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Abstract—Hard disk drives have multiple layers of fault
tolerance mechanisms that protect against data loss. However,
a few failures occasionally breach the entire set of mechanisms.
To prevent such scenarios, we rely on failure prediction
mechanisms to raise alarms with sufficient warning to allow the
at-risk data to be copied to a safe location. A common failure
prediction technique monitors the occurrence of soft errors and
triggers an alarm when the soft error rate exceeds a specified
threshold. This study uses data collected from over 50,000
customer deployed disk drives to evaluate the performance of
a failure prediction algorithm that relies solely on soft errors
to predict failures manifested as hard errors. The data analysis
shows that soft errors alone cannot be used as a reliable
predictor of hard errors. However, in those cases where soft
errors do accurately predict hard errors, sufficient warning
time exists for preventive actions.
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hard errors; data mining;

I. INTRODUCTION

As a storage device for persistent data that is often critical,

a hard disk drive must provide a high level of reliability.

Due to the inherent complexity of a device that incorporates

mechanical, electronic, and other parts, a wide assortment

of failure modes are possible and must be addressed [1].

When stored data is requested, the disk drive must be able

to provide that data with complete fidelity and in a timely

manner. To achieve these goals, the architecture and design

of disk drives incorporate many fault avoidance and fault

tolerance techniques. Multiple levels of cyclic redundancy

codes and error correction codes protect against data loss by

either correcting a small number of bit errors on the fly or by

detecting greater corruption and initiating read retries. These

read retries are based on a carefully engineered sequence

of retry steps that are ordered to minimize the expected

overall latency. Since most errors will be corrected in the

initial steps, a typical distribution of steps at which errors

are corrected will have a shape similar to that shown in

Figure 1.

A small number of errors will be uncorrectable even after

the drive exhausts the entire sequence of error recovery

steps. These uncorrectable errors are often described as

“hard” errors to distinguish them from the “soft” errors that

are successfully corrected during one of the error recovery

steps. Since the goal of a disk drive is to store data for

retrieval at some future time, a hard read error is a device

Figure 1: Typical distribution of successful error recovery

steps

failure. To address such hard read errors, higher-level fault

tolerance may be added at the hardware level (e.g., RAID

[2]) or at the software level. However, not all systems can

accept the added cost, complexity, or latency imposed by

such higher-level fault tolerance.

Failure prediction is another approach that attempts to

mitigate the potential loss of data due to a hard read error by

providing sufficient advance notice for emergency measures

such as duplication of at-risk data. The key to failure predic-

tion is the determination of failure predictors that are well

correlated to imminent failure while providing sufficient time

for preventive actions. Good predictors have high detection

rate coupled with low false positive rates. In particular, the

false positive rate must be minimized to limit the impact

on performance since each false positive prediction incurs

a nonessential preventive action, such as, remapping some

sectors of the drive, which in some situations may involve

lengthy diagnostics.



Two aspects of failure prediction are essential and must

be carefully designed: the raw input data and the algorithm

that transforms the raw data into alarms. For disk drives,

the two main types of data are sensor data and event data.

A disk drive contains many sensors to detect abnormal

operating conditions. Examples of monitored conditions are

temperature, physical shock and vibration, data channel

signal-to-noise ratios. These sensors often provide direct

feedback to the disk drive hardware and firmware but can

also be incorporated into the algorithm that raises external

alarms.

In addition to sensor data, the firmware can also generate

event data based on events of interest, such as errors, retries,

power-on, sector reallocation, etc. In contrast to sensor data

which is limited by the set of physical sensors present in

the system, the amount of event data is virtually unlimited

since the firmware can be easily programmed to recognize

additional events. Another important difference between

sensor data and event data is the relative obviousness of how

the data should be used to raise an alarm. The thresholds

for abnormal sensor data are often somewhat intuitive. For

example, if the temperature exceeds the design specification,

then certainly an alarm should be raised. However, many

innocuous events occur frequently (e.g., raw read error rates

can be as high as 1 in 104 bits in a good drive), so it is

not entirely clear how these events should be translated into

alarms. What is particularly lacking is an understanding of

the relationship between events and resulting failure modes.

