
Original Article

The International Journal of High
Performance Computing Applications
2014, Vol. 28(2) 129–173
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014522573
hpc.sagepub.com

Addressing failures in exascale computing

Marc Snir1, Robert W Wisniewski2, Jacob A Abraham3,
Sarita V Adve4, Saurabh Bagchi5, Pavan Balaji1, Jim Belak6, Pradip Bose7,
Franck Cappello1, Bill Carlson8, Andrew A Chien9, Paul Coteus7,
Nathan A DeBardeleben10, Pedro C Diniz11, Christian Engelmann12,
Mattan Erez3, Saverio Fazzari13, Al Geist12, Rinku Gupta1, Fred Johnson14,
Sriram Krishnamoorthy15, Sven Leyffer1, Dean Liberty16, Subhasish
Mitra17, Todd Munson1, Rob Schreiber18, Jon Stearley19 and
Eric Van Hensbergen20

Abstract
We present here a report produced by a workshop on ‘Addressing failures in exascale computing’ held in Park City,
Utah, 4–11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all
the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software
layers of an exascale system, and build on those results, examining potential solutions from both a hardware and soft-
ware perspective and focusing on a combined approach.

The workshop brought together participants with expertise in applications, system software, and hardware; they came
from industry, government, and academia, and their interests ranged from theory to implementation. The combination
allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

Keywords
Resilience, fault-tolerance, exascale, extreme-scale computing, high-performance computing

Report on a workshop organized by the Institute for Computing Sciences on 4–11 August 2012 at Park City, Utah.

1 Introduction

‘The problems are solved, not by giving new information,
but by arranging what we have known since long.’

– Ludwig Wittgenstein, Philosophical Investigations.

This article is the result of the workshop on ‘Addressing
failures in exascale computing’ held in Park City, Utah,
4–11 August 2012. The workshop was sponsored by the
Institute for Computing in Science (ICiS). More infor-
mation about ICiS activities can be found at http://
www.icis.anl.gov/about. The charter of this workshop
was to establish a common taxonomy about resilience
across all the levels in a computing system; to use that
common language in order to discuss existing knowl-
edge on resilience across the various hardware and soft-
ware layers of an exascale system; and then to build on
those results, examining potential solutions from both a
hardware and software perspective and focusing on a
combined approach.

1Argonne National Laboratory, IL, USA
2Intel Corporation, CA, USA
3University of Texas at Austin, TX, USA
4University of Illinois at Urbana-Champaign, IL, USA
5Purdue University, IN, USA
6Lawrence Livermore National Laboratory, CA, USA
7IBM T.J. Watson Research Center, NY, USA
8IDA Center for Computing Sciences, MD, USA
9The University of Chicago, IL, USA
10Los Alamos National Laboratory, NM, USA
11USC Information Sciences Institute, CA, USA
12Oak Ridge National Laboratory, TN, USA
13Booz Allen Hamilton, VA, USA
14SAIC, VA, USA
15Pacific Northwest National Laboratory, WA, USA
16Advanced Micro Devices, MA, USA
17Stanford University, CA, USA
18Hewlett Packard, CA, USA
19Sandia National Laboratory, NM, USA
20ARM Inc., TX, USA

Corresponding author:

Marc Snir, Mathematics and Computer Science Division, Argonne

National Laboratory, 9700 South Cass Avenue Argonne, IL 60439.

Email: snir@anl.gov

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The workshop brought together participants with
expertise in applications, system software, and hard-
ware; they came from industry, government, and aca-
demia; and their interests ranged from theory to
implementation. The combination allowed broad and
comprehensive discussions and led to this article, which
summarizes and builds on those discussions.

The article is organized as follows. In the rest of the
introduction, we define resilience and describe the
problem of resilience in the exascale era. In Section 2,
we present a consistent framework and terms used in
the rest of the document. Sections 3 and 4 describe the
sources and rates for hardware and software errors.
Section 5 examines classes of software capabilities in
preventing, detecting, and recovering from errors.
Section 6 takes a system-wide view and describes possi-
ble ways of achieving resilience. Section 7 presents pos-
sible scenarios and how to handle failures. Section 8
provides suggested actions.

1.1 The problem of resilience at exascale

DOE and other agencies are engaged in an effort to
enable exascale supercomputing performance early in
the next decade. Extreme-scale computing is essential
for progress in many scientific and engineering areas
and for national security. However, progress from cur-
rent top HPC systems (at tens of petaflops peak perfor-
mance and roughly 1 PF sustained performance) to
systems 1000 times more powerful will encounter obsta-
cles. One of the main roadblocks to exascale is the like-
lihood of much higher error rates, resulting in systems
that fail frequently and make little progress in compu-
tations or in systems that may return erroneous results.
Although such systems might achieve high nominal per-
formance, they would be useless.

Higher error rates will be due to a confluence of
many factors:

� Hardware failures are expected to be more frequent
(discussed in more detail in Section 3). Errors unde-
tected by hardware may be frequent enough to
affect many computations.

� As hardware becomes more complex (heteroge-
neous cores, deep memory hierarchies, complex
topologies, etc.), software will become more com-
plex and hence more error-prone. Failure and
energy management also add complexity. In addi-
tion, the larger scale will add complexities as more
services need to be decentralized, and complex fail-
ure modes that are rare and ignored today will
become more prevalent.

� Application codes are becoming more complex.
Multiphysics and multiscale codes couple an
increasingly large number of distinct modules.

Data assimilation, simulation, and analysis are
coupled into increasingly complex workflows.
Furthermore, the need to reduce communication,
tolerate asynchrony, and tolerate failures results in
more complex algorithms. The more complex
libraries and application codes are more error-
prone. Software error rates are discussed in Section
4 in more detail.

