
Characterizing Configuration Problems in Java EE
Application Servers: An Empirical Study with

GlassFish and JBoss
Fahad A. Arshad, Rebecca J. Krause, Saurabh Bagchi

Purdue University
West Lafayette, IN, USA

{faarshad, krauser, sbagchi}@purdue.edu

Abstract—We present a characterization study on configu-
ration problems for Java EE application servers. Our study
analyzes a total of 281 bug-reports in two phases: a longer (phase-
1) and a shorter (phase-2) phase, from bug tracking systems of
two popular open source servers, GlassFish and JBoss. We study
configuration problems in four orthogonal dimensions: problem-
type, problem-time, problem-manifestation and problem-culprit. A
configuration problem, by type, is classified as a paramater,
compatibility or a missing-component problem. Problem-time is
classified as pre-boot-time, boot-time or run-time. A configuration
problem manifestation is either silent or non-silent. Problem-
culprit is either the user or the developer of the application
server. Our analysis shows that more than one-third of all
problems in each server are configuration problems. Among all
configuration problems for each server in phase-1, at-least 50% of
problems are paramater-based and occur at run-time. In phase-
2, which focuses on specific versions over a shorter time-period,
all three problem types parameter, compatibility and missing-
component have an almost equal share. Further, on average 89%
of configuration problems result in a non-silent manifestation,
while 91% of them are due to mistakes by the developer and
require code-modification to fix the problem. Finally, we test
the robustness to configuration by injecting configuration-bugs
at boot-time with SPECjEnterprise2010 application deployed in
each server. JBoss performs better than GlassFish with all of the
injections giving a non-silent manifestation as opposed to only
65% non-silent manifestations in GlassFish.

Index Terms—configuration, Java EE, reliability

I. INTRODUCTION

Downtime of software systems due to configuration prob-
lems is a critical issue for large-scale enterprise systems [1]. A
configuration error in a software system can cause significant
financial losses [2], [3]. A human mistake in entering a
single character can result in a major outage; for example,
a human error of misunderstanding the meaning of character
"/" [4] caused all the search results returned by Google search
engine to be falsely flagged as harmful for a period of up
to 40 minutes in 2009. To understand the preponderance of
configuration errors, consider that IT experts currently estimate
that more than 80 percent of network outages occur due
to configuration errors [5]. Arguably network configuration
management is a challenging task, but it is safe to extrapolate
and conclude that a significant fraction of other failures are
also caused by configuration errors.

To minimize these losses, software systems should be built

in a manner that is resilient to configuration errors. Further, to
improve resilience, the testing of the developed software is a
critical phase for all software products. Unfortunately, due to
time-to-market constraints, artificial testing environments and
insufficient configuration testing, bugs related to configuration
problems often are pushed to users of the software.

To make matters worse, it is not clear who is responsible
for a given configuration problem. Developers blame users
of incorrect configuration at the user-end, while users blame
the software developers. This blame game of each other
leads to longer bug-resolution time. Though, user-training
helps to minimize the occurrence of configuration problems,
developers are expected to play a more pro-active role from
the perspective of developing robust and resilient software.

In order to improve software resilience towards configura-
tion bugs, we present a characterization-study of configuration
problems1 in Java EE (Enterprise Edition) based application
servers, GlassFish [6] and JBoss2 [7]. Jave EE application
servers are complex with large number of configuration pa-
rameters. In addition, as they become an integral part of cloud-
based platforms [8], both their configuration complexity and
their importance are only bound to increase.

We classify configuration-bugs according to four dimen-
sions: Type, Time, Manifestation and Responsilbility. The
first dimension (Type) considers a configuration-bug due to
a problem relating to a particular parameter option, incom-
patibility with an external library or a missing component.
The second dimension (Time) refers to the timepoint at which
the configuration-bug is triggered, i.e., pre-boot-time, boot-
time, or run-time. The third dimension (Manifestation) refers
to whether a bug is silent or non-silent (with a log message).
The fourth dimension refers to who (developer or user) is
responsible for a given type of configuration bug.

Based on the characterization, we built a tool called
ConfInject, that injects configuration errors (misconfigu-
rations) derived from bug databases. A fault-injection tool like
ConfInject will help to measure the robustness, the ability
to handle unintended input, and can play an important role in

1In this paper, we use the terms problem, issue, error, and failure inter-
changeably.

2We use the more common name, JBoss application server, as opposed to
its recent new name WildFly

the decision making process of choosing a Java EE vendor.
ConfInject follows a similar design-flow as ConfErr
[9], a tool that injects human-induced configuration errors
and measures the reaction of the system under test (SUT).
ConfErr injects configuration errors derived from human
psychology rather than being grounded in real bugs that have
been observed in real software. Further, it only covers boot-
time bugs, one point in one of four dimensions that we
consider.

As opposed to an exhaustive parameter sweep, that can take
a large amount of time, ConfInject selectively injects a
relatively small set of problems that are encountered in bug-
repositories. This avoids the search-space explosion problem
and reduces the running time of ConfInject, thus making
it an effective testing tool. ConfInject injects character-
strings in configuration data values that are stored as xml-
attribute values. It then programmatically starts the application
server, deploys an application, stops the server and analyzes
the reaction to injection from the collected server logs. Ide-
ally, a given injection should be manifested at boot-time (as
oppose to waiting until a web user reports it at runtime) thus
providing a direct feedback to the operator about a problem.
Our experiments show that some injections result in silent
manifestations after boot-time, thus requiring more intrusive
configuration validation tests for Java EE servers.
ConfInject specifically injects addition and removal of

the forward-slash ("/") character and replacement by empty-
string (""). The injections are done across both the application
and the application server configuration values in GlassFish
and JBoss. The results show that as high as 35% of injections
result in silent failures in GlassFish while all injections result
in non-silent manifestation in JBoss.

We claim the following contributions in this work:

• Characterization of configuration-problems for Java EE
application servers, where we categorize real configu-
ration problems across four dimensions, Type, Trigger-
Time, Manifestation and Responsible-party.

• Fault-Injector for configuration-problems in Java EE ap-
plication servers, where a configuration-resilience profile
in terms of percentage of non-silent manifestations is pro-
vided for the two most widely used Java EE application
servers.

• Recommendations for better configuration management
where we provide suggestions for developers to avoid
such mistakes.