The main goal of this study is to evaluate the performance

of a failure prediction algorithm that relies solely on soft

error events in predicting failures that are manifested as hard

errors. We hope the results will aid the feature selection

process when building a failure prediction algorithm that

has a richer set of features at its disposal. The results show

that many hard errors occur without a single preceding soft

error, thus indicating a limit to the predictive ability of soft

errors. However, in those cases where soft errors do precede

hard errors, the data suggests the possibility of developing

algorithms that raise alarms of imminent hard errors with

sufficient advance warning to permit actions that prevent

data loss.

One of the key contributions of this paper is the analysis

of data collected by hard disk drive firmware which include

knowledge of and details about events that are not available

from data collected on the other side of the hard disk

drive host interface. Several excellent studies have analyzed

data collected by storage subsystems containing a large

number of drives [3][4][5]. While hard error events are

usually reported across the host interface, soft errors by

default are not reported, since the sheer number of soft

errors would significantly degrade performance. However,

disk drives can be configured to report soft errors [6],

although the set of reported soft errors is often a subset

of the internally collected errors for several reasons. First,

Figure 2: Histogram of error recovery steps that successfully

corrected an error

Figure 3: Histogram of sizes of clusters of errors associated

with a single host command

in order to minimize the overhead, soft errors are reported

if corrected at an error recovery step above a specified

threshold. For example, Figure 2 shows the histogram of

error recovery steps that successfully corrected an error for

one of the drive populations studied in this paper. Note

that the last bar includes all hard errors, hence the spike

of the count. A typical threshold setting for that drive

population (threshold=20) resulted in less than one percent

of all internal errors reported to the host because errors

are much more likely to be corrected earlier than the 20th

error recovery step. Second, although multiple errors (hard

or soft) may occur in response to a single host command,

only one error, usually the one corrected at the highest error

recovery step, is reported. Some media defects, such as

scratches along a track, can result in multiple errors. For such

multiple-error commands, all errors are recorded internally,

but only one is reported to the host. These multiple-error



commands are fairly frequent. Figure 3 shows the histogram

of the sizes of error clusters that are associated with a single

host command. About one quarter of all soft errors were not

reported to the host due to being 2nd, 3rd, etc. error resulting

from a single host command. Thus, internal data collected

by a disk drive provides significant amount of information

not observed by the host. Furthermore, even though error

recovery step information can be communicated over the

host interface, to the best of our knowledge, no previous

work has utilized this information. Nevertheless, host-based

data collection does have one advantage over drive-based

data – the disk drive typically has a large but limited buffer

space to record errors, in contrast to the virtually unlimited

storage available to the host.

The paper is organized as follows. Section II describes

data source and analysis methodology. Section III contains

the results of the study. Section IV discusses related work.

Finally, a discussion of the impact of the results and potential

avenues for future research are given in Section V.

II. METHODOLOGY

A. Challenges in Data Collection

As the quality of data analysis is limited by the quality

of the underlying data, the data collection process is very

important. In addition, because the overall reliability of disk

drives is a function of not only the manufactured unit but

also the workload over its lifetime and the attendant envi-

ronmental conditions, data sampled from customer deployed

drives is much more meaningful in terms of providing

insight into the expected operation of that population of

drives. In contrast to manufacturing test and qualification

test data, which is easily obtained, collection of data from

customer drives is fraught with many challenges.

First, the data analyst usually does not have direct ac-

cess to customer drives. Thus, these drives must include a

mechanism for recording the relevant data, and there must

be a logistical procedure for dumping the recorded data and

transporting that data to the data analyst. If the data analyst

is the drive manufacturer, then several intervening parties

(storage systems manufacturers, integrators, IT contractors,

etc.) may need to cooperate to transfer that data. The storage

system administrators must be willing to perform the data

collection and initiate the transfer to the appropriate parties.

