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ABSTRACT
A key challenge in developing large scale applications is
finding bugs that are latent at the small scales of testing,
but manifest themselves when the application is deployed
at a large scale. Here, we ascribe a dual meaning to “large
scale”—it could mean a large number of executing processes
or applications ingesting large amounts of input data (or
both). Traditional statistical techniques fail to detect or di-
agnose such kinds of bugs because no error-free run is avail-
able at the large deployment scales for training purposes.
Prior work used scaling models to detect anomalous behav-
ior at large scales without training on correct behavior at
that scale. However, that work cannot localize bugs auto-
matically, i.e., cannot pinpoint the region of code responsi-
ble for the error. In this paper, we resolve that shortcoming
by making the following three contributions: (i) we develop
an automatic diagnosis technique, based on feature recon-
struction; (ii) we design a heuristic to effectively prune the
large feature space; and (iii) we demonstrate that our system
scales well, in terms of both accuracy and overhead. We val-
idate our design through a large-scale fault-injection study
and two case-studies of real-world bugs, finding that our
system can effectively localize bugs in 92.5% of the cases,
dramatically easing the challenge of finding bugs in large-
scale programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Statistical Methods; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics

General Terms
Reliability

Keywords
Scale-dependent Bug, Program Behavior Prediction, Fea-
ture Reconstruction
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1 Introduction
One of the key challenges in developing large-scale soft-
ware, i.e., software intended to run on many processors or
with very large data sets, is detecting and diagnosing scale-
dependent bugs. Most bugs manifest at both small and large
scales, and as a result, can be identified and caught during
the development process, when programmers are typically
working with both small-scale systems and small-scale in-
puts. However, a particularly insidious class of bugs are
those that predominantly arise at deployment scales. These
bugs appear far less frequently, if at all, at small scales, and
hence are often not caught during development, but only
when a program is released into the wild and is deployed
at large scales. As one example of this class of bugs, there
is a performance bug in one version of the popular parallel
programming library, MPICH2, that arises when the total
amount of data being exchanged between the processes of
the parallel application is large [1]. The root cause of the
bug is overflow of a 32-bit integer variable.

Interestingly, even if a programmer has access to large-
scale inputs and systems, detection and diagnosing scale-
dependent bugs can be intractable. As system size and com-
plexity increase, correctly attributing anomalous behavior to
a part of a program can be quite challenging. If a bug causes
a program to crash at large scale runs, it is obvious that the
error lies with the program, and hence debugging efforts can
focus on locating (and then fixing) the bug in the program.
For bugs that do not have a clear symptom, it may not even
be apparent that there is a bug in the program. For ex-
ample, if a bug does not manifest at small scales but arises
deterministically at large scales, there is no example of cor-
rect behavior at large scales to determine that the observed
behavior is anomalous.

Once a bug is detected, the next challenge is to local-
ize1 the bug. Programs meant to scale up often have large
code bases, so simply identifying that there is a bug is not
sufficient to fix the bug. Instead, the developer would like
to know where the bug arose: which module, function, or
even line number. Unfortunately, performing this localiza-
tion manually for large-scale systems is overwhelming. Even
if the point where the bug manifests can be identified (e.g.,
by examining a stack dump after a program crashes), this lo-
cation may be far removed from the source of the bug. Even
worse is when the bug does not cause the program to crash,
but instead results in incorrect results; in the absence of in-

1We use the terms “diagnosis” and “localization” inter-
changeably; both are defined as the action of pinpointing
the root cause of the detected error to a region of code.



formation associated with a crash, identifying the source of
the error requires examining every possible program location
that may be buggy. For example, a hang bug in a popular
P2P file-sharing program called Transmission manifests only
when the number of peers overflows a fixed-size buffer. How-
ever, traditional debugging techniques (e.g.,Oprofile) can
at best indicate that a particular method is running for a
long time, not that this is a bug. Identifying that the long
running time constitutes a bug requires understanding the
behavior of the method and localizing the bug (even if the
method is known to be buggy) requires investigating 252
lines of code. In contrast, a more accurate tool (such as
the system we develop) can correctly localize the bug to a
specific, 27-line loop.

1.1 Statistical bug diagnosis

A popular approach to detecting and diagnosing bugs is sta-
tistical debugging. At a high level, a statistical model is built
using a set of training runs, which are expected to be not
affected by the bug. This model captures the expected be-
havior of a program by modeling the values of selected pro-
gram features (e.g., the number of times a particular branch
is taken, or the number of times a particular calling context
appears). Then, at deployment time, values of these same
features are collected at different points in the execution; if
the values of these features fall outside the model parame-
ters, the deployed run represents program behavior different
from the training runs and a bug is detected. By examining
which program features are deviant, the bug can be localized
(to different levels of accuracy; the deviant program feature
may just be the one that is most affected by the bug and
not be related to the root cause). This approach has been
taken by numerous prior bug-detection tools [9, 12, 21].

However, the traditional statistical debugging approach is
insufficient to deal with scale-dependent bugs. If the statis-
tical model is trained only on small-scale runs, statistical
techniques can result in numerous false positives. Program
behavior naturally changes as programs scale up (e.g., the
number of times a branch in a loop is taken will depend
on the number of loop iterations, which can depend on the
scale), leading small scale models to incorrectly label bug-
free behaviors at large scales as anomalous. This effect can
be particularly insidious in strong-scaling situations, where
each process of a program inherently does less work at large
scales than at small ones.

While it may seem that incorporating large-scale training
runs into the statistical model will fix the aforementioned
issue, doing so is not straightforward. If a developer can-
not determine whether large-scale behavior is correct, it is
impossible to correctly label the data to train the model.
Furthermore, many scale-dependent bugs affect all the pro-
cesses and are triggered in every execution at large scales.
Thus, it would be impossible to get any sample of bug-free
behavior at large scales for training purposes.

A further complication in building models at large scale
is the overhead of modeling. Modeling time is a function of
training-data size, and as programs scale up, so, too, will
the training data. Moreover, most modeling techniques re-
quire global reasoning and centralized computation. Hence,
the overheads of performing complex statistical modeling on
large-scale training data can rapidly become impractical.

1.2 Detecting scale-dependent bugs
Prior work by us [25] has attempted to address the draw-
backs of existing statistical debugging techniques. Vrisha is
a tool that exploits scale-determined features to detect bugs
in large-scale program runs even if the statistical model was
only trained on small-scale behavior. At a high level, the
intuition behind Vrisha’s operation is as follows. Several
training runs are collected at different small scales. A sta-
tistical model (based on Kernel Canonical Correlation Anal-
ysis, or KCCA) is then built from these training runs to in-
fer the relationship between scale and program behavior. In
essence, we build a scaling model for the program, which can
extrapolate the aggregated behavioral trend as the input or
system size scales up. Bugs can then be automatically de-
tected by identifying deviations from the trend. Notably,
this detection can occur even if the program is run at a
never-before-seen scale.

Unfortunately, Vrisha suffers from two key drawbacks.
First, while KCCA is useful for being able to capture non-
linear relationships between scale and behavior, its accuracy
decreases as the scales seen in deployment runs become sig-
nificantly larger than the scales used in training. Hence,
Vrisha loses effectiveness when attempting to detect bugs
in large-scale systems, primarily reflected in an increase in
its false alarms (we show this empirically in Section 5.1).

