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Abstract In Fine-Grained Cycle Sharing (FGCS)
systems, machine owners voluntarily share their
unused CPU cycles with guest jobs, as long as
their performance degradation is tolerable. However,
unpredictable evictions of guest jobs lead to fluc-
tuating completion times. Checkpoint-recovery is an
attractive mechanism for recovering from such “fail-
ures”. Today’s FGCS systems often use expensive,
high-performance dedicated checkpoint servers. How-
ever, in geographically distributed clusters, this may
incur high checkpoint transfer latencies. In this paper
we present a distributed checkpointing system called
FALCON that uses available disk resources of the
FGCS machines as shared checkpoint repositories.
However, an unavailable storage host may lead to loss
of checkpoint data. Therefore, we model the failures
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of a storage host and develop a prediction algo-
rithm for choosing reliable checkpoint repositories.
We experiment with FALCON in the university-wide
Condor testbed at Purdue and show improved and con-
sistent performance for guest jobs in the presence of
irregular resource availability.
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1 Introduction

A Fine-Grained Cycle Sharing (FGCS) system [1]
aims at utilizing the large amount of idle computa-
tional resources available on the Internet. In such a
cycle sharing system, PC owners voluntarily make
their CPU cycles available as part of a shared comput-
ing environment, but only if they incur no significant
inconvenience from letting a foreign job (guest pro-
cess) run on their own machines. To exploit available
idle cycles under this restriction, an FGCS system
allows a guest process to run concurrently with the
jobs belonging to the machine owner (host processes).
However, for guest users, these free computation
resources come at the cost of fluctuating availability
due to “failures”. Here we define failures to be due
either to the eviction of a guest process from a machine
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due to resource contention, or due to conventional
hardware and software failures of a machine, which
we call resource revocation. The primary victims of
such resource volatility are large compute-bound guest
programs whose completion times fluctuate widely
due to this effect. Most of these programs are either
sequential or composed of several coarse-grained
tasks with little communication in between.

To achieve high performance in the presence of
resource volatility, checkpointing and rollback have
been widely applied [2]. These techniques enable an
application to periodically save a checkpoint - a snap-
shot of the application’s state - onto a stable storage
that is connected to the computation host(s) through
a network. A job may get evicted from its execution
machine any time and can recover from this failure by
rolling back to the latest checkpoint. Evictions may
occur due to software or hardware failure, host work
load increasing beyond a threshold or simply owner of
the machine has returned.

Most production FGCS systems, such as Condor
[3], store checkpoints to dedicated storage servers.
These are few in number, are well-provisioned, and
maintained such that 24×7 availability is achieved.
This solution works well when a cluster only belongs
to a small administrative domain or there are a large
number of storage servers. However, it does not scale
well with the growing sizes of grids having as par-
ticipants thousands of home users, and geographically
separated university campuses and research labs. For
example, the production Condor pool at Purdue Uni-
versity (PU), called “DiaGrid” [4], is one of the largest
such pools in the country with 20,000 processors in
it. It has machines “flocking” from Indiana Univer-
sity (IU), University of Notre Dame (ND), and Purdue
University Calumet (PUC). While DiaGrid has been
using the dedicated storage server solution, a num-
ber of performance and feasibility issues have been
encountered.

First, FGCS systems do not include a dedicated
network that can efficiently handle the load of trans-
ferring potentially gigabytes of checkpoints between a
compute host (CH) (the host on which the guest pro-
cess is executing) and the storage hosts (SH) (the hosts
that have contributed storage). Moreover, for multi-
university grids, the current mechanism for storing
checkpoints in dedicated servers may cause large net-
work latencies since the compute and storage hosts
may be located at large network distances. We have

collected traces that show 12 % of jobs submitted
to DiaGrid between March 5th, 2009 and March
12th, 2009 from PU actually ran on ND’s machines.
The high-level contribution of our work is to reduce
amount of data by compressing them and break a large
one to one communication of transferring checkpoint
to one to many small transfers. This mechanism yields
higher overall network bandwidth while transferring
checkpoints.

Second, even if multiple storage servers could be
provisioned and made available throughout the grid, a
mechanism based on round trip time (RTT) to choose
the closest storage host for saving checkpoint data,
an option available in Condor, may not perform well.
This is because a physically close host may observe
huge network traffic during checkpoint transfer, mak-
ing it less preferable than a distant one. Our technique
takes the available bandwidth between two hosts into
account while selecting a storage host. This ensures
that the overall latency of transferring checkpoints
between these hosts will be low. This technique could
potentially select a physically far away host for stor-
age if available bandwidth to near by hosts were lower
due to congestion.

Third, a dedicated storage server will become
loaded as the number of guest processes concur-
rently sending data increases—which will ultimately
cause degradation in the performance of these guest
processes. Today’s storage server approach can be
improved by making a pool of servers available, and
then performing load-balancing. However, the same
situation will still occur as the size of a grid increases
(new computation hosts join). This decreases the ratio
between the number of compute hosts to that of the
storage servers. A more scalable solution is to utilize
the unused storage capacity of grid resources to store
these checkpoints.

Our work is motivated by these issues reported by
scientists using DiaGrid for running their compute-
intensive jobs with checkpoint-recovery. Our work
therefore is to develop a framework for reliable exe-
cution of applications in a shared storage environ-
ment—an environment where a host can serve as both
an execution host for a guest job as well as a storage
host for saving checkpoints of others—as opposed to
dedicated checkpoint servers. For this, we first pro-
pose a novel multi-state failure model for the shared
storage hosts. Then, we propose a failure predic-
tion scheme and apply this to the multi-state failure
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model to choose reliable and less loaded storage hosts
to serve as checkpoint repositories. Finally, we pro-
pose an algorithm for efficient checkpoint storage and
recovery. This algorithm uses erasure encoding [5] to
break checkpoint data into multiple fragments, such
that the checkpoint data can be reconstructed from a
subset of the fragments. We realize our algorithms in
a practical system called FALCON.

The major contributions of our work are —

– A novel multi-state failure model for storage hosts
in shared storage environment for ensuring load-
balancing across different storage hosts. Previous
work has only considered a failure model for
compute hosts [6].

– Failure-aware storage selection technique that
selects a set of reliable and lightly loaded storage
hosts for a compute host, based on their availabil-
ity and available bandwidth between the compute
host and the storage hosts. Previous work has
not considered the multiplicity of factors related
to storage hosts that affect the performance of
checkpointing and recovery [6, 7].

– An efficient method that provides fault-tolerance
to the process of checkpointing data as well
as uses parallelism offered by multiple frag-
ments being stored in multiple storage hosts to
reduce checkpoint and recovery overheads. This
approach leverages prior work in erasure coding
for fault-tolerance [5] while using it in a different
context (shared grid environments) and using the
parallelism afforded by it.

– We have implemented and evaluated FALCON

on the production Condor testbed of Purdue
University—DiaGrid—with multiple sequential
benchmark applications. The experiments ran on
DiaGrid show that performance of an applica-
tion with FALCON improves between 11 % and
44 %, depending on the size of checkpoints and
whether the storage server for Condor’s solution
was located close to the compute host. Also, we
show that the performance of FALCON scales as
the checkpoint sizes of different scientific appli-
cations increase.