1.2 Applicable technologies

The solution to the problem of resilience at exascale will
require a synergistic use of multiple hardware and soft-
ware technologies.

Avoidance: for reducing the occurrence of errors
Detection: for detecting errors as soon as possible after
their occurrence
Containment: for limiting the impact of errors
Recovery: for overcoming detected errors
Diagnosis: for identifying the root cause of detected
errors
Repair: for repairing or replacing failed components

We discuss potential hardware approaches in Section 3
and potential software solutions to resilience in
Section 5.

1.3 The solution domain

The current approach to resilience assumes that silent
errors are rare and can be ignored. Applications check-
point periodically; when an error is detected, system
components are either restored to a consistent state or
restarted; applications are restarted from the latest
checkpoint. We divide the set of possible solutions for
resilience at exascale into three categories.

Base option: Use the same approach as today. This
would require the least effort in porting current appli-
cations but may have a cost in terms of added hard-
ware and added power consumption. We discuss in
Section 7.1 what improvements are needed in hardware
and system software in order to carry this approach
into the exascale range, and we consider what costs will
be incurred.
System option: Use a combination of hardware and sys-
tem software to handle resiliency in a manner that is
transparent to the application developer. This approach
will require no change in application codes and is there-
fore equivalent to the base option from the viewpoint
of application developers. The relative cost of hardware
changes vs. system software changes will dictate prefer-
ences between the base option and the system option.
We discuss this option in Section 7.2.

130 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Application option: Require application developers to
handle resilience as part of their application code. The
approach is more invasive from the viewpoint of appli-
cation developers but may reduce the cost of exascale
platforms and their energy consumption. We further
subdivide this option into two suboptions.

Application-level error detection: Application code is
responsible for error detection; recovery is done, as
today, by restarting from a checkpoint. That is, the
only added burden on application developers is to
provide a checkpoint validation routine. We discuss
this option in Section 7.3.
Application-level error correction: Application code is
also written so as to avoid the need for global check-
point and global restart, thus possibly reducing the
overheads entailed by this approach. We discuss this
option in Section 5.6.4.

We find that some technologies are essential no mat-
ter which approach is chosen. For example, it is essen-
tial to reduce the frequency of system crashes and to
reduce the time to recover from system crashes. Other
technologies are ‘no brainers’ in that they improve the
resilience of systems with little added cost. This is true,
for example, of failure prediction and avoidance, as dis-
cussed in Section 5.2.

The three options are not mutually exclusive. The
system option will still require adequate hardware sup-
port, and the application option will require adequate
hardware and system software support. Design choices
will need to consider the maturity of various technolo-
gies and the relative cost of the different choices of
higher platform acquisition cost, higher power con-
sumption, or higher cost for application code develop-
ment and porting. The balance may change over time
and may well not be the same for today’s 10 PF
machines as for a 100 PF system or an exascale system.
To be able to make the tradeoffs requires understand-
ing the costs based on the expected and possible cap-
abilities at each layer. Thus, we discuss in Section 8 the
commonality between these options, pointing out tech-
nologies that are clearly needed no matter what path is
taken, and the research, observations, and experiments
that can help us choose the appropriate path.

1.4 Previous reports

Our work leverages several recent reports on resilience.
A DARPA white paper on system resilience at

extreme scale was issued in 2009 (Elnozahy et al.,
2009). It points out that high-end systems waste 20%
of its computing capacity on failure and recovery. The
white paper outlines possible evolutionary and revolu-
tionary research with the goal of bringing this number
down to 2%.

Blue Waters and Teragrid co-sponsored a workshop
in 2009 on ‘Fault-tolerance for extreme-scale comput-
ing’ (Katz et al., 2009). The ensuing report proposes
focusing on better communications between vendors,
system people, and application teams; more measure-
ments to quantify the problem; and better preventive
maintenance.

A DOE/DOD report issued in 2010 (DeBardeleben
et al., 2010b) identifies resilience as a major emerging
issue for high-end computing (HEC) that requires new
approaches. It calls for a national effort and proposes
research in five thrust areas: theoretical foundations,
enabling infrastructure, fault prediction and detection,
monitoring and control, and end-to-end data integrity.
This report considers resilience to be ‘concerned with
reliability of information in lieu of, or even at the
expense of, reliability of the system’.

A report published in 2009 by the NCSA/INRIA
Joint Laboratory for Petascale Computing (Cappello et
al., 2009) identifies four major research issues for exas-
cale resilience: (1) fault detection, propagation and
understanding; (2) fault recovery; (3) fault-oblivious
algorithms; and (4) stress testing of the proposed fault-
tolerance solutions.

A DOE/DOD report issued in 2012 (Daly et al.,
2012) identifies six high priorities: fault characteriza-
tion, detection, fault-tolerant algorithms, fault-tolerant
programming models, fault-tolerant system services,
and tools.

The Computing Community Consortium (CCC)
organized a ‘Cross-layer reliability visioning study’ in
2011 (DeHon et al., 2011). This study, while not
focused on HPC, makes many relevant points. It sug-
gests a research and education program with eight
components: repairable hardware architectures; cross-
layer information sharing; multilayer error filtering;
multilayer tradeoffs for error-handling; differential
reliability; techniques, theories, and platforms that are
scalable and adaptive to a wide range of error rates and
error types; graceful degradation; and embedding of
reliability and immunologics engineering into electrical
engineering, computer engineering, and computer sci-
ence curricula.