Second, and more importantly, while the detection of bugs
is automatic, Vrisha is only able to identify that the scaling
trend has been violated; it cannot determine which program
feature violated the trend, nor where in the program the bug
manifested. Hence, diagnosis in Vrisha is a manual pro-
cess. The behavior of the program at the various small scales
of the training set are inspected to predict expected values
for each individual program feature at the problematic large
scale, and discrepancies from these manually-extrapolated
behaviors can be used to hone in on the bug.

This diagnosis procedure is ineffective under many real-
world scenarios. First, if different aspects of program be-
havior are related to scale through different functions (lin-
ear, quadratic, etc.), then each feature must be considered
separately when attempting to infer a scaling trend. This
inference can be intractable when the feature set is large, as
it is for reasonable-sized programs and in situations where
many of its features need to be considered to achieve reason-
able detection coverage. Second, some scaling trends may be
difficult to detect unless a large number of training runs at
different scales are considered, again making manual infer-
ence of these trends impractical. Finally, some features may
not be well-correlated with scale at all, such as the delay in
network communication, which will depend on factors exter-
nal to the particular application being debugged. Without a
means to identifying such problematic features, Vrisha will
falsely flag them as being erroneous, leading developers on
a wild-goose chase.

In follow-on work, Abhranta, we tweaked Vrisha’s pro-
gram model to automatically diagnose bugs [24]. However,
because Abhranta is based on the same KCCA technique
as Vrisha, and does not attempt to deal with problematic
features, its accuracy precipitously declines as the scale of
production runs increases, leading to increasingly inaccurate
diagnoses. Consequently, for large-scale runs, it is still nec-
essary to resort to manual inspection to diagnose bugs.

Hence, it is fair to say that neither Vrisha nor Abhranta
support automated diagnosis of bugs in large-scale systems.



1.3 Our approach: WuKong

This paper presents WuKong2, an automatic, scalable ap-
proach to detecting and diagnosing bugs that manifest at
large system scales. WuKong is designed to model pro-
gram behavior as a group of features, each representing the
behavior of a particular part of the program in an execution.

In a typical usage scenario, WuKong is deployed in pro-
duction runs, after a program has been thoroughly tested at
small scales, to detect and diagnose bugs. WuKong works
towards diagnosing a bug in three steps. First, during devel-
opment a series of small-scale bug-free runs are analyzed to
derive per-feature behavioral models for the program. Sec-
ond, during production runs, the behavioral models predict
what the correct value for each feature at production scale
would be if the large-scale run were bug-free. Finally, the
actual value and the predicted value of each feature are com-
pared; if any features behave differently from the prediction,
a bug is detected, and the most deviant features are iden-
tified as the probable root causes for the bug. Since every
feature can be attributed to a particular part of the program,
it is straightforward to map suspicious features to locations
in the source code of the program.

WuKong is based on the same high level concepts as Vr-
isha and Abhranta, but provides three key contributions
over the previous work:

Automatic bug localization As described above, Vr-
isha’s diagnosis technique requires careful manual inspec-
tion of program behaviors both from the training set and
from the deployed run. WuKong, in contrast, provides
an automatic diagnosis technique. WuKong alters Vr-
isha’s modeling technique, using per-feature regression mod-
els, built across multiple training scales that can accurately
predict the expected bug-free behavior at large scales.

When presented with a large-scale execution, WuKong
uses these models to infer what the value of each feature
would have been were a run bug-free. If any feature’s ob-
served value deviates from the predicted value by a sufficient
amount, WuKong detects a bug. With carefully chosen
program features that can be linked to particular regions of
code (WuKong uses calling contexts rooted at conditional
statements, as described in Section 3), ranking features by
their prediction error can identify which lines of code result
in particularly unexpected behavior. This ranked list there-
fore provides a roadmap the programmer can use in tracking
down the bug.

Feature pruning Not all program behaviors are well-
correlated with scale, and hence cannot be predicted by
scaling models. Examples of such behaviors include random
conditionals (e.g., if (x < rand())) or, more commonly,
data-dependent behaviors (where the values of the input
data, rather than the size of that data determine behavior).
The existence of such hard-to-model features can dramati-
cally reduce the effectiveness of detection and localization: a
feature whose behavior seems aberrant may be truly buggy,
or may represent a modeling failure. To address this short-
coming, we introduce a novel cross-validation-based feature
pruning technique. This mechanism can effectively prune
features that are hard to model accurately from the training

2WuKong, the Monkey King, is the main character in the
epic Chinese novel Journey to the West, and possesses the
ability to recognize evil in any form.

set, allowing programmers to trade off reduced detectability
for improved localization accuracy. We find that our pruning
technique can dramatically improve localization with only a
minimal impact on detectability.

Scaling A key drawback to many statistical debugging
techniques is the scalability of both the initial modeling
phase, and the detection phase. As scales increase, the
cost of building statistical models of large-scale behavior
becomes prohibitive, especially with global modeling tech-
niques. WuKong possesses an intriguing property: because
the training models do not need to be built at large scales,
WuKong’s modeling cost is independent of system scale.
Hence, WuKong is uniquely suited to diagnosing bugs in
very large scale systems. Furthermore, because WuKong’s
detection strategy is purely local to each execution entity,
detection and diagnosis cost scales only linearly with system
size, and is constant on a per-process basis.

In this work, we show that our per-feature scaling models
can be used to effectively detect and diagnose bugs at large
scales (> 1000 processes) even when trained only at small
scales (≤ 128 processes). In particular, we show through a
fault-injection study that not only can WuKong accurately
detect faulty program behaviors in large-scale runs, but that
it can correctly locate the buggy program location 92.5% of
the time. We show that our modeling errors and overheads
are independent of scale, leading to a truly scalable solution.

1.4 Outline
Section 2 presents the data collection of WuKong. Section 3
describes WuKong’s new approach to modeling the scaling
behavior of programs, including our feature pruning strat-
egy. Section 4 discusses how WuKong uses these models to
detect and localize bugs. Section 5 demonstrates, through
several case studies, the utility of WuKong for automati-
cally diagnosing bugs, and shows, through a fault-injection
study, that WuKong scales effectively to 1024 processes.
Section 6 discusses related work, and Section 7 concludes.

2 Data Collection
This section presents the data collection approach used by
WuKong to capture program behaviors at different scales.
Recall that the goal of WuKong is to diagnose bugs in pro-
gram runs at large scales, even if it has never observed cor-
rect behavior at that large scale. Therefore, WuKong needs
to observe program behaviors at a series of training scales
to derive the scaling trend.

The fundamental approach of WuKong is to build a sta-
tistical model of program behavior that incorporates scale.
Essentially, we would like a model that infers the relation-
ship between scale attributes (e.g., number of processes, or
input size) and behavior attributes (e.g., trip count of loops,
value distribution of variables). We will discuss what infor-
mation is collected, how WuKong does the data collection,
and a few optimizations to reduce the run-time overhead.

2.1 Control and Observational Features
WuKong operates by building a model of behavior for a pro-
gram. To do so, it must collect data about an application’s
behavior, and sufficient information about an application’s
configuration to predict its behavior.

