinism. For example, a TinyOS application is interrupt
driven. It runs in two contexts, the task context and the async
context. The transition from the task context to the async context
can happen only as the result of an interrupt causing control to
transfer to an interrupt handler, interrupting any currently running
task. Conversely, the transition from async context to task context
occurs when the interrupt handlers completes, at which time
TinyOS takes one of the following actions: (i) process the next
pending interrupt if any, (ii) continues the execution of the task
that was interrupted, (iii) start the next task in the queue, and (iv)
go idle.

Since it is infeasible to predict when a particular interrupt may
happen, we instrument all those interrupt handlers whose
execution may modify global variables on which the invariants
depend.

3.1 What to log

After we determine the set of functions to instrument, we insert
operations into the source code of these functions to record the
following pieces of information. We shall prove in this section
that this set of information is sufficient for accurate replay. (The
necessity of the information is self evident.)

LOG type 1 (Function entry/return) -- A function always has a
single entry but may have multiple returns. We use N_RETi,
where i is an integer, to indicate which return statement is
executed. If this is a function entry, it marks whether it is an
interrupt handler and, if so, the name of the function.

LOG type 2 (Global variable update count) – In order to
prepare for replaying interrupt routines, when an interrupt routine
is invoked at run time, a global-variable reference counter,
denoted by #gv_reference, is written to the log, after which the
count is reset to zero. Immediately after the exit of the interrupt
routine, #gv_reference is reset to zero again. For any other
functions, #gv_reference is reset to zero both at the entry and at
the exit. Every reference (read or write) to a global variable is
followed by an increment of #gv_reference. This count will be
used during the replay to help determine where in the program to
replay specific interrupt routines.

LOG type 3 (Task scheduling) – If task scheduling order is
random, then we need to record the task that is scheduled to next.
However, TinyOS uses a FIFO task queue. Hence, as long as the
invocations of the interrupt routines are replayed accurately, this
type of information does not need to be recorded.

LOG type 4 (Anchor points) – As discussed previously, at
each anchor point, we record all variable values which are needed
in order for the program to replay from here.

LOG type 5 (non-deterministic inputs) – It is necessary to
record non-deterministic input for future replay. In TinyOS, the
messages received from radio communication and the sensor data
arriving from the bus belong to this type. Note that the interrupt
handlers export such input by writing it to a global variable. Since
the interrupt handlers which take external input are explicitly
marked, we add operations in such handlers to save their global
variables to the trace.

 3.2 How to replay

Our replay program is written automatically by the compiler at the
source code level. At the same time as the code is instrumented
for tracing, the compiler stages record-handling in the replay

program. For each operation inserted to the instrumented mote
program to write LOG type i to the trace, we insert a
corresponding operation, readLOG(typei), in the replay program.
The replay program is essentially the original C program with
these calls inserted.

The main program, however, looks quite different from the
original main program. It starts by calling readLOG(type4), which
looks through the recorded trace for the first anchor point and
gives a pointer to the loop to be executed next. At the beginning
of such an anchored loop, all variables needed to continue the
execution are retrieved from the recorded trace. After this, the
replay program simply executes the original C program statements
until it meets the inserted readLOG library calls. For each log
type, the read library call executes according to the following
description.

• readLOG(type1) – This is encountered either at the
beginning of a program or right before a return. This routine
looks ahead in the trace and checks to see whether the next log
is for an interrupt handler’s entry. If so, it remembers the
#gv_reference at which the interrupt handler is invoked. The
readLOG routine returns, and the replay program, after
resetting #gv_reference to zero, continues to execute until
reaching the triggering #gv_reference, at which time it calls
the interrupt handler. If the next log is not for an interrupt
handler, then the readLOG(type1) routine simply returns,
letting the replay program continues execution until seeing the
next readLOG.

• readLOG(type2) – see above.
• readLOG(type3) – If the tasks are scheduled randomly,

the replay program reads LOG type 3 in order to determine
which task to execute.

• readLOG(type4) – A flag indicates whether this is the
first anchor point encountered. If so, according to the pre-
determined format, this readLOG routine reads in all variable
values before starting to execute the first statement at the
anchor point. If this is not the first anchor encountered by the
replay program, all recorded variables at this point are skipped.

• readLOG(type5) – The replay must be at the entry of an
interrupt handler which takes external input. This readLOG
routine reads in the saved global variables to allow the
interrupt handler to be replayed.