A recent DOE workshop (Geist et al., 2012) focused
on resilience from the perspective of DOE, with the fol-
lowing goals: (1) describe the required HPC resilience
for critical DOE mission needs; (2) detail what HPC
resilience research is already being done at the DOE
national laboratories and is expected to be done by
industry or other groups; (3) determine what fault man-
agement research is a priority for DOE’s Office of
Science and NNSA over the next five years; and (4)
develop a roadmap for getting the necessary research
accomplished.

The International Exascale Software Project
Roadmap (Dongarra et al., 2011), which is the result of

Snir et al. 131

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

more than a year of coordinated effort by a large inter-
national group of experts, discusses various aspects of
resilience. Resilience is identified as a major cross-
cutting issue that requires support at the OS level
(APIs for fine-grained management of resilience), run-
time (transparent resilience), compilers, applications
(application-driven resilience models), and algorithms.
The report recommends research on improvements to
checkpoint/rollback, and fault-avoiding and fault-
oblivious software.

We included in this list only recent reports. We note,
however, that research on fault-tolerant computing is
as old as computers are. Frequent failures were a major
problem in the earliest computers: ENIAC had a mean
time to failure (MTTF) of two days (Randall, 2006).
Major advances in this area occurred in the 1950s and
1960s, for example in the context of digital telephone
switches (Downing et al., 1964) and mainframes
(Spainhower and Gregg, 1999). More recently, NASA
examined the use of non-rad hardened, commercial-off-
the-shelf (COTS) processors for space missions, which
requires tolerance of hardware errors (Katz and Some,
2003). Bibliographical research must be an important
component of a research program in resilience.

2 Taxonomy of terms

‘Clear language engenders clear thought.’
– Richard Mitchell, The Underground Grammarian.

The absence of agreed-upon definitions and metrics
for supercomputer reliability, availability, and service-
ability has, in the past, obscured meaningful discussion
of the issues involved and has hindered their solution
(Stearley, 2005). In order to avoid similar confusion,
we start by defining our terms. We broadly follow the
taxonomy of Avižienis (Avižienis et al., 2004), which
has roughly 2000 citations, with additions specific to
our domain.

2.1 Dependability

The definitions in this section are based almost entirely
on Avižienis et al. (2004).

System: an entity that interacts with other entities
Component/subsystem: a system that is part of a larger
system
Atomic component: the point at which system/compo-
nent recursion stops, by desire or discernability
Functional specification: description of system function-
ality and performance, defining the threshold between
a correct and an incorrect service (acceptable vs
unacceptable)
Service: a system’s externally perceived behavior

Quality of service (QoS): guarantees provided by the
system on the performance and reliability of the service
it provides
Behavior: what a system does to implement its function,
described by a series of states
Total state: a system’s computation, communication,
stored information, interconnection, and physical
condition
Dependability: the ability to avoid service failures that
are more frequent and more severe than is acceptable
Dependence: the extent to which a system’s dependabil-
ity is affected by another’s
Trust: accepted dependence
The terms ‘fault’, ‘error’, and ‘failure’ are sometimes
used synonymously, but we believe that more distinc-
tive use, as defined in Avižienis et al. (2004), is
beneficial:
Fault: the cause of an error (e.g. a bug, stuck bit, alpha
particle)
Error: the part of total state that may lead to a failure
(e.g. a bad value)
Failure: a transition to incorrect service (an event, e.g.
the start of an unplanned service outage)
Degraded mode/partial failure: the failure of a subset of
services

Faults can be active or inactive, meaning actually
causing errors or not. A fault is generally local to a sin-
gle component, as distinct from errors that may propa-
gate from component to component. Similarly, the
failure of one component may lead to the failure of
another (i.e. ‘cascading’ failures), as shown in Figure 1.

For example, consider a cracked wire inside a cable.
The crack is the fault, and it does not move from cable
to cable. Because of the crack, a certain bit may be
incorrectly flipped during transmission, resulting in an
error (an incorrect bit value). The cable failed to pro-
vide correct service. The error may continue to propa-
gate from device to device, perhaps leading to incorrect
results (a failure), or that flipped bit may have no effect
on final results (no failure).

2.2 Life cycle and operational status

After acceptance, a system is, at any time, in one of the
operational states shown in Figure 2.

fault error
activation

(causes)

Component A

error failure
propagation

(may lead to)

Component B, Cservice interface

external

internal

A's internal state A's external state (perceivable by B)

failure ...
cascade

Figure 1. Error propagation and cascading failures.

132 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

2.3 Failure characteristics

Domain: What has failed. The failure can be involve the
wrong content (incorrect state) or wrong timing: service
not provided in a timely manner.
Persistence: A failed system may halt (fail-stop) or may
exhibit erratic behavior.
Detectability: A failure can be signaled once it is
detected and a warning is generated; otherwise, it is
unsignaled. The detection and signaling mechanism can
fail, resulting in false positives (a false alarm) or a false
negative (a failure that did not generate an alarm). The
precision of a detection mechanism is the fraction of
signaled failures that were actual failures, and recall is
the fraction of failures that were detected and signaled:
precision= 1� false positives=signalled, and recall=
1� false negatives=failures.
Consistency: A failure is consistent if it is perceived iden-
tically by all users; it is inconsistent (or Byzantine) if it is
perceived differently by different users. Fail-stop errors
are normally consistent, whereas erratic failures can
lead to Byzantine behavior.

2.4 Fault characteristics

Active: fault causes an error
Dormant: fault does not cause an error; the dormant
fault is activated when it causes an error
Permanent: presence is continuous in time
Transient: presence is temporary
Intermittent: fault is transient and reappears
Hard/solid: activation is systematically reproducible
Soft/elusive: activation is not systematically reproducible

The distinction between hard and soft faults is not a
strict one: faults may be due to a complex combination
of internal state and external conditions that occur rarely
and are difficult to reproduce; they appear as soft faults;
a root cause analysis may identify the precise circum-
stances of the fault, enabling systematic reproduction.