WuKong collects values of two types of features: control
features and observational features. Control features gen-
eralize scale: they include all input properties and configu-



ration parameters to an application that govern its behav-
ior. Example control features include input size, number of
processes and, for MPI applications, process rank. Control
features can be gathered for a program execution merely by
analyzing the inputs and arguments to the program. Ob-
servational features capture the observed behavior of the
program. Examples include the number of times a syscall is
made, or the number of times a libc function is called.

WuKong uses context-sensitive branch profiles as its ob-
servational features. Every time a branch instruction is ex-
ecuted, WuKong’s instrumentation computes the current
calling context, i.e., the call stack, plus the address of the
branch instruction, and uses the result as an index to ac-
cess and update the corresponding tuple of two counters:
one recording the number of times this branch is taken, and
the other recording the number of times this branch is not
taken. The benefits of choosing such observational features
are twofold: (1) by choosing observational features that can
be associated with unambiguous program points, WuKong
can provide a roadmap to the developer to hone in on the
source of the bug; (2) with this selection of observational fea-
tures, WuKong is geared to observe perturbations in both
the taken → not taken and not taken → taken directions
thereby, in principle, detecting and locating all bugs that
perturb control-flow behavior.

Observational and control features are collected separately
for each unit of execution we wish to model. For example,
when analyzing MPI applications, WuKong collects data
and builds a model for each process separately. Currently,
the execution unit granularity must be specified by the pro-
grammer; automatically selecting the granularity is beyond
the scope of this work.

2.2 Optimizing Call Stack Recording
WuKong’s run-time overhead comes solely from collecting
the observational features, since the control features can be
extracted before running the program. This section presents
performance optimizations we employ to reduce the run-
time overhead for a given set of observational features. Sec-
tion 3.4 will describe our approach to pruning the observa-
tional feature set, whose main goal is to increase the accu-
racy of detection and diagnosis, but which has the additional
benefit of reducing the overhead of data collection.

WuKong’s instrumentation operates at the binary code
level, where determining the boundary of a function can
be difficult, as compilers may apply complex optimizations,
e.g., using “jmp” to call a function or return from one, pop-
ping out multiple stack frames with a single instruction, is-
suing “call” to get the current PC, etc.. As a result, simply
shadowing the “call” and “ret” instructions cannot capture
the call stack reliably. Instead, WuKong walks down the
call stack from the saved frame pointer in the top stack
frame, chasing the chain of frame pointers, and recording
the return address of each frame until it reaches the bottom
of the call stack. This makes sure that WuKong records an
accurate copy of the current call stack irrespective of com-
piler optimizations.

Based on the principle of locality, we design a caching
mechanism to reduce the overhead incurred by stack walking
in WuKong. First, whenever WuKong finishes a stack
walk, it caches the recorded call stack. Before starting the
next stack walk, it compares the value of the frame pointer
on top of the cached call stack and the current frame pointer

register and uses the cached call stack if there is a match.
This optimization takes advantage of the temporal locality
that consecutive branches are likely to be a part of the same
function and therefore share the same call stack. Note that
it is possible in theory to have inaccurate cache hit where
consecutive branch instructions with the same frame pointer
come from different calling contexts. We expect such a case
to be rare in practice, and it did not arise in any of our
empirical studies.

3 Modeling Program Behavior
This section describes WuKong’s modeling technique. The
key component is the construction of per-feature models that
capture the relationship between the control features and the
value of a particular observational feature. These models
can be used to predict the expected observational features
for production runs at a scale larger than any seen during
training. As a result, the correct behavior (observational
feature values) of large scale runs can be reconstructed based
on the prediction of the model, and this information can be
used for detection and localization.

3.1 Overview
At a high level, WuKong’s modeling, detection and local-
ization approach consists of the following components.

(a) Model Building During training, control and observa-
tional features are collected at a series of small scales. These
features are used to construct per-feature regression models
that capture non-linear relationships between system scale
(the control features) and program behavior (the observa-
tional features). Sections 3.2 and 3.3 describe WuKong’s
modeling strategy in more detail.

(b) Feature Pruning Features whose behavior is inher-
ently unpredictable (e.g., non-deterministic, discontinu-
ous or overly-complex) cannot be accurately modeled by
WuKong’s regression models. Because model failures can
complicate detection and localization (poorly modeled fea-
tures may deviate significantly from predictions, triggering
false positives), WuKong uses a novel, cross-validation-
based feature pruning strategy to improve the accuracy of
detection and localization. Section 3.4 details this approach.

(c) Bug Diagnosis WuKong can detect and diagnose bugs
in large-scale production runs by using its models to predict
what behavior should have been at that large scale. Intu-
itively, a feature whose predicted value is significantly dif-
ferent from its actual value is more likely to be involved in
the bug than a feature whose predicted value is close to its
actual value. A test run is flagged as buggy if any one of
its features has a significant deviation between its observed
and the predicted values. To locate a bug, WuKong simply
ranks features by the relative difference between the pre-
dicted value and the actual value, and presents the ordered
list to the programmer. Section 4 elaborates further.

3.2 Model Building
WuKong models application behavior with a collection of
base models, each of which characterizes a single observa-
tional feature. The base model is an instance of multiple
regression where multiple predictors are considered. Specifi-
cally, the base model for each observational feature considers
all control features as predictor variables, and the value of
the observational feature as the response variable.



Suppose Y is the observational feature in question, and
Xi for i = 1 . . . N are the N control features. We note that
a base model of the form:

Y = β0 +

N∑
i=1

βi ·Xi (1)

is not sufficient to capture complex relationships between
control features and program behavior. It does not account
for higher-order relationships between behavior and scale
(consider the many algorithms that are O(n2)), and it does
not capture interaction between control features (consider a
program location inside a doubly-nested loop where the in-
ner loop runsXi times and the outer loop runsXj times). To
account for this, we apply a logarithmic transform on both
the control features and the observational feature, yielding
the following base model:

log(Y ) = β0 +

N∑
i=1

βi log(Xi) (2)

The refined model transforms multiplicative relationships
between the variables into additive relationships in the
model, allowing us to capture the necessary higher order
and interactive effects.

The multiple regression problem is solved by the ordinary
least squares method. The solution is given by a vector of
coefficients β0...βN :

arg min
β0,...,βN

|| log(Y )−
N∑
i=1

βi log(Xi)− β0||2 (3)

The resulting model achieves the best fit for the training
data, i.e., it minimizes the mean squared prediction error of
Y .

WuKong limits the regression model to linear terms as
our empirical results suggest linear terms are enough to cap-
ture the scaling trend of most observational features. Al-
though more complex terms, (e.g., high order polynomials,
cross products, etc.) might result in better fit for the train-
ing data, they also have a higher risk of overfitting and gen-
eralize poorly for the test data.

Since each feature gets its own base model, we do not face
the same problem as in Vrisha [25], where a single model
must be “reverse-engineered” to find values for individual
observational features. Instead, WuKong can accurately
predict each feature in isolation. Moreover, the linear base
models leads to more stable extrapolation at large scales,
thanks to the lack of over-fitting.