We have two alternatives for handling hardware-dependent

code in interrupt routines, the write operations to hardware
registers by the interrupt handlers, to be specific. Our first option
is to remove all hardware dependent code for replay. The impact
of interrupts will be on the values of certain global variables.
(Similar handling is performed in certain TinyOS simulators
[6][24].) This however misses the opportunity to trace the error
source further when a message containing wrong contents is
received and saved to a hardware register by a low-level interrupt
handler. Only when the second interrupt handler, posted by the
first one, copies the wrong contents from a hardware register to a
global variable will the error be located by backward tracking
from a violated invariant. A remedy for this omission is to write a
preprocessor customized for the hardware platform which
converts references to hardware registers to global variables.

Statements which do not affect the invariants are deleted from
the replayed program. The sliced code execution techniques [10]
are utilized in this part. After these treatments, the resulting code
for replay can be compiled and executed on an ordinary desktop
machine.

Note that the bookkeeping on #gv_reference to enable source-
level tracing and replay does not cost much more than the

operations to save the loop counts in the assembly code in order
for the replay program to be able to continue correct execution
after an interrupt handler exits. Recording the return address in the
trace alone is insufficient. As a matter of fact, if the function
contains irreducible cycles in its control flow graph, it is not
obvious how to count loop iterations so the replay can continue
correctly after returning from an interrupt handler.

 Before we prove the correctness of the scheme presented in
this section, we remind the reader that, for each violated invariant,
the error eventually must be traced back to a wrong value
propagated through a use-def chain to the invariant. If not for the
nondeterministic events at run time such as interrupts, it would be
a trivial matter to show that the use-def chains observed during
replay is identical to that exhibited by the mote program. Our
proof thus focuses on the impact of the nondeterministic events.

Theorem 3.1: Suppose an incorrect program statement causes

an invariant to be violated at run time. Under the record-replay
scheme described above, the same incorrect program statement
will cause the same invariant to be violated in the replayed
program.

Proof: The LOG type 3 ensures that the order in which tasks
are scheduled from the task queue is exactly the same when
executed by the replay program as by the mote program. We just
need to prove that interrupts do not cause the programmer to
observe incorrect use-def chains during replay.

Fig 1. An illustration for Proof of Theorem 3.1

 First, suppose the incorrect statement execution S and the

invariant violation Inv are both outside any interrupt routine. As
illustrated by Figure 1(a), the #gv_reference value at the time S
must be the same in the mote program and the replay program. If
no interrupts occur between these two at run time, then the replay
program will find the last interrupt routine prior to Inv before it
replays S.
 Conversely, as illustrated by Figure 1(b), if an interrupt, irpt,
occurs between S and Inv, then the programmer must pay
attention to irpt only if it is part of the use-def chains between S
and Inv. This, however, is possible only if irpt first reads a global
variable, x, computed outside irpt such that x depends on S and
then writes to a global variable y on which Inv depends. (Both
dependences are by transitivity, and x may be the same variable as
y.) Consider two possibilities: (i) #gv_reference recorded by irpt
is greater than the value at the time of S. S will be replayed before
irpt in this case. (ii) #gv_reference is reset to zero due to other
functions called between S and irpt. The replay program will
replay S before these called functions and therefore before irpt.
Furthermore, the #gv_reference match ensures that the replay
program invokes irpt between the correct pairs of consecutive

references to any global variables. In both cases, the correct use-
def chains will be observed.

Next, consider three other possibilities: a) S is outside any
interrupt routine but Inv is inside an interrupt routine irpt. There
must be a global variable, x, which, by transitivity, depends on S,
is read inside irpt and eventually leads to the violation of Inv. b) S
is within an interrupt routine irpt, and Inv is outside any interrupt
routine. There must be a global variable, x, written between S and
the end of irpt such that x depends on S, by transitivity, and x is
read after the exit from irpt which eventually leads to the violation
of Inv.

For both a) and b), by reasoning about #gv_reference and LOG
type 1, we can prove that the order between S, write to x, Inv will
be preserved in replay regardless whether the write to x is inside
any interrupt routine or not. The order will also be preserved no
matter whether the write to x happens to yet another interrupt
routine. Details are omitted.

Finally, suppose S is in an interrupt routine irpt1 and Inv is in
another interrupt routine irpt2. There must be a global variable, x,
written in irpt1 and another, y, read in irpt2 such that the value of
y depends on x by transitivity and x is depends on S by transitivity.
(It is possible for x and y to be the same variable.) Again, by
reasoning about #gv_reference and LOG type 1, it can be proven
that the order between S, write to x, read of y, and Inv will be
preserved during replay regardless whether other interrupt
routines are invoked. Details are also omitted. □

4. Multi-level Tracing
Theorem 3.1 uses Assumption 3 made in Section 2. If that
assumption is not satisfied, then when an error is detected, we
either cannot find an anchor point to replay the program or cannot
find the error source during replay. This can happen if the storage
for logging is small or the error happens a long time before it is
detected (through the violation of a predicate). To enable replay
under such a circumstance, we present multi-level tracing in this
section. Rather than instrumenting the whole program, we divide
the program functions into different levels based on how “far
away” they are from the invariants being checked. Naturally,
another benefit of multi-level tracing is the relaxed requirement
on program memory size. Nonetheless, with multi-level tracing,
we no longer have the guarantee that the error source will be
found, but at least we have partial traces to narrow the search.