The rest of the paper is organized as follows.
Section 2 presents a comprehensive summary of our
previous work on failure-aware checkpointing and
resource availability prediction. Our major contribu-
tions are described in detail in Section 3. Section 4

discusses data parallelism and the parallel architec-
ture of our system. Section 5 presents implementation
details of FALCON. Then, experimental approaches
and results are discussed in Section 6. Section 7
reviews some related works. Finally, we conclude the
paper in Section 8.

2 Background on Failure-Aware Checkpointing

Failure-aware checkpointing builds on mechanisms
that predict the availability of the involved compute
and storage hosts. In our previously developed predic-
tion techniques [8], we applied a multi-state failure
model to predict the Temporal Reliability, TR, of com-
pute hosts. TR is the probability that a host will
be available throughout a given future time window.
Quantitatively, T R(x) is the probability that there will
be no failure between now and time x in the future.
To compute TR, we applied a Semi Markov Process
(SMP) model, where the probability of transitioning
to a state in the future depends on the current state
and the time spent in this state. The parameters of this
model are calculated from the host resource usages
during the same time window on previous days, since
in many environments, the daily pattern of host work-
loads are comparable to those in the most recent days
[9].

In other work [6], we proposed two algorithms for
selecting reliable storage hosts in an FGCS system,
where non-dedicated host machines provide disk stor-
age for saving checkpoint data. A checkpoint is taken
periodically and contains the entire memory state of an
application. A checkpoint is used by a job for recov-
ery when it gets rescheduled to another machine after
the current host fails. For reliable storage in an FGCS
system, we considered two criteria: the network over-
head due to saving and recovery of checkpoints, and
the availability of the storage hosts.

This work [6] applied the knowledge of network
connectivity and of resource availability to predict
reliability of a checkpoint repository from a set of stor-
age hosts. This work also proposed a one-step look
ahead heuristic to determine the optimal checkpoint
interval. It compares the cost of checkpointing imme-
diately with the cost of delaying that to a later time
and uses that to adjusted checkpoint intervals.

Our prior work left some questions unanswered.
First, it applied the failure-model for compute hosts
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to predict the availability of storage hosts. These two
kinds of hosts offer resources with different character-
istics; hence they will have different failure models.
Second, there was no notion of load-balancing for
storage hosts. Thus, a storage host that is predicted
to have high availability in the near future will see
a flash crowd of large checkpoints from several con-
currently executing jobs. The checkpoints are often
large in size (e.g., with the mcf benchmark applica-
tion that we experiment with, the size is about 1.7
GB), and this load disbalance can cause significant
perturbation to the FGCS system. For example, the
machine owner can see slow I/O for his own jobs
during such flash crowds. Third, for predicting reli-
ability of a storage host, we used absolute temporal
reliability even though correlated temporal reliabil-
ity is the important criterion. By correlated temporal
reliability, we mean what is the likelihood of the stor-
age host being available, when needed, i.e., when the
compute host has a failure. It is at that time that the
checkpoint is needed for recovering the guest pro-
cess on a different machine. Fourth, our prior work
used a static bandwidth measure, given by the net-
work specification, to estimate the network overhead.
We find that the actual bandwidth available for a large
checkpoint transfer may vary significantly from the
static measure. Finally, and most significantly from
an implementation and deployment effort, our prior
work performed a simulation of the checkpoint-based
recovery scheme, using the GridSim toolkit. In this
paper, we present a fully functional system executing
on Purdue’s BoilerGrid.

We compare the performance of FALCON with two
other checkpoint repository selection schemes:

– Dedicated: This scheme uses a pre-configured
checkpoint server to store checkpoints. These are
generally powerful machines with very high avail-
ability. This is a supported current mode of usage
for checkpointing in BoilerGrid, as in many other
production Condor systems.

– Random: This scheme selects storage hosts ran-
domly. Here, we assume that this scheme employs
the same checkpoint store and retrieve methods
as FALCON, except that it chooses storage hosts
randomly at the beginning of each checkpoint
interval.

3 Design for Robust Checkpointing

In this section, first we discuss our proposed novel
multi-state failure model for storage hosts. The roles
that a host assumes exhibit different characteristics -
computation hosts execute guest jobs requiring CPU
and memory resources whereas storage hosts handle
I/O load. Therefore, failure models for these two types
of resources are different. We propose a failure model
specialized to storage hosts in a shared computing
environment.

Second, we propose a new failure prediction tech-
nique to select reliable checkpoint repositories by
considering correlation of failures between compute
and storage hosts. Third, we present an algorithm that
fragments checkpoints using erasure coding and con-
currently saves them to multiple storage hosts. The
coding introduces redundancy such that a subset of
the fragments can be used for the recovery of the
application. This section discusses the single-threaded
design of the compression and the erasure encoding
algorithms. Section 4.1 presents the multi-threaded
architecture of FALCON.

3.1 Novel Multi-state Failure Model for Storage Hosts

In an FGCS system, storage hosts are often non-
dedicated, shared hosts contributing their unused disk
spaces. Checkpoint data saved by guest jobs in these
storage hosts may get lost when the storage hosts
become unavailable due to resource contention or
resource revocation. This is of particular concern
for long-running compute-intensive applications. The
model for recovering a guest job when it is evicted
from a machine is that the guest process migrates to
another compute host and uses the last checkpoint
fragments to recover and re-execute from the check-
point. In this situation, it is clearly advantageous to
choose a storage host that:

– is going to be available with high probability when
a compute host becomes unavailable.

– is less likely to have high I/O load. This ensures
load-balancing across storage hosts and is crucial
for an FGCS system, since creating load on an
already busy host will reduce the performance of
host and guest jobs.
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– has large available bandwidth to the computation
host so that the transfer of checkpoint fragments
incurs lower network latency.

To predict failures of storage hosts, we propose a
novel multi-state failure model. In our previous work
[6], we developed a failure model for compute hosts
and applied it to storage hosts. Since the underlying
availability models of the two types of resources -
CPU cycles and disk storage - are different, apply-
ing the same failure model to both these resources is
inadequate.

Figure 1 presents our new five-state failure model
for storage hosts. The states are defined as follows:

(i) S0: storage host is running with I/O load < τ1

and number of compute hosts sending checkpoint data
concurrently is < MAX-CLIENTS, (ii) S ′

0: number of
compute hosts sending checkpoint data concurrently
is = MAX-CLIENTS, (iii) S1: I/O load of storage
host is between [τ1, τ2), (iv) S2: I/O load of storage
host is between [τ2, 100 %] (v) S3: storage host is not
available due to resource revocation.

Here, the states S ′
0 and S2 ensure load-balancing

since storage hosts in either of these states do not
accept any more request for storing checkpoint data.
Knowledge about states S1 and S2 is used during stor-
age selection to rank storage hosts according to their
likelihood of becoming loaded in the future. Note
that, state S ′

0 has been separated from state S1 and S2

because this state represents a transient state of a stor-
age host. A compute host only uses the knowledge
of states running, loaded and temporarily unavail-
able to predict load on a storage host machine. The

knowledge of S ′
0 is only used by the storage host

to reject requests from new compute hosts for stor-
ing checkpoint and thus enforce load balancing. State
S3 is an absorbing state because we assume the fail-
ures are irrecoverable. Even if in practice the failure
can be recovered, the time to recover is large enough
and unpredictable enough to be useless for the current
guest job.

When a compute host requests a storage host to
save checkpoint data, depending on which state the
storage host is in, it replies back. When the storage
host is in either S0 or S1, it replies “ok”, and the com-
pute host continues with sending data. Otherwise, if it
is in either S ′

0 or S2, it does not accept any new request.