3.3 Base Model Customization
One model does not fit all observational features. Obser-
vational features usually scale at differing speeds and the
scaling trends of different features may be vastly different.
Furthermore, some observational features may depend only
on a subset of all control features. Therefore, throwing all
control features into the base model for every observational
feature may result in over-fitting the data, and lower the
prediction accuracy for such features. To handle this prob-
lem, we need to customize the base model for each individual
observational feature based on the training data. Through
the customization process, we want to determine the par-
ticular formula used for modeling each individual feature,
i.e., which control features should be included as predictor

variables in the model. Essentially, we want the simplest
possible model that fits the training data; if making the
model more complex only yields a marginal improvement in
accuracy, we should prefer the simpler model.

WuKong’s model customization is based on the Akaike
Information Criterion (AIC) [4], a measure of relative good-
ness of fit in a statistical model given by:

AIC = −2 ln(L) + 2k (4)

where L is the likelihood of the statistical model, which mea-
sures the goodness of fit, and k is the number of parame-
ters in the model, which measures the model complexity.
Unlike the more common approach to measuring model ac-
curacy, the coefficient of determination R2, AIC penalizes
more complex models (intuitively, a more complex model
must provide a much better fit to be preferred to a simpler
model). This avoids over-fitting and ensures that WuKong
produces appropriately simple models for each observational
feature.

In a program with N control features, there are 2N pos-
sible models that match the form of Equation 2. If N is
small, it is feasible to conduct an exhaustive search through
every model configuration to find the appropriate model for
each observational feature. However, if N is large, the con-
figuration space might be prohibitively large, making an ex-
haustive search impractical. In such a scenario, WuKong
uses a greedy, hill-descending algorithm [13]. We begin with
a model that includes all control features. At each step,
WuKong considers all models one “move” away from the
current model: all models with one fewer control feature
than the current model and all models with one more control
feature than the current model. Of the candidate models,
WuKong picks the one with the lower AIC and makes it
the current model. The process continues until no “move”
reduces the AIC compared to the current model. For any
single observational feature, the result of model customiza-
tion is a model that includes a subset of control features that
are most relevant to that particular observational feature.

3.4 Feature Selection and Pruning
As described in Section 2, WuKong uses as its observational
features all conditionals in a program, augmented with the
dynamic calling context in which that conditional executed.
Each time a particular conditional is evaluated, WuKong
increments the value of the appropriate feature.

The logarithmic model in Section 3.2 allows us to readily
compute the relative prediction error for a given feature,
which we require to identify faulty features (see Section 4).
The model built for each observational feature, i, is used to
make prediction Y ′i for what the value of that feature should
have been if the program were not buggy. WuKong then
compares Y ′i to the observed behavior, Yi and calculates the
relative prediction error of each observational feature, using
the approach of Barnes et al. [6]:

Ei = |elog(Y
′
i )−log(Yi) − 1| (5)

Note that a constant prediction of 0 for any feature will
result in relative reconstruction error of 1.0; hence, relative
errors greater than 1.0 are a clear indication of a poorly-
predicted feature.

Unfortunately, not all observational features can be effec-
tively predicted by WuKong’s regression models, leading
to errors in both detection and diagnosis. There are two



main reasons why an observational feature can be problem-
atic for WuKong. One is that the feature value is non-
deterministic: a conditional whose outcome is dependent
on a random number, for example. Because such features
do not have deterministic values, it is impossible to model
them effectively. Recollect that WuKong relies on the as-
sumption that any observational feature is determined by
the control features.

A second situation in which a feature cannot be modeled
well is if its value is dependent on characteristics not cap-
tured by the control features. These could be confounding
factors that affect program behavior such as OS-level inter-
ference or network congestion. Another confounding factor
is data-dependent behavior. WuKong uses as its control
features scale information about the program, such as num-
ber of processes/threads or input data size. If a program’s
behavior is determined by the contents of the input, instead,
WuKong does not capture the appropriate information to
predict a program’s behavior.

WuKong’s reconstruction techniques can be thrown off
by unpredictable program behavior: the behavioral model
will be trained with behavior that is not correlated with the
control features, and hence spurious trends will be identified.
Note that even a small number of such problematic features
can both introduce false positives and seriously affect the ac-
curacy of localization. If WuKong makes a prediction based
on spurious trends, even non-buggy behavior may disagree
with the (mis)prediction, leading to erroneously detected er-
rors. Second, even if an error is correctly detected, because
reconstruction will be based on bogus information, it is likely
that the reconstruction errors for such problematic features
will be fairly high, pushing the true source of errors farther
down the list. The developer will be left investigating the
sources of these problematic features, which will not be re-
lated to any bug.

We note, however, that if we had a means of removing bad
features, we could dramatically improve localization perfor-
mance. Because a bad feature’s appearance at the top of
WuKong’s roadmap occurs far out of proportion to its like-
lihood of actually being the buggy feature, simply filtering it
from the feature set will negatively impact a small number of
localization attempts (those where the filtered feature is the
source of the bug) while significantly improving all other lo-
calization attempts (by removing spurious features from the
roadmap). Therefore, WuKong employs a feature filtration
strategy to identify hard-to-model features and remove them
from the feature list.

To eliminate bad features, WuKong employs cross vali-
dation [13]. Cross validation uses a portion of the training
data to test models built using the remainder of the train-
ing data. The underlying assumption is that the training
data does not have any error. More specifically, WuKong
employs k-fold cross-validation. It splits the original train-
ing data by row (i.e. by training run) into k equal folds,
treats each one of the k folds in turn as the test data and
the remaining k − 1 folds as the training data, then trains
and evaluates a model using each of the k sets of data. For
each cross-validation step, we compute the relative recon-
struction error of each feature Xi for each of the (current)
test runs.

If a particular feature cannot be modeled well during
cross validation, WuKong assumes that the feature is un-
predictable and will filter it out from the roadmaps gen-

erated during the localization phase. WuKong’s pruning
algorithm operates as follows.

WuKong has a pruning threshold parameter, x, that gov-
erns how aggressively WuKong will be when deciding that
a feature is unpredictable. Given a pruning threshold x, a
feature is only kept if it is well-predicted in at least x% of
the training runs during cross-validation. In other words,
WuKong will remove a feature if more than (100 − x)%
of the runs are poorly predicted (i.e., have a relative re-
construction error less than 1.0). For example, if the prun-
ing threshold is 25%, then WuKong prunes any feature for
which more than 75% of its (relative) errors are more than
than 1.0. The higher x is, the more aggressive the prun-
ing is. If x is 0, then no pruning happens (no runs need
be well predicted). If x is 100, then pruning is extremely
aggressive (there can be no prediction errors for the feature
during cross-validation). Typically, x is set lower than 100,
to account for the possibility of outliers in the training data.

Some discontinuous features are hard to eliminate with
cross-validation because only a few runs during training have
problematic values. Hence, in addition to cross-validation-
based feature pruning, WuKong also employs a heuris-
tic to detect potentially-discontinuous observational features
based on the following two criteria [15]:

• Discrete value percentage: defined as the number of
unique values as a percentage of the number of obser-
vations; Rule-of-thumb: < 20% could indicate a prob-
lem.

• Frequency ratio: defined as the frequency of the most
common value divided by the frequency of the second
most common value; Rule-of-thumb: > 19 could indi-
cate a problem.

