
ABHRANTA: Locating Bugs that Manifest at Large System Scales

Bowen Zhou, Milind Kukarni, Saurabh Bagchi
Purdue University

Abstract
A key challenge in developing large scale applications
(both in system size and in input size) is finding bugs that
are latent at the small scales of testing, only manifest-
ing when a program is deployed at large scales. Tradi-
tional statistical techniques fail because no error-free run
is available at deployment scales for training purposes.
Prior work used scaling models to detect anomalous be-
havior at large scales without being trained on correct
behavior at that scale. However, that work cannot lo-
calize bugs automatically. In this paper, we extend that
work with automatic diagnosis technique, based on fea-
ture reconstruction, and validate our design through case
studies with two real bugs from an MPI library and a
DHT-based file sharing application.

1 Introduction
A key challenge in developing large-scale software, in-
tended to run on many processors or with very large data
sets, is detecting and diagnosing scale-dependent bugs.
Most bugs manifest at both small and large scales, and
as a result, can be identified and caught during the devel-
opment process, when programmers are typically work-
ing with both small-scale systems and small-scale in-
puts. However, a particularly insidious category of bugs
are those that predominantly arise at deployment scales.
These bugs appear far less frequently, if at all, at small
scales, and hence are often not caught during develop-
ment, but only when a program is released into the wild
and is deployed at large scales. As one example of this
class of bugs, we present a case study of a bug in an MPI
library which causes a sub-optimal algorithm to be taken
when the total amount of data being exchanged between
the processes of the parallel application is large. As an-
other example, we present discussion of a bug in a DHT
implementation which arises only when the number of
participating peers is very large.

In a previous work, VRISHA [20], we derived a scaling
model from small-scale runs and used it to detect bugs
that cause behavioral deviation in large-scale runs of an
application. Once a bug is detected in the application,
the next challenge is to further localize the bug. Modern
programs may have hundreds of thousands, or millions
of lines of code, so simply identifying the program as the
culprit will not suffice to fix the bug. Instead, the de-

veloper would like to know where the bug arose: which
module, function, or even line number.

Unfortunately, while VRISHA’s detection of bugs is
automatic, it can only identify that the scaling trend has
been violated; it cannot determine which program behav-
ior violated the trend, nor where in the program the bug
manifested. Hence, diagnosis in VRISHA is a manual
process. The behavior of the program at the various small
scales of the training set are inspected to predict expected
behavior at the problematic large scale, and discrepan-
cies from these manually-extrapolated behaviors can be
used to hone in on the bug. This diagnosis procedure
is inefficient for real-world applications for two reasons.
First, the number of features could easily grow to a scale
that is unmanageable by manual analysis. One can con-
ceive of a feature related to each performance counter
(such as, cache hit rate), each aspect of control flow be-
havior (number of times a calling context is seen, number
of times a conditional evaluates to true, etc.), and each
aspect of data flow behavior (number of times some ele-
ments of a matrix are accessed, etc.). Second, some scal-
ing trends may be difficult to detect unless a large number
of training runs at different scales are considered, again
making manual inference of these trends tedious.

1.1 Our approach: ABHRANTA

This paper presents ABHRANTA1, an automatic, scalable
approach to detecting and diagnosing bugs in large-scale
systems. ABHRANTA is based on the same high level
concepts as VRISHA, but provides one key contribution:
automatic bug diagnosis.

As described above, VRISHA’s diagnosis technique re-
quires careful manual inspection of program behaviors
both from the training set and from the deployed run.
ABHRANTA, in contrast, provides an automatic diagno-
sis technique, built on a key modification to the scaling
model used by VRISHA. We adopt a statistical modeling
technique from Feng et al. [9] that results in an “invert-
ible” model. Essentially, such models not only detect
deviations from a scaling trend for bug detection, but can
actually be used to predict the expected, bug-free behav-
ior at larger scales, lifting the burden of manual analysis
of program behaviors. Therefore, bug localization can be

1ABHRANTA is a Sanskrit word meaning “one who cannot be made
to err.”
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automated by contrasting the reconstructed bug-free be-
havior and the actual buggy behavior at a large scale and
identifying the most diverging feature of program behav-
ior as the root cause of bug.