3.2 Failure-aware Storage Selection

3.2.1 Temporal Availability

Similar to other resources in FGCS systems, check-
point repositories are volatile. To predict availability
of a storage host SHk in a given time window with
respect to a compute host CHl , we define Correlated
Reliability Load Score (CRLS) as:

CRLS(SHk, CHl)=
{

LI (SHk,CHl) + γ, if CR(SHk, CHl) ≥ γ ;
CR(SHk, CHl), otherwise.

(1)

where,

P rCHl
(i) = P r{CHl in state i}

P rSHk,CHl
(i|j) = P r{SHk in state i|CHl in state j }

Fig. 1 New multi-state
storage host failure model.
Here, S0: running state, S′

0:
state where the maximum
number of compute hosts
are sending data, S1: loaded
state, S2: Temporarily
unavailable state and S3:
unavailable state
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CR(SHk, CHl)=

⎧⎪⎨
⎪⎩

PrSHk,CHl
(S0|down)

+PrSHk,CHl
(S1|down)+

PrSHk,CHl
(S2|down), if PrCHl (down) > 0;

γ, otherwise.

LI (SHk,CHl)=
{

α × PrSHk,CHl
(S0|up)

+(1−α)×PrSHk,CHl
(S1|up), if PrCHl (up)>0;

0, otherwise.

In (1), PrCHl (down) and PrCHl (up) denote the
probability that the compute host CHl is down
(state S0) and up (state S1) respectively. Here,
CR(SHk, CHl) and LI (SHk, CHl) denote the cor-
related reliability and the load indicator between
SHk and CHl respectively. CR(SHk, CHl) and
I (SHk, CHl) are probabilities while CRLS is not—
it is a score ∈ [0, 2]. In (1), we first calculate
CR(SHk, CHl) as the total probability that the storage
host SHk remains up when the compute host CHl is
down. Note that, here we are adding up the probabili-
ties corresponding to storage host SHk being running,
loaded, or temporarily unavailable. The intuition is
that if the checkpoint data is needed (since the com-
pute host has gone down), then the storage host will
allow the read of the data, even if it is loaded. We con-
sider storage hosts having CR(SHk, CHl) ≥ γ (γ is
a configurable parameter, we chose γ = 0.95 for our
experiments) as very reliable. The equation rounds the
reliability component of CRLS to γ since we consider
that reliability scores greater than γ are high enough
to be considered equivalent and also may be statisti-
cally indistinguishable due to the inherent noisiness of
the measurements. Beyond this point, we would want
to give less weight to the less loaded storage hosts and
therefore add their load indicators to γ to make less
loaded machines have high CRLS value. For storage
hosts having reliability < γ , we do not consider their
load because we want to ensure that the most reliable
storage hosts get chosen first. We calculate the load
indicator LI (SHk, CHl) as a weighted probability of
SHk being in the two tolerably loaded states, namely,
S0 and S1.

The weight α should be chosen based on the
load characteristics of the grid resources. This value
should be higher (close to 1) if the variability in
load among grid resources is low to make sure
that less loaded hosts are favored more during stor-
age host selection technique. For our experiments,
we could have chosen any value between 0.6 to 1
and found that for BoilerGrid, these values do not

impact the storage host selection process significantly.
Hence, we arbitrarily selected the value of α to
be 0.75.

3.2.2 Available Bandwidth

In addition to failure-prediction, checkpoint transfer
overhead is one of the key factors in storage repository
selection. Our previous work [6] used effective band-
width between a compute and a storage host to cal-
culate network overhead. Effective bandwidth is the
maximum possible bandwidth that a link can deliver.
But the actual bandwidth available between a compute
host and a storage host may be far less than this quan-
tity. So, it is more accurate to use available bandwidth
between two hosts to access the overhead of transfer-
ring data between them. Available bandwidth (ABw)
is the unused capacity of a link or end-to-end path in a
network and is a time-varying metric. We define net-
work overhead of transferring a checkpoint of size n

with erasure coding parameters (m, k) from compute
host CHj to storage host SHi in (2). The parameters
(m, k) mean that a total of m+k checkpoint fragments
are stored and any m of them may be used to recover
the entire checkpoint.

network overhead, Ni,j = n/m
ABw(SHi,CHj )

(2)

In (2), Ni,j represents the network overhead of
sending a checkpoint from compute host CHj to
storage host SHi . ABwSHi,CHj is the available band-
width between storage host SHi and compute host
CHj .

3.2.3 Objective Function

We define an objective function in (3) that tries to
balance the checkpoint storing overhead with the re-
execution cost if that checkpoint had not been taken.
An application incurs overhead during a checkpoint
storing phase while benefits from the fact that it does
not have to re-execute from the very beginning and
can easily restart from the state saved in the latest
checkpoint. The difference of these two quantities is
the ultimate price that the application pays. Clearly,
a lower value is desirable. FALCON selects storage
hosts such that they minimize this objective function.
For a particular compute host CHj , m + k storage
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hosts are selected for storing that many erasure coded
checkpoint fragments.

F = MTTFcmp

CI
×

V∑
i=1

(Ci×Ni,j )−(Tcurr +MTTFcmp)

×
V∏

i=1

CRLS ′(SHi, CHj) (3)

V∑
i=1

Ci = (m + k) (4)

CRLS ′(SHi, CHj)=max[1 − Ci, CRLS(SHi, CHj )]
(5)

Here, MT T Fcmp is the mean time to failure of a com-
pute host, CI is the length of a checkpoint interval
and Tcurr is the time units spent on performing useful
computation for the job so far. V is the total num-
ber of storage hosts. The variable Ci is an indicator
variable, set to 1 for the storage host that is selected
and 0 for the one that is not. Our goal is to pick the
m + k storage hosts so as to minimize the objective
function F . The first term corresponds to the over-
head of storing the checkpoints. The term MT T Fcmp

CI

approximates the number of checkpoints generated
within MT T Fcmp . The second term corresponds to
the re-execution cost—a larger value means lower re-
execution cost. Equation 5 forces the formulation to
only consider the storage hosts that will be selected.
We developed a similar objective function in our pre-
vious work [6]. However, (3) uses different measures
of network overhead and reliability score.

3.2.4 Storage Selection Algorithm

To choose storage hosts that minimize the objective
function in (3), we devise a greedy algorithm. Con-
sider again that the storage selection is being done by
compute host CHj .

We first sort the storage hosts in decreasing order
of CRLS(SHi, CHj) and increasing order of Ni,j . If
a storage host appears in the first m + k elements of
both the sorted lists, it is selected. Then, the value of
F is calculated with Ci = 1 for the chosen hosts and
0 for others. This will be used as the baseline value of
F when considering further hosts to add.

If the number of selected storage hosts is less than
m + k, the objective function is calculated by includ-
ing one unselected host at a time. The host causing
the minimum increase to the objective function is
selected. When the number of selected hosts is m + k,
the algorithm terminates; otherwise the algorithm con-
tinues adding one storage host in each iteration. The
relative ordering of the different hosts may change
from one iteration to the next and therefore the objec-
tive function has to be evaluated for all the unselected
hosts at each iteration.