If both criteria are violated, the feature has too-few unique
values and hence is considered potentially discontinuous.
These features are pruned from the feature set, and are not
used during detection or diagnosis.

It is important to note that the feature pruning performed
by WuKong is a complement to the model customization
described in the prior section. Model customization prunes
the control features used to model a particular observational
feature. In contrast, feature pruning filters the observational
features that cannot be effectively modeled by any combi-
nation of the control features.

4 Debugging Programs at Large Scales
Once the models are built and refined, as described in the
previous section, WuKong uses those models to debug pro-
grams at large scales. This proceeds in two steps, detection
and diagnosis, but the basic operation is the same. When
a program is run at large scale, WuKong uses its models
to predict what each observational feature should be, given
the control features of the large-scale run3. In other words,
WuKong uses its models to predict the expected behavior
of the program at large scale. These predictions are then
used to detect and diagnose bugs, as described below.

3Note that WuKong makes the crucial assumption that the
control features for production runs are correct; this is rea-
sonable since control features tend to be characteristics of
program inputs and arguments.



4.1 Bug Detection
WuKong detects bugs by determining if the behavior of
a program execution is inconsistent with the scaling trends
captured by the behavioral model. If any feature’s observed
value differs significantly from its predicted value, WuKong
declares a bug. The question then, is what constitutes “sig-
nificantly”? WuKong sets detection thresholds for flagging
bugs as follows.

For each observational features, WuKong tracks the re-
construction errors for that feature across all the runs used
in cross validation during training (recall that this cross val-
idation is performed for feature pruning). For each feature,
WuKong determines the maximum relative error (Equa-
tion 5) observed during cross validation, and uses this to
determine the detection threshold. If Mi is the maximum
relative reconstruction error observed for feature i during
training, WuKong computes Ei, the relative reconstruction
error for the test run, and flags an error if

Ei > ηMi (6)

where η is a tunable detection threshold parameter. Note
that η is a global parameter, but the detection threshold for
a given feature is based on that feature’s maximum observed
reconstruction error, and hence each feature has its own de-
tection threshold. What should η be? A lower detection
threshold makes flagging errors more likely (in fact, a de-
tection sensitivity less than 1 means that even some known
non-buggy training runs would be flagged as buggy), while
a higher detection threshold makes flagging errors less likely
(η ≥ 1 means that no training run would have been flagged
as buggy).

We note that in the context of bug detection, false pos-
itives are particularly damaging: each false positive wastes
the programmer’s time searching for a non-existent bug. In
contrast, false negatives, while problematic (a technique that
detects no bugs is not particularly helpful!), are less harm-
ful: at worst, the programmer is no worse off than without
the technique, not knowing whether a bug exists or not. As
a result of this fundamental asymmetry, we bias η towards
false negatives to prevent false positives: η should always be
set to a greater-than-one constant. We use η = 1.15 in our
experiments; Section 5.1 shows how changing η affects false
positive and negative rates.

4.2 Bug Localization
When a bug is detected, to provide a “roadmap” for develop-
ers to follow when tracking down the bug, WuKong ranks
all observational features by relative error; the features that
deviate most from the predicted behavior will have the high-
est relative error and will be presented as the most likely
sources for the bug. WuKong produces the entire ranked
list of erroneous features, allowing programmers to inves-
tigate all possible sources of the bug, prioritized by error.
Note that while deviant features are likely to be involved
with the bug, the most deviant features may not actually
be the source of the bug. Buggy behavior can propagate
through the program and lead to other features’ going awry,
often by much larger amounts than the initial bug (a“butter-
fly effect”). Nevertheless, as we show in Section 5’s fault in-
jection study, the majority of the time the statement that is
the root cause of the bug appears at the top of the roadmap.

test run

false positive

false negative

successful detection

successful localization

underpruning error

underpruning error

oversensitivity error

overpruning error

overpruning error

undersensitivity error

Figure 1: Possible outcomes and errors when using
WuKong to detect and diagnose bugs.

4.3 Sources and types of detection and diag-
nosis error

WuKong has two primary configuration parameters that
affect the error rates of both its detection scheme and its
diagnosis strategy: the feature pruning parameter x, and
the detection threshold parameter η. This section describes
how these parameters interact intuitively, while the sensi-
tivity studies in Section 5 explore these effects empirically.
Figure 1 shows the possible outcomes and error types that
can occur when WuKong is applied to a test run; we discuss
these error sources in more detail below.

False positives The most insidious error, from a developer
productivity standpoint, is a false positive (an erroneous de-
tection of an error in a bug-free run): if WuKong throws
up a false positive, the developer can spend hours search-
ing for a bug that does not exist. False positives can arise
from two sources: feature underpruning and detection over-
sensitivity. Feature underpruning occurs when the pruning
threshold x is set too low. By keeping too many features, in-
cluding those that cannot be modeled effectively, WuKong
may detect an error when a poorly-modeled feature leads to
a bad prediction, even if the observed feature value is cor-
rect. Detection oversensitivity happens when the detection
threshold η is too low, which increases the model’s sensi-
tivity to slight variations and deviations from the predicted
value, increasing the likelihood of a false positive.

If a test run results in a false positive, it is hard to pin-
point the source of the error, as both oversensitivity and
underpruning lead to correct features’ being mispredicted
by WuKong. Nevertheless, if the erroneous feature was
never mispredicted during training (i.e., it would not have
been pruned even if the pruning threshold were 100%), then
oversensitivity is likely at fault.

False negatives False negatives occur when a buggy run
is incorrectly determined to be correct by WuKong, and
can occur for two reasons (unsurprisingly, these are the op-
posite of the issues that result in false positives): feature
overpruning and detection undersensitivity. If too many fea-
tures are pruned, then WuKong tracks fewer features, and
hence observes less program behavior. Because WuKong
can only detect a bug when it observes program behavior
changing, tracking fewer features makes it more likely that
a bug will be missed. If the detection threshold is raised,
then the magnitude of reconstruction error necessary to de-
tect a bug is correspondingly higher, making WuKong less
sensitive to behavior perturbations, and hence less likely to
detect a bug.

For false negatives, overpruning is the culprit if the er-
ror manifested in a pruned feature, while undersensitivity is



the issue if the error manifested in a tracked feature, but
WuKong did not flag the error.

Diagnosis errors Even after WuKong correctly detects a
bug in a program, it may not be able to successfully local-
ize the bug (here, successful localization means that the bug
appears within the top k features suggested by WuKong).
The success of localization is primarily driven by x, the fea-
ture pruning threshold. Interestingly, there are two types
of localization errors, one of which is caused by overprun-
ing, and the other by underpruning. If x is too low, and
features are underpruned, then many poorly-modeled fea-
tures will be included in WuKong’s model. These poorly
modeled features can have high reconstruction errors, pol-
luting the ranked list of features, and pushing the true error
farther down the list. Conversely, if x is too high and the
feature set is overpruned, the erroneous feature may not
appear anywhere in the list. It may seem weird that the
erroneous feature could be pruned from the feature set even
while WuKong detects the bug. This is due to the butter-
fly effect discussed earlier; even though the buggy feature is
not tracked, features that are affected by the bug may be
tracked, and trigger detection.