Multi-level tracing follows an iterative procedure described
below.

4.1 An Iterative Tracing and Replay Procedure

For the purpose of defining the levels of tracing, we build a graph
based on the dependence information computed previously. For
convenience of implementation, we wrap each invariant-checking
operation in an invariant-checking function and insert a call to this
function everywhere the invariant must be checked.

Definition 4.1 Given a set of invariants, the invariant-based
Program Function Dependence Graph (PFDG) for a program is a
set of nodes, each representing a function whose execution
directly or indirectly affects whether the invariants hold, and a set
of edges of two kinds, namely the calling edges and the
dependence edges. A calling edge <f1,f2,C> is drawn if f1 is
directly called by f2. Dependence edges are drawn according the
construction rule below.

Construction Rule for Dependence Edges:
.

Suppose operation u in function f1 has direct control/data
dependence on another operation d in function f2 and this
dependence is a link in a dependence chain originating from an
invariant. We draw a directed dependence edge from f1 to f2,
denoted by (f1, f2, D) if one of the following is true:

• Function f1 calls f2 (u takes place when f2 returns to f1)
• Function f2 calls f1 (d takes place before f1 is called)
• Functions f1 and f2 are both directly called by a third

function g
However, if none of the above is true, then f1’s dependence on

f2 is passed along through a number of function calls and returns.
For the purpose of our tracing algorithm, we draw a chain of
dependences to make it clear how this dependence is propagated
through a call chain. This is described below.

If there is a call chain from g to f1 and another from g to f2
such that no other node belongs to both call chains, we say g is an
closest common ancestor of f1 and f2. We find all closest
common ancestors of f1 and f2 in the call graph.

Next, for each closest common ancestor of f1 and f2, say g, we
find two of its callees, g1and g2, one in the path from g to f1 the
other in the path from g to f2. We draw a chain of dependence
edges connecting f1 all the way to g1 along the first call chain.
Next we draw another chain of dependence from g2 to f2,
opposite the direction of the other call chain. Finally, we connect
these two chains of dependences by the edge (g1, g2, D) □
 By following call edges and dependence edges, all
dependences can be found in this graph by transitivity. Unless
specified otherwise, functions mentioned in the rest of the paper
refer to those in the invariant-based PFDG, and all variables
mentioned will be those used in the invariants or those affecting
the variables in the invariants.

Example:

f {
 f1();//
 inv(); //use x
}

f1{
 f2();//define x

In the example above, inv() is assumed to be an invariant-
checking function. We have call edges (inv, f, C), (f2, f1, C) and
dependence edges (f1, f2, D) and (inv, f1, D).
 Figure 2 shows another piece of program and its invariant-
based PFDG. Here the function Inv_fun() is an invariant-checking
function and function f3() and f4() both modify some variables
used in the invariants.

Fig 2. An example of invariant-based PFDG
(Solid arcs represent call (C) edges and dotted arcs represent

dependence (D) edges. In this example, an operation within
Inv_fun() uses a value passed from the caller f4() and another

value passed from the caller f3().)

Definition 4.2 In an invariant-based PFDG, a sequence of
connecting edges is called a canonical path if the sequence
originates from an invariant-checking function inv and is
composed by a prefix � � ����� �	�
�� ��	� ���
�� ����	� ���
�,
with calling edges only, and a postfix
� � ���� �	� ��� ��	� ��� ��� ����	� ��� �� , with dependence
edges only. The prefix or the postfix may be empty, but not both.

Definition 4.3 In an invariant-based PFDG, a function f is said to
be at the level n (� � ���if, among all canonical paths ending with
f, the shortest path has the length n.

The reason for us to require each canonical path to have clearly
separated prefix and postfix is to have a clearly defined set of
functions where we can record variable values for replaying. In
order to make replay possible, in addition to the four types of logs
discussed in the previous section, we need to record additional
information for boundary functions defined below.

Definition 4.4 In an invariant-based PFDG, a function f is said to
be a boundary function for level-n tracing if there exist an n-long
canonical path ending with f which consists of call edges only.

In our iterative debugging procedure, what to be included in
level-n tracing depends on the result of tracing and replay at the
lower levels. Our iterative procedure can start with any level m, as
long as all functions at levels m or lower are all included for
instrumentation. Without loss of generality, we assume the
procedure starts at level 1. The functions to be instrumented
include all level-1 functions and all interrupt handlers which may
modify any global variables used by any level-1 functions.