When a storage host becomes unavailable later dur-
ing a checkpoint interval, the compute host needs
to re-choose a new one to replace it. Re-choosing
another host from previously unselected ones is also
done based on minimizing the same objective func-
tion. Our system design is such that this storage
selection process occurs in parallel to the actual appli-
cation and to the algorithm that uses this decision
to send checkpoint fragments to the selected repos-
itories. Since checkpoint repository selection occurs
out of the algorithm’s critical path, this speeds up
the checkpoint storing algorithm. But the tradeoff
of this design choice is that there may be stale
information being used to choose the storage hosts.
This can be addressed by configuring the periodic-
ity with which these measurements and list updates
take place. The period should be smaller if the
underlying grid environment is highly volatile. The
statistical analysis of the eviction characteristics in
BoilerGrid (as represented in Table 2) shows that
on average 1.3 evictions occur per hour. For all
our experiments, we have configured this periodic-
ity of calculating the objective function to once every
10 sec.

3.2.5 Discussion

The resource availability of FGCS systems is highly
volatile and the network bandwidth and latency can
change any time. For any of these reasons, a less
than optimal storage host may be selected by FALCON

at one instance. Section 5.3 describes the component
of FALCON that is responsible for re-ordering stor-
age hosts based on the objective function described
in Section 3.2.4. If any of these storage hosts become
busy or unavailable, FALCON replaces the “bad” stor-
age host on the fly. Section 6.2.2 presents that the cost
of doing so is negligible.
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One additional consideration that needs to be taken
into account is the amount of disk space available
on FGCS resources. Grid resources can be person-
ally owned laptops, lab machines in universities, or
servers with varying degree of available disk quota.
For demonstrating the techniques developed in this
paper, we used a list of storage hosts that have more
than 1GB available and are willing to store check-
points. Such a list can be populated automatically
by making computational resources let their available
disk space and their willingness to share their storage
space known to the resource manager. The latter solu-
tion requires support from the Condor resource man-
ager and is an engineering extension that is beyond the
scope of this work.

The value of m and k depends on how much redun-
dancy is sought for the system. The more volatile a
system is, the higher the value of k should be. How-
ever, higher value of k means more redundancy, hence
increase in data by k

m
× 100 %. Since FALCON uses

compression to reduce the overall size of checkpoints
considerably, even with redundancy, the total amount
of data transferred is reduced. Section 6.2.1 shows an
example of the amount of data FALCON transfers after
compression and erasure encoding.

FALCON focuses on sequential and large running
jobs taking system-level checkpoints. System-level
checkpoints are well compressible even by a general
purpose compression algorithm such as Gzip since
they include the current state of memory which may
include large regions of “0”s in them. Islam et. al
in [10] presents an interesting technique called “data-
aware compression” that is very effective for hard to
compress checkpoints such as application-level check-
points.

3.3 Single-Threaded Method for Checkpoint
Recovery

In our previous work [6] we proposed two algorithms
- Optimistic and Pessimistic for selection of storage
repositories. The Optimistic scheme selects a set of
storage hosts at the very beginning of a job’s execu-
tion and uses this set to save checkpoint data during
each checkpoint interval. This set is updated only
when a job migrates to a different execution machine.
On the other hand, the Pessimistic scheme selects a
new set of storage hosts at the beginning of each
checkpoint interval. While Optimistic ignores inherent

dynamism that is present in resource availability, Pes-
simistic results in unnecessary overhead [6]. Here, we
develop a new algorithm that chooses storage hosts on
an as-needed basis, always keeping m + k fragments.
It releases the resource availability assumptions from
our prior work and updates the selection of storage
hosts on an as-needed basis. It takes into account
the changing load and fluctuating resource availabil-
ity. Our algorithm for storing checkpoint data has the
following steps:

1. Read chosen storage host list generated by algo-
rithm described in Section 3.2

2. Read checkpoint from disk
3. Compress the checkpoint
4. Erasure encode the checkpoint into m + k frag-

ments (erasure coding with parameters (m, k))
5. Send fragments concurrently to storage hosts
6. If any of the chosen storage hosts is in state

S2 or S3, re-choose another host from the list
of unselected ones. The same greedy algorithm,
described in Section 3.2, is used to reselect. Send
the remaining fragments concurrently.

7. Repeat step 6 until all the fragments are sent or a
new checkpoint is generated. If a new checkpoint
is generated then start from step 1 and abandon
the remaining checkpoint fragments.

4 Data Parallelism and Parallel Architecture
of FALCON

Since checkpoint sizes of the biology applications can
potentially range from couple of megabytes to the
order of gigabytes, processing them in their entirety
may take a long time. But, by dividing a checkpoint
data into a number of blocks and then processing each
block in parallel may speed up the processing of the
checkpoints in a computation host. Most of the com-
modity machines that are part of a grid, are multi-core
machines. So, by taking advantage of thread level
parallelism (TLP) to process the large sized check-
point data, the processing overhead can be reduced
significantly. In this paper, we have redesigned the
checkpoint storing and retrieving process of FALCON

[11] to do exactly that. In the evaluation section, we
will refer to this architecture as FALCON-P, differenti-
ated from the FALCON architecture presented so far in
the paper.
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4.1 Design of Parallel Checkpoint-Recovery
Scheme

4.1.1 Parallel Checkpointing

To take advantage of TLP, we divide a checkpoint into
b blocks where b is a configurable parameter. The
value of b should not be more than the number of cores
available on that particular computation host. Then
we spawn b number of threads where the ith of these
reads from index i × �n/b� to (i + 1) × �n/b� − 1.
Since multiple threads can read a file concurrently, the
overhead of reading a file decreases. In addition to
that, now each thread has to deal with a smaller sized
data set. After reading a mutually exclusive block,
each thread then goes on to compress the data, erasure
encode each block into m + k fragments and transfer
them to the chosen storage hosts. We send the ith frag-
ment of each block to the ith storage host chosen by
our storage selection technique Section 3.2. The ratio-
nale behind storing one fragment from each block on
a storage host is that an available storage host implies
the availability of 1 fragment per block for each of
the blocks. In this way, our analysis for selecting a
set of reliable and efficient storage hosts still holds
true.

4.1.2 Parallel Recovery

During the recovery phase, a number of threads equal
to the number of blocks a checkpoint was divided
into during the checkpoint storing phase, work in

parallel to reconstruct the blocks. The ith thread does
the following:

– fetch the m + k fragments of the ith block in
parallel

– erasure decode these fragments to build the com-
pressed ith block

– decompress the ith block and write to a file

While, the network transfer, decoding and decom-
pression phases take the advantage of TLP, writing the
blocks to the disk is a serial operation.

5 FALCON Structure

Figure 2 presents the system level block diagram of
FALCON. In this figure, each large box represents one
component and each small box represents a module.
We have designed our system such that some modules
run off the critical path of our checkpoint-recovery
schemes.

FALCON consists of three major components:

– Compute host component (CHC) takes care of
failure-aware checkpointing and is submitted
along with the guest process to the compute host.

– Storage host component (SHC) is a user appli-
cation that runs in storage hosts. This compo-
nent implements the multi-state failure model
explained in Section 3.1.

– History server component (HSC) runs on any
machine and periodically collects states of

Retrieve checkpoint
fragments during restart

Checkpoint recovery:

Disk
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sending checkpoint
Server receiving and

fragments
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Disk I/O
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Fig. 2 System level block diagram of our system. Here, the
Compute Host Component represents FALCON modules that
run in a compute host, the Storage Host Component represents

FALCON modules that run in a storage host and History Server
represents a module that keeps history logs of the availability
states of the compute and storage hosts
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compute and storage hosts. Modules in the CHC
and the SHC communicate with this component
to calculate CRLS.