For detection errors, it is easy to determine whether over-
pruning is the source of an error. If the buggy feature is
not in the feature set at all, x is too high. Underpruning
is harder to detect. It is a potential problem if the buggy
feature appears in the feature set but is not highly placed in
the ranked list of problematic features. However, the same
outcome occurs if the bug cascades to a number of other
features, all of which are perturbed significantly as a result,
and hence appear high in the list. Due to this error prop-
agation, it is non-trivial to decide whether more aggressive
pruning would have improved localization accuracy.

5 Evaluation
This section describes our evaluation of WuKong. We im-
plemented WuKong using PIN [20] to perform dynamic bi-
nary instrumentation. To collect the features as described
in Section 2, we use PIN to instrument every branch in the
program to determine which features should be incremented
and update the necessary counters. WuKong’s detection
and diagnosis analyses are performed offline using the data
collected after running a PIN-instrumented program at pro-
duction scales.

We start by conducting large scale fault injection experi-
ments on AMG2006, a benchmark application from the Se-
quoia benchmark suite [2]. Through these experiments, we
show that (a) our log-transformed linear regression model
can accurately predict scale-dependent behavior in the ob-
servational features for runs at an unseen large scale; (b) the
automatic feature pruning techniques based on cross valida-
tion allow us to diagnose injected faults more effectively; (c)
as the scale of the test system increases, the modeling time
for WuKong remains fixed without hurting accuracy; and
(d) the overhead for instrumentation does not increase with
the scales of test systems.

We also present two case studies of real bugs, demonstrat-
ing how WuKong can be used to localize scale-dependent
bugs in real-world software systems. These bugs can only
be triggered when executed at a large scale. Thus, they
are unlikely to manifest in testing, and must be detected at
deployed scales. One of the case studies is also used in Vr-
isha [25]. We demonstrate here how WuKong can be used

to automatically identify which features are involved in the
bug and can help pinpoint the source of the fault. The two
applications come from different domains, one from high per-
formance computing in an MPI-C program, and the other
from distributed peer-to-peer computing in a C program.
Since WuKong works at the binary level for the program
features, it is applicable to these starkly different domains.

The fault injection experiments were conducted on a Cray
XT5 cluster, as part of the XSEDE computing environment,
with 112,896 cores in 9,408 compute nodes. The case studies
were conducted on a local cluster with 128 cores in 16 nodes
running Linux 2.6.18. The statistical analysis was done on
a dual-core computer running Windows 7.

5.1 Fault Injection Study with AMG2006
AMG2006 is a parallel algebraic multigrid solver for linear
systems, written in 104K lines of C code. The application
is configured to solve the default 3D Laplace type problem
with the GMRES algorithm and the low-complexity AMG
preconditioner in the following experiments. The research
questions we were looking to answer with the AMG2006
synthetic fault injection study are:

• Is WuKong’s model able to extrapolate the correct
program behavior at large scales from training runs at
small scales?

• Can WuKong effectively detect and locate bugs by
comparing the predicted behavior and the actual be-
havior at large scales?

• Does feature pruning improve the accuracy and instru-
mentation overhead of WuKong?

We began by building a model for each observational fea-
ture of AMG2006, using as training runs program execu-
tions ranging from 8 to 128 nodes. The control features
were the X, Y , Z dimension parameters of the 3D process
topology, and the observational features were chosen using
the approach described in Section 3.4, resulting in 3 control
features and 4604 observational features. When we apply
feature pruning with a threshold of 90%, we are left with
4036 observational features for which WuKong builds scal-
ing models.

Scalability of Behavior Prediction To answer the first
research question, we evaluated WuKong on 31 non-buggy
test runs of distinct configurations, i.e., each with a unique
control feature vector, using 256, 512 and 1024 nodes to see
if WuKong can recognize these normal large-scale runs as
non-buggy in the detection phase. Based on the detection
threshold η = 1.15 and a feature pruning threshold of 90%,
WuKong correctly identified all of the 31 test runs as nor-
mal, thus having zero false positives. In contrast, the prior
state-of-the-art in detection of scale-dependent bugs, Vr-
isha [25], flags six of the 31 runs as buggy, for a 19.4% false
positive rate. Recall that false positives are highly unde-
sirable in this context because each false positive leads the
developer to chase after a non-existent bug.

Table 1 gives the mean reconstruction error, the time for
analysis, and the runtime overhead, due to collecting the
observational feature values, at each scale. We see that the
average reconstruction error for the features in the test runs
is always less than 10% and does not increase with scale de-
spite using the same model for all scales. Hence, WuKong’s
regression models are effective at predicting the large scale



Scale of
Run

Mean
Error

Analysis
Time (s)

Runtime
Overhead

256 6.55% 0.089 5.3%
512 8.33% 0.143 5.4%
1024 7.77% 0.172 3.2%

Table 1: Scalability of WuKong for AMG2006 on
test runs with 256, 512 and 1024 nodes.

behavior of the benchmark despite having only seen small
scale behavior.

Furthermore, WuKong’s run-time overhead does not in-
crease with scale. Indeed, because there is a fixed com-
ponent to the overhead of Pin-based instrumentation and
larger-scale runs take longer, the average run-time overhead
of feature collection decreases a little as scale increases. On
the other hand, the analysis overhead (evaluating the detec-
tion and reconstruction models for the test runs) is always
less than 1/5th of a second. Hence, with diminishing in-
strumentation costs and negligible analysis costs, WuKong
provides clear scalability advantages over approaches that
require more complex analyses at large scales.

Effectiveness in Fault Diagnosis To determine the effec-
tiveness of WuKong’s bug detection and localization capa-
bilities, we injected faults into 100 instances of the 1024-node
run of AMG2006. Each time a random conditional branch
instruction is picked to “flip” throughout the entire execu-
tion. The faults are designed to emulate what would happen
if a bug changed the control flow behavior at the 1024-node
scale but not at the smaller training scales, as manifested
in common bug types, such as integer overflow errors, buffer
overflows, etc.. This kind of injection has been a staple of
the dependability community due to its ability to map to
realistic software bugs (e.g., see the argument in [22]).

Using the same pruning and detection thresholds as in
the scalability study, we evaluated WuKong’s ability to (a)
detect the faults, and (b) precisely localize the faults. Of
the 100 injected runs, 57 resulted in non-crashing bugs, and
93.0% of those were detected by WuKong. For the crash-
ing bugs, the detection method is obvious and therefore, we
leave these out of our study. We also tested with alternative
values for the detection threshold η as shown by Table 2.
This shows, expectedly, that as η increases, i.e.,WuKong
is less trigger-happy in declaring a run to be erroneous, the
false positive rate decreases, until it quickly reaches the de-
sirable value of zero. Promisingly, the false negative rate
stays quite steady and low until a high value of η is reached.

We next studied the accuracy of WuKong’s localization
roadmap. For the runs where WuKong successfully de-
tects a bug, we used the approach of Section 4.2 to produce
a rank-ordered list of features to inspect. We found that
71.7% of the time the faulty feature was the very first feature
identified by WuKong. This compares to a null-hypothesis
(randomly selected features) outcome of the correct feature
being the top feature a mere 0.35% of the time. With the
top 10 most suspicious features given by WuKong, we can
further increase the localization rate to 92.5%. Thus, we
find that WuKong is effective and precise in locating the
majority of the randomly injected faults in AMG2006.