The customers must be willing to accept the hopefully

minimal impact on performance, and provision storage for

the collected data. Depending on the level of detail contained

in the collected data, the drive population size, and the

periodicity of data collection, the amount of storage can be

quite significant.

Second, customer privacy concerns must be addressed.

This involves obtaining legal consent as well as assurances

that no customer data is included in the collected data. The

data must also be anonymized so that each party in the chain

can only identify the adjacent parties, e.g., the IT service

Table I: Description of Collected Data

Population #Logs #Drives Max Power-on Hours

Field 110,520 57,154 9,142

Qual1 51,897 1,200 2,025

Qual2 8,015 894 1,203

Qual3 15,278 983 1,045

provider and the storage server provider know each other as

customer and vendor, but the hard disk drive manufacturer

does not know the identity of the IT service provider, nor

of the end client whose workloads are going to execute on

the hard disk drives and at whose site the data gathering is

to happen.

B. Data Source and Characteristics

We cooperated with a large storage system manufacturer

to help with data collection and transport. Table I describes

the collected data that will be used in this study. The data

includes four populations containing the same model of disk

drives of the same brand. All drives are 15krpm, enterprise

class drives, with FC-AL and SAS host interfaces and either

4 or 8 heads. The ‘Field’ population was collected by

a single large storage system manufacturer and represents

installed drives at multiple customer sites. This population

consists of 57,154 drives. The total number of data logs

collected was 110,520, as data was collected multiple times

for some drives. The data collected covered drive operation

from October 28, 2007 to November 13, 2008, a period of

approximately one year. As seen in Figure 4, most of the

drives had power-on hours (the total amount of time a drive

has been powered on, taking into account the fact that a drive

may be powered on and off depending on load, though this

is rarely done in enterprise settings) of less than 4 months

(which is roughly 2,900 hours). Fortunately, this amount of

usage was already sufficient to allow some hard errors to

occur.

In addition to the data for the large customer field

population, data was also collected for three additional

populations of drives that underwent qualification testing.

The test duration and environment are similar, but the test

workloads are different. The characteristics for each of these

populations are given in Table I.

When data is collected from a particular drive, the error

event log stored on the drive is saved. This error event log

is a collection of errors that occur, including all soft and

hard errors. However, since the available storage on each

drive for the error event log is finite, the set of errors must

necessarily be limited in two ways. First, the error events are

saved to a ring buffer of size N entries that only saves the

last N error events. If data is dumped from the same drive

multiple times, the multiple sets of N error events will be

merged to form one error event log of more than N entries.

The exact time the data is dumped from a drive depends



Figure 4: Histogram of power-on hours for all drives

on site-specific parameters and therefore no formal rule can

be presented here for when in the operation log dumps are

taken. Roughly half of the drives had their data dumped

only once, while the arithmetic mean for how many times

a data dump is taken for a disk drive is 1.93. This event

of taking a data dump is not a periodic event and happens

in the granularity of a few months. Second, as seen from

Figure 1, the numbers of errors handled at the earliest error

recovery steps are much greater than at later steps. Thus, an

arbitrary cutoff for error recovery steps is implemented in

the firmware, such that errors that are corrected at a recovery

steps less than the cutoff are not stored in the error event log.

In our case, soft errors that were corrected at error recovery

step 1 or 2 were not stored on the drives’ log.

C. Study Objectives

The issues to be addressed by this study involve the re-

lationship between soft errors and hard errors. In particular,

the key question is how well occurrences of soft errors can

be used to predict subsequent hard errors. In this study, we

consider the events where the drive signals an uncorrectable

error in response to a host read, verify, or write command as

hard errors. Because a disk drive contains many mechanical,

electronic, and other parts, a varied set of failure modes is

possible. In many of these failure modes, the failures are

related to problems with a specific read/write head or media

defects related to a specific read/write head. In addition,

when a soft or hard error occurs, the drive’s firmware does

not provide information about the nature of the error (in

particular, whether it affects multiple heads). Thus, this study

focuses on analysis of soft errors on a per head basis.

For each drive head, we only consider events up to and

including the first hard error, because the study focuses on

the predictive ability of soft errors in forecasting hard errors.