2 Overview of ABHRANTA

This section presents a high level overview of
ABHRANTA, an approach to automatically detecting and
diagnosing scale-determined bugs in programs.

Figure 1 shows a block-diagram view of ABHRANTA’s
operation. The key components are: (i) collecting data
that characterizes the behavior of a deployed application;
(ii) building a statistical model from the training data;
(iii) using the statistical model to detect an error caused
by the application; and (iv) reconstructing the “expected”
correct behavior of a buggy application to diagnose the
fault.

2.1 Data collection
ABHRANTA operates by building a model of behavior for
a program. To do so, it must collect data about an appli-
cation’s behavior, and sufficient information about an ap-
plication’s configuration to predict its behavior. The ap-
proach is broadly similar to that taken by VRISHA [20].

For a given application run, ABHRANTA collects two
types of features: control features and observational fea-
tures. Control features are a generalization of scale: they
include of all input parameters to an application that gov-
ern its behavior. Example control features include input
size, number of processes and, for MPI applications, pro-
cess rank. Control features can be gathered for a program
execution merely by analyzing the inputs and arguments
to the program.

Observational features capture the observed behavior
of the program. Examples include the number of times
a particular branch is taken, or the number of times a
particular function is called. ABHRANTA generates an
observational feature for each unique calling context. In
the case of instrumented network libraries, ABHRANTA
also records the amount of communication performed
by each unique calling context. This data collection is
accomplished by using Pin [15] to instrument applica-
tions. Exactly what the observational features will be
(e.g., whether for libc library calls, all library calls, etc.)
is driven by the developer, possibly with some idea of
where the bug lies. The developer can of course cast a
wider net with an attendant increase in cost of data col-
lection.

Observational and control features are collected sep-
arately for each unit of execution we wish to build a
model for. For example, when analyzing MPI applica-
tions, ABHRANTA collects data for each process sepa-
rately, creating a model for individual processes of the
application. In contrast, in our DHT case study (Sec-

tion 4.2) ABHRANTA is configured to collect control and
observational data for each message the application pro-
cesses. Currently, the execution unit granularity must be
specified by the developer; automatically selecting the
granularity is beyond the scope of this work.

2.2 Model building
The basic approach to model building in ABHRANTA is
similar to in VRISHA: a series of training runs are con-
ducted, at different, small, scales (i.e., with different con-
trol features). The control features for the training runs
are collected into a matrix C, while the observational fea-
tures are collected into a matrix O, with the property that
row i of C and O contains the control and observational
features, respectively, for the i-th process or thread in a
training run. We then use a statistical technique called
Kernel Canonical Correlation Analysis [4, 18] to con-
struct two projection functions, f and g, that transform
C and O, respectively, into matrices of the same (lower)
dimensionality, such that the rows of the transformed ma-
trices are highly correlated. The projection functions f
and g comprise the model.

In VRISHA, the f and g projection functions are non-
linear, allowing the model to capture non-linear relation-
ships between scale and behavior. Unfortunately, the
functions are not invertible: given a set of control fea-
tures, it is very difficult to infer a set of observational
features consistent with these control features. This facil-
ity is necessary for ABHRANTA’s bug localization strat-
egy, discussed below. Hence ABHRANTA uses a mod-
ified version of KCCA to construct its projection func-
tions. The key difference of ABHRANTA’s model is that
while f (the projection function for the control features)
remains non-linear, g (the projection function for the ob-
servational features) is linear. Section 3 explains how
this modified model can be used to predict the behavior
of large-scale runs.

2.3 Bug detection
ABHRANTA detects bugs by determining if the behavior
of a program execution is inconsistent with the scaling
trends captured by the behavioral model.

To detect bugs, ABHRANTA uses the same instrumen-
tation used in the training runs to collect control and ob-
servational features from a test run. These features are
projected into a common subspace using the projection
functions f and g computed during the model building
phase. If the projected feature sets are well-correlated,
then the observed behavior of the program is consistent
with the scaling trends captured in the model, and the
program is declared bug-free. If the projected features
are not well-correlated, then the program is declared
buggy, and more sophisticated diagnosis procedures (dis-
cussed below) are initiated.
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Figure 1: Overview of ABHRANTA architecture
2.4 Bug localization
Once a bug is detected, ABHRANTA then attempts to lo-
calize the bug to a particular function or even line of
code. Unlike VRISHA, which relied on manual inspec-
tion to identify buggy behaviors (as discussed in Sec-
tion 1), ABHRANTA attempts to reconstruct the expected
non-buggy behavior of a buggy program, i.e., it predicts
what the behavior of the buggy program would have been
had the bug not occurred.