Sensitivity to Feature Pruning We examined the sensitiv-
ity of WuKong to the feature pruning threshold. With a
detection threshold η = 1.15, we used three different prun-
ing thresholds: 0%, 90%, and 99%. Table 3 shows how many

η False Posi-
tive

False Neg-
ative

1.05 9.7% 5.3%
1.10 6.5% 7.0%
1.15 0% 7.0%
1.20 0% 7.0%
1.25 0% 12.3%

Table 2: The accuracy of detection at various levels
of detection threshold with a 90% pruning threshold.

features were filtered during pruning, the false positive rate
of detection, the false negative rate of detection, the percent-
age of detected faulty runs where the faulty feature appears
among the top 1, top 5 and top 10 of ranked features. Note
that if the buggy feature is pruned for a faulty run, localiza-
tion will always fail.

We see that performing a small amount of feature prun-
ing can dramatically improve the quality of WuKong’s de-
tection and localization accuracy: at a threshold of 90%,
false positives are completely eliminated from the detection
result, compared with a 6.5% false positive rate when no
feature pruning is done; in the meantime, over 92.5% of the
faulty features appear in the top 10 features suggested by
WuKong, a jump from 85.2% in the case of no pruning. We
note that being too aggressive with pruning can harm local-
ization: with a threshold of 99% (where all but the most
accurately modeled features are pruned), only 78.0% of the
cases are successfully located, as too many features are fil-
tered out, resulting in many situations where a bug arises in
a feature that is not modeled by WuKong.

Effect of Fault Propagation Occasionally WuKong may
detect an error that it cannot localize because the buggy
feature has been pruned from the feature set. Because faults
can propagate through the program, affecting many other
features, WuKong may still detect the error in one of these
dependent features despite not tracking the buggy feature.
In 4% of the buggy runs in our fault injection study, with a
90% pruning threshold, the bug is detected but cannot be
localized because the faulty feature is pruned (see Section 4.3
for a discussion of this seeming contradiction).

In such scenarios, we further investigate whether
WuKong’s diagnosis could still help developers zoom in to
the root cause of a bug. In our study, there were two faults
detected by WuKong with root causes in features that were
pruned. The two faults targeted the same branch instruc-
tion, though with different contexts. In these cases, the
top-most feature located by WuKong resides in the same
case-block of a switch statement as the fault. Moreover, the
closest feature to the fault in the top-10 roadmap is a mere
19 lines from the true fault. Given the sheer amount of code
in AMG2006, it is clear that WuKong can still help the
developer hone in on the relevant code area for bug hunting,
even if the precise feature cannot be identified.

5.2 Case Study 1: Performance Degradation
in MPICH2

To evaluate the use of WuKong in localizing bugs in real-
world scenarios, we consider a case study from Vrisha [25],
based on a bug in MPICH2’s implementation of allgather.

allgather is a collective communication operation de-
fined by the MPI standard, where each node exchanges
data with every other node. The implementation of all-



Detection Localization
Threshold Features

Pruned
False
Positive

False
Negative

Located
Top 1

Located
Top 5

Located
Top 10

0% 0% 6.5% 5.3% 64.8% 68.5% 85.2%
90% 12.3% 0% 7.0% 71.7% 77.4% 92.5%
99% 22.5% 0% 12.3% 56.0% 62.0% 78.0%

Table 3: The accuracy and precision of detection and localization at various levels of feature pruning with
detection threshold parameter η = 1.15.

if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG)
&& (comm_size_is_pof2 == 1)) {

/*** BUG IN ABOVE CONDITION CHECK DUE TO OVERFLOW ***/
/* ALGORITHM 1 */
...
} else if (...) {
/* ALGORITHM 2 */
...
} else {
/* ALGORITHM 3 */
...
}

Figure 2: MPICH2 bug that manifests at large scale
as performance degradation.

gather in MPICH2 (before v1.2) contains an integer over-
flow bug [1], which is triggered when the total amount of
data communicated goes beyond 2GB and causes a 32-bit
int variable to overflow (and hence is triggered when input
sizes are large or there are many participating nodes). The
bug results in a sub-optimal communication algorithm being
used for allgather, severely degrading performance.

We built a test application to expose the allgather bug
when more than 64 processes are employed. The control
features were the number of processes in the execution, and
the rank of each process, while the observational features
were 4126 unique calling contexts chosen as described in
Section 3.4. After feature pruning with our default prun-
ing threshold of 90%, WuKong is left with 3902 features.
The model is trained on runs with 4–16 processes (all non-
buggy), while we attempted to predict the normal behavior
for 64-process runs. When the buggy 64-process version was
run, WuKong was able to successfully detect the bug. The
next question was whether WuKong could aid in the local-
ization of the bug.

First, we used WuKong to reconstruct the expected be-
havior of the 64-process run and compared it with the ob-
served buggy run. We find that while most features’ ob-
served values closely match the predictions, some features
are substantially different from the predicted values. As
displayed in Figure 3, even though the bug involves a single
conditional, numerous features are impacted by the fault.
However, when we examined the top features suggested by
WuKong, we found that all features shared a common call
stack prefix which was located inside the branch that would
have been taken had the bug not been triggered. Thus,
by following the roadmap laid out by WuKong, we could
clearly pinpoint the ill-formed “if” statement, the root cause
of the bug as shown in Figure 2. Here we indirectly located
the bug based on the most suspicious features provided by
WuKong because the bug did not happen right on one of
the observational features we were tracking. We plan to
explore direct methods to locate bugs beyond the set of ob-
servational features, such as program slicing, in future work.

Because WuKong’s regression models were built using
training data collected with a buggy program, an obvious
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Figure 3: The top suspicious features for the buggy
run of MPICH2 allgather given by WuKong.

while (1) {
l = strtol((char*)buf + i, &q, 10);
if(q && *q == ’:’ && l > 0) {

if(j + l > MAX_VALUES_SIZE)
continue;

/*** BUG: i INCREMENT IS SKIPPED ***/
i = q + 1 + l - (char*)buf;
...

} else {
break;

}
}

Figure 4: The deadlock bug appears in Transmis-
sion, and manifests when a large number of peers
are contained in a single DHT message.

question to ask is whether WuKong is actually predicting
what the correct, non-buggy behavior should be, or whether
it is merely getting lucky. To test this, we applied a patch
fixing the allgather bug and performed a test run on 64
processes using the now-non-buggy application. We then
compared the observed (non-buggy) behavior to the behav-
ior predicted by WuKong’s model. We find that the average
prediction error is 7.75% across all features. In other words,
WuKong is able to predict the corrected large-scale behav-
ior; WuKong correctly predicted how the program would
behave if the bug were fixed!

5.3 Case Study 2: Deadlock in Transmission
Transmission is a popular P2P file sharing application on
Linux platforms. As illustrated in Figure 4, the bug [3] ex-
ists in its implementation of the DHT protocol. Transmis-
sion leverages the DHT protocol to find peers sharing a spe-
cific file and to form a P2P network with found peers. When
Transmission is started, the application sends messages to
each bootstrapping peer to ask for new peers. Each peer re-
sponds to these requests with a list of its known peers. Upon
receiving a response, the joining node processes the message
to extract the peer list. Due to a bug in the DHT processing
code, if the message contains more than 341 peers, longer
than the fixed 2048-byte message buffer, it will enter an in-
finite loop and cause the program to hang. Hence, this bug
would more likely manifest when the program is joining a
large P2P network where the number of peers contained in
a single DHT message can overflow the message buffer.
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Figure 5: The top suspicious features for the buggy
run of Transmission given by WuKong.