It may at first thought appear that if a drive has a hard error,

it will be taken out of commission and will therefore not

have any chance of seeing any subsequent event. However,

this is not necessarily true, as it depends on the policy of

the administrator. For example, a hard write error generally

results in a remapped sector but no loss of data. Usually a

drive will not be decommissioned in that scenario. Also, for

enterprise systems, usually there is some level of RAID, so

a single hard error is usually not sufficient to decommission

a drive.

III. RESULTS

There are two main questions that will be studied based

on the collected data: (1) Do soft errors precede hard errors?

(2) If soft errors do precede hard errors, how much advance

warning time do these soft errors give before the ensuing

hard error occurs?

A. Do Soft Errors Precede Hard Errors?

Table II provides some answers to these questions based

on data from the combination of all four populations de-

scribed in Section II-B. 157 out of 387,840 heads experi-

enced at least one hard error. A greater number of heads

experienced at least one soft error. The column ‘ERP Step

Cutoff’ specifies the minimum error recovery step for a

soft error to be considered. The column “#Heads with SE”

shows the number of heads with at least one soft error that

is corrected at the particular error recovery step or higher.

Since the error recovery steps are always traversed in exact

sequential order, the numbers in this column are always

nonincreasing.

Insight for the first question about whether soft errors

precede hard errors is given by the fifth column “#Heads HE

preceded by SE (% of all HE)”, which shows the number of

heads with hard errors that were preceded by soft errors at

a given error recovery step. The table shows that about one-

third of the hard errors were preceded by soft errors (38.9%

for error recovery step 3 and 30.6% for error recovery step

12). This is an important number because it indicates a hard

limit on the effectiveness of the use of soft errors to predict

hard errors. A hard error that is not preceded by a soft

error cannot be predicted by any algorithm that relies solely

on soft error. In other words, most hard errors cannot be

predicted by soft errors. Thus, the false negative rate for

any hard error predictor based on soft errors is expected to

be very high.

In addition to recall (true positive rate), a good predictor

must also maximize precision. The column “%Heads HE

| SE” from Table II shows the precision for a given error
recovery step, i.e., the percentage of the heads with soft

errors (from the fourth table column) that also experience

an eventual hard error. In other words, it is equal to the

number in the fifth column divided by the number in the

fourth column. As expected, as the error recovery step cutoff



Table II: Soft/Hard Error Counts from All Populations

ERP Step Cutoff Total Heads #Heads with HE #Heads with SE #Heads HE preceded by SE (% of all HE) %Heads HE | SE

3 387,840 157 18,932 61 (38.9%) 0.32%

4 387,840 157 11,142 58 (36.9%) 0.52%

5 387,840 157 5,711 57 (36.3%) 1.00%

6 387,840 157 2,496 53 (33.8%) 2.12%

7 387,840 157 1,634 52 (33.1%) 3.18%

8 387,840 157 1,426 50 (31.8%) 3.51%

9 387,840 157 1,276 49 (31.2%) 3.84%

10 387,840 157 1,133 49 (31.2%) 4.33%

11 387,840 157 1,050 49 (31.2%) 4.67%

12 387,840 157 910 48 (30.6%) 5.28%

Figure 5: Percentage of drive heads which encounter a soft

error at a specific error recovery step (ERP) before encoun-

tering a hard error. Only soft read errors are considered.

increases, precision increases, since soft errors corrected at

early steps are unlikely to be associated with a hard error.

Table II only lists a subset of error recovery steps due to

space limitations. Precision for all error recovery steps are

shown in Figure 5. Results from each population are also

shown separately in addition to results from the combined

population.

As expected, precision generally increases as the error

recovery step increases. However, at some recovery steps,

precision decreases due to the elimination of some hard

errors that are only preceded by soft errors at lower re-

covery steps. This shows that soft errors are correlated to

hard errors. However, regardless of the recovery step used,

precision remains low, at no more than 25%, which means

that at least 75% of raised alarms are false alarms.

The preceding results only considered soft read errors.