FALCON is integrated with Condor and some of the
design decisions were driven by the design of Con-
dor. For example, all the modules are implemented
as user-level processes. Detailed description of each
module in each component is given in the following
subsections.

5.1 Compute Host Component (CHC)

Compute host component is the part of FALCON that
runs on a computation host. The CHC consists of four
modules:

– Module MABw is a process that periodically mea-
sures available bandwidth between this computa-
tion host to all the storage hosts and appends them
to a file. For available bandwidth measurement,
we have used Spruce [12], a light-weight available
bandwidth measurement tool. Spruce provides a
server module that runs as a part of the CHC and
a client module that runs as a part of the SHC.
For our experiments, we have used a period of 10
seconds for measuring the available bandwidth.

– Module Rank is a process that implements the
greedy algorithm described in Section 3.2.4. It
iteratively ranks the storage hosts and produces an
ordered list of storage hosts.

– Module Send implements an algorithm that is
responsible for storing and retrieving the check-
points. In the single threaded architecture of FAL-
CON [11], this module reads the checkpoint data
from disk, compresses it and then uses erasure
coding to break the compressed checkpoint data
into m + k fragments where m and k are param-
eters of erasure coding. For erasure coding, we
modified the zfec implementation [13] to con-
vert it to use only C so that we can run on all
the machines of BoilerGrid. These checkpoint
fragments are sent in parallel to storage host
module Srvr. In the multi-threaded architecture,
the checkpoint reading, compression and encod-
ing schemes are conducted in blocks by parallel
threads.

– Module Recover is responsible for retrieving
checkpoint fragments during a rollback phase
from storage repositories, then decoding the

fragments to one compressed data and then
uncompressing it to produce original checkpoint
data - that a guest process uses to restart. Check-
point fragments are fetched from storage hosts in
parallel.

The modules are light-weight, requiring little CPU
and memory resources.

5.2 Storage Host Component (SHC)

The SHC consists of three modules:

– Module Load measures disk I/O load periodi-
cally. This process runs in parallel to the actual
server module Srvr and generates required load
information that module Srvr uses to determine
which state the storage server is in according to
Fig. 1.

– Module Srvr implements the server logic for
receiving and sending checkpoint data to variable
number of compute hosts. It updates the vari-
able current-state at the beginning of each request
received from Module Send of the CHC.

– Module Qry is a parallel process that responds to
the history server’s query about which state the
storage host is currently in. It receives values of
the state variables from module Load (I/O load)
and module Srvr (the number of compute hosts
currently being served).

5.3 History Server Component (HSC)

This can be run as a user process on any machine.
This component pings each compute host to note if
that machine is up or down and communicates with
storage hosts to receive their current status. Note that,
the HSC only takes 4 states of the storage hosts into
account based on load - namely, S0, S1, S2 and S3.
This information then is stored in log files as a {current
time stamp, current state} tuple. The HSC computes
CRLS using (1). Our current implementation uses a
central server approach. This design can be extended
to a distributed implementation.

6 Evaluation

We have developed a complete system, as described
in Section 5. We ran experiments on a production
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Condor testbed—BoilerGrid by integrating our work
with standard benchmark applications. These appli-
cations were chosen from SPEC CPU 2006 and
BioBench [14] benchmark suites. SPEC CPU 2006
is widely used for benchmarking CPU-intensive
programs while BioBench consists of well known
biomedical applications. Table 1 shows the sizes of
checkpoints that were generated by these applications
and their compressibility. This section presents the
experiments for evaluating the system in terms of its
checkpoint recovery overheads and its effectiveness in
improving job makespan. In Sections 6.1 and 6.2, we
present the evaluation of FALCON (the single-core ver-
sion) and in Section 6.3, we present the evaluation of
FALCON-P (the multi-core version).

We have organized our experiments to measure
both fine-grain (micro benchmark experiments) and
coarse-grain (macro benchmark experiments) metrics.
While the micro benchmark experiments compare
overheads of different checkpoint-recovery schemes
under controlled experimental conditions, the macro
benchmark experiments evaluate the effectiveness in
improving job makespan running on Purdue’s con-
dor environment, the BoilerGrid. Schemes that we
compare with are:

– Dedicated: Condor’s scheme where a dedicated
storage server is used for saving checkpoint data.

– Random: A scheme where the storage hosts for
saving the erasure encoded checkpoints are ran-
domly chosen from among all available storage
hosts.

– Pessimistic: A scheme presented in [6] that
assumes that resource fluctuation is very com-
mon and re-chooses all the storage hosts at the
beginning of each checkpoint interval.

Note that, the default scheme of Condor is to
send checkpoint back to the submitter machine (the
machine from which the job was submitted). This
scheme is similar to that of using a dedicated server

and hence performs no better than our reference Dedi-
cated algorithm ( in fact, it can be significantly worse,
if the submitter sits behind a low-bandwidth connec-
tion). We do not compare FALCON with the Optimistic
scheme because the assumption of not having any
fluctuation in the grid environment by the Optimistic
scheme does not hold in practice due to the volatility
of the environment.

Checkpoint storing overhead includes time:

– for FALCON : (i) Read chosen storage host list
from disk (ii) Read checkpoint from disk (iii)
Compress (iv) Erasure encode and write frag-
ments to disk (v) Read fragments from disk (vi)
Send checkpoint fragments in parallel to storage
hosts

– for Dedicated : (i) Read checkpoint from disk (ii)
Send checkpoint to storage server

– for Random : (i) Choose storage hosts randomly
(ii) Follow steps (ii) - (vi) of FALCON

Recovery overhead includes time:

– for FALCON : (i) Fetch the minimum required
fragments from storage hosts. This time includes
reading checkpoint at the storage host end, net-
work transfer and writing to disk at the compute
host end (ii) Erasure decode and write compressed
checkpoint data to disk (iii) Decompress and write
to disk

– for Dedicated : (i) Fetch checkpoint data from
storage server. This time includes reading check-
point at the storage host end, network transfer and
writing to disk at the compute host end

– For Random : (i) Follow steps (i) - (iii) of FALCON

For all our macro and micro benchmark experi-
ments, we set erasure coding parameters to (3, 2) -
meaning 3 fragments are required and 2 are redundant.

Table 1 Checkpoint sizes of different applications

Applications mcf TIGR-I TIGR-II TIGR-III

Original Checkpoint Size (MB) 1677 946 500 170

Compressed Checkpoint Size (MB) 241 201 153 129

Compression Ratio 85.63 % 78.75 % 69.4 % 24.12 %

MCF and TIGR are benchmark applications part of SPEC CPU 2006 and BioBench respectively. TIGR-I, TIGR-II and TIGR-III are
runs of TIGR with different input sizes
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6.1 Macro Benchmark Experiments

This section presents results of our macro benchmark
experiments - experiments that we ran by submit-
ting scientific applications to BoilerGrid and measur-
ing their average makespan — the time difference
between submission and completion of the job minus
the time it spent in the idle or the suspended states.
A job submitted to Condor remains idle until it gets
scheduled to a suitable machine. Condor jobs can
specify their requirements for disk space, memory,
machine architecture, operating system etc. in a sub-
mission script and a scheduler matches these require-
ments with machines that are available for running
Condor jobs. Since this idle time is in no way related
to checkpoint-recovery scheme, we exclude it from
calculating makespan.