To perform reconstruction, we take advantage of the
fact that even though the observational features for a
buggy program, o are anomalous, the control features for
the program, c, are nevertheless correct. A good guess
for reconstruction is an o′ such that g(o′) is correlated
with f (c) (in other words, o′ is a set of observational fea-
tures that would appear non-buggy to our model). Sec-
tion 3 describes how ABHRANTA infers o′.

Given o′ and o, ABHRANTA’s diagnosis strategy is
straightforward. The two observational feature sets are
compared. Those features whose values deviate the most
between o′ and o have been most affected by the bug,
and hence are likely candidates for investigation. The
features are ranked by the discrepancy between the ac-
tual observations and the reconstructed observations. Be-
cause each feature is associated with a calling context,
investigating a feature will lead a programmer to specific
function calls and line numbers that can help pinpoint the
source of the bug.

3 Inferring expected program behavior
The key technical challenge for ABHRANTA’s diagnosis
strategy given a buggy run is to compute o′, a prediction
of what the observational features of the run would be
were there no bug. An appealing approach to finding o′
would be as follows. Given c, the control vector for the
buggy execution, compute f (c) to find its projected im-
age in the common KCCA subspace. Then, because both
the control and observational features are intended to be
highly correlated in the projected space, we can treat
f (c) as equivalent to the projected value of o′, g(o′). We
can then compute o′ by inverting g: o′ = g−1( f (c)) Un-
fortunately, as discussed before, the projection functions
used in VRISHA were non-linear and non-invertible.

In ABHRANTA, we sidestep this problem by abandon-
ing non-linear transformations of the observational fea-
tures with g. Instead, we use a linear projection func-

Control space (C) Projected space

Predicted spaceObservation space (O')

f

B

H

Figure 2: Process to derive reconstructed observations
(O′) from control features (C). f is a non-linear transfor-
mation, while B and H are linear.
tion for g, while leaving f as a non-linear function. Note
that while using a simpler g means certain relationships
cannot be captured, f remains non-linear, allowing us
to still model program behaviors that vary non-linearly
with scale. Section 4 confirms that this restricted mod-
eling space does not significantly reduce ABHRANTA’s
detectability.

ABHRANTA’s reconstruction strategy is inspired by
the preimage reconstruction method presented by Feng
et al. [9]. Figure 2 shows the steps to reconstruct a pre-
dicted set of observational features O′ given a set of con-
trol features C. At a high level, we compute the pro-
jected form of C, PC, using the non-linear projection
function for control features f . We then use a linear
transformation, B, to predict the projected form of O′,
PO′ . We then compute a second linear transformation, H,
which inverts the linear mapping provided by the projec-
tion function g, allowing us to compute O′ as follows:
O′ = H ·B ·PC. How do we determine B and H?

To compute B, recall that f and g maximize the linear
correlation between the control and observational fea-
tures. Hence for non-buggy runs, we can assume that the
projections of the control and observational features will
be linearly correlated. We can hence compute B using
linear regression (for an N-dimensional predicted space):

min
B

N

∑
i=1

∥∥BPi
C−Pi

O′
∥∥2

Given B, we can predict the projected form of O′ for
a buggy execution. The next step is to undo that projec-
tion. Because ABHRANTA uses a linear kernel for obser-
vational features, this can be accomplished by deriving a
reverse linear mapping from the projected space back to
the original observational feature space. That is, we want
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to find an H such that H ·PO′ = O′. Because the projec-
tion subspace is of lower dimensionality than the origi-
nal observational space, H is underdetermined. Hence,
we find H by solving the following least-squares prob-
lem (for an n-dimensional observational feature space):

min
H

n

∑
i=1

∥∥HPi
O′ −O′i

∥∥2

4 Evaluation
This section describes our evaluation of ABHRANTA.
We present two case studies, demonstrating how
ABHRANTA can be used to detect and localize bugs in
real-world parallel and distributed systems. Both case
studies concern scale-dependent bugs that are only trig-
gered when executed with a large number of nodes.
Thus, they are unlikely to manifest in testing, and must
be detected at deployed scales. The case studies are con-
ducted on a 16-node cluster running Linux 2.6.18. Each
node is equipped with two 2.2GHz AMD Opteron Quad-
Core CPUs, 512KB L2 cache and 8GB memory.