Sometimes soft errors occur for verify operations, and these

soft errors could potentially also be used as predictors for

eventual hard errors. Verify operation is one where a read

Figure 6: Percentage of drive heads which encounter a

soft error at a specific error recovery step (ERP) before

encountering a hard error. Both soft read and soft verify

errors are considered.

is attempted of a sector and it is checked if an error occurs.

Often an error in the verify operation can be corrected by a

code, such as, a Reed-Solomon code. The result of the read

is discarded and only the error status of the sector being

read is taken into further account. Figure 6 is similar to

Figure 5 except that both soft read and soft verify errors are

considered. In one qualification population (Qual2) precision

improves significantly, but the other populations do worse at

certain recovery steps.

B. Amount of Advance Warning

The amount of advance warning that a soft error provides

for an ensuing hard error is heavily dependent on the

specific algorithm used. For example, if a soft error rate

coupled with a threshold is used as the prediction algorithm,

then the amount of advance warning depends on the exact

threshold, not to mention the rate calculation parameters,

such as weighting of each error and the size of window



Figure 7: Cumulative distribution of durations between the

last soft error and the hard error. Both soft read and soft

verify errors are considered.

for determining which errors to include. However, we can

gain some insight into this issue by looking at the duration

between the last soft error and the hard error as it provides

the lower bound of the amount of advance warning for

algorithms that solely rely on soft errors. We call this value

Tmin. Note that hard errors that are not preceded by a soft

error are not included in this analysis.

Figure 7 shows the cumulative distribution for Tmin for all

four populations from Table I. The x-axis is given in hours

and is logarithmic in scale. Each data point represents one

hard error. The distributions in Figure 7 are bimodal. About

one-third of all hard errors occur within one second after

a soft error. However, a large portion of hard errors have

Tmin of greater than one hour, sometimes reaching several

days. In the “worst” of the four populations, 30% of hard

errors have a Tmin of one hour or greater, and in the “best”,

this number is 80%. This is encouraging because it allows

preventive actions to finish before the hard errors occur.

IV. RELATED WORK

There are several published studies on factors that influ-

ence disk drive failures and the failure patterns based on

data collected from large-scale real-world storage systems.

However, most of these studies focus on the correlation

between failure rate and a particular parameter such as age or

temperature. While this is useful for reducing failure rate of

storage systems as well as deeper understanding of disk drive

failures, the parameters with strong correlation to failures

are not necessarily effective failure predictors. For example,

suppose that in a drive population, 80% of drives operate

at ≤ 40
◦C on average, and 1% of these drives eventually

fail (within the window where the data were collected). On

the other hand, within the remaining 20% which operate at

> 40
◦C on average, 5% eventually fail. It would be said that

temperature is strongly correlated with failures, as the failure

rate is five times higher in the group that operates at higher

temperature. However, if temperature was used as a failure

predictor, it would achieve recall of 55.6% and precision of

only 5%. This level of accuracy is generally not acceptable.

Pinheiro et al. [5] analyze more than 100,000 disk drives

consisting of varied models and configurations. The analyzed

factors are SMART parameters. SMART is a standard for

monitoring disk drive parameters, which is thought to be

useful for predicting some failures. Each drive manufacturer

defines a set of attributes to expose under the SMART

standard and selects threshold values which attributes should

not go out of, under normal operation. Attribute values can

range from 1 to 253 (1 representing the worst case and 253

representing the best). Depending on the manufacturer, a

value of 100 or 200 will often be chosen as the ”normal”

value. While some factors are found to be strongly correlated

with failure rate, an attempt to build a failure predictor

for individual drives based on these factors is unsuccessful.

More than half of the failed drives have zero counts in all of

the factors strong correlated with failures. Even when other

SMART parameters are used along with temperature data,

36% of the failed drives still have no indicator of failures at

all.

Schroeder and Gibson [7] analyzes about 70,000 disks.

The study focuses on the failure rate and patterns compared

to drive specification and common assumptions. The results

show that failure rate increases with age, including the early

part of the drive’s lifecycle. The analysis of failure distri-

bution shows high temporal correlation between successive

failures. Comparison with drives’ datasheet MTTF shows

that actual failure rates are much higher than specified.

Bairavasundaram et al. [6] uses data collected from 1.53

million disks to analyze the patterns of latent sector errors

(hard errors) for both nearline and enterprise class disks. The

study finds moderate degree of spatial correlation and high

degree of temporal correlation between multiple latent sector

errors. The correlation between latent sector errors (hard

errors) and recovered errors (soft errors) are also analyzed.

However, the analysis also includes soft errors that occur

after the first hard error, as the goal was not to use soft

errors to predict hard errors. Furthermore, soft errors used

in the study come from the information reported to host after

each command. This implies that they only include the soft

errors that exceed a specific error recovery step threshold,

which account for less than 1% of all soft errors internally

logged. In addition, multiple errors that occur in response to

a single host command are reported as a single error. Due to

these reasons, the effectiveness of soft errors as a predictor

of hard errors cannot be interpreted from the results.

Murray et al. [8] compare several machine learning meth-

ods in predicting failures in hard drives. The data used in the

study came from 369 drives, 178 of which were failed drives.



However, it is important to note that the good drives came

from a reliability test, run in a controlled environment by the

manufacturer, while the failed drives were returned drives

from actual users. The drive attributes used are SMART

parameters sampled at two-hour interval. The problem is

framed in the multiple-instance framework as each sample

from a drive forms an instance and they correspond to

a single drive which has a class label. Several machine

learning algorithms were used to build a classifier and

compared. The algorithm that achieves the best performance

is SVM, with detection rate of 50.6% and no false alarms.

However, since the source of good drives is different from

the source of failed drives, the machine learning algorithms

may be capturing the differences that are caused by different

usage and environment rather than factors that are really

indicative of an impending failure.

In summary, while several well-done studies have looked

at the problem of reliability of disk drives, our current work

is distinguished from them in two ways. First, it uses data

that is available only to the firmware within the hard disk

drive and not visible to the software stack outside of it.

Second, it looks at the issue of predictability of hard errors

and thus is concerned with events that occur preceding hard

errors. This issue of predictability is of practical concern

because a correct (accurate as well as precise) prediction

means higher level software can take mitigation actions in

practice and shield the end user from a visible failure.

V. CONCLUSION

Some error prediction algorithms use soft error rates

to anticipate the future occurrence of hard errors. Such

algorithms are predicated on the idea that the underlying

physical causes of soft errors increase in intensity to the

point of eventually causing a hard error. This study analyzes

a set of hard disk drive populations, including a large

customer field population, for insight into the relationship

between soft errors and hard errors. The results are mixed

in terms of providing support for the basis underlying such

hard error prediction algorithms.

The first conclusion is that soft errors cannot be used to

predict the majority of hard errors. Only about one-third of

all hard errors are preceded by a soft error, and the remaining

cannot be predicted by any soft error-based algorithm. We

find soft errors to be correlated to hard errors. However,

when used as the sole predictor of hard errors, the precision

is at most 25%, meaning at least 75% of raised alarms are

false alarms. With the consideration of additional data, such

as data from sensors and various event data, in conjunction

with soft errors, it may prove to be more successful. This

should be one takeaway from this paper and should motivate

investigation into enriching the feature set in trying failure

prediction for hard errors.

The second conclusion is that for instances where pre-

diction is successful, the prediction often yields sufficient

time to initiate preventive actions. Often the amount of

early warning time exceeds several hours. This amount of

time is important because even successful prediction without

time for emergency actions is useless. The results suggest

a potential for a useful prediction algorithm that consider

additional data, beyond soft errors.

It should be noted that although more extensive data,

especially those from drives that have undergone longer

periods of operation would certainly be desirable, studies

involving actual customer deployed data are difficult to

conduct due to the great challenges in obtaining such data.

Thus, a large part of the value of this study derives from

the large and varied size of the population and the use

of these drives in real operational conditions and with real

workloads.
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