Checkpointing in Condor is non-blocking for the
applications - the only blocking part is till the check-
point is locally stored. Condor then transfers this
checkpoint to appropriate storage repository as con-
figured. This non-blocking technique efficiently hides
checkpoint transfer overhead from makespan of appli-
cations. It is during restart when applications need
to fetch checkpoints to the execution machine and
restart. This recovery overhead directly adds up to an
application’s makespan.

The recovery overhead is incurred as many times as
there are evictions of the applications from the com-
pute hosts. We empirically measured this in Boiler-
Grid and present the failure characteristics in Table 2.
We used 1.3 evictions per hour per job as the rate of
eviction for our experiments in Section 6.1.1.

In Section 6.1.1 we compare average job makespan
of applications using different checkpoint repository
techniques. The decompositions of checkpoint storing
and recovery overheads are shown in Section 6.1.2
and Section 6.1.3 respectively. For all the macro

Table 2 Statistical analysis of the eviction characteristics in
BoilerGrid

N μ σ Range

116 1.3130 0.2172 [1.0298,2.3931]

The table shows number of jobs for which we collected data
(N), average number of evictions per hour (μ), standard devia-
tion (σ ) and range

benchmark experiments we have used the sequen-
tial checkpoint storing and recovery schemes of
FALCON.

6.1.1 Overall Evaluation

For overall evaluation of different schemes, we col-
lected average job makespan of two benchmark appli-
cations. We integrated three checkpoint schemes:
FALCON, Dedicated with a local checkpoint server
(lab machine connected to the campus-wide LAN
at Purdue) and Dedicated with a remote checkpoint
server (machine at University of Notre Dame con-
nected to Internet) with these applications and sub-
mitted jobs in BoilerGrid. Note that, University of
Notre Dame is a part of this multi-university grid.
For all cases, these applications took checkpoint once
every 5 minutes. Here, using the Dedicated-Remote
scheme represents the situation when jobs submitted
from one university go to run at another university but
the checkpoint server is at the first university. This
is exactly the situation in Boiler-Grid for applications
that run on other university machines.

From Fig. 3, we see that FALCON outperforms
Dedicated-Local and Dedicated-Remote in actual
application runs. In actual runs on BoilerGrid, appli-
cations on an average will see performance that
lies between that of Dedicated-local and Dedicated-
Remote since applications do go to run on machines
at other campuses. The reasons for performance
improvement of FALCON are many-fold — (i) FAL-
CON chooses storage repositories that are more effi-
cient to access (ii) checkpoint fragments saved by
FALCON are much smaller in size due to compres-
sion and encoding, compared to the checkpoint size
that Dedicated schemes store. Section 6.1.3 explains
that smaller checkpoint size results in lower recovery
overhead and hence improved job makespan and (iii)
the fragments are retrieved in parallel from the cho-
sen storage hosts. More about the contribution of each
of the techniques (compression, load balancing and
parallel network transfer) in improving the recovery
overhead is discussed in Section 6.2.5.

6.1.2 Checkpoint Storing Overhead

Figure 4 shows decomposition of overhead of FAL-
CON and Dedicated for a single store operation. Dedi-
cated scheme uses a remote checkpoint server.
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Fig. 3 Average job
makespan of different
applications. Here,
Dedicated-Local represents
the dedicated scheme using
a local checkpoint server
and Dedicated-Remote
represents the dedicated
scheme using a remote
checkpoint server
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One observation that can be drawn from Fig. 4 is
that as checkpoint size increases, increase in check-
point storing overhead of Dedicated becomes much
higher than FALCON. The overhead is dominated
by the disk read and network transfer time, which
increases with increasing checkpoint sizes. However,
FALCON’s design of compressing the checkpoints and
transferring the smaller checkpoint fragments in par-
allel speeds this up.

6.1.3 Recovery Overhead

In Fig. 5 we plot recovery overhead incurred by FAL-
CON and Dedicated schemes for a single recovery
operation.
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Fig. 4 Average checkpoint storing overhead vs different check-
point sizes

One observation that can be made from Fig. 5 is
that as checkpoint size increases, Dedicated scheme
suffers due to large network transfer overhead. Com-
pression by FALCON results in smaller checkpoint
data and hence reduced network transfer overhead.
As Table 1 shows, compression ratio increases as
size of checkpoint data increases. This justifies our
approach of incurring a little overhead at the compute
host side for compression with the benefit of signif-
icant improvement in recovery overhead. Note that,
lower recovery overheads directly translate to better
performance for an application.
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generated by applications in Table 1. This figure shows contri-
butions of different components in total recovery time. Erasure
coding parameters are (m = 3, k = 2). Fetch and disk write
time also includes the time to read checkpoint data from storage
repositories
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6.2 Micro Benchmark Experiments

The objective of the micro benchmark experiments is
to show off specific features of FALCON under con-
trolled experimental conditions. We conducted three
sets of experiments to compare: (i) efficiency of dif-
ferent schemes in handling concurrent clients, (ii)
efficiency in handling storage failures and (iii) per-
formance improvement due to load balancing. For
these experiments, we used checkpoint data of 500MB
generated by application TIGR. As storage hosts for
FALCON we used 11 - 1.86 GHz Intel Core 2 Duo
machines with 80GB of hard disk connected to the
campus-wide 100 Mbps LAN and 1 - 2.00 GHz lap-
top with 160GB of hard disk connected to a DSL
modem. As dedicated storage server we used another
lab machine with configuration 2.66 GHz Intel Core
2 Duo with 80GB of hard disk space and connected
to the campus-wide LAN. This machine was always
available.

6.2.1 Efficiency in Handling Simultaneous Clients

The objective of this experiment is to show how
the performance of different schemes scale with load
imposed by multiple concurrent clients. In this exper-
iment, the checkpoint storing overheads of differ-
ent schemes, in addition to the factors described in
Section 6, include time to write the checkpoint data
to disk at the storage host end. We vary the num-
ber of compute hosts simultaneously sending data and
measure the overhead for storing checkpoints.

Two observations that can be drawn from Fig. 6 are:

1. As the number of clients simultaneously send-
ing data increases, the checkpoint scheme with
a dedicated server suffers more than FALCON.
Even though with erasure coding FALCON intro-
duces 40 % more data, due to compression the
total amount actually sent by FALCON is less than
that of Dedicated. Total amount of data sent by
FALCON with compression and erasure coding is:

datasent = 5 × 153

3
MB = 255MB < 500MB

2. Checkpoint storing overhead of Random is larger
than that of FALCON because Random chose the
laptop behind the slow network connection 8 %
of the time. Because of low available bandwidth
between compute host and this laptop, FALCON

never chose it.

6.2.2 Efficiency in Handling Storage Failures

Since storage hosts in FGCS are non-dedicated
resources, a protocol must be able to handle unavail-
ability of storage hosts efficiently. The objective of
this experiment is to compare the added overhead of
re-choosing storage hosts by FALCON with that of
Random and the more conservative approach of Pes-
simistic [6]. For this experiment, we killed the storage
daemons running in those storage hosts to make them
appear unavailable.

One observation that can be drawn from Fig. 7 is
that the overhead of re-choosing storage hosts using
history and available bandwidth is no worse than that

Fig. 6 Average execution
time of the algorithms vs
number of clients
concurrently sending data to
the servers
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Fig. 7 Average checkpoint
storing overhead of
different schemes with
variable number of
unavailable storage hosts.
This overhead includes time
to re-choose storage hosts
to replace unavailable ones
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of choosing them randomly. This shows that FAL-
CON’s design choice of measuring history and avail-
able bandwidth out of the critical path yields robust-
ness at no extra cost. But it is clear from Section 6.2.2
that the scheme employed by FALCON chooses stor-
age hosts wisely. Pessimistic however incurs large
overhead due to measuring bandwidth between com-
pute and storage hosts at the beginning of every
checkpoint storing instance.