2.5 Error characteristics

Detected: indicated by error message or signal
Latent/silent: not detected
Masked: not causing a failure

Soft: due to a transient fault

2.6 Means of dealing with faults

Forecasting: to estimate the present number, future inci-
dence, and likely consequences of faults
Prevention: to prevent fault occurrence
Removal: to reduce fault number and severity
Tolerance: to avoid service failures in the presence of
faults

2.7 Fault-tolerance techniques

Error detection: identify the presence of an error
Concurrent: occurs during service delivery
Preemptive: occurs during planned service outage

Recovery: prevent faults from causing failures
error-handling: eliminate errors
Rollback: revert to previous correct state (e.g.
checkpoint, retry)
Rollforward: move forward to a new correct state
Compensation: correct the error (e.g. via
redundancy)

Fault handling: prevent faults from reactivating
Diagnosis: identify fault location and type
Isolation: exclude from interaction with other
components
Reconfiguration: replace component or move work
elsewhere
Reinitialization: perform a pristine reset of state
(e.g. reboot)

Error detection identifies the presence of an error but
does not necessarily identify which part of the system
state is incorrect, and what fault caused this error. By
definition, every fault causes an error. Almost always,
the fault is detected by detecting the error this fault
caused. Therefore, ‘fault detection’ and ‘error detection’
are often used synonymously.

‘Full diagnosis’ identifies the root cause of a failure:
the original fault or faults that caused this failure; on
the other hand, ‘partial diagnosis’ traces the error back
to previous events in the causality chain but does not
necessarily identify the original fault. Thus, failure of a
software system may be traced back to a hardware
error, such as a bit flip, without identifying the fault
that caused this bit flip.

2.8 Metrics

If you can not measure it, you can not improve it.

– Kelvin (1891)

We cannot optimize resilience without measuring
it. We discuss two metrics here: workload and
availability.

Operational
Status:

Scheduled
Downtime (SD)

Unscheduled
Downtime (UD)

Production
Uptime (PU)

Use/OperationalDevelopment
service outage

planned unplanned

Life Cycle
Phase:

incorrect service correct serviceservice shutdown

before acceptance after acceptance

service delivery
degraded

Figure 2. System’s operational status.

Snir et al. 133

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

2.9 Workload

A key metric is the ratio of the ideal time to solution
on an ideal, fault-free system (Tsolve) to the actual
runtime in a real system (Twallclock): Workload
Efficiency= Tsolve=Twallclock .

In the general case, where the system is running a
mix of jobs, we can define workload efficiency as the
ratio between the ideal time to solution for this job mix
on a fault-free system and the actual running time. The
difference between Twallclock and Tsolve is the overhead
associated with dealing with faults, errors, and failures,
including scheduled downtime, unscheduled downtime,
and the cost of detection, diagnosis, repair, compensa-
tion, and time lost because of degraded performance.

Typically, workload efficiency is measured with
respect to ‘system faults’ and includes all faults under-
lying applications that impact solution correctness or
solution time: software bugs, hardware bugs, hardware
faults, and so forth. It does not include faults such as
application bugs or user errors. However, the workload
efficiency does depend on the application code. For
example, it depends on how frequently the user check-
points and how efficient the checkpoint and restart
code are. If failure handling will require increased user
involvement in the future, then workload efficiency will
increasingly depend on the user code, but the overhead
due to user code that handles failures will be increas-
ingly hard to measure.

The workload efficiency metric is an ‘instantaneous
metric’. The workload efficiency of a system will vary
over time: failure rates are higher on a new system or
on a system close to the end of its lifetime. Better system
design and better testing procedures may reduce the
time needed to stabilize a system and raise the workload
efficiency faster. Therefore, it is also useful to define a
total workload efficiency metric that integrates work-
load efficiency over the lifetime of a system. The defini-
tion of such an integrated metric has to take into
account that computers depreciate rapidly: a flop now
is twice as valuable as a flop in two to three years; hence
overhead now is twice as expensive as overhead in two

to three years. Given a depreciation rate, it is easy to
compute a depreciated total workload efficiency.

The definition of workload efficiency considers time
as the critical system resource. If energy is the critical
resource, then workload efficiency can be defined as the

ratio of the energy needed to solve a problem in an
ideal, fault-free system, to the energy needed in reality.
Considering the impact of wasted energy is important:
some of the techniques for recovery discussed in this
report could have little effect on total wall-clock time
but could significantly increase power consumption.

In practice, both time and energy are important
resources, as are the acquisition cost of the system and
the additional program development effort needed to
handle failures. The contribution of resilience technol-
ogy to the value of supercomputers can be measured by
a ‘total factor productivity’ (TFP) metric, as the ratio
between the cost of inputs (acquisition price, salaries,
electricity bills) and the value of outputs (scientific
results) (Snir and Bader, 2004). Unfortunately, it is
hard to properly estimate the cost of various inputs
(e.g. programming time), even harder to separate the
contribution of resilience technology from the contribu-
tion of other technologies, and practically impossible to
put a price on the output of supercomputers.

2.10 Availability

Availability metrics are similar in spirit but more opera-
tional in nature. For example, a system may be defined
to be ‘down’ when more than 5% of the compute nodes
are down or the file system is down; downtime may be
considered ‘unscheduled’ if notification occurs less than
12 hours in advance (Mokhtarani et al., 2008).

Consider the time series in Figure 3 of system states,
where numbers indicate duration in days.