This bug could be easily detected using full-system profil-
ing tools such as Oprofile that could show that the message
processing function is consuming many cycles. However, this
information is insufficient to tell whether there is a bug in
the function or whether the function is behaving normally
but is just slow. WuKong is able to definitively indicate
that a bug exists in the program.

For this specific bug, given the information provided by
Oprofile, we can focus on the message processing function
which is seen most frequently in the program’s execution.
We treat each invocation of the message processing func-
tion as a single execution instance in our model and use
the function arguments and the size of the input message as
the control features. For the observational features, we use
the same branch profile as in the previous experiments, and
the associated contexts, to any shared libraries. This gives
83 features and no feature is pruned with our default 90%
pruning threshold.

To train WuKong, we use 16 normal runs of the mes-
sage processing function, and apply the trained model to
1 buggy instance. WuKong correctly determines that the
buggy instance is truly abnormal behavior, and not just an
especially long-running function. Having established that
the long message processing is buggy, WuKong reconstructs
the expected behavior and compares it to the observed be-
havior to locate the bug, as in Figure 5. The rank ordering
of deviant features highlights Features 53 and 66, which cor-
respond to the line if (q && *q == ’:’ && l > 0) at the
beginning of Figure 4, exhibiting an excessive number of oc-
currences as a direct consequence of the bug. This feature
is a mere 3 lines above the source of the bug.

5.4 Overhead
To further evaluate the overhead of WuKong, we used 5
programs from the NAS Parallel Benchmarks, namely CG,
FT, IS, LU, MG and SP4. All benchmarks are compiled in
a 64-process configuration and each is repeated 10 times to
get an average running time. Figure 6 shows the average
run-time overheads caused by WuKong for each of these
benchmarks. The geometric mean of WuKong’s overhead
is 11.4%. We note that the overhead with the larger appli-
cation, AMG2006, is smaller (Table 1).

It is possible to reduce the cost of call stack walking—the
dominant component of our run-time overhead—by using
a recently demonstrated technique called Breadcrumbs [7]
and its predecessor called Probabilistic Calling Context
(PCC) [8], both of which allow for efficient recording of dy-

4The overhead numbers for our two case studies are not
meaningful—for MPICH2, we created a synthetic test har-
ness; and for Transmission, we relied on a prior use of pro-
filing to identify a single function to instrument.
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Figure 6: Runtime overhead of WuKong on NPB
benchmarks.

namic calling contexts. Breadcrumbs builds on PCC, which
computes a compact (one word) encoding of each calling con-
text that client analysis can use in place of the exact calling
context. Breadcrumbs allows one to reconstruct a calling
context from its encoding using only a static call graph and
a small amount of dynamic information collected at cold (in-
frequently executed) callsites. We defer to future work the
implementation of these techniques in WuKong to capture
calling contexts at even lower overheads.

6 Related work
There is a substantial amount of work concerning statistical
debugging [5, 9–11, 14, 16–19, 21, 23, 25]. Some of these
approaches focus primarily on detection, with diagnosis as a
secondary, often ad hoc capability [9, 16, 21, 25], while others
focus primarily on assisting bug diagnosis [5, 10, 11, 14, 17–
19, 23].

The typical approach taken for detection by statistical ap-
proaches [9, 16, 21, 25] is to characterize a program’s behav-
ior as an aggregate of a set of features. A model is built based
on the behavior of a number of training runs that are known
to be buggy or non-buggy. To determine if a particular pro-
gram execution exhibits a bug, the aggregate characteristics
of the test program are checked against the modeled charac-
teristics; deviation is indicative of a bug. The chief drawback
to many of these approaches that they do not account for
scale. If the system or input size of the training runs differs
from the scale of the deployed runs, the aggregate behavior
of even non-buggy runs is likely to deviate from the training
set, resulting in false positives. Some approaches mitigate
this by also detecting bugs in parallel executions if some
processes behave differently from others [21]; this approach
does not suffice for bugs which arise equally in all processes
(such as our MPICH2 case study).

Other statistical techniques eschew detection, in favor
of attempting to debug programs that are known to have
faults [5, 10, 11, 14, 17–19, 23]. These techniques all share
a common approach: a large number of executions are col-
lected, each with aggregate behavior profiled and labeled as
“buggy” or “non-buggy.” Then, a classifier is constructed
that attempts to separate buggy runs from non-buggy runs.
Those features that serve to distinguish buggy from non-
buggy runs are flagged as involved with the bug, so that
debugging attention can be focused appropriately. The key
issue with all of these techniques is that (a) they rely on
labeled data—whether or not a program is buggy must be
known; and (b) they require a large number of buggy runs
to train the classifier. In the usage scenario envisioned for
WuKong, the training runs are all known to be bug-free,
but bug detection must be performed given a single buggy
run. We are not attempting to debug widely distributed



faulty programs that can generate a large number of sample
points, but instead are attempting to localize bugs given a
single instance of the bug. Hence, classification-based tech-
niques are not appropriate for our setting.

The closest prior work is our own—Abhranta [24], which
shares part of the goal of this paper, namely, to localize
bugs that appear at large scales. However, it uses the same
modeling strategy as Vrisha, Kernel Canonical Correlation
Analysis (KCCA), simplifying some portions of the model
to ease the task of localization. To be specific, it uses only
linear functions for the canonical correlation analysis for the
mapping of the observational features. Since it uses KCCA
(or CCA in parts), it suffers from the same issue—that its
model becomes increasingly inaccurate as the difference in-
creases between the scales of the training runs and those of
the production runs. Further, since WuKong uses the sim-
pler regression model, it runs less risk of overfitting and is
conceptually simpler to deal with. Finally, Abhranta did
not consider the fact that some features are not dependent
on scale or otherwise unable to be modeled and should there-
fore be pruned prior to the analysis. Thus, it is fair to say
that Abhranta realized only part of the goal of the current
paper and can perform reasonably well only in relatively
small scale systems without overly-complex behaviors.

7 Conclusions
With the increasing scale at which programs are being de-
ployed, both in terms of input size and system size, tech-
niques to automatically detect and diagnose bugs in large-
scale programs are becoming increasingly important. This
is especially true for bugs that are scale-dependent, and only
manifest at (large) deployment scales, but not at (small) de-
velopment scales. Traditional statistical techniques cannot
tackle these bugs, either because they rely on data collected
at the same scale as the buggy process or because they re-
quire manual intervention to diagnose bugs.

To address these problems, we developed WuKong, which
leverages novel statistical modeling and feature selection
techniques to automatically diagnose bugs in large scale sys-
tems, even when trained only on data from small-scale runs.
This approach is well-suited to modern development prac-
tices, where developers may only have access to small scales,
and bugs may manifest only rarely at large scales. With a
large-scale fault injection study and two case studies of real
scale-dependent bugs, we showed that WuKong is able to
automatically, scalably, and effectively diagnose bugs.
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