Obviously, for level-1 tracing, all immediate callers of an
invariant-checking function are boundary functions. At the entry
of each boundary function we record the entire calling context at
run time, i.e. all global variable values and the arguments passed
to the function. For all non-boundary level-1 functions, i.e. those
non-interrupt functions connected by D edges from an invariant-
checking function only, logs of types 1-3 are recorded but not the
entire calling context. For all interrupt functions that receive
external inputs, logs of type 5 are also recorded.

If an instrumented function calls a higher-level function g
(which is not instrumented), g’s return value (if any) and the

1. f1 {
2. f3();
3. f4();
3. Inv_fun();
4. }

1. f3 {
2. Inv_fun();
3. }

1. f2 {
2. f3();
3. }

1. f0 {
2. if (expr1) {
3. f1();
4. }else{
5. f2();
6. }
7. }

 Inv_fun();

f1()

f2()

f3()f4()

f0()

global variables written by g when g returns are recorded. Nothing
else in g is recorded no matter what non-instrumented routines are
called within g. At replay, the program statements in g are not
replayed, but its return value and modified global variables are
used to continue the execution of g’s caller. This way, we limit the
size of the instrumented code and the recorded trace.

Note that, during replay, the level-1 functions may be executed
multiple times while the program statements belonging to higher-
level functions are skipped in between.

Since the invariant-checking functions are always replayed,
violation of invariants will always be detected. The programmer,
using debugging tools such as GNU’s gdb, can follow the
program execution and produce a replayed execution trace. The
statements along the trace leading to the error can be examined,
which will have one of the two outcomes: the faulty statements
(or the unexpected events) which cause the error are found, or
such statements (or events) lie outside the level-1 trace. In the
former case, debugging is done. In the latter case, the execution
path extends beyond the level-1 trace. Mapping this non-ending
path back to the invariant-based PDFG, we obtain a subset of
canonical paths which are called error-hiding paths from level-1
tracing.

 Next, we inductively assume level-(n-1) tracing has not led to
the discovery of the source of the error but has marked error-
hiding paths from all level-m tracing (m < n). We present the
following algorithm for level-n tracing.

Algorithm 4.1 Determine which functions should be

instrumented for level-n tracing
Steps:

1. Let S be the set of functions to be instrumented.
2. Add all functions in the error-hiding paths from level-m

tracing (m < n) to S.
3. Add every level-n function which is immediately

reachable from any error-hiding path (i.e. can be connected by
a single edge from a node in the path) to S.

4. Add all invariant-checking functions and to S.
□
Among all functions in S, we find the boundary functions for

level-n tracing according to the invariant-based PDFG. We add
recording operations in these functions to record the entire calling
context. The rest of the instrumentation follows the same
discussion in the case of level-1 tracing.

In practice, one can be flexible when using our iterative tracing
procedure. If the original program size is too large for even level-
1 tracing described above, one can a subset of level-1 functions as
long as the side-effect of their callees are recorded to allow replay
to continue. The invariant-checking functions must always be
executed for tracing, so that the error can at least be detected. If
the subset chosen for level-1 tracing does not lead to the discovery
of the error source, another subset is chosen, and so on. On the
other hand, if the size of the original program is small, one can
start with level-m tracing, with m > 1. The relationship between
the original code size, the available program memory and the
choice of m is not explored further in this paper.

4.2 Termination of the Iterative Tracing Procedure

If the replay for the level-n tracing does not lead to the discovery
of the error source and neither does it repeat any of the previous
execution paths, then the execution paths used for the next level
tracing will accumulate further. The tracing may also lead to the
violation of another invariant, the level-1 tracing for the new
violation will then be mixed with tracing for the previous

violations. All these may theoretically cause the instrumented
code size to exceed the available program memory.

However, if we assume that the error-hiding path found in
level-m tracing always repeats itself in level m+1 tracing, then,
obviously, the iterative tracing and replay will eventually expose
the error source by replay, as long as the instrumentation of all
functions in the error-hiding paths always fit in the program
memory. Note that the program memory required in this case will
usually be significantly less than full instrumentation, because we
instrument along a single path. Also note that, even though under
nondeterministic external inputs the program may take different
execution paths in each deployment or each tracing, the function
call/dependencel paths leading to the violation of the invariant,
i.e. the error-hiding path, may still be the same. Our assumption
here, therefore, accommodates nondeterministic behavior to a
certain degree, even though it is not ideal.