We tabulate the data into sets and obtain the follow-
ing statistics:

The following metric is recommended as a
control (specified) metric (Bailey et al., 2007): Scheduled
Availability=(Total_Time-Scheduled_Downtime)/Total_Time.

In our example, Scheduled Availability=(22� 4)=
22= 81:8%.

6 1 2 .3 3.7 1 3 .4 2.6 2

Uptime: time when the system functions as specified

Scheduled downtime

Unscheduled downtime

Figure 3. System history.

Set X
P

X jXj

Uptime periods={6, 2, 3.7, 3, 2.6} Uptime= 17:3 NumUptimes= 5
Scheduled downtime periods={1, 1, 2} Scheduled Downtime= 4 NumSchedDown= 3
Unscheduled downtime periods={0.3,0.4 Unscheduled Downtime= 0:7 NumInterrupts= 2

Total Time= 22

134 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The following metric is recommended as an observed
metric: Actual Availability =Uptime/Total_Time.

In our example, Actual Availability= 17:3=
22= 78:6%.

We are using interrupt as synonymous with detected
failure, so mean time between interrupts (MTBI) is equal
to mean time between failures (MTBF). In our example,
MTBI= TotalTime=NumInterrupts= 22=2= 11 days.

Similarly, if MTTI is the mean time to interrupt, then
MTTI=Uptime=NumInterrupts= 17:3=2= 8:65 days.

The mean time to repair (MTTR) is the average
length of a unscheduled downtime period. In our exam-
ple, MTTR=Unscheduled Downtime=NumInterrupts=
0:7=2= 0:35 days.

The mean uptime is the average length of an uptime
period. In our example, MeanUptime=Uptime=
NumUptimes= 17:3=5= 3:46 days.

The failures in time (FIT) rate is the number of fail-
ures in a device or system that can be expected in one
billion hours of operations. Thus MTBF = 109=FIT .

2.11 Subsystem

When discussing faults, errors, and failures, one must
carefully identify what ‘system’ is being referred to. In
the previous example, the cable can be considered a
system (of wires, solder connections, pins, etc.), the
transmission network as a whole can be considered a
‘system’ (of cables, switches, network cards), and the
entire collection can be considered a ‘system’ (compute
nodes, I/O nodes, network, disks, etc.).

The taxonomy (Avižienis et al., 2004) was developed
to address both dependability and security, so the defi-
nitions are extremely broad. For example, ‘system’ can
refer not only to computing equipment but also to a
hacker or group of collaborating hackers. We found it
important to identify what is meant by ‘system’ and to
identify when that definition changes during the discus-
sion, such as ‘full system’ versus ‘I/O system’. Some
uses of ‘system’ include applications, users, and admin-
istrators, but the majority of participants referred to
‘full system’ as the collection of components underlying
the application (not including the application or ele-
ments above it, such as users).

Unique acronyms can increase clarity. For example,
Sandia and Los Alamos National Laboratories prepend
an ‘S’ (e.g. SMTTI) to metrics that apply to the full sys-
tem and other prefixes to identify subsystems (Stearley,
2005). JMTTI, the job mean time to interrupt, is defined
as JMTTI=(Uptime 3 NumJobs)=NumJobInterrupts,
where NumJobs is the total number of jobs run and
NumJobInterrupts is the total number of jobs termi-
nated as a result of any failure. NMTTI, node mean
time to interrupt, is defined as NMTTI=Uptime 3

NumNodes=NumNodeFailures, where NumNodes is the

total number of nodes and NumNodeFailures is the
total number of node failures.

2.12 Statistical models

Analyses of failures and recovery algorithms assume
that failures occur according to a probabilistic process
that has a closed-form description. A typical assump-
tion is that failures are independent, that is, failure
intervals are independent, identically distributed (i.i.d.)
random variables. This assumption is clearly false over
long periods, since failures are more frequent on a new
system or on a system close to the end of its expected
lifetime (this leads to a so-called bathtub distribution of
failures). It is not clear to what extent the assumption is
valid over short time periods, since many phenomena
may cause correlated failures. In particular, even if
faults are independent, some faults may cause cascad-
ing failures of many components. For example, a power
or cooling fault can cause the failure of a large number
of nodes.

It is often assumed that between-failure intervals
have an exponential distribution, with a cumulative dis-
tribution function (CDF) F(t)= 1� e�t=M , where M is
the MTBI. Such a distribution is implied by the
assumption that failures occur according to a Poisson
process: the probability that a failure occur during a
time interval depends only on the length of this inter-
val. A Weibull distribution, with a CDF of
F(t)= 1� e�(t=M)k , can be used to model a decreasing
failure rate (k\1), constant failure rate (k = 1), or
increasing failure rate (k.1).

An empirical study of HPC failure data from Los
Alamos National Laboratory showed a poor fit to an
exponential distribution, whereas gamma or Weibull
distributions with decreasing failure rates (0.7–0.8) fit
well (Schroeder and Gibson, 2010). Surprisingly this
study showed that the Weibull distribution fit better in
the outer years of the observed system, while no distri-
bution fit well in the first years. These results could be
interpreted as meaning that failures in HPC systems are
chaotic during the long period it takes for the system to
stabilize and that the system keeps improving its relia-
bility through its lifetime. Such an interpretation is con-
sistent with the observation that most failures are due
to software. See http://cfdr.usenix.org for this and other
data.

2.13 Resilience, fault tolerance, and dependability

Until now, we have been using the key term ‘resilience’
without clearly defining it. Several reports (Elnozahy et
al., 2009; DeBardeleben et al., 2010a,b; Daly et al.,
2012) have used different definitions, and debate con-
tinues about how, or whether, resilience differs from
‘fault tolerance’ or ‘dependability’. Avižienis et al.