4.1 Case Study 1: MPICH2’s ALLGATHER

ALLGATHER is a collective communication operation de-
fined by the MPI standard, where each node exchanges
data with every other node. The implementation of ALL-
GATHER in MPICH2 pre-1.2 contains an integer over-
flow bug [1], which is triggered when the total amount of
data communicated causes a 32-bit int variable to over-
flow (and hence is triggered when input sizes are large or
there are many participating nodes). The bug results in
a sub-optimal communication algorithm being used for
ALLGATHER, severely degrading performance.

Detection: In our prior work, we showed that VRISHA
could detect the MPICH2 bug using KCCA with Gaus-
sian kernels. To show that the linear kernel used by
ABHRANTA does not affect detectability compared to
VRISHA, we applied ABHRANTA to a test harness that
exposes the ALLGATHER bug at scale, using both VR-
ISHA’s original Gaussian kernel and our new linear ker-
nel. The control features were the number of processes
in the program, and the rank of each process, while the
observational features were the amount of data commu-
nicated at each unique calling context (i.e. call stack) in
the program. The model is trained on runs with 4–15
processes (all non-buggy), while we attempted to detect
the bug at 64 processes.

Experimentally, we validate that the use of the linear
kernel does not hurt the detectability of ABHRANTA vis-
à-vis VRISHA. We find that in both cases the buggy run
has a significantly lower correlation between control and
observational features than the test runs. We can quan-
tify the accuracy of our model as the margin between the
lowest correlation in the test case and the highest corre-
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Figure 3: Reconstructed vs. actual buggy behavior for
ALLGATHER

lation in the buggy case. Using the linear kernel results
in only a 7.2% drop in detection margin.

Localization: We next evaluate ABHRANTA’s ability
to localize the ALLGATHER bug by reconstructing the
expected behavior of the 64-process execution. Fig-
ure 3 shows how the actual observational behavior of
the buggy run compares with the reconstructed behav-
ior. ABHRANTA ranks all the observational features in
descending order of reconstruction error; this is the sug-
gested order of examination to find the bug. The call
stacks of the top two features, Features 9 and 18, differ
only at the buggy if statement inside ALLGATHER, pre-
cisely locating the bug.

4.2 Case Study 2: Transmission’s DHT
Transmission is a popular P2P file sharing application on
Linux platforms. The bug [2] exists in its implementation
of the DHT protocol (before version 0.18). When a new
node joins the network, it sends a message to each known
peer to find new peers. Each peer responds to these re-
quests with a list of all its known peers. Upon receiving
a response, the joining node processes the messages to
extract the list of peers. However, due to a bug in the
processing code, if the message contains a list of peers
longer than 2048 bytes, it will enter an infinite loop.

It may seem that this bug could be easily detected us-
ing, e.g., GPROF, which could show that the message pro-
cessing function is consuming many cycles. However,
this information is insufficient to tell whether there is a
bug in the function or whether it is behaving normally but
is just slow. ABHRANTA is able to definitively indicate
that a bug exists in the program.

For this specific bug, given the information provided
by GPROF, we can focus on the message processing func-
tion which is seen most frequently in the program’s exe-
cution. We treat each invocation of the message process-
ing function as a single execution instance in our model
and use the function arguments and the size of the in-
put message as the control features. For the observa-
tional feature, we generalize our instrumentation to track
the number of calls, and the associated contexts, to any
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Figure 4: Reconstructed vs. actual buggy behavior for
Transmission DHT
shared libraries.