4.3 Decision on Whether to Inline a Function

To further reduce the code size after tracing instrumentation, we
notice that we can reduce the number of logs of type 1 if we inline
function calls. Of course, interrupt handlers cannot be inlined. On
the other hand, if a function is called in more than one place in the
program, then inlining may increase the program size due to
duplication of the function body. Fortunately, the inlining
decisions for different functions are independent and the cost

model is simple. For each function, let originalS be the code size

before instrumentation and funcInstrS _ be the increased code size

due to inserted operations to write LOG types 2, 3 and 4. (Type 5
is recorded in interrupt handlers only, which are never in-lined.)

Further, let callS the increased code size due to inserted

operations to write LOG type 1. For inlining to be beneficial for
the function under consideration, we must have

(originalS �+ funcInstrS _) n < callS ���
5. Implementation and Experiments

5.1 Implementation

We have implemented a preliminary version of the proposal
tool targeting WSN applications based on TinyOS 2x executed on
TelosB motes. A TelosB has 48KB program memory and 1MB
external flash memory for data. The program analyses and
transformations proposed in this paper are incorporated in an
Open64 C compiler [13] which is a widely used compiler
infrastructure that supports a rich set of code analysis and
transformation features.

Figure 3 shows the framework of our dependence-based multi-
level tracing and replaying tool. A TinyOS application written in
the nesC language, with invariants specified for certain program
scopes, is first preprocessed by a tool to automatically insert the
invariant checking operations in the nesC program. The program
is then compiled by a nesC [20] compiler (version 1.2.9) into a C
program which is analyzed by a customized Open64 C compiler
for dependence information before being transformed by the same
compiler into two copies of programs. One is a C program
instrumented with the LOG writing operations and the other is
another C program for replay on desktop machines. The C
program with LOG writing instrumentation is finally compiled by
the native compiler to run on TelosB.

 Fig 3 Framework of dependence-based multi-level tracing and replay for WSN debugging

Each invariant inserted in the WSN application specifies
certain correctness property based on local information only. If a
property concerns a global behavior, it is first decomposed into a
set of “local” invariants before they are inserted in the nesC
program. In this paper, we consider only those global properties
that can be decomposed into a set of local ones. The issue of
decomposing global properties into logical expressions over local
properties has been discussed extensively in literature and will not
be addressed in this paper.

Currently, we use a trace buffer of the size of 2KB in the RAM
for LOG recording which is transferred to the external flash
memory when the buffer is full.

5.2 Experiment

For experiments, we have used the following three test cases.

• TC1 (BlinkC) -- This is a published TinyOS 2x

application. We modified it slightly by inserting a long
runnng task which increases the latency of Timer.fire().
We insert an invariant which requires that the frequency
of three LED’s blinking must follow a user specified
pattern.

• TC2 (TestSerialCO2) -- This application monitors indoor
CO2 data in multiple locations inside a building, We
insert an invariant requiring that, from each mote, the
base station must receive a new piece of CO2 reading
every 10 seconds or less.

• TC3 (EasyCollectionC) -- This is a published code which
implements the Collection Tree Protocol. We insert
invariants require that the data must be sent in sequence.

To show the potential for dependence-based tracing, Table 1

compares the number of the functions traced using the
dependence information with those without such information. The
data indicate that, with a single invariant consisting of fewer than
3 variables, from 40% to 85% functions (not including interrupts
handlers) can be skipped for tracing. However, the number of
functions to be traced remains to be large for the test cases TC2
and TC3.

Figure 4 shows how many functions can be inlined to reduce
the size of instrumented code for each test case. Based on the

result, over 70% of the functions are called only once and, based
on the simple cost model, can be inlined. Table 2 lists the code
size under different instrumentation schemes in comparison with
the original code size, ���������� . For the baseline code size,
Sbaseline, we include the inserted operations to record all types of
log information without taking advantage of dependence
information. The data show that the baseline size is too large for
the program memory on TelosB motes. The column Sno-inlining
shows the remaining code size if we do not trace functions which
have no effect on the invariants. It is much smaller than the
baseline size, but still large. Take TC2 for example, the size of its
Sno-inlining is 46694, which is very close to the Telosb memory
boundary size 48K. The column Sinline shows the code size after
selective inlining. After inlining, the code size is decreased
further. Of course, if many invariants are checked in the same
program or some invariants involve many variables, then the use-
def chains may cover more functions and the instrumented
program size may increase. In the worst case, the code size may
be too large to fit in the program memory, in which case multi-
level tracing will be needed.