Snir et al. 135

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

(2004) considered it synonymous with ‘fault tolerance’
and defined it as a wide collection of techniques. The
authors defined ‘dependability’ as the ‘ability to avoid
services failures that are more frequent and more severe
than is acceptable’. In HPC, service failure has two
aspects: (1) failure to run a program, or incorrect
answer and (2) computation taking too long. The sec-
ond criterion is quantitative and can be measured in
various ways, in particular by using the workload effi-
ciency metric defined earlier: a system fails if its work-
load efficiency is below a certain threshold.
Accordingly, resilience can be defined as follows:

The collection of techniques for keeping applications
running to a correct solution in a timely and efficient
manner despite underlying system faults.

‘Correct’, ‘timely’, and ‘efficient’ are context-
dependent. In some contexts ‘correct’ may mean ‘bit-
reproducible’; in another context, it could mean ‘within
a rounding error’; in yet another context, we could be
content with a system that frequently provides a correct
solution to a problem, provided that we can efficiently
verify solutions. ‘Timely’ and ‘efficient’ are relative
rather than absolute (as in before the hurricane arrives
and within our power budget). The definition of ‘effi-
cient’ also depends on what we consider to be the total
system; for example, are programming costs included?

3 Sources and rates of hardware faults
and errors

In this section we describe a generic HPC machine
along with the various hardware errors and failures
that can occur while it is executing an application. We
focus on hardware aspects and do not account for any
masking or handling in software. We summarize the

rates at which these errors and component failures
occur on current systems and then discuss models for
the underlying fault mechanisms, project these models
to future 11 nm technology, and recommend possible
mitigation techniques and their overheads.

3.1 Generic machine model and associated errors
and failures

Figure 4 describes a generic exascale machine, pat-
terned after the current generation of HPC machines at
Argonne, Los Alamos, Lawrence Livermore, and Oak
Ridge National Laboratories and similar leading super-
computing centers. Faults can occur in any part of the
machine, with differing consequences. Some failures
(fans, power converters) are masked by redundant
hardware. Other failures (nodes) will cause an applica-
tion to crash and restart from the last checkpoint with
a new set of nodes but will not cause the system to
crash. Some failures cause the entire system to crash
and have to be rebooted. The severity of different fail-
ures can be measured by the loss of machine time they
cause. The masked failure of a fan slightly increases
scheduled downtime; a system crash causes the entire
machine to be down for half an hour or more.

To expand on the hierarchy, we imagine that the
nodes, servers, and switches of the machine are com-
posed of field replaceable units (FRUs): processors,
memory modules, various circuit cards, power and fan
modules, and the like, which are usually collected into
removable and field serviceable drawers. Sets of drawers
may form chassis, and multiple chassis form racks.
Typically, but not always, communication is highest
between FRUs on a processor node (formed of one or
more processor sockets sharing coherent memory and

6.File
Server

File
Server

File
Server

5.Disk and I/O Network (Infiband, Ethernet …)

IO
Nodes

4.IO
Nodes

1.Compute
Nodes

Compute
Nodes

Compute
Nodes

3.Compute Network (Private or IB, Eth)

2.
C

on
tro

l N
et

w
or

k
(IB

 o
r E

th
)

7.Service
Host

Fails can occur in any system 1-7 with differing
consequences, 1 being the least troublesome and 7 being the
most.

Compute
Kernel

Scheduler

Machine
Monitor

Global File System

heeeeeeernrnrnrnrnnnrnrnrrnrrrr et …

Compute
Nodes

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeettttttttttttttttttwork (Private or IB Eth

File
SeSerrvvrrr eerr

work (Infiband,

4.IO
Nodes

Compute
Node

C

fiband

Figure 4. Generic exascale machine.

136 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

with at least one network connection). This then is a nat-
ural fault containment region. Further, groups of nodes
may share some common resource (a network adapter
card, power supply, or fan module) making this group
of nodes in a drawer (or chassis) a higher-level contain-
ment region. The entire rack, perhaps sharing a common
resource such as a power cord and bulk AC-DC power
supply, could form an even higher containment region.
However, HPC applications are tightly coupled, so that
errors propagate quickly across components. Software
help is needed in order to avoid error propagation and
transform physical fault containment units into logical
error containment units.

3.2 Classification of errors and failures

Hardware faults can result in errors and failures that
may be grouped into three categories: (1) detected and
corrected by hardware (DCE), (2) detected in hardware
but flagged as being uncorrectable (DUE), and (3)
silent (SE). A silent fault may be masked; an SDC is an
error caused by an unmasked silent fault. We describe
these categories below and discuss the possibility that
faults may lead to operating with degraded perfor-
mance, efficiency, and/or fault protection capability.

Examples of DCE: (a) a detected error in an error
checking and correcting (ECC)-protected random
access memory (RAM) array that is corrected ‘in place’
before being passed on to a unit that consumes that
piece of data and (b) a detected parity error in the pro-
cessor pipeline that triggers an instruction retry
mechanism, resulting in recovery of an uncorrupted,
prior-architected register state and re-execution from
that point. In the latter case, the recovery mechanism
must ensure that leakage of potentially corrupted data
to the system’s memory or I/O state is prevented during
the whole ‘detection and recovery’ process. The system
can be architected such that DCEs are usually transpar-
ent to the user (application) program and possibly even
to supervisory system software (e.g. OS). In some cases
the supervisory system or OS is invoked in order to help
record DCE statistics in system memory for later error
analysis. In such cases, the DCE is still transparent to
the user application. Usually, hardware has autono-
mous (software-transparent) mechanisms to record
DCE statistics in hardware trace (debug) arrays for later
diagnostics. Note that frequent DCEs will slow the sys-
tem and could, in extreme cases, cause timing errors.