To train ABHRANTA, we used 45 normal invocations
of the message processing function, and apply the trained
model to 1 buggy instance. First, ABHRANTA detects
that the correlation for the buggy run is abnormally
low, confirming that the buggy instance is truly abnor-
mal behavior, and not just an especially long-running
function. Having established that the long message is
buggy, ABHRANTA reconstructs the expected behavior
and compares it to the observed behavior, as in Fig-
ure 4. The rank ordering of deviant features highlights
Feature 12, which corresponds to the call to a libc func-
tion strtol, only a few lines away from the root cause
of the bug in this several-hundred-line function.

5 Related work
There is a substantial amount of work concerning statis-
tical debugging [5, 6, 11–14, 16, 19, 20]. Some of these
approaches focus primarily on detection, with diagnosis
as a secondary, often ad hoc capability [5, 11, 16, 20],
while others focus primarily on automatically assisting
bug diagnosis [3, 7, 8, 10, 12–14, 19].

The typical approach taken for detection by statistical
approaches [5, 6, 11, 16, 20] is to characterize a pro-
gram’s behavior as an aggregate of a number of features.
A model is built based on the aggregate behavior of a
number of training runs that are known to be buggy or
non-buggy. To determine if a particular program execu-
tion exhibits a bug, the aggregate characteristics of the
test program are checked against the modeled character-
istics; deviation is indicative of a bug. The chief draw-
back to many of these approaches is that they do not ac-
count for scale. If the system or input size of the train-
ing runs differs from the scale of the deployed runs, the
aggregate behavior of even non-buggy runs is likely to
deviate from the training set, and false positives will re-
sult. Some approaches mitigate this by also detecting
bugs in parallel executions if some processes behave dif-
ferently than others [6, 16]; this approach does not suf-

fice for bugs which arise equally in all processes (such as
our MPI case study), or bugs that do not involve multiple
processes (such as our DHT study).

Other statistical techniques eschew detection, in favor
of attempting to debug programs that are known to have
faults [3, 7, 8, 10, 12–14, 19]. These techniques all share
a common approach: a large number of executions are
collected, each with aggregate behavior profiled and la-
beled as “buggy” or “non-buggy.” Then, a classifier is
constructed that attempts to separate buggy runs from
non-buggy runs. Those features that serve to distinguish
buggy from non-buggy runs are flagged as involved with
the bug, so that debugging attention can be focused ap-
propriately. The key issue with all of these techniques
is that they (a) rely on labeled data—whether or not a
program is buggy must be known; and (b) they require
a large number of buggy runs to train the classifier. In
the usage scenario envisioned for ABHRANTA, the train-
ing runs are all bug-free, but bug detection must be per-
formed given a single buggy run.

6 Conclusions and Challenges
We developed ABHRANTA, which leverages novel statis-
tical modeling techniques to automate the detection and
diagnosis of scale-dependent bugs where traditional sta-
tistical debugging techniques fail to provide satisfactory
solutions. With case studies of two real-world bugs, we
showed that ABHRANTA is able to automatically and ef-
fectively diagnose bugs.

Challenges There are several challenges that still re-
main to develop an effective system for diagnosing bugs
in large-scale systems:

Feature selection To be effective at diagnosing scal-
ing bugs, features must be (a) correlated with scale, and
(b) related to the bug’s manifestation. The former is nec-
essary for the scaling model to be effective, while the
latter is necessary for the bug to be detected. We are
looking into approaches based on dynamic information
flow to identify scale-related program behaviors to nar-
row down the set of possible features.

Model over-fitting A common pitfall in statistical
modeling is over-fitting the training data, resulting in
poor predictive performance for test data: the model may
accurately predict behavior at scales close to those of the
training set, but will fail as they are applied to ever-larger
scales. Our current modeling approach uses very high-
degree polynomials, increasing the likelihood of over-
fitting. We are exploring the use of techniques such as
the Bayesian Information Criterion (BIC) [17] to reduce
the likelihood of over-fitting.

Non-deterministic behavior Many program behav-
iors are non-deterministic, which causes inaccurate trend
predictions. Nevertheless, higher-level program behav-
ior often is more predictable. For example, the amount
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of data sent over the network can be deterministic even
if the particular network send methods used (immediate
vs. buffered) may differ. We are investigating aggrega-
tion techniques that combine non-deterministic features
to produce higher-level, deterministic features.
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