
This paper is included in the Proceedings of the
11th International Conference on Autonomic Computing (ICAC ’14).

June 18–20, 2014 • Philadelphia, PA

ISBN 978-1-931971-11-9

Open access to the Proceedings of the
11th International Conference on
Autonomic Computing (ICAC ’14)

is sponsored by USENIX.

Is Your Web Server Suffering from Undue Stress
due to Duplicate Requests?

Fahad A. Arshad, Amiya K. Maji, Sidharth Mudgal, and Saurabh Bagchi, Purdue University

https://www.usenix.org/conference/icac14/technical-sessions/presentation/arshad

USENIX Association 	 11th International Conference on Autonomic Computing  105

Is Your Web Server Suffering from Undue Stress due to Duplicate Requests?

Fahad A. Arshad, Amiya K. Maji, Sidharth Mudgal, Saurabh Bagchi,
Purdue University

{faarshad, amaji, smudgals, sbagchi}@purdue.edu

Abstract

An important, if not very well known, problem that af-

flicts many web servers is duplicate client browser re-

quests due to server-side problems. A legitimate request

is followed by a redundant request, thus increasing the

load on the server and corrupting state at the server end

(such as, the hit count for the page) and at the client

end (such as, state maintained through a cookie). This

problem has been reported in many developer blogs and

has been found to afflict even popular web sites, such

as CNN and YouTube. However, to date, there has not

been a scientific, technical solution to this problem that

is browser vendor neutral. In this paper, we provide

such a solution which we call GRIFFIN. We identify

that the two root causes of the problem are missing re-

source at the server end or duplicated Javascripts em-

bedded in the page. We have the insight that dynamic

tracing of the function call sequence creates a signature

that can be used to differentiate between legitimate and

duplicate requests. We apply our technique to find unre-

ported problems in a large production scientific collabo-

ration web service called HUBzero, which are fixed upon

reporting the problems. Our experiments show an aver-

age overhead of 1.29X for tracing the PHP-runtime on

HUBzero across 60 unique HTTP transactions. GRIFFIN

has zero false-positives (when run across HTTP transac-

tion of size one and two) and an average detection accu-

racy of 78% across 60 HTTP transactions.

1 Introduction
The affliction of duplicated web requests: A duplicate

web request occurs when the client web browser sends

two requests for the same web page, the second being

a redundant duplicate request. This affliction does not

affect poorly run web sites alone. It afflicts two of the

top 10 most visited sites — CNN and YouTube [15].

Our tests (with Chrome) show that at least 22 out of

top 98 (on April 4, 2014) globally ranked Alexa [1] web

sites give a duplicate request on accessing their home-

pages. On the academic side, we found that it affects

HUBzero, a widely used open source software platform

(originating from Purdue) for building powerful Web

sites that support scientific discovery, learning, and col-

laboration [14].

Why do duplicate web requests happen? There are

two root causes for the problem of duplicate web re-

quests, which have been separately pointed out in many

developer forums and blog posts [3, 4, 17]. The first

cause is the incorrect way in which browsers handle

missing component names, or empty tags, such as, <img

src="">, <script src="">, and <link href="">.

Equivalently, this could be caused by JavaScript which

dynamically sets the src property on either a newly cre-

ated image or an existing one: The most readable and

comprehensive treatment of this first cause can be found

in [3]. We will refer to this first root cause as missing re-

source cause. The second cause is the same Javascript

being included in the page twice, or more number of

times [15]. This is the root cause behind the duplicate

web requests in CNN and YouTube. Two main factors

increase the odds of a script being duplicated in a sin-

gle web page: team size and number of scripts. It takes

a significant amount of resources to develop a web site,

especially if it is a top destination. In addition to the

core team building the site, other teams contribute to the

HTML in the page for things such as advertising, brand-

ing, and data feeds. With so many people from different

teams adding HTML to the page, it is easy to imagine

how the same script could be added twice, e.g., CNN and

YouTube’s main pages have 11 and 7 scripts respectively.

We will refer to this second root cause as duplicate script

cause.

How to fix the problem? The “missing resource cause”

happens because the HTML specification, version 4 [5]1

is silent on this seemingly esoteric aspect. Even though

the specification indicates that the src attribute should

1HTML4 is the latest version of the specification, except for a W3C

“Candidate Recommendation” for HTML5 dated 04 February, 2014.

106  11th International Conference on Autonomic Computing	 USENIX Association

contain a Uniform Resource Identifier (URI), it fails

to define the behavior when src does not contain a

URI. Consequently, different browsers behave in differ-

ent ways. For example, Internet Explorer (IE) sends the

duplicate request to the directory of the page rather than

the page itself, while Firefox and Chrome send the du-

plicate request to the page itself. Further, the behavior

of different browsers for handling different missing re-

sources is different, e.g., IE does not initiate a duplicate

request with missing script while Firefox and Chrome

do. The overall approach to handling this could be to

write server-side code that will catch a similar request

arising close in time to the original request and corre-

lated with finding a missing URI in a tag. However, due

to the differences in browser behaviors and for different

tags, this would lead to ungainly code, with case state-

ments for a large number of different cases. An indirect

evidence comes from the fact that though this problem

has been known for a while (since at least 2009), this so-

lution is seldom deployed. The “duplicate script cause”

of course has no easy solution available currently. The

solution is mainly process-based — enabling better com-

munication and coordination between developers writing

or using scripts to create web pages.

Our solution approach: In this paper, we present a

general-purpose solution to the above problem, in a sys-

tem called GRIFFIN2. By “general-purpose”, we mean

that the solution applies unmodified to all kinds of re-

sources and browsers. The solution has at its heart the

observation that the duplicate web requests cause a re-

peated signal, for some definition of “signal”. The sig-

nal should be defined such that it can be easily traced

in a production web server, without impacting compu-

tation or storage resources and without needing special-

ized code insertion. We find that the function call depth is

the signal that satisfies these conditions, while preserving

enough fidelity that the repeated sequence can be easily

and automatically discerned. To automatically discern

the repeated pattern, we use the simple-to-calculate au-

tocorrelation function for the signal and at a lag, equal

to the size of the web request (in terms of number of

HTTP commands), GRIFFIN sees a spike in autocorrela-

tion which it uses to flag the detection.

When tested over a wide range of buggy and non-

buggy behavior, we find that GRIFFIN performs well with

respect to both the detection and the false positive. We

find that GRIFFIN has no false positive and an 80% de-

tection accuracy. To make GRIFFIN feasible in real pro-

duction settings, we adopt a mix of synchronous and

asynchronous approaches, both without modifying the

application’s source code, or even needing access to the

2GRIFFIN is a mythical creature with the front legs, wings, and head

of a giant eagle, and the body, hind legs, and tail of a lion. It is often

used to guard treasures.

Figure 1: Duplicate bug-manifestation (with missing im-

ages) before and after the fix

source code. Synchronously we capture the call stack

depth, using a built-in functionality, in the tracing tool

called SYSTEMTAP. Then, asynchronously, GRIFFIN

calculates the autocorrelation function for various lags,

filters the values, and flags a detection when the value

exceeds a threshold. In addition to detection, GRIFFIN

also provides some diagnostic insight, i.e., gives an idea

of the module where the root cause lies.

2 Example Bug Case

Here we present a bug-case that was observed for the

beta release of the main web portal of our NSF center

called NEEScomm, meant for providing a cyberinfras-

tructure for earthquake engineers and scientists through-

out the US www.nees.org. GRIFFIN was able to de-

tect it before the code update made it to the produc-

tion site, and thus avoided the duplicate request problem.

On accessing the homepage, the images that appear as

part of background were missing (Figure 1). Listing 1

presents the code modifications that fixed the problem

(no duplicate requests seen from client). In Listing 1,

$slide->mainImage variable does not resolves to the

image XYZ.jpg location. Instead, it resolves to the NUL

character. Manual inspection revealed that the images

were missing. To verify, we hard-coded a valid image

location and it fixed the duplicate problem. Listing 2

shows the runtime state of the rendered HTML in Firefox

browser. On lines 3 and 10, the empty url() is observed,

while on line 4, the src field in tag having a value

of “/” pinpoints the root cause for the duplicate request

to the base URL.

To understand how current browser versions (Chrome

32, Firefox 26) behave under unexpected input,

we did a synthetic injection in HTML tags: <span

style:background=X>, , <script

src=X>, <iframe src=X>, <link href=X>. Here

X, the injected character, had ASCII codes in the range

32-126 excluding alphanumeric characters. We found

that, in addition to duplicate requests due to empty

strings which have been reported before [3], the char-

acters ’?’ and ’#’ also resulted in duplicate requests.

2

USENIX Association 	 11th International Conference on Autonomic Computing  107

 resulted

in a duplicate request for both browsers. For Firefox,

, <script src=SPACE,EMPTY>,

and <link href=SPACE> created duplicate requests.

These injections provide evidence that browsers do

behave differently and erroneously under unexpected

special characters for URIs.

1 −−− a / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

2 +++ b / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

3 −<sp an s t y l e =” b ack g ro u n d : u r l (<?php echo $ s l i d e−>mainImage ; ?>) no−
r e p e a t ; ”>

4 + <sp an s t y l e =” b ack g ro u n d : u r l (media / sy s t em / i mag es /XYZ . j p g) no−r e p e a t ; ”>

5 −<img s r c =”<?php echo $ s l i d e−>mainImage ; ?>” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

6 + <img s r c =” media / sy s t em / i mag es /XYZ . j p g ” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

7 −<sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l (<?php echo

$ s l i d e−>t h u mb n ai l Imag e ; ?>) no−r e p e a t ; ”> ;</ span>

8 + <sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l (media / sy s t em /

i mag es /XYZ . j p g) no−r e p e a t ; ”> ;</ span>

Listing 1: Code modification to fix unnecessary

duplicate requests

1 <d i v c l a s s =” s l i d e ” s t y l e =” p o s i t i o n : a b s o l u t e ; o p a c i t y : 0 ; z−i n d ex : 8 9 ; ”

>

2 <a c l a s s =” s l i d e− l i n k ” h r e f =” / f p s s / t r a c k / 3 5 / L3Jlc291 , , ”>

3 <sp an s t y l e =” b ack g ro u n d : u r l () no−r e p e a t ; ”>

4

5 </ sp an>

6 </ a>

7 .

8 .

9 .

10 <sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l () no−r e p e a t ; ”>
</ sp an>

Listing 2: Runtime state of generated HTML as

observed by Firebug

3 Design
Here we detail the design of GRIFFIN to detect duplicate

web requests. At a high level, it comprises three steps:

model application behavior at the web server (in terms

of the function calls and returns), create a signal of the

function call depths, and compute the auto-correlation of

the signal to trigger detection. Figure 2 shows these steps

in GRIFFIN.

3.1 Synchronous Tracing
We leverage SYSTEMTAP [12], a tracing/probing frame-

work that can provide synchronous tracing data on Linux

hosts. To enable tracing, SYSTEMTAP allows to write

probe-point scripts. Probe-point scripts tell SYSTEM-

TAP two things. (1). What event do you want to

trace? (2). What do you want to print at the traced

event-location?. GRIFFIN logs both function-entry and

function-return events and prints timestamp, thread-id,

function call depth, funcation name, file name, line num-

ber, and class name, if available. Further tracing imple-

mentation details are available in [7].

3.2 Modeling Application Behavior
For modeling purposes, we define a numeric metric

called function call-depth that represents the runtime

function call-depth. At every function-call, the call-

depth is incremented and at every return, it is decre-

mented. Our foundational intuition for modeling appli-

cation behavior is that the flow of an application can be

roughly represented by how function call depth changes.

The function call depth sequence for a given high-level

web operation can be considered as a fingerprint of the

high-level operation. For further exploration of this in-

tuition, let us first define some terms: web-request, web-

click, http-transaction. Starting from the lowest level,

a web request is the HTTP request sent by the web

browser, such as, GET and POST. A web click is a hu-

man user clicking in the browser to send web requests.

A single web click can generate multiple web requests.

A set of web clicks done in a particular sequence, as per-

mitted by the workflow in the website, is called an http

transaction. An http transaction can consist of one or

more web clicks; in typical usage this will be more than

one web click. An example of an http-transaction of size

two is going to the homepage followed by going to the

login page (HomePage→Login).

Now coming back to our intuition for detecting du-

plicate web requests, consider that a duplicate web re-

quest will create a duplicated signal of the function call

depths. It is easy to concoct a synthetic example where

this intuition is violated. For example, consider two le-

gitimate consecutive web clicks and the corresponding

web requests: (a (b (c c’) b’) a’) (d (e (f f’) e’) d’) giv-

ing a call-depth sequences of (1 2 3 3 2 1) (1 2 3 3 2 1).

This would give the appearance to GRIFFIN of duplicated

web requests. However, we find that for real web pages,

the length of web clicks in terms of the number of func-

tion calls and returns tends to be much larger. This kind

of accidental matching of the function call depth signal

happens only very rarely for these real situations.

To get the call-depth at runtime, we add a function

called thread indent depth(long) to SYSTEMTAP

’s native scripts. This function returns a number cor-

responding to the depth of nesting. We call this func-

tion thread indent depth(1) in the probe-point SYS-

TEMTAP script. Here, the argument one means that at

every function-call, increment the depth by one. We sub-

mitted this function to the SYSTEMTAP repository and it

has been merged into SYSTEMTAP ’s master-branch and

is available out-of-the-box after SYSTEMTAP is installed

[6].

3.3 Duplicate Detection Algorithm

With the function call-depth sequence captured, the next

goal is to detect whether the sequence has a repetitive

pattern and to do this efficiently with respect to time.

To do this, we use a common signal analysis technique

to detect repeating patterns, auto-correlation [19] of the

function call-depth signal. Auto-correlation of a signal x

is defined by Rxx (Equation 1) as a function of lag-value

t, where t varies from zero (perfect signal match with

Rxx=1) to n, the sequence length in terms of the number

3

108  11th International Conference on Autonomic Computing	 USENIX Association

Figure 2: Overview of the duplicate-detection workflow.

of function calls and exits. Ideally for GRIFFIN to de-

tect duplicate web requests resulting from a single user

web click, it would be possible to segment the web re-

quests for each web click. But that is not always pos-

sible in practice, as we discuss in [7]. Auto-correlation

can be viewed as a sequences of shift, multiply, sum op-

erations for all lag values on function call-depth signal.

Intuitively, we are using auto-correlation to estimate the

similarity between the signal and its time shifted versions

for various values of the time shift. If the function-depth

signal is exactly repeated twice, we expect to see a peak

of 0.5 around the lag value of n/2.

Rxx[t] =
Ct

C0
where t=0,. . . ,n

Ct =
1

n

min(n−t,n)

∑
s=max(1,−t)

[Xs+t − X̄][Xs − X̄]

(1)

After auto-correlation computation for all lag-values,

we find the index at which the auto-correlation first

becomes negative, call this t0. For values of auto-

correlation beyond t0, we find if there is any value greater

than a threshold value τ . If yes, we flag a duplicate-

detection. For the duplication of a set of web requests

once, we expect ideally an auto correlation peak of 0.5.

But to tolerate the normal variation in function call-depth

signal, we set the threshold τ to be a little lower than

0.5. We report on our sensitivity empirical study in Sec-

tion 5.3. The reason for starting the search beyond t0 is

that then we eliminate the high values of autocorrelation

that we will see due to the original signal being corre-

lated with itself with small time lags. The pseudocode

for GRIFFIN’s detection algorithm is available in [7].

3.4 Usage Modes
We envision GRIFFIN to work in two scenarios, pre-

production testing and in-production. In testing, devel-

oper’s have control of the environment and trace seg-

mentation is not an issue. Here, a possible concern by

developers could be GRIFFIN’s detection latency, which

is in order of seconds. For in-production mode, oper-

ators’ main concern could be the overhead of configur-

ing and tuning GRIFFIN and the application tracing over-

head, which is incurred in the critical path of all web

requests and responses. GRIFFIN’s configuration is min-

imal with only one threshold parameter for which we

provide a recommendation (threshold=0.4) with our sen-

sitivity analysis. To further minimize the tracing over-

head, an operator can run GRIFFIN in time intervals of

low load on the web server .

4 Experimental Setup

4.1 Configurations: Hardware, Software,

Tracing

NEEShub infrastructure is running Apache/2.2.16 (De-

bian) web server in Prefork MPM (Multi-Processing

Module) [2] mode, i.e., with multiple processes and one

thread per process, on a VM with Intel(R) Xeon(R)

CPU E5-2643 0 @ 3.30GHz with 6GB RAM. The PHP-

runtime (libphp5.so) version is 5.3.3 and is compiled

with --enable-dtrace option in order for SYSTEM-

TAP (ver 2.4) to be able to intercept PHP-function calls

and returns with its probes.

4.2 Evaluation Metrics

We evaluate GRIFFIN’s detection performance with tradi-

tional definitions of accuracy and precision. Accuracy is

defined as the percentage of true positives and true nega-

tives. Precision is defined as the percentage of true posi-

tives out of all detections. We establish the ground truth

through manual verification, at client-end, by checking

duplicate requests for each web-click using browser de-

bugging tools, Firebug and Chrome-dev-tools. We mea-

sure the overhead of GRIFFIN in two areas, tracing over-

head and detection overhead. Tracing-overhead is the

fraction of total time, taken by SYSTEMTAP ’s probes

while processing a given web-click. Detection overhead

or detection latency is measured in the standard way as

the time elapsed for all the detection steps.

4

USENIX Association 	 11th International Conference on Autonomic Computing  109

5 Evaluation

5.1 Experimental Workload

GRIFFIN’s testing was conducted on a replica of the pro-

duction site (www.nees.org), technically referred to as a

“staging machine” where developers merge their code af-

ter doing the unit testing on their own development box.

We made no modifications or synthetic error injections.

Therefore, we expected to find few, if any, problems with

the website.

We tested GRIFFIN’s duplicate-detection performance

by sending a total of 60 HTTP transactions of varying

sizes. The size of a transaction is measured by the num-

ber of web clicks incorporated within the transaction.

Thus, the transaction HomePage→Login has a size of

two. Also, for the analysis (autocorrelation computa-

tion), the signal is considered the entire transaction. We

used 20 transactions for each of the sizes 1,2,3. These

60 HTTP transactions were executed following different

possible user workflows as enabled by the web portal.

We tried to cover all the workflows that a typical user

would follow while visiting the website.

Ideally, the analysis in GRIFFIN will consider the

traces corresponding to a single web click from a sin-

gle user. Within a single user, we expect that different

web clicks are handled by threads of different IDs. We

empirically validated that this is always the case for all

our transactions.

5.2 Accuracy and Precision Results

Out of the 7 duplicate request problems (among the

60 HTTP transactions), GRIFFIN was able to correctly

find 4 duplicated requests i.e., HomePage, Topics-page,

SimulationWiki-page and Wiki-page. SimulationWiki

page was due to a Javascript-based duplication, while

the other three were due to missing-resources. GRIF-

FIN missed 3 cases of duplicated requests, warehouse,

simulation and education pages.

GRIFFIN’s accuracy and precision with different

HTTP transaction sizes is presented in Table 1. GRIF-

FIN provides an average accuracy of 80% across HTTP

transactions of size one and two with no false posi-

tives. With three web clicks, GRIFFIN’s performance

degrades– here 0% precision is misleading in the sense

that out of the 20 HTTP transactions of size three,

only one (HOMEPAGE→LOGIN→LOGGINGIN (Fig-

ure 3)) had a duplicate request which GRIFFIN did

not detect. GRIFFIN falsely flagged 4 out of 20

transactions giving a false positive rate of 20% for

HTTP transactions of size three. The reason why

GRIFFIN did not detect HOMEPAGE web-click within

HOMEPAGE→LOGIN→LOGGINGIN transaction is

due to the significant difference of LOGGGINGIN func-

tion call-depth signal from the signals of HOMEPAGE

0 50000 100000 150000

0
10

20
30

40

Index

Fu
nc

tio
n−

de
pt

h

Figure 3: HOME→LOGIN→LOGGINGIN: Function

call-depth signal for three web clicks from browser

and LOGIN web clicks (see the increase in function call-

depth signal between index 100K to 150K in Figure 3).

Here, HOME and LOGIN web clicks have an average

function call-depth of 15.61 and 15.47 respectively while

LOGGINGIN has an average of 32.42 making it signifi-

cantly different. With HTTP transaction of size 3, GRIF-

FIN is performing its analysis after combining these three

signals into one. Thus, the divergence in the single com-

bined signal means that the autocorrelation values, even

with one duplication, tend to be low, and stay below the

threshold. In practice, the HTTP transactions of size 3

will be very rare because of the discrimination that GRIF-

FIN will be able to do using the thread ID [7].

Accuracy Precision

one-click 90% =
18

20
100% =

3

3

two-clicks 70% =
14

20
100% =

4

4

three-clicks 75% =
15

20
0% =

0

4

Table 1: Summary of Performance results

With the ideal (and practically common) case of anal-

ysis over HTTP transaction of size 1, GRIFFIN shows

90% accuracy and 100% precision. As an example, the

function call-depth and autocorrelation for HOME web-

transaction is presented in Figure 2. We see that the au-

tocorrelation has a clear peak value of 0.4998 near a lag-

value of 40,000 which is detected by GRIFFIN (with a

threshold set at 0.4). Manual checking, both at user-end

and at server-end revealed that HOME web-request (”/”)

is being sent twice by the user’s browser. Further inspec-

tion on the server revealed that a field called hits in the

back-end database is incremented on every HOME web-

transaction. We reported this hitherto unknown problem

to the web developer at NEES, and it was subsequently

fixed and not pushed into the production environment.

Testing GRIFFIN with HTTP transactions of size 2, we

observe a drop in accuracy (to 70%). This happens due

to the significant variability in the basic signal due to the

very different nature of the function call invocations in

the two web clicks. Expectedly, autocorrelating a diver-

gent signal gives low autocorrlation values, which some-

time fall below the GRIFFIN threshold (0.4).

5

110  11th International Conference on Autonomic Computing	 USENIX Association

(a) One-click (b) Two-click

Figure 4: Sensitivity of GRIFFIN for one and two-clicks

Tracing Over-

head (Avg)

Tracing Over-

head (Std.

Dev)

Sequence

Length (Avg)

Sequence

Length (Std.

Dev)

one-click 24.0% 6.6% 67,071 54,165

two-clicks 32.8% 11.6% 131,511 76,630

three-clicks 29.1% 9.1% 141,427 33,727

Table 2: Tracing Overhead

5.3 Sensitivity and Overhead
GRIFFIN’s sensitivity to different parameters, sequence

length, threshold and number of traced contiguous web

clicks is critical from a usability perspective. With an

increasing number of contiguous web clicks, GRIFFIN’s

accuracy and precision drop. The pattern of accuracy

decreasing with increasing number web clicks holds true

with increasing sizes of the traces. We present GRIFFIN’s

sensitivity with different thresholds in Figure 4.We set

GRIFFIN threshold to 0.4 as the default value for GRIF-

FIN to provide us zero false positives, i.e., 100% preci-

sion. The user can decrease the threshold for fine tuning

her system, but we suggest to not go below 0.35 (based

on Figure 4b) as that can result in possible false positives.

The detection latency as a function of the sequence

length (i.e., the number of trace events due to SYSTEM-

TAP probes) shows the expected behavior of greater la-

tency with increasing sequence length [7]. This is due

to a larger number of autocorrelation computations for a

longer trace length. However, the upper range of the se-

quence length is typically about 100K and with that we

have a detection latency of about half a minute, which

should be fast enough to be useful for the subsequent

manual process of fixing the problem. The average trac-

ing overhead across the 60 tested HTTP transactions is

28.6% with a standard devitation of 10.0%. The over-

head for HTTP transactions for each size is presented

in Table 2. The tracing overhead is independent of the

length of the sequence and the differences seen are due

to statistical variations.

5.4 Diagnostic-context
When GRIFFIN detects duplicate web-requests, a

diagnostic-context about the detection would help the de-

velopers as a starting point for debugging. At detection-

time, in addition to the autocorrelation value, we also

have the lag when this autocorrelation value exceeded

the threshold, call this tmax. We use tmax alongwith the in-

formation provided by an additional SYSTEMTAP probe

that records the HTTP-request going from apache-core

to PHP-runtime, to provide the diagnostic-context. With

the tmax, we get the nearest next fired apache-core

to PHP event. We then extract a high-level component

(module name) from the file name. For the duplicate bug

of Figure 1, this simple scheme is able to correctly flag

mod fpss module in Joomla, the Content Management

System, on which HUBzero is built.

6 Related Work
Most of the existing approaches to handle duplicate re-

quests are not at the application-level. TCP [9] is the

classic example that uses sequence numbers along with a

windowing-based mechanism to do duplicate detection

of IP packets. Stateless protocols like HTTP have to

deal with the request-response nature and maintain state

at the application-level. Application-level works include

similarity detection [16] deployed at web-proxy caches

to eliminate redundant network traffic, duplicate-content

detection [18] with clustering and similarity metrics [11].

These are directed at generic payloads and are therefore

less accurate than GRIFFIN in general.

Finding relevant system events to detect and diag-

nose failures is often equated to the problem of finding

a needle in a haystack. Over the last decade, several

researchers have proposed solutions to this challenging

problem [10, 20, 8, 13]. The high-level objective here is

to mine vast amounts of system data to find relevant sig-

natures for failures. Our work falls within this broad um-

brella. We automate the process of detecting duplicated

web requests by looking at a compressed signal from sys-

tem events, specifically function calls and returns.

7 Conclusion
In this paper, we have presented a systematic method and

an automated tool called GRIFFIN for detecting an im-

portant problem that afflicts many web servers, namely,

duplicate client browser requests. This causes an artifi-

cially high load on servers and corrupts server and client

state. Culling together many blog posts and developer fo-

rum reports, we identify the two fundamental root causes

of the problem and come up with a solution that han-

dles both, without needing special case logic for the two

root causes or for different browsers. We use GRIF-

FIN for detecting the problem in a production web portal

for an NSF center at Purdue and identify that the prob-

lem is more widespread than previously identified. Our

evaluation on the production site revealed no false posi-

tive. The dynamic system tracing using SYSTEMTAP is

lightweight and the detection latency small enough (less

than half a minute) as to be useful in practice. Our contri-

butions were considered significant enough that the prob-

lem was fixed in the web portal and our addition to the

dynamic tracing facility was accepted in its official re-

lease.

6

USENIX Association 	 11th International Conference on Autonomic Computing  111

References

[1] Alexa Internet, Inc. http://www.alexa.com/.

[2] Apache MPM prefork. http://httpd.apache.org/docs/2.

2/mod/prefork.html.

[3] Empty image src can destroy your site. http:

//www.nczonline.net/blog/2009/11/30/

empty-image-src-can-destroy-your-site/.

[4] Empty SRC And URL() Values Can Cause Duplicate Page Re-

quests. http://www.bennadel.com/blog /2236-Empty-SRC-And-

URL-Values-Can-Cause -Duplicate-Page-Requests.htm.

[5] HTML 4.01 Specification. http://www.w3.org/TR/html4/.

[6] Systemtap call-depth feature request. https://sourceware.

org/bugzilla/show_bug.cgi?id=16472.

[7] ARSHAD, F., MAJI, A.K. MUDGAL, S., AND BAGCHI, S. Is

your web server suffering from undue stress due to duplicate re-

quests? http://docs.lib.purdue.edu/ecetr/458, Apr. 24

2014. Technical Report, School of Electrical and Computer En-

gineering, Purdue University.

[8] BODIK, P., GOLDSZMIDT, M., FOX, A., WOODARD, D. B.,

AND ANDERSEN, H. Fingerprinting the datacenter: Automated

classification of performance crises. In Proceedings of the 5th Eu-

ropean Conference on Computer Systems (New York, NY, USA,

2010), EuroSys ’10, ACM, pp. 111–124.

[9] CERF, V., AND KAHN, R. A protocol for packet network inter-

communication. Communications, IEEE Transactions on 22, 5

(May 1974), 637–648.

[10] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,

KELLY, T., AND FOX, A. Capturing, indexing, clustering, and

retrieving system history. In Proceedings of the Twentieth ACM

Symposium on Operating Systems Principles (New York, NY,

USA, 2005), SOSP ’05, ACM, pp. 105–118.

[11] COSKUN, B., AND GIURA, P. Mitigating sms spam by online

detection of repetitive near-duplicate messages. In Communica-

tions (ICC), 2012 IEEE International Conference on (June 2012),

pp. 999–1004.

[12] EIGLER, F. C., PRASAD, V., COHEN, W., NGUYEN, H., HUNT,
M., KENISTON, J., AND CHEN, B. Architecture of systemtap: a

linux trace/probe tool.

[13] FU, Q., LOU, J.-G., LIN, Q.-W., DING, R., ZHANG, D., YE,

Z., AND XIE, T. Performance issue diagnosis for online service

systems. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st

Symposium on (2012), IEEE, pp. 273–278.

[14] MCLENNAN, M., AND KENNELL, R. Hubzero: A platform for

dissemination and collaboration in computational science and en-

gineering. Computing in Science & Engineering 12, 2 (2010),

48–53.

[15] SOUDERS, S. High-performance web sites. Commun. ACM 51,

12 (Dec. 2008), 36–41.

[16] SPRING, N. T., AND WETHERALL, D. A protocol-independent
technique for eliminating redundant network traffic. SIGCOMM

Comput. Commun. Rev. 30, 4 (Aug. 2000), 87–95.

[17] STEVE W. Monkey Code. http://code.alittlegoofy.

com/2008/12/i-found-something-peculiar-about.

html.

[18] VALLÉS, E., AND ROSSO, P. Detection of near-duplicate user

generated contents: The sms spam collection. In Proceedings

of the 3rd International Workshop on Search and Mining User-

generated Contents (New York, NY, USA, 2011), SMUC ’11,

ACM, pp. 27–34.

[19] VENABLES, W. N., AND RIPLEY, B. D. Modern Applied Statis-

tics with S. Springer Publishing Company, Incorporated, 2010.

[20] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JOR-

DAN, M. I. Detecting large-scale system problems by mining

console logs. In Proceedings of the ACM SIGOPS 22Nd Sym-

posium on Operating Systems Principles (New York, NY, USA,

2009), SOSP ’09, ACM, pp. 117–132.

7