Examples of DUE: (a) a double-bit error, detected
during the attempted reading of a SECDED ECC-
protected RAM array datum, that could not be cor-
rected ‘in place’ and (b) a detected parity error in the
processor pipeline that cannot inform the on-chip
recovery mechanism within a stipulated deadline, which
is an architected parameter designed to ensure that

known (potentially) corrupted data is not released to
system memory or I/O state. Usually, all DUEs are
flagged as an exception to system software by the hard-
ware. Depending on the nature (severity) of the DUE
and the capability of the system, the software should be
able to handle the hardware-raised exception in a man-
ner that enables one of the following three actions: (i)
restart of the processor execution from a local or global
checkpoint; (ii) application checkstop that terminates
the application, without crashing the node; or (iii) sys-
tem checkstop that results in a machine check (requir-
ing ‘reboot’) for the particular node or, in the worst
case, perhaps even the whole system. In some cases it
might be preferable to simply mark corrupted values as
invalid, or poisoned, and allow the application itself to
handle the error. An example is to use NaN values to
prevent incorrect data from silently corrupting results,
while still allowing for potential application-level mask-
ing or handling.

Examples of SDC: (a) an undetected arithmetic compu-
tation error, within an integer or floating-point data
path pipeline, that makes it into architected register
state (and eventually perhaps the system memory state)
without triggering any error alert at the hardware level;
(b) an undetected control error that results in a prema-
ture termination of an iterative loop computation that
may result in a datum held in register or memory state
to contain a value that is incorrect from a program-
intended perspective; and (c) incorrect memory and
network transfers that were not detected by the error
protection mechanisms (e.g. triple-bit errors with
SECDED protection). Such SDCs may eventually be
detected within a self-checking application program or
as a result of a triggered DUE, but such a detection
could happen many thousands, millions, or billions
of cycles beyond the point of the original occurrence of
the SDC. Thus, a sophisticated ‘root cause analysis’ of
a DUE may later point to an originating (causative)
SDC when it comes to proper accounting statistics of
various categories of errors in the hardware.

As a consequence of errors originating from hard-
ware sources, and the associated error-handling hierar-
chy in hardware and/or software, the overall computing
system may manifest degraded levels of QoS as viewed
by the end user. For example, if the system encounters
a node failure, even if the system or application can
recover from the failure, the system will operate at a
degraded performance level during the period of system
reconfiguration (via updates in the routing tables, etc.).
Similarly, an escalated sequence of ECC memory errors
may eventually result in a memory ‘chipkill’ that
reduces the amount of available system memory (before
the defective memory module is replaced), thereby
degrading performance. Similarly, certain other repair
actions resulting from the flagging of hardware errors

Snir et al. 137

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

may reduce the capability of hardware in terms of being
able to detect the full range of errors that the system
was originally designed for.

3.3 Quantification of component errors and failures

Table 1 shows the hardware error and failure data for
382 days of the Intrepid system at Argonne National
Laboratory. This 40-rack, 557 TF Blue Gene/P system
currently shows a mean time to (hardware) interrupt of
7.5 days. Thus, the total of any detected hardware fail-
ure, including compute nodes, I/O nodes, compute
node interconnect, control hosts, and file servers, was
roughly one per 7.5 days. This was extremely close to
the seven-day MTBF predicted for the machine back in
2006, well before installation. We point out that this
agreement was obtained only after wholesale replace-
ment of two minor but problematic elements of the
machine: the 10 Gb/s optical transceiver modules on
the I/O links and early versions of the bulk power sup-
ply modules. This experience is consistent with the Los
Alamos National Laboratory study discussed in
Section 2.12: in the beginning there is chaos; statistical
regularity takes over when the system matures. Also,
while the system failure rate was predicted within 10%,
the relative contribution of the different components
was quite different from predicted; errors canceled each
other.

Not all failures have the same impact. A node board
failure affects all 32 compute cards sitting on it (each

card contains a four-core processor and attached mem-
ory). The failure of an I/O card can affect all compute
cards on the board containing the I/O card. The failure
of a link card affects an entire partition or set of nodes
that are assigned to a running job.

3.4 Hardware fault, error, and failure models and
projections

To project the hardware error and failure rates expected
in an exascale machine, one must understand the root
cause of these events. While reasonably good models
exist for some faults in some components, important
gaps remain in the projections we will be able to make.
We summarize our best-effort models below.

3.4.1 Compute node soft errors. Soft errors in the compute
node (processor and memory only; network, power,
and cooling are discussed later in this section) are most
often a result of events that are entirely external to the
system and cannot be replicated. By far the most signif-
icant source of transient faults is energetic particles that
interact with the silicon substrate and either flip the
state of a storage element or disrupt the operation of a
combinational logic circuit. The two common sources
of particle strike faults are alpha particles that originate
within the package and high-energy neutrons. Alpha
particles are charged and may directly create electron-
hole pairs. When a high-energy neutron interacts with
the silicon die, it creates a stream of secondary charged

Table 1. Error and failure rates for the Intrepid Blue Gene/P system.