The rest of this paper is organized as follows: Section II
presents the threats to validity of this study. Section III presents
the organization of Java EE application servers. Section IV
covers the classification of configuration problems. Section V
explains the classification results. Fault-Injector design and re-
sults are presented in Section VI and Section VII. Section VIII
discusses important observations and recommendations for
better configuration management. Related work is presented
in Section IX. The conclusion and future work is presented in
Section X.

II. THREATS TO VALIDITY

All characteristic studies have limitations; for example,
the number and type of bug-reports studied can be non-
representative from the point-of-view of the studied problem.
Studying bug-reports and classifying them is a manual process
and can be subjective.

Each bug-report can state the problem with varying levels of
detail for reproducing a given bug. The quality of a bug-report
often depends on the expertise of the user submitting the bug-
report. We do not have any way of characterizing the expertise
of the user who submits a bug report. A bug report that does
not have enough information to be classified as configuration-
error is classified as non-configuration error. Also, an expert
user might not report a given configuration problem as opposed
to a novice user. Therefore, we argue that the statistics reported
in this work are a lower-bound and in reality, configuration
bugs likely occur with higher frequencies.

III. JAVA EE APPLICATION SERVER DESIGN

Here we describe the design principles and implementation
aspects of Java EE application servers that are germane to
understanding the incidence of configuration errors in them. A
Java EE application server provides tools and APIs to develop
multi-tier enterprise applications. It is designed to implement
several Java EE standards represented by Java Specification
Requests (JSRs) [10]. Therefore, an application server im-
plements server-generic design principles to provide different
functionalities, for example, a module that implements security
functionality. Common modules in an application server in-
clude, web-container, ejb-container, persistence-management,
command-line, GUI-based administration, messaging (JMS)
etc. The functionality implemented by each module in a
particular Java EE application server can vary. For example,
vendor A can implement ejb-container functionality in one
module, while vendor B might decide to implement it by a
co-ordination of several modules.

Figure 1 presents basic modules and interfaces for a Java
EE application server from the perspective of configuration.
The arrow-heads in Figure 1 point to server components that
require configuration data from outside. At boot-time, JVM
parameter configurations are configured for a Java EE server.
At run-time, an administrator can create server resources such
as JDBC resources (connection pools), JMS (Java Messaging
Service) resources, etc. These resources provide applications
with a way to connect to other components, JDBC for database
or JMS for asynchronous services (e.g., mail services). The
creation and destruction of these resources, a configuration
task, is executed either by using the commmand-line interface
or administration-console in the web browser. Both command-
line and admin-console utilities, which come bundled with
all major Java EE servers, are used to execute several other
configuration tasks as well, such as deployment of a web
(*.war) or an enterprise (*.ear) application.

The components of GlassFish encountered in the
studied bug-reports are: admin, admin_gui, build_system,

2

Figure. 1: Java EE Server Components Interacting with Con-
figuration Data

command_line_interface, entity-persistence, grizzly-
kernel, installation, jdbc, jms, OSGi, packaging, rest-
interface, update_center, web_container, web_services and
web_services_mgmt. admin is the core administration
infrastructure component that handles all the configuration
data entered by either the command_line_interface or
admin_gui. JBoss implements its server components at
a coarser granularity when compared to GlassFish. The
components from studied bug-reports include: Build System,
CMP service, EJB2, JMS (JBossMQ), Other, Test Suite, Web
Services, Web (Tomcat) service and Weld/CDI.

IV. CLASSIFICATION OF CONFIGURATION PROBLEMS

To characterize configuration errors, we study configuration
issues in four orthogonal dimensions: Type, Trigger-time,
Manifestation, and Responsible-party.

A. Type of errors in Java EE application servers

We are first going to define configuration and non-
configuration bugs and then eliminate non-configuration bugs
from further discussion.

1) Non-configuration: This is an error that results due
to an interaction of internal components, without directly
operating on data input by a human, either user or ad-
ministrator. Examples of this include an incorrect returned
object by a method, an incorrect method being called, a
missing method call, an incorrect cast operation, etc. This
type of error can manifest as failures called Exceptions
in Java programs. Typical examples of Exceptions
thrown at run-time due to non-configuration problems are
ClassCastException, ArithmeticException etc.
Other exceptions like NullPointerException can be
thrown irrespective of whether the problem origin is non-
configuration or configuration.

2) Configuration: This is a problem that is a result of
operating on data that a human user configures in a file, in
an administration console, in an environment variable or via
command-line interface. The configuration errors can further
be of the following types:

a) Parameter: This a problem that occurs due to a wrong
parameter type, value or format. Examples include an empty
tag value in an xml tag (JBAS-929), an incorrect value passed

by the user (GLASSFISH-17581), a missing forward slash "/"
in resource path (JBAS-1115), etc.

b) Compatibility: This is a problem that occurs due to
an incompatibility with the environment, e.g., the JVM or
a library. Examples of this type of configuration-problem
are: JBAS-5275, where while reading xml-attribute values,
the application server reads the values in different orders
when run in different JVMs. The application server handles
the values for attributes when read in forward direction, but
fails to handle when read in backward direction for some
JVMs. GLASSFISH-17764, where starting the cluster fails
when started on the JRocket [11] JVM only. GLASSFISH-
14922 where the enabling of the secure mode of the server
(enable-secure-admin) fails on an old JVM.

c) Misplaced-Component: A misplaced-component
(henceforth called component only) is a type of configuration
problem which occurs when a component or a file is missing or
in the wrong location and subsequently causes an application
to fail. Typically, a ClassNotFoundException or
NullPointerException is thrown as a manifestation.
Examples of this type of configuration-problem are:
GLASSFISH-17462, where a missing file (ssl.json)
manifests as a NullPointerException in server log,
while the user is shown a HTTP 404 error screen in adminis-
tration console. GLASSFISH-17649, where while configuring
the server, java.lang.NoClassDefFoundError is
manifested due to a missing classpath dependency. AS7-1719,
where ClassNotFoundException is thrown when the
server creates a lot of http sessions within a short time
interval.

B. When does the configuration error occur?

1) Pre-Boot-time: If a Java EE application server or an
application fails to compile or allocate pre-boot resources due
to any type of a configuration problem, it is considered to
occur at pre-boot-time.

2) Boot-time: If a configuration error is observed at ap-
plication server startup or application deployment, then it is
classified as a boot-time failure due to a configuration problem.