Table 1 Functions Instrumented Using Dependence
Information as a Fraction of the Total Functions
Test case # of traced functions # of total functions %

TC1 46 299 15.38

TC2 605 1499 40.36

TC3 604 1385 43.61

Table 2 Code Size (bytes)

 ��������� Sbaseline Sno-inlining Sinline

TC1 2650 ������ �����

�����

TC2 26102 �����

�����
 	�	��

TC3 18670 �����
 	�	�� 	����

Figure 4 Inlined functions as a fraction of the total

Fig 5 Comparing average execution time between two message

send operations with and without Instrumentation for TC3

Fig 6 Comparing average trace size between two message send

operations with different levels of instrumentation for TC3

Fig 7 The execution time between two message send operations

when errors occur in TC3

For each call to a task function which does not contain an
anchor point, the storage used for log trace is 4 bytes (2 bytes for
function entry and 2 bytes for function return). At each anchor,
each saved variable requires a record of 5 bytes, including 2 bytes
for the variable name, 1 byte for the variable type, and 2 bytes for
the variable value. To save a nondeterministic input or the current
#gv_reference value, each variable also takes 5 bytes. The extra
time spent to record the log for a task function call is under a
microsecond on the TelosB, if the function contains no anchor
point. An anchor point typically consumes 13.3 microseconds to
record the variables in the case of TC3.

We used TC3 for the multi-level tracing and replay

experiments. In this program, we send a piece of data (called a
message) from the mote every 50ms. When a TinyOS program
sends a message, it first checks to see whether the send-busy flag
is raised (which indicates that the send buffer being full). If not, it
is unsafe for the program to start sending a message. If the
frequency of messages is low, failure to check the send-busy flag
may not cause lost messages because the buffer is more likely to
be free anyway. However, at a higher frequency, e.g. when the
motes communicate frequently to form a cluster or to execute a
security protocol, the chance for the buffer to become full
increases, so do lost messages. We injected a programming error
which lets the sender send the message without checking the send-
busy flag first. We then load various versions of the instrumented
code on the motes to execute, as separate experiments.

The run-time overhead due to instrumentation increases with
the number of instrumented functions. For TC3, we measure the
time interval between two Send.sendDone events. At each event a
message in the send queue is sent. Fig 5 compares the average
time interval for no instrumentation (No_Instr), level-1
instrumentation (Instru_L1), level-2 instrumentation (Instru_L2),
and level-3 instrumentation (Instru_L3). Fig 6 shows the recorded
trace size for each kind of instrumentation. From these figures, we
observe that, until errors occur, the instrumented code does not
incur much overhead in time and space.

Once an error occur but is not yet detected, the execution time
is increased. Fig 7 collects the data from different time intervals
leading to detected invariant violation. The code is traced at level
3. The time interval is lengthened due to the following reason.
When the send-busy flag is raised, the sender is not supposed to
send a message. With the injected error, the sender initiates a
message send operation nonetheless. It then finds itself unable to
post the sending task because the buffer is full. Eventually a
queued message leaves the buffer, which triggers a
Send.sendDone() event. As a result, the time interval between two
Send.sendDone() is increased even without the instrumentation.

6. Related Work
Methods for error diagnosis and debugging for wireless sensor

networks can be loosely classified into three categories,
simulation/emulation, interactive debugging, and run-time
logging.

A number of previous efforts [4][6][9][37] based on
simulation or emulation support features ranging from parallel
debugging to GUI-based debugging for programmers to simulate
program execution on large-scales networks. Due to limited
testing scope and rather significant difference between the
simulation environment and the real operation environment,
however, many unanticipated errors can still occur in systems
deployed after simulation/emulation.

� �
�
� �
��
� �
� �
� �
� �
� �� ��� �� ������������ �� � !" # � $�!%& & �'�� !� (��" %& � �������� �� � !" # � $��������� �� � !" # � $�!%& & �'������")% �� !� (��" %& ����� �� � � !" # � $

+,**,+*-**-+* , - . / + 0 1 2 3 ,*45 6789:; < => ?< @8
ABCDEFC GDEHC IJKC����

���

	��

���
 LMNODPQ� LMNODPQ� LMNODPQ	RSOCN

ABCDEFC TUCHVOJWM GJXC������������ YWPJMNOD LMNODPQ� LMNODPQ� LMNODPQ	XN

Interactive debugging [7][14] allows programmers to interact
with sensor nodes by sending commands. The set of commands
usually include those which set break points, watch points, and
initiate step-by-step tracing. This methodology works particularly
well if the programmer already knows what kind of errors will
happen and where are the places to look. Otherwise, the step-by-
step execution can be quite slow and tedious, with no guarantee
that the anticipated error will surface in the debugging mode. In
other circumstances, especially when the number of motes to be
debugged simultaneously is large, it seems much more convenient
to have execution traces ready when an error is detected.