6.2.3 Load Balancing vs Checkpointing Overhead

In this experiment, we compare the overheads of stor-
ing checkpoints when the workload in storage hosts
varies. The objective of this experiment is to evaluate

the effectiveness of FALCON’s load balancing tech-
nique. For this experiment, we generated background
I/O load in a single storage host out of the 5 cho-
sen ones using a file system benchmark application
Bonnie [15]. The checkpointing overheads of both
the techniques, in addition to the factors described
in Section 6, include the time for the storage hosts
to write data to disk. Additionally, the overhead of
the scheme with load balancing includes time to
rechoose a storage host to replace the overloaded
one.

The observation that can be made from Fig. 8 is that
the difference between the load balancing and no load
balancing cases comes up when load on a storage host
becomes ≥ 80 %. As high I/O load may imply high

Fig. 8 Average checkpoint
storing overhead of different
schemes with various I/O
loads on one of the storage
hosts. This overhead
includes the time for storage
hosts to write checkpoint
data and acknowledge
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CPU utilization as well, the model with load balanc-
ing benefits by not sending data to this host. We set
τ2 to 80 % for FALCON with load balancing based on
this observation. Ensuring balanced load among the
shared storage resources is utterly important because
these resources are shared by the owners voluntarily.
Hence, taking advantage of these resources in a way
so that the actual host’s performance does not degrade
beyond a threshold is as crucial a parameter as the
performance benefit gained.

6.2.4 Parallel vs Sequential Retrieval of Checkpoints

In this experiment, we compare the network trans-
fer overheads incurred by retrieving the checkpoint
fragments sequentially with that of retrieving them
in parallel. The size of the checkpoint fragments was
940MB each and we generated 100 % I/O load on the
loaded storage hosts using Bonnie [15]. There were 5
storage hosts. The objective of this experiment is to
evaluate the effectiveness of FALCON’s parallel data
retrieval technique when a subset of the storage hosts
containing the checkpoint fragments becomes loaded.
Here, the sequential scheme retrieves fragments from
m storage hosts including all the loaded ones.

Figure 9 demonstrates the advantage of employing
parallelism in retrieving the fragments from storage
hosts. The sequential scheme performs poorly because
it fetches the checkpoint fragments from the loaded
hosts and can only complete after all the m fragments
are fetched. So if even any one of the hosts is busy
and the sequential scheme starts retrieving data from
that host, it has to finish the transfer. In contrast, the

parallel scheme is done as soon as any m of the frag-
ments arrive. So, it often happens that there are m not
so loaded hosts and the retrieval process finishes early.

6.2.5 Contributions of Compression, Load balancing,
and Network level Parallelism

In this experiment, we compare the contributions of
each of the three schemes—compression, load balanc-
ing, and parallel retrieval of checkpoint fragments—
in improving the recovery overhead and in turn, in
improving the performance of the applications. For
this, we successively remove one of the schemes from
FALCON while keeping the other two schemes. The
checkpoint used to run this experiment is that of the
application TIGR-I (Table 1).

In this experiment, PXfer stands for the parallel
network transfer of the checkpoint fragments, SXfer
stands for the sequential network transfer, D stands
for decoding, and UZ stands for decompression. Each
scheme consists of a combination of multiple such
schemes. For example, PXfer+D+UZ implies that this
scheme retrieves checkpoint fragments in parallel,
decodes them, and then decompresses them. The first
observation from Fig. 10 is that the largest contribu-
tion in improving recovery overhead comes from com-
pressing the checkpoint data. The highly compressible
nature of these checkpoint data can result in a com-
pression factor as large as 86 % (for mcf) and 79 %
for this application (Table 1). This in turn reduces
the network transfer overhead. Also, if the checkpoint
is not compressed, the decoding overhead increases.
An important point to note is that even though the

Fig. 9 Parallel vs
sequential retrieval of the
checkpoint fragments
during a recovery phase.
Note that the loaded storage
hosts are included in the list
of m hosts which the
sequential scheme contacts
for retrieving the
checkpoint fragments
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Fig. 10 The contributions
of each of the 3
techniques—compression,
load balancing, and parallel
network transfer—in
improving recovery
overhead. Note that, lower
recovery overhead reduces
the makespan of an
application and hence
results in improved
performance in
Section 6.1.1
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decompression overhead is the most dominating com-
ponent in the recovery overhead, it is worthwhile to
compress and decompress. Otherwise encoding very
large checkpoints ( ≥ 1GB) incurs very high memory
cost and requires very long time, if at all possible. Sec-
ond, due to the small size of each checkpoint fragment,
network transfer overhead of both the parallel and
the sequential schemes are comparable. The advan-
tage of using the parallel scheme over the sequential
one in retrieving the checkpoint fragments is discussed
in Section 6.2.4. Third, due to the smaller sizes of
the checkpoint fragments, the overhead of retrieving
the m fragments from storage hosts with 100 % I/O
load is comparable to that of retrieving them from
non-loaded ones. But the point to note is that load-
balancing while it does not have a very prominent
contribution in lowering the recovery overhead in this
experiment, it has an impact on the checkpoint trans-
fer overhead (Section 6.2.3). Load balancing is also
crucial because the storage hosts are shared resources.
So, during the checkpoint storing phase, if compute
hosts disregard the fact that a storage host is loaded
and put more load on it by sending the bulk of check-
point data, then the performance of the host jobs on
that storage host may degrade considerably. This may
cause the owner to remove his resource from the pool.

6.3 Single-threaded vs Multi-threaded Architecture
of FALCON

In this section, we discuss the experiments that we
ran to compare the checkpoint storing and recovery
overheads of the two different architectures of FAL-
CON. At first, we ran an experiment to find out the
value of b, the number of blocks that the checkpoint
should be decomposed into, that should be used to

get high overall performance improvement. Then, we
used this value of b to run experiments by varying
the checkpoint sizes. The goal of these experiments
is to compare the performance of FALCON architec-
tures with and without the TLP option turned on.
This new multi-threaded architecture works by break-
ing up the checkpoint data, compressing and creating
m + k fragments for each block in parallel. Transfer-
ring the checkpoint blocks in parallel over the network
was already part of the single threaded architecture of
FALCON. So, we only compare the overheads of par-
allel compression and encoding during the checkpoint
storing phase and parallel decoding and decompres-
sion during the recovery phases of the two schemes.
Lower compression and encoding overheads translate
into lower overall checkpoint storing and recovery
overheads.

6.3.1 Determine the Degree of Parallelism

In this experiment, for each size of checkpoint, we
varied the number of threads working concurrently on
the data. The machine that we used to run this experi-
ment was an 8 core SMP (Symmetric Multi-processor)
machine.

The observation that can be made from Fig. 11 is
that the decrease in compression overhead levels off
as the number of cores concurrently used increases.

In addition to that, the ability of a parallel pro-
gram’s performance to scale with the number of cores
is the result of a number of interrelated factors. Some
of the hardware related limiting factors are memory-
cpu bus bandwidth and the amount of memory avail-
able per core on a shared memory machine. As the
number of cores used increases, the amount of mem-
ory available to each of the cores decreases and hence
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Fig. 11 The change in compression overhead for different sizes
of checkpoint data with the increase in the number of cores
working concurrently

results in memory contention when more than 50 % of
the cores start being used. Based on this experiment
we set the configurable parameter b to half of the total
number of cores, i.e., 4 for the rest of the experiments.