Detected uncorrectable Predicted % fails
per repair period

Intrepid (ANL 40 racks)
observed failures
per repair period

Intrepid without I/O failures per repair period

Compute cards 90% 0.648 0.648 (72%)
Node boards 5% 0.137 0.137 (15%)
I/O cards 2% 0.785 0.000 (0%)
Link cards 2% 0.020 0.020 (2%)
Service cards 1% 0.098 0.098 (11%)
Fans 0% 0.000 0.000 (0%)
Bulk power 0% 0.000 0.000 (0%)
Mid-planes 0% 0.000 0.000 (0%)
Clock card 0% 0.000 0.000 (0%)

1.69 0.90
Detected and corrected/marked
Compute cards (80% DRAM) 58% 2.003 2.003 (53%)
Node boards 28% 0.491 0.491 (13%)
IO cards 0% 0.000 0.000 (0%)
Link cards 2% 0.059 0.059 (2%)
Service cards 1% 0.196 0.196 (5%)
Fans 4% 0.079 0.079 (2%)
Bulk power 6% 0.884 0.884 (24%)
Mid-planes 0% 0.000 0.000 (0%)
Clock card 0% 0.000 0.000 (0%)

3.71 3.71

138 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

particles. These charged particles then further interact
with the semi-conductor material, freeing electron-hole
pairs. If the charged particle creates the electron-hole
pairs within the active region of a transistor, a current
pulse is formed. This current pulse can directly change
the state of a storage device or can manifest as a wrong
value at the end of a combinational logic chain.

To analyze the impact a particle strike has on a com-
pute node, we model the effect on each node compo-
nent separately, namely static RAM (SRAM), latches,
combinational logic, dynamic RAM (DRAM), and
non volatile RAM (NVRAM). We then determine a
rough estimate for the number of units of each compo-
nent within the node. We use this estimate to provide a
rough order-of-magnitude fault rate for the compute
node. We also briefly mention how such faults are
handled in processors today, and we discuss how
advances in process technology are expected to affect
these soft faults. We make projections for the impact of
particle-strike soft errors on a future 11 nm node, as
well as present an estimate of the overhead/error-rate
tradeoffs at the hardware level. The estimates are based
on the models below and on some assumptions about
the components of a node, as shown in Table 2. First,
however, we give a few important caveats about the
models and projections:

� The numbers summarized in Table 2 do not include
errors due to hard faults or to transient faults other
than particle strikes. We expect those to be a signifi-
cant contributor to software-visible errors and failures.

� We do not have access to good models for the sus-
ceptibility of near-threshold circuits and do not
consider such designs.

� We give only a rough, order-of-magnitude (at best)
estimate; many important factors remain unknown
with respect to a 11 nm technology node.

We expect that, over the next few years, ongoing
research at microelectronic companies, research labs,
and in academia will provide more accurate estimates.

We estimate the number of scattered latches out of
core as scattered latches per core 3

ffi
ncores 3 1:25
p

.

SRAM. Large SRAM arrays dominate the raw
particle-strike fault rate of a processor silicon die.
When a particle strike releases charge within an active
region of a transistor in an SRAM cell, the charge col-
lected may exceed the charge required to change the
value stored in the cell, causing a single event upset
(SEU). An SEU may impact a single SRAM cell or
may change the values of multiple adjacent cells. Such
multicell upsets (MCUs) are also called burst errors. A
reasonable ballpark figure for SRAM particle-strike
upset rate is one upset every 107 hours for 1 Mb of
capacity, which is a rate of 10�4 FIT/bit (Slayman,
2011). Our best estimates indicate that the SEU rate for
SRAM will remain roughly constant as technology
scales. While many complex phenomena impact sus-
ceptibility, the current roadmap of changes to devices,
operating voltage, and scale do not point to extreme
changes in susceptibility. What is expected to change is
the distribution of MCUs, with a single upset more
likely to affect a larger number of cells at smaller
scales.

Because the raw FIT/chip from SRAM is high (esti-
mated at roughly 0:5 upsets per year per chip, or multi-
ple upsets an hour in a large-scale HPC system), large
arrays are protected with error detection and error cor-
rection capabilities. An approach in use today is a com-
bination of physical word interleaving coupled with an
error-detection code or with ECC mechanisms. Given
the distribution of MCUs today, four-way interleaving
with SECDED capabilities per array line is sufficient.
Stronger capabilities will likely be needed in the future,
but their energy and area overheads are expected to be
low (see Table 3). Note that our estimates assume that
4-bit or larger bursts increase from 1% of all SEUs to
10% or higher between 45 nm and 11 nm technology
and that the rate of bursts of 8 bits or larger increases
from 0:01% of all SEUs to 1% of all SEUs (Ibe et al.,
2010).

Note that alternative storage technology with much
lower particle-strike error rates is possible. Some cur-
rent processors use embedded DRAM for large arrays,
and future processors may use on-chip arrays of non-
volatile storage. Embedded DRAM has an error rate
100 times or more lower than does SRAM. Nonvolatile
storage cells are immune to particle strikes but do dis-
play some soft-error fault mechanisms (see discussion
below).

Latches. The error mechanisms and trends for latches are
similar to those of SRAM, and the per-latch SEU rate is
expected to remain roughly 10�4–10�3 FIT/bit (Dixit et
al., 2009). Given the smaller number of latch cells in a
processor today compared with SRAM cells, the overall
contribution to error rate of latches is much smaller as
well. Future processors will contain a much larger num-
ber of latch cells, and protection may be necessary. The
protection mechanisms and overheads of latches depend

Table 2. Summary of assumptions on the components of a 45
nm node and estimates of scaling to 11 nm.

45 nm 11 nm

Cores 8 128
Scattered latches per core 200, 000 200, 000
Scattered latches out of cores 632, 000 2, 530, 000
FIT per latch 10�1 10�1

Arrays per core (MB) 1 1
FIT per SRAM cell 10�4 10�4

Logic FIT/latch FIT 0:1–0:5 0:1–0:5
DRAM FIT (per node) 50 50

Snir et al. 139

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

on how the latch is used. Some latches