Run-time logging has gained increased importance recently.
The critical questions encountered when adopting this approach
include what kind of errors should be monitored, where and how
to log information for later debugging, and how to analyze the
logged information to find out the error cause. Among recent
efforts, Sympathy [1] focuses on data-collection applications. The
matrics generated by each node are sent to a data sink, and a
decision tree is applied to the collected data to find the failures.
Dustminer [2] is a tool for uncovering bugs in networked sensing
applications due to nondeterministic and incorrect interactions
between different nodes. This tool collects a sequence of events
and uses data mining techniques to recognize abnormal behaviors.
PAD [3] is a light-weight packet marking scheme for collecting
necessary hints, and it uses a probabilistic inference model
residing at the sink to capture unique features of the sensor
networks. Passive Distributed Assertions [11] allows the
programmer to define certain properties of a distributed system.
The state information of each affected node is collected and
analyzed through a separately-deployed sniffer network. PD2 [8]
focuses on the data flows generated by an application. It relates
poor application performance to significant data losses or
latencies of certain data flows (called problematic data flows) as
they go through the software modules on individual nodes and
through the network.
 Replay has long been widely used for bug reproduction. As
mentioned in the introduction, this approach has mainly been used
on resource-rich distributed and parallel systems. We briefly
describe software-only deterministic replay techniques, given that
our work is software-only. A typical and popular idea is to record
all possible factors (referred to as non-determinism) that affect the
program’s execution before re-executing the program. The idea is
straightforward, but potential overhead is large.

 A significant number of prior efforts have focused on how to
reduce the overhead in terms of space and execution time [32-34].
As an example, iDNA [35] developed by Microsoft logs memory
instruction input values and maintains a copy of user-level
memory, which is used to identify system-call side-effects. This
tool is OS-independent, and it handles side-effects such as DMA
transfers and direct-mapped I/O. Its log file is large. PinPlay [36]
developed by Intel is a framework for deterministic capture and
reproducible analysis of parallel programs. PinPlay is based on the
Pin dynamic instrumentation. It has been used to identify the
sources of nondeterminism in serial and parallel programs, and it
employs several ways to control the non-determinism. It can also
be integrated with other Pintools, many of which are used for
selecting reproducible simulation points and for simulation and
tracing on large parallel programs running on multiprocessors.
Another use of these Pintools is to support repeatable debugging.
PinPlay is OS-independent and quite high overhead.

 PRES [30] is an attempt to significantly lower the production-
run recording overhead by recording only partial replay
information. Based on the recorded sketching, the tool navigates a
non-deterministic execution space several times, trying to
reproduce the errors. After several replay attempts, PRES can then
reproduce the error with 100% probability on every subsequent
replay for diagnostic purpose. ODR [31] addresses the output-
failure replay problem by using output-determinism rather than
value-determinism. That is, it generates a run that exhibits the
same outputs as the original rather than an identical replica in
order to achieve low-overhead recording of multiprocessor runs.

 However, the replay approaches mentioned above cannot be
used practically on WSNs due to resource limitation and the
presence of interrupts, which motivates the work presented this
paper.

7. Conclusion and Future Work
In this paper, we have presented a multi-level tracing method
based on dependence information. Our experiments show that the
approach has made it possible to instrument several test programs
on WSN under the stringent program memory constraint and find
injected errors.

 Although our current experiments are performed on TinyOS-
based applications, the proposed methodology and tool can be
applied to all embedded systems which satisfy the assumptions
made in the introduction. It can also be extended to a broader
range of embedded systems.

Several improvements are considered for future work. We
plan to cover a larger set of realistic errors. More experiments are
needed to apply the tool to additional WSN applications and other
types of distributed embedded systems.

References
[1]N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and

D. Estrin. Sympathy for the sensor network debugger. In
SenSys, 2005.

[2] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han.
Dustminer:troubleshooting interactive complexity bugs in
sensor networks. In Sensys, 2008.

[3] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong. Passive
diagnosis for wireless sensor networks. In Sensys, 2008.

[4] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan,
and D. Estrin. Emstar: a software environment for developing
and deploying wireless sensor networks. I Proceedings of the
2004 USENIX Technical Conference, 2004, pp. 283–296.

[5] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L.
Luo. Declarative tracepoints: A programmable and
application independent debugging system for wireless
sensor networks. In Sensys, 2008.

[6] P. Levis and N. Lee. Tossim: Accurate and scalable simulation
of entire tinyos applications. In SenSys, 2003.

[7] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: A comprehensive source-level debugger for
wireless sensor networks. In ACM SenSys, 2007.

[8] Z. Chen, K. G. Shin. Post-Deployment Performance
Debugging in Wireless Sensor Networks. In 30th IEEE Real-
Time Systems Symposium. 2009.

[9]Y. Wen, R. Wolski. s2db: A novel simulation-based debugger
for sensor network applications. UCSB 2006,2006-01

[10]D. Binkley. Precise executable interprocedural slices. ACM
Letters on Programming Languages and Systems. 2(1-4):31-
45, March-December 1993.

[11] K. Römer, J. Ma. PDA: Passive distributed assertions for
sensor networks. In ACM IPSN,2009

[12] http://www.tinyos.net/community.html
[13] http://www.open64.net/
[14] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J.

Jeong, J. Hui, P. Dutta, and D. Culler. Marionette: using rpc
for interactive development and debugging of wireless
embedded networks. In IPSN’06, 2006.

[15] V. Krunic, E. Trumpler, R. Han. NodeMD: Diagnosing
Node-Level Faults in Remote Wireless Sensor Systems. In
MobiSys, 2007.

[16] M. Diaz, G. Juanole, and J. Courtiat. Observer-A Concept for
Formal On-Line Validation of Distributed Systems. IEEE
Transactions on Software Engineering, 20(12), 1994.

[17] G. Khanna, P. Varadharajan, and S. Bagchi. Self Checking
Network Protocols: A Monitor Based Approach. In
International Symposium on Reliable Distributed Systems,
pages 18–30, 2004.

[18] M. Zulkernine and R. E. Seviora. A Compositional Approach
to Monitoring Distributed Systems. In International
Conference on Dependable Systems and Networks, 2002, pp.
763–772.

[19] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering. 1981.

[20] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. In SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’03), June 2003.

[21] K.Sen, A. Vardhan, G. Agha and G. Rosu. Efficient
decentralized monitoring of safety in distributed systems. In
proceedings of 26th International Conference on Software
Engineering, 2004

[22] L. Lamport, The temporal logic of actions. ACM
Transactions on Programming Languages and Systems,
16(3):8720923, 1994

[23] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P.
Levis. Collection Tree Protocol. In Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems,
2009.

[24] P. Li, J. Regehr. T-Check: Bug Finding for Sensor Networks.
IPSN’10,2010

[25] Y. Pan, D. Pan, and M. Chen. Slicing component-based
systems. 10th IEEE International Conference on Engineering
of Complex Computer Systems, 2005

[26]J. T. Lalchandani and R. Mall. Regression testing based-on
slicing of component-based software architectures. In
proceedings of the 1st India software engineering
conference. Pages: 67-76. 2008

[27] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A Wireless Sensor Network For
Structural Monitoring. In Proc. of ACM SenSys, 2004.

[28] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L.
Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh,
Energy-Efficient Surveillance System using Wireless Sensor
Networks. In Proc. of ACM MobiSys, 2004.

[29] M. Zulkernine and R. E. Seviora. A Compositional Approach
to Monitoring Distributed Systems. In International

Conference on Dependable Systems and Networks, pages
763–772, 2002

[30] S. Park , Y. Zhou , W. Xiong , Z. Yin , R. Kaushik , K. H.
Lee , S. Lu, PRES: probabilistic replay with execution
sketching on multiprocessors, Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
October 11-14, 2009, Big Sky, Montana, USA.

[31] G. Altekar and I. Stoica: ODR: Output-Deterministic Replay
for Multicore Debugging, Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, October
11-14, 2009, Big Sky, Montana, USA.

[32] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B.
Weissman, and V. Inc. Retrace: Collecting execution trace
with virtual machine deterministic replay. In In Proceedings
of the 3rd Annual Workshop on Modeling, Benchmarking and
Simulation, MoBS, 2007.

[33] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:
diagnosing production run failures at the user’s site. In T. C.
Bressoud and M. F. Kaashoek, editors, SOSP, pages 131–
144. ACM, 2007.

[34] M. Olszewski, J. Ansel, and S. P. Amarasinghe. Kendo:
efficient deterministic multithreading in software. In M. L.
Soffa and M. J. Irwin, editors, ASPLOS, pages 97–108.
ACM, 2009.

[35] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drini´c, D. Mihoˇcka, and J. Chau. Framework for
instructionlevel tracing and analysis of program executions.
In Proceedings of the 2nd international conference on
Virtual execution environments (VEE), pages 154–163, 2006.

[36] H. Patil, C. Pereira, M. Stallcup, G. Lueck, J. Cownie:
PinPlay: A Framework for Deterministic Replay and
Reproducible Analysis of Parallel Programs, CGO’10,2010

[37] G. Tolle, D. Culler: Design of an Application-Cooperative
Management System for Wireless Sensor Networks,
Proceedings of Second European Workshop on Wireless
Sensor Networks, pp. 121- 132, Jan. 31- Feb. 2. 2005

ACM Letters on Pro, Marc

	1. Introduction
	3. Using Dependence Information to Reduce Runtime Logging
	4. Multi-level Tracing
	5. Implementation and Experiments
	6. Related Work
	7. Conclusion and Future Work
	References