6.3.2 Comparison of Checkpointing Overheads

In this experiment, we compare the overheads of com-
pressing a checkpoint data and then encoding it into
m+k fragments with that of breaking up a checkpoint
data into b blocks and then compressing and encod-
ing each block in parallel. For this experiment, we set
(m, k) to (3, 2) and b = 4. In the figure, the scheme
“FALCON” represents the single threaded architecture
where as “FALCON-P” represents the multi-threaded
one. The checkpoints were all generated by using
different inputs to the same benchmark application
TIGR.

One observation that can be made from Fig. 12
is that by breaking a large checkpoint up into multi-
ple blocks and then working on each block in parallel
reduces the overhead significantly. Table 3 shows a
complete break down of the amount of data that each
core had to deal with. The multi-core architecture of
FALCON improves the compression overhead by up
to 67 % (higher gains for larger checkpoint sizes).
Also, the encoding overhead reduces since now the
size of the input data to each invocation of the erasure
encoding algorithm is reduced by more than 50 %.

6.3.3 Comparison of Recovery Overheads

This experiment compares the recovery overheads
incurred by the two architectures.
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Fig. 12 The overhead of compressing and encoding check-
points of different sizes with and without taking advantage of
TLP

The observations that can be made from Fig. 13 are
that:

– decoding overhead decreases since the fragment
sizes to work with are smaller

– as checkpoint size increases, the difference
between the decompression overheads decreases.
The reason is that all the threads write to the
same file and disk writes cannot be made in par-
allel. Hence with the increase in the size of a
checkpoint data, there is not much improvement
in decompression overhead.

Even though the improvement in the recovery over-
head diminishes as checkpoint sizes increase, the
reduction in the checkpoint storing overhead is signif-
icant. This justifies the use of thread level parallelism
in the new architecture of FALCON (i.e., FALCON-P).

6.3.4 Discussion

The objective function developed in (3) in general
ranks storage hosts with lower I/O load and are
“faster” higher. In cases where a previously selected
storage host becomes unavailable or slow, when the
compute host component contacts the storage host
component, it accesses the current load on the storage
host and replies back saying that the storage host is
experiencing very high load. With that reply, the com-
pute host component reselects another storage host
that has not been selected already and sends its check-
point fragment. Since the cost of reselecting a storage
host is comparable to randomly selecting a storage
host, as shown in Section 6.2.2, the checkpointing
phase of FALCON is not impacted by a previously
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Table 3 A comparison of the input sizes to the compression and the erasure encoding algorithms in two different architectures of
FALCON

App. Input: Compression Algo.(MB) Input: Encoding Algo.(MB)

FALCON FALCON-P (per thread) FALCON FALCON-P

mcf 1677 419.25 241 (65,64,62,62)

TIGR-I 946 236.5 201 (83,49,36,34)

TIGR-II 500 125 153 (40,40,39,34)

Here, FALCON represents the single threaded and FALCON-P represents the multi-threaded architecture

selected storage host suddenly becoming slow. During
recovery phase, FALCON starts reading all m+ k frag-
ments in parallel from m + k storage hosts and only
waits for any m fragments to appear at the compute
node. This is possible due to the fact that FALCON

can recover a checkpoint from any m fragments. This
ensures that the recovery time for FALCON is only
dominated by the slowest of the m fastest storage
hosts. As long as the number of slow storage hosts
is less than or equal to k, the recovery overhead of
FALCON is not impacted at all.

7 Related Work

Checkpoint-recovery is a widely used technique for
providing fault-tolerance in high-performance paral-
lel computing and distributed systems [2]. Related
contributions include checkpointing facilities pro-
vided in production systems for MPI applications [16]
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Fig. 13 The recovery overhead of two different architectures
of FALCON

and improving checkpointing performance. Produc-
tion grid systems such as Condor [3], take checkpoints
of applications periodically and store them in ded-
icated servers. However, relying on such dedicated
servers does not leverage the idle storage resources in
grid environment. Moreover, recent research [17] has
shown that using non-dedicated storage can actually
result in improved performance of guest applications
if a reliable set of such resources can be chosen.
These results motivate our work of applying resource
availability prediction to select reliable, non-dedicated
checkpoint repositories.

Erasure encoding for storing data in a distributed
manner to tolerate failure is a well-known tech-
nique. Related work such as [5] discusses in detail
a fault-tolerant method of checkpointing and recov-
ery using erasure coding. On the other hand, [7]
compares different techniques of introducing redun-
dancy in checkpoint data to improve fault-tolerance
of applications in a shared storage environment. Era-
sure coding is also a popular technique for provid-
ing reliable access to data in peer-to-peer networks
[18]. The OceanStore project [19] creates massive
scale redundant copies of data using (among other
techniques) erasure coding. The work makes con-
tributions in efficient read operation and Byzantine
fault-aware replication. The model is not that of
FGCS systems and therefore the notion of guest jobs
and their evictions due to resource contention is not
significant.

[20] is an empirical study based on actual Con-
dor trace. It characterizes the reasons of resource
unavailability in Condor and proposes a multi-state
grid resource availability characterization. A few other
studies use failure modeling of compute hosts for
scheduling jobs on a grid [21].
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Feller et al. in [22] presents a framework that inte-
grates different checkpointing protocols and indepen-
dently checkpoint a distributed application within a
heterogeneous grid environment. Ansel et al. presents
DMTCP (distributed multithreaded checkpointing) in
[23] which is a transparent user-level checkpointing
package for distributed applications. These frame-
works focus on addressing the question of how to
take checkpoint or restart which is orthogonal to the
research question addressed by FALCON. While the
former two present checkpointing frameworks, the lat-
ter (our work) presents techniques to store checkpoints
in distributed manner ensuring both efficiency and
reliability. Techniques presented in this paper can be
incorporated within any checkpoint-restart framework
for leveraging unused disk space on grid resources for
storing checkpoints.

Our work in FALCON employs some well-known
techniques, to improve fault-tolerance of data (by era-
sure coding) and to improve performance of guest
processes (by checkpointing and recovery). However,
distinct from prior work, we try to address the unan-
swered issues of choosing reliable storage hosts in a
shared grid environment, balancing load across them,
and finally using them for storing and retrieving
checkpoints.

8 Conclusion

We have designed, developed and evaluated FAL-
CON, a system that provides fault-tolerant execution
of applications in FGCS systems without any ded-
icated storage server. Since FGCS systems do not
include dedicated network, any practical checkpoint-
ing system should reduce the data transferred between
two points. Our system achieves so by applying com-
pression and storing erasure encoded fragments that
are of much smaller size to a set of storage hosts.
We present a load-balancing multi-state failure model
for these shared storage resources and apply knowl-
edge of this model to predict reliability. We present
new checkpoint storing and retrieving techniques that
efficiently handle large-sized checkpoint data, of the
order of gigabytes. Finally, we run experiments in Boi-
lerGrid, a multi-university production Condor system
at Purdue University. Experiments show that FALCON

provides consistency in running times and improves
overall performance of jobs by 11 % to 44 % over the

mechanisms of using dedicated checkpoint servers or
choosing storage hosts randomly. In ongoing work, we
are extending FALCON to handle parallel applications,
and leverage the possibility of coexistence enabled by
multi-core machines.
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