3) Run-time: An error that affects a running application on
an application server while users are accessing the application
is a run-time problem. Configuration problems that occur after
an application is successfully deployed on the server fall in this
category. Arguably this is the most serious of the three kinds
because a user, and a potentially non-expert one, is affected
by this.

C. In what manner do the configuration errors manifest?

1) Silent: A silent error can occur as a performance
problem, data-corruption or a problem that is not directly
detectable by the operator and is not manifested as a relevant
Exception in the server logs. An example of silent error is
GLASSFISH-18875, where the deployment (a configuration
action) of an ear archive is very slow and upon fixing, the
deployment-time reduces from 50 minutes to 2 minutes only.

3

https://issues.jboss.org/browse/JBAS-929
https://java.net/jira/browse/GLASSFISH-17581
https://issues.jboss.org/browse/JBAS-1115
https://issues.jboss.org/browse/JBAS-5275
https://java.net/jira/browse/GLASSFISH-17764
https://java.net/jira/browse/GLASSFISH-14922
https://java.net/jira/browse/GLASSFISH-14922
https://java.net/jira/browse/GLASSFISH-17462
https://java.net/jira/browse/GLASSFISH-17649
https://issues.jboss.org/browse/AS7-1719
https://java.net/jira/browse/GLASSFISH-18875

2) Non-Silent: A non-silent error occurs with a clear man-
ifestation, typically as Exceptions in the server logs. The
silent errors are the more serious kind, due to the difficulty of
detecting them.

D. Who is responsible?

We consider a configuration problem from two different
perspectives of who inserted it — developer and user. A
configuration bug from the user point-of view may not be a bug
from developers point-of-view, for example, if the user forgot
to set the value for a paramater “host", it is a configuration
problem of the user. On the other hand, if the user set the
value for "host" correctly, but the value was not correctly
interpreted (resolving hostname to IP incorrectly etc.), then
it is a bug by the developer and requires a code change.
So, somewhat simplistically, we come up with the following
definition of the classes.

1) Developer: A configuration bug that is fixed by a code
change made by the developer

2) User: A bug that is fixed by making the appropriate
change in the configuration file, menu. etc.

V. CLASSIFICATION METHODOLGY AND RESULTS

A. Methodology

We conduct our characterization study as two separate
sub-studies, which we will call Study-1 and Study-2 (Table
I). In Study-1, we constrain the bug space from all bugs
(GlassFish=15805, JBoss=4160) to bugs that have the state
‘Fixed’ for the attribute RESOLUTION and the state ‘Re-
solved’ or ‘Closed’ for the attribute STATUS in the time
intervals [23-May-2005,16-Mar-2012] (GlassFish) and [11-
Apr-2001,11-Mar-2012] (JBoss). This represents 64% of all
GlassFish and 56% of all JBoss bugs. From this set, we
uniformly sampled 1% of bugs giving us a total of 124 bug
reports (101 (GlassFish) and 23 (JBoss)) for manual analysis.

In Study-2, our goal is to focus in more on configuration
bugs pushing automated queries to bug databases as much as
we can. We constrain our search query time intervals to target
one specific version of GlassFish (ver.3.1.2 - all 23 builds
within it) and one specific version of JBoss (ver.7 - all 5
builds within it). We create a keyword-based search to find
configuration bugs (Listing 1). This search query looks for
keywords indicating configuration problems present in both
the description and the comments section of the bug report.
We believe that this will provide bug reports that indicate
a mutual agreement (whether an issue is a configuration or
non-configuration) between users and developers; developers
typically put comments about the bug type in the comments
section. This search query results in a total of 157 bug reports
(132 (GlassFish) and 25 (JBoss)) that are now manually
inspected in Study-2.
project = GLASSFISH AND (summary ∼ "config* || setting* ||

setup || set-up || set up" OR description ∼ "config* ||
setting* || setup || set-up || set up") AND issuetype
= Bug AND (resolution= Fixed OR resolution = Complete)
AND CREATED >= "2011/08/03" and CREATED < "2012/07/17"
AND (comment ∼ "config* || setting* || setup || set-up
|| set up") ORDER BY created ASC, key DESC

Issues
Studied

Time-interval Versions

GlassFish
Study-1 101 05/23/05–

03/16/12
beginning till
3.1.2

Study-2 132 08/03/11–
07/12/12

3.1.2 (23 builds)

JBoss
Study-1 23 04/11/01–

03/11/12
3, 4, 5, 6

Study-2 25 11/01/10–
09/21/12

7 (5 builds)

TABLE I: Statistics of bug reports that form our studies

project = AS7 AND (summary ∼ "config* || setting* || setup
|| set-up || set up" OR description ∼ "config* ||
setting* || setup || set-up || set up") AND issuetype =
Bug AND (resolution= Done) AND (status= Resolved or

status=Closed) AND created >= "2010/11/01" AND created
< "2012/09/21" AND (comment ∼ "config* || setting* ||

setup || set-up || set up") ORDER BY created ASC, key
DESC

Listing 1: GlassFish and JBoss keyword-based search queries
for automatically zooming into configuration bugs (with
imperfect success)

B. Study-1 Results

In this subsection, we present the results of our analysis
for Study-1, a total of 124 bug reports, from GlassFish and
JBoss application server bug repositories [12], [13]. Table II
shows the distribution of configuration and non-configuration
problems. It is determined through manual analysis that more
than one-third of problems in each server are configuration
problems. This provides quantitative evidence for our claim
that configuration errors are a significant source of concern.

GlassFish JBoss
Configuration 33% 43%
Non-Configuration 67% 57%

TABLE II: Study-1: Distribution of Configuration and Non-
Configuration Problems

We observe that for GlassFish, nine components have more
than 40% of their issues classified as configuration-problems.
Among these nine components, the top two components hav-
ing the most number of configuration problems are admin
(6/14 (43%)), admin_gui (10/18 (56%)). This is an expected
result as admin and admin_gui components in GlassFish
are responsible for processing the configuration data passed in
by the user. This pattern is not very visible for JBoss, mainly
because of the few number (twenty-three) of bugs analyzed
across many (nine) components.

1) Distribution by Classification Category: We present the
percentage frequency distribution of configuration problems
for GlassFish and JBoss in Figure 2 and Figure 3 respectively.
For GlassFish, we observe a majority of the problems (79%)
relate to configuration parameters, while 70% of the time, the
configuration problem occurs at run-time. Additionally, 91%
of all configuration problems are non-silent and 91% of the

4

problems are attributed to the developer. For JBoss, only 40%
of configuration problems are classified as parameter-based,
while 50% are due to misplaced-components. In addition, there
are no issues that occur silently, a fact which is also verified
by our injection tool (Section VI).

(a) Type (b) Trigger-time

(c) Manifestation (d) Who is Responsible

Figure. 2: Study-1 GlassFish: Frequency Distribution of Con-
figuration Problems in each Dimension (Total = 101 bugs)

(a) Type (b) Trigger-time

(c) Manifestation (d) Who is Responsible

Figure. 3: Phase 1 JBoss: Frequency Distribution of Configu-
ration Problems in each Dimension (Total = 23 bugs)

C. Study-2 Results

In this subsection, we present the results of our analysis
for Study-2, a total of 157 bug reports from GlassFish and
JBoss. We observe that our search (Listing 1) did help to find
more configuration problems because we observe an increase
in configuration problems from study-1 to phase-2 (Table III).
Specifically, 33% to 62% for GlassFish and from 43% to 56%
for JBoss.

1) Distribution by Classification Category: The percentage
frequency distribution within each configuration problem di-
mension is presented in Figure 4 and Figure 5 for GlassFish
and JBoss respectively. For Type (Figure 4.(a)), the parameter-
based configuration problems for GlassFish decreases from

GlassFish JBoss
Configuration 62% 56%
Non-Configuration 38% 44%

TABLE III: Study-2: Distribution of Configuration and Non-
Configuration Problems

(a) Type (b) Trigger-time

(c) Manifestation (d) Who is Responsible

Figure. 4: Study-2 GlassFish: Frequency Distribution of Con-
figuration Problems in each Dimension (Total = 132 bugs)

(a) Type (b) Trigger-time

(c) Manifestation (d) Who is Responsible

Figure. 5: Study-2 JBoss: Frequency Distribution of Configu-
ration Problems in each Dimension (Total = 25 bugs)

79% in study-1 to 44% in study-2, while compatibility issues
increase from 12% to 34%. One reason for this is that
study-1 analyzes issues across various versions of GlassFish.
Parameter names, values and format are more likely to change
across versions (as opposed to within versions), thus giving a
greater probability to see parameter-related issues for study-
1 as opposed to study-2 (which focuses on one specific
version of GlassFish). The distribution by trigger-time (Figure
4.(b)) is similar to study-1, where run-time configuration
problems have the majority (66%) followed by boot-time
(24%) problems. Also the patterns for problem-manifestation
and responsible-party in GlassFish are similar to study-1.

For JBoss in study-2, we observe that all three subtypes,
parameter, compatibility and misplaced-components have al-

5

most one-third share (Figure 5.(a)) of the configuration prob-
lems. This pattern is different from study-1’s results, where
parameter-based problems were dominant (50%) followed by
misplaced-components (40%). The primary reason for this is
that study-1 studied JBoss application server versions 3,4,5
and 6 which were very similar in their design, whereas study-
2 studied version 7, which provided the same functionalities
as previous versions, but had major structural differences
and even required a migration guide [14] for migration to
version 7 from previous versions. One well-known side-effect
of this refactoring is that problems related to compatibility will
happen more. This is confirmed by our analysis (an increase
from 10% to 36%). For problem trigger-time in study-2, more
run-time (69%) problems occur as opposed to more boot-time
(50% problems in study-1). This could also be attributed to the
major refactoring of JBoss version 7. The patterns for the last
two studied catogories, manifestation and responsible-party,
are similar for both study-2 and study-1 in JBoss.

VI. FAULT INJECTOR

Based on insights from our characterization, we developed
a configuration bug injection tool called ConfInject. We
believe that running ConfInject with any given Java EE
application server would give the user an opportunity to assess
the configuration-resilience of the server. On the other hand,
this can help organizations to evaluate a given application
server before deploying it in a large-scale in the production
environment.
ConfInject follows a workflow as shown in Figure 6.

Given a Java EE application server installation location and an
application that can run on it, ConfInject emulates normal
server-management workflow, i.e., starts the server, deploys an
application, adds and deletes server resources, and then stops
the server. While executing this workflow, ConfInject in-
jects configuration problems. Currently ConfInject injects
parameter-based configuration problems at boot-time.

A fault injector should know the answers to the following
questions:
What to inject? ConfInject injects character-string-based
misconfigurations that were observed while conducting our
characterization study. For this paper, we choose to inject the
character "/" and empty-string (""). Forward-slash character
has been the cause of several parameter-related configuration

Figure. 6: WorkFlow for Time of Injection

problems in Java EE application servers [15] (JBoss), [16]
(Geronimo),[17] [18] (GlassFish), [19] (TomEE) as well as in
general Java programs [20] (RestEasy), [21] (OpenSSO), [22]
(SailFin), [23] (JavaServerFaces) etc. configuration problems
related to empty-string for server attribute-values have also
been reported in both GlassFish [24] and JBoss [25].
Where to inject? ConfInject injects its misconfigurations
in the xml configuration files that are maintained by the
Java EE application servers for configuration management.
Specifically, it injects in xml-attribute values within
domain.xml (GlassFish) or standalone-full.xml
(JBoss), web.xml, and persistence.xml files.
domain.xml in GlassFish and its equivalent
standalone-full.xml in JBoss maintain the major
server configurations that are read during the boot-up process.
The last two are configuration parameters of the application
(SpecJEnterprise2010 in our case). web.xml is used to
configure the application server resources used by a given
deployed application, e.g., how URLs map to servlets,
authentication information etc. persistence.xml is used
to configure settings for the connection to back-end database,
e.g, the driver-name, persistence-provider-name, etc.
When to inject? ConfInject injects its misconfigurations
at boot-time. Boot-time can be either application-server start
or an application deploy operation.
How to inject? ConfInject injects its boot-time miscon-
figurations by parsing the xml configuration files, mutating
only one attribute-value at a time and writing the mutated file
before the application-server or the application is started. For
each injected string, the application server is programatically
(using CARGO API [26]) started, an application is deployed,
the application server is stopped and the server log file is
saved for analysis. This process is repeated for all injections.
We define three injection-operators, Add, Remove and Replace.
Add means that we append the injected character to a similar,
already existing character in the attribute-value-string. Remove
means that we remove the injected character from the correct
attribute-value-string. Replace means that we replace the cor-
rect attribute-value with a different string, i.e., either “/” or the
empty string. These operators were defined based on evidence
from bug repositories [18], [15], [24]. An example of a sample
injection for each of the Add, Remove and Replace operating
on domain.xml is shown in Table IV.
Target Application: SPECjEnterprise2010 We need an ap-
plication running on the Java EE application servers to stress
it with a realistic workload. We deploy SPECjEnterprise2010
[27] on GlassFish and JBoss.

SPECjEnterprise2010 is an industry-standard Java Enter-
prise Edition (EE) benchmark that emulates a complete en-
terprise system. It describes an end-to-end business process
and emulates an automobile dealership, manufacturing, supply
chain management and order/inventory system. The set of
functionalities that this benchmark includes are: Dynamic
Web page generation, Web Service based interactions, Trans-
actional and Distributed components, Messaging and asyn-
chronous task management and Multiple company service

6

Mutation Operator Original Value Mutated-Value
Add <jdbc-resource jndi-name="jdbc/__default" pool-name="DerbyPool"/> <jdbc-resource jndi-name="jdbc//__default" pool-name="DerbyPool"/>
Remove <jdbc-resource jndi-name="jdbc/__default" pool-name="DerbyPool"/> <jdbc-resource jndi-name="jdbc__default" pool-name="DerbyPool"/>
Replace <property name="URL" value="jdbc:mysql://hostname:3306/specdb"/> <property name="URL" value=""/>

TABLE IV: An example of mutated configuration values in domain.xml in GlassFish

providers with multi-site servers. The system architecture
corresponds to a 3-tier architecture, i.e., client, middleware
and database.

The clients of SPECjEnterprise2010 are automobile dealers,
who use a web based user interface to access the application.
The interface allows customers (car dealers) to login to their
accounts, keep track of dealership inventory, sell automobiles,
manage a shopping cart and purchase automobiles.

VII. FAULT INJECTION RESULTS

For one injection, ConfInject mutates one string in
one of the xml files, starts the application server, deploys
the SPECjEnterprise2010 application, stops the application
server and collects the server logs for analyzing the effect of
injection. The number of non-silent manifestations for boot-
time injections are presented in Table V.

For a total of 132 injections of "/" character in GlassFish,
both the server configurations in domain.xml and the ap-
plication configurations in web.xml have silent failures for
the majority of injections. Specifically, only 24.2% of remove-
operator-based injections and 22% of add-operator-based in-
jections result in non-silent manifestations with Exceptions
thrown in server log file. On the other hand, all the JBoss
injections result in non-silent manifestations. For empty-string
("") injections, 75.9% in GlassFish and 100% in JBoss are
non-silent. These results mean that in GlassFish, the throwing
of Exceptions is delayed until the end-users (users of
SPECjEnterprise2010) try to access a particular resource. As
an operator of the application server and applications, this
would result in a higher frequency of issues filed by the users,
a fact that is verified by observing (Figure 7) the total number
of issues filed for each of the projects. We see qualitatively
that the number of configuration-related issues follow a similar
pattern.

Figure. 7: Number of issues filed to GlassFish and JBoss (vers.
3-6) bug repositories per month

Figure. 8: Frequency Distribution of Exceptions for non-
silent manifestations for GlassFish in domain.xml with "/"
injection

A. GlassFish Injection Results

1) Forward-slash Injection: For domain.xml in Glass-
Fish, the non-silent Exceptions distribution when forward-
slash is injected is presented in Figure 8. It shows that
NullPointerException occurs most frequently. For
these NullPointerExceptions, the root-cause is due
to the injection at two seperate locations related to JMS
configurations: (1). Injection in the attribute pool-name
within xml-element connector-resource, where the
pool-name is changed from "jms/value" to "jms//value",
(2). Injection in the attribute name within the xml-
element connector-connection-pool, where the name
is changed from "jms/value" to "jms//value". Both of these
attribute values should match for the correct operation, thus
avoiding NullPointerException. Given that the stan-
dard way to delimit is using a single "/", we recommend a
deployment verifier that would verify and favorably replace
the extra forward-slash introduced, due the configuration error
thus automatically fixing the issue. Note that GlassFish does
have a verifier tool called verify-domain-xml, which
is claimed to be much more than an XML syntax verifier.
Its documentation [28] states: "Rules and interdependencies
between various elements in the deployment descriptors are
verified". We tested it with the injected error in domain.xml,
and it did not catch the injected forward-slash configuration
problem.

For most of the injections (94.3% with remove and 100%
with add operator) in web.xml, the server.log did not show
any Exceptions at boot-time. This fact where exceptions
are delayed until the end-user accesses the application through
the web browser is a point of concern.

< s e r v l e t >
< s e r v l e t −name> p u r c h a s e < / s e r v l e t −name>
< j s p−f i l e > / / p u r c h a s e . j s p < / j s p−f i l e >

< / s e r v l e t >
< s e r v l e t >

< s e r v l e t −name> s h o p p i n g c a r t < / s e r v l e t −name>
< j s p−f i l e > s h o p p i n g c a r t . j s p < / j s p−f i l e >

< / s e r v l e t >

7

GlassFish JBoss

Application Server Application Server

Operator Injected
character

web.xml persistence.xml domain.xml Total web.xml persistence.xml standalone-full.xml Total

remove / 2/35 (5.7 %) 4/4 (100 %) 26/93 (28.0 %) 32/132 (24.2 %) 35/35 (100 %) 4/4 (100 %) 15/15 (100.0 %) 54/54 (100 %)

add / 0/35 (0 %) 4/4 (100 %) 25/93 (26.9 %) 29/132 (22.0 %) 35/35 (100 %) 4/4 (100 %) 15/15 (100.0 %) 54/54 (100 %)

replace "" - - 460/606 (75.9 %) 460/606 (75.9 %) - - 397/397 (100 %) 397/397 (100 %)

TABLE V: Number of non-silent manifestations for boot-time injections in GlassFish and JBoss

File
Remove Add

Exception # Percentage Exception # Percentage

standart-full.xml
org.jboss.msc.service.StartException 11 73 java.lang.NullPointerException 1 6.6

org.jboss.as.controller.persistence.ConfigurationPersistenceException 4 27 org.jboss.msc.service.StartException 13 87
java.lang.IllegalArgumentException 1 6.6

web.xml java.lang.IllegalArgumentException 16 46 org.jboss.msc.service.StartException 35 100
org.jboss.msc.service.StartException 19 54

persistence.xml org.jboss.msc.service.StartException 4 100 org.jboss.msc.service.StartException 4 100

TABLE VI: Detailed Exception Distriubtion in JBoss when "/" was Injected

Listing 2: Two sample injections (underlined) using add and
remove operators in web.xml that were not detected at boot-
time in GlassFish

2) Empty-String Injection: Out of 606 empty-string injec-
tions in domain.xml within GlassFish, 69.5% (421) of them
resulted in the failure of server boot-up process while 6.4%
(39) resulted in Exceptions in server log. This means that
there were still a significant number (146 (24.1%)) of empty-
string-based problems that were silent at boot-time.

B. JBoss Injection Results

1) Forward-slash Injection: For JBoss, we observe in Table
VI that for all injected file types and both mutation operators
org.jboss.msc.service.StartException is
thrown 80% (86/108) of the time. The StartException is
a JBoss-defined Exception that is thrown when a service
fails to start. This high-level exception in JBoss provides
enough details in server log to diagnose the root-cause
(injection location). As an example, consider the effect of
applying the remove operator in the JMS queue entry name to
change it from "java:jboss/jms/LoaderQueue"
to "java:jbossjms/LoaderQueue" in
standalone-full.xml. The corresponding server
log entry is shown in Listing 3, where the corresponding
problem (missing forward-slash) is observable (manifestation
underlined in Listing 3). Another example with injection
in web.xml is the second injection in Listing 2, which
GlassFish did not detect whereas JBoss gave a clear
manifestation as shown underlined in Listing 4. These are
desirable manifestations and show that JBoss is robust enough
to diagnose the injected configuration problems, both at the
application and the server level. After diagnosis, a subsequent
automated replacement or deletion (in the case of an extra
character) of the forward-slash is still a desirable but missing
feature.

1 5 : 5 8 : 4 4 , 9 1 6 ERROR [org . j b o s s . msc . s e r v i c e . f a i l] (
S e r v e r S e r v i c e Thread Pool −− 58) MSC00001 : F a i l e d t o
s t a r t s e r v i c e j b o s s . messag ing . d e f a u l t . jms . queue .
LoaderQueue : o rg . j b o s s . msc . s e r v i c e . S t a r t E x c e p t i o n i n
s e r v i c e j b o s s . messag ing . d e f a u l t . jms . queue . LoaderQueue :
JBAS011639 : F a i l e d t o c r e a t e queue

Caused by : j a v a . l a n g . Run t imeExcep t ion : JBAS011846 :
Illegal context in name: java:jbossjms/LoaderQueue

Listing 3: Log entry after applying remove-operator on
"java:jboss/jms/LoaderQueue" to remove the forward-slash

1 5 : 0 7 : 4 3 , 3 0 1 ERROR [org . apache . c a t a l i n a . c o r e] (
S e r v e r S e r v i c e Thread Pool −− 64) JBWEB001097 : E r r o r
s t a r t i n g c o n t e x t / s p e c j−s p e c j : j a v a . l a n g .
I l l e g a l A r g u m e n t E x c e p t i o n : JBWEB000273 :
JSP file shoppingcart.jsp must start with a ”/”

Listing 4: Log entry after applying remove-operator on
"/shoppingcart" to remove first forward-slash

2) Empty-String Injection: All empty-string injections
in standalone-full.xml within JBoss result in the
failure of server boot-up process. The corresponding
log entry, "Server boot has failed in
an unrecoverable manner", shows that all
misconfigurations need to be fixed before a successful
boot-up operation, a desirable outcome.

VIII. DISCUSSION

In this section, we highlight some of the high-level obser-
vations from our study and recommendations for improving
the management of Java EE software systems.

A. Observations

1) Our observations reveal that more than one-third of
problems reported by users are configuration-related.
These problems occur more in components that are at
the interface between the user and the program.

2) Inter-version and intra-version configuration problems
tend to have different characteristics. Inter-version prob-
lems are majorly parameter-related while intra-version

8

problems have an almost equal share for each of parame-
ter, compatibility and missing-component related issues.

3) Code refactoring or re-implementation results in an
increased number of compatibility issues.

4) Parameter-based fault-injection, as done in our tool
ConfInject, based on bug reports, can provide a
measure of robustness of the software.

B. Recommendations for better configuration management

1) Automated Fixing of Parameter Values: Today,
incorrect parameter values specified by users of
application servers are fixed by users themselves.
They primarily go through the manual process of
searching for similar problems, communicating with
developers, trial-and-error of different possible values
and even applying patches. We suggest to developers of
application servers to take a more pro-active role and
dynamically fix configuration mistakes that users make.
For example, given that a file name cannot contain
the character "/" and many configurations have a
well-defined format, e.g., token seperation of single "/"
character, any extra "/" characters should automatically
be removed at boot-time with a notice to the user.
This process requires configuration validation, a step
that is not mandatory according to Java specifications
and hence not pursued by many vendors. To strongly
enforce it, there is a need to push for this in the future
versions of Java EE standards.

2) Efficient Bug Repository Maintainence: Operating a
bug repository where it is easier for users to search and
fix problems helps to reduce bug-resolution time and
frequency of issues. From our experience while studying
bug-reports in GlassFish and JBoss, we observed some
desirable features in the bug-tracking systems which
we recommend: (1). JBoss employs a duplicate bug-
detection tool called Suggestimate [29]. Sugges-
timate clusters similar issues together. Also, as users
are typing in their bug-reports, similar issues based on
the keywords used are presented. This helps to reduce
average number of issues filed by users. (2). For a
majority of fixed bugs, JBoss cross-references the bug-
fixes giving an option for the developers and users to
view the difference to previous version, thus providing
an opportunity to better understand the fix.

IX. RELATED WORK

From the perspective of configuration management, soft-
ware systems reliability has been studied from different angles,
characterization, testing, detection, diagnosis and recovery:
(1). Failure characterization [30], where the goal is to study
the cause and effect of failures to identify misconfiguration-
patterns. (2). Resilience testing [9], where the goal is to
study the reaction of a software system when injected with
configuration errors to identify weaknesses in failure handling
mechanisms. (3). Configuration error-detection [31], where the

goal is to study failure manifestations of misconfigurations to
identify patterns that detect a given configuration-error. (4).
Failure diagnosis [32], where the goal is to find a root-cause
of a given configuration problem. (5). Failure Recovery [33],
where the goal is to find the candidate fixes for a configuration
problem.

Failure characterization studies using bug-reports, both on
configuration [30] and non-configuration [34] bugs, reveal
common patterns that lead to failures. Yin et al. [30] studied
user forums for five non-Java EE systems from the perspective
of configuration errors. Some dimensions studied in their
work, e.g. type and manifestation of configuration problem
are similar to our work, while others e.g. responsible-party
and problem-time are different. Another major difference is
that their work focuses on non-Java EE systems, whereas we
claim that Java EE based systems have distinctive differences
(e.g. standardized APIs, modular architecture) that warrant
separate attention. Also, as cloud-based Java EE system like
OpenShift [8] and GlassFish 4 become mainstream, Java EE
based systems would require more focused attention towards
configuration-related issues.

Keller et al. [9] tested the configuration system of five
non-Java EE systems by injecting misconfigurations using
a tool called ConfErr. ConfErr is different from our
work, ConfInject, as we inject misconfigurations that have
been reported in bug repositories, while ConfErr injects
misconfigurations that are derived from error models in human
psychology only. We consider ConfErr complimentary to
ConfInject, as both efforts give an indication of how robust
a particular software is.

Besides failure characterization and configuration testing,
configuration-error detection [31], Barricade [35] and diag-
nosis works like PeerPressure[36], Chronus [37], ConfAid
[38] are other areas that have been studied in configuration
management research.

X. CONCLUSION AND FUTURE WORK

This work presented an empirical study for characterization
of configuration problems in Java EE servers, followed by a
fault-injection based evaluation. We presented the failure char-
acterization by studying bug reports from the two most popular
Java application servers — GlassFish and JBoss. The studied
dimensions for each configuration-bug were problem-type (pa-
rameter, compatiblity, missing-component), problem-time (pre-
boot-time, boot-time, run-time), problem-manifestation (silent,
non-silent), and problem-culprit (developer, user). The key
findings in our characterization are: (1). More than one-third
of problems reported by users are configuration-related im-
plying that configuration-perspective in software developement
requires considerable attention. (2). Inter-version problems are
majorly parameter related, thus requiring more consistency
in configuration-design from version-to-version. (3). Intra-
version configuration-problems have an almost equal share
for each of parameter, compatiblity, missing-component sub-
types. (4). Code refactoring or re-implementation results in a
increased number of compatibility issues.

9

The second part of this work presented ConfInject,
a tool that injects misconfigurations based on evidence
from bug-repositories. Through the injection process,
ConfInject automates the configuration-management
life-cycle, i.e., start-server, make configuration changes,
deploy applications, undeploy applications and stop-server. It
subsequently analyzes the reaction of the server to each of
the injections by determining the type of manifestation (silent
or non-silent) from server logs. JBoss performs better than
GlassFish with all of the injections giving a non-silent failure
as opposed to only 65% non-silent failures in GlassFish.
Based on the results and our analysis, we suggest automated
fixing of parameter values.

In the future, we plan to automate the manual process of
finding what to inject from bug-repositories. Further, we plan
to incorporate run-time injections, i.e., injections while the
workload is exercised. We will also see how far the results
apply to other kinds of Java software, such as, cluster software,
and then software in other programming languages.

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and
Systems - Volume 4, ser. USITS’03. Berkeley, CA, USA: USENIX
Association, 2003, pp. 1–1.

[2] P. Thibodeau, “Amazon cloud outage was triggered
by configuration error,” April 2011. [Online]. Avail-
able: http://www.computerworld.com/s/article/9216303/Amazon_cloud_
outage_was_triggered_by_configuration_error

[3] F. Foo, “Human error triggered nab software corruption,”
November 2010. [Online]. Available: http://www.theaustralian.
com.au/australian-it/human-error-triggered-nab-software-corruption/
story-e6frgakx-1225962953523

[4] N. Eddy, “Human error caused google glitch,” February 2009.
[Online]. Available: http://www.eweek.com/c/a/Enterprise-Applications/
Human-Error-Caused-Google-Glitch/

[5] B. Hale, “Why every it practitioner should care about network
change and configuration management,” February 2012. [Online].
Available: http://web.swcdn.net/creative/pdf/Whitepapers/Why_Every_
IT_Practitioner_Should_Care_About_NCCM.pdf

[6] “Glassfish.” [Online]. Available: http://glassfish.java.net/
[7] “Jboss.” [Online]. Available: http://www.jboss.org/
[8] “Java on openshift.” [Online]. Available: https://www.openshift.com/

get-started/jboss
[9] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing

resilience to human configuration errors,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, june 2008, pp. 157 –166.

[10] “Java ee jsrs.” [Online]. Available: http://jcp.org/en/jsr/platform?listBy=
3&listByType=platform

[11] “Oracle jrockit jvm.” [Online]. Available: http://www.oracle.com/
technetwork/middleware/jrockit/overview/index.html

[12] “Glassfish bug repository.” [Online]. Available: http://java.net/jira/
browse/GLASSFISH

[13] “Jboss bug repository.” [Online]. Available: https://issues.jboss.org/
browse/JBAS

[14] “How do i migrate my application from as5 or as6 to as7.”
[Online]. Available: https://docs.jboss.org/author/display/AS7/How+do+
I+migrate+my+application+from+AS5+or+AS6+to+AS7

[15] “Jbas-1115: bad path to included xsd gets built in wsdlfilepublisher.”
[Online]. Available: https://issues.jboss.org/browse/JBAS-1115

[16] “Geronimo-3921: getcontextroot() returns forward slash rather than
empty string for apps deployed to root context.” [Online]. Available:
https://issues.apache.org/jira/browse/GERONIMO-3921

[17] “Glassfish-6822: Windows: package-appclient must not show
forward slash.” [Online]. Available: https://java.net/jira/browse/
GLASSFISH-6822

[18] “Glassfish-16039: Jms, problem with destination sources having
jndi-name with forward-slash.” [Online]. Available: https://java.net/jira/
browse/GLASSFISH-16039

[19] “Openejb-1709: Tomee webapps (see rest-example) doesn’t work under
windows (path - problem with backslash ’)́.” [Online]. Available:
https://issues.apache.org/jira/browse/OPENEJB-1709

[20] “Resteasy-656: Context path without trailing slash doesn’t work
with applicationpath(’/’).” [Online]. Available: https://issues.jboss.org/
browse/RESTEASY-656

[21] “Opensso-544: missing slash in resource names.” [Online]. Available:
https://java.net/jira/browse/OPENSSO-544

[22] “Sailfin-1556: Slash in sip uri gives error.” [Online]. Available:
https://java.net/jira/browse/SAILFIN-1556

[23] “Javaserverfaces-1146: Htmlresponsewriter renders unnecessary
’/’ symbols.” [Online]. Available: https://java.net/jira/browse/
JAVASERVERFACES-1146

[24] “Glassfish-2778: Treat empty-string virtual-servers attribute in
<application-ref> as identical to virtual-servers attribute missing.”
[Online]. Available: https://java.net/jira/browse/GLASSFISH-2778

[25] “As7-5550: servlet filter mapping empty string not working.” [Online].
Available: https://issues.jboss.org/browse/AS7-5550

[26] “Cargo api.” [Online]. Available: http://cargo.codehaus.org
[27] “Specjenterprise2010.” [Online]. Available: http://www.spec.org/

jEnterprise2010
[28] “Glassfish verifier: verify-domain-xml.” [Online]. Available: http:

//docs.oracle.com/cd/E19879-01/820-4337/beadq/index.html
[29] “Suggestimate: Detect duplicate jira issues.” [Online]. Available:

http://www.plugenta.com/suggestimate/jira/
[30] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and

S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: ACM, 2011, pp. 159–172.

[31] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based online configuration-error detection,” in Proceedings of
the USENIX Annual Technical Conference, 2011, pp. 28–28.

[32] S. Zhang, “Confdiagnoser: an automated configuration error diagnosis
tool for java software,” in Proceedings of the 2013 International Con-
ference on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA:
IEEE Press, 2013, pp. 1438–1440.

[33] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration
management with operating system causality analysis,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 6, pp. 237–250, Oct. 2007.

[34] J. Li, G. Huang, J. Zou, and H. Mei, “Failure analysis of open source
j2ee application servers,” in Quality Software, 2007. QSIC ’07. Seventh
International Conference on, 2007, pp. 198–208.

[35] F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D. Nguyen,
“Barricade: defending systems against operator mistakes,” in Proceed-
ings of the 5th European conference on Computer systems, ser. EuroSys
’10. New York, NY, USA: ACM, 2010, pp. 83–96.

[36] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
misconfiguration troubleshooting with peerpressure,” in Proceedings of
the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA:
USENIX Association, 2004, pp. 17–17.

[37] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging
as search: finding the needle in the haystack,” in Proceedings of the
6th conference on Symposium on Opearting Systems Design & Imple-
mentation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 6–6.

[38] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–11.

10

http://www.computerworld.com/s/article/9216303/Amazon_cloud_outage_was_triggered_by_configuration_error
http://www.computerworld.com/s/article/9216303/Amazon_cloud_outage_was_triggered_by_configuration_error
http://www.theaustralian.com.au/australian-it/human-error-triggered-nab-software-corruption/story-e6frgakx-1225962953523
http://www.theaustralian.com.au/australian-it/human-error-triggered-nab-software-corruption/story-e6frgakx-1225962953523
http://www.theaustralian.com.au/australian-it/human-error-triggered-nab-software-corruption/story-e6frgakx-1225962953523
http://www.eweek.com/c/a/Enterprise-Applications/Human-Error-Caused-Google-Glitch/
http://www.eweek.com/c/a/Enterprise-Applications/Human-Error-Caused-Google-Glitch/
http://web.swcdn.net/creative/pdf/Whitepapers/Why_Every_IT_Practitioner_Should_Care_About_NCCM.pdf
http://web.swcdn.net/creative/pdf/Whitepapers/Why_Every_IT_Practitioner_Should_Care_About_NCCM.pdf
http://glassfish.java.net/
http://www.jboss.org/
https://www.openshift.com/get-started/jboss
https://www.openshift.com/get-started/jboss
http://jcp.org/en/jsr/platform?listBy=3&listByType=platform
http://jcp.org/en/jsr/platform?listBy=3&listByType=platform
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://java.net/jira/browse/GLASSFISH
http://java.net/jira/browse/GLASSFISH
https://issues.jboss.org/browse/JBAS
https://issues.jboss.org/browse/JBAS
https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7
https://docs.jboss.org/author/display/AS7/How+do+I+migrate+my+application+from+AS5+or+AS6+to+AS7
https://issues.jboss.org/browse/JBAS-1115
https://issues.apache.org/jira/browse/GERONIMO-3921
https://java.net/jira/browse/GLASSFISH-6822
https://java.net/jira/browse/GLASSFISH-6822
https://java.net/jira/browse/GLASSFISH-16039
https://java.net/jira/browse/GLASSFISH-16039
https://issues.apache.org/jira/browse/OPENEJB-1709
https://issues.jboss.org/browse/RESTEASY-656
https://issues.jboss.org/browse/RESTEASY-656
https://java.net/jira/browse/OPENSSO-544
https://java.net/jira/browse/SAILFIN-1556
https://java.net/jira/browse/JAVASERVERFACES-1146
https://java.net/jira/browse/JAVASERVERFACES-1146
https://java.net/jira/browse/GLASSFISH-2778
https://issues.jboss.org/browse/AS7-5550
http://cargo.codehaus.org
http://www.spec.org/jEnterprise2010
http://www.spec.org/jEnterprise2010
http://docs.oracle.com/cd/E19879-01/820-4337/beadq/index.html
http://docs.oracle.com/cd/E19879-01/820-4337/beadq/index.html
http://www.plugenta.com/suggestimate/jira/

	Introduction
	Threats to Validity
	Java EE Application Server Design
	Classification of Configuration Problems
	Type of errors in Java EE application servers
	Non-configuration
	Configuration

	When does the configuration error occur?
	Pre-Boot-time
	Boot-time
	Run-time

	In what manner do the configuration errors manifest?
	Silent
	Non-Silent

	Who is responsible?
	Developer
	User

	Classification Methodolgy and Results
	Methodology
	Study-1 Results
	Distribution by Classification Category

	Study-2 Results
	Distribution by Classification Category

	Fault Injector
	Fault Injection Results
	GlassFish Injection Results
	Forward-slash Injection
	Empty-String Injection

	JBoss Injection Results
	Forward-slash Injection
	Empty-String Injection

	Discussion
	Observations
	Recommendations for better configuration management

	Related Work
	Conclusion and Future Work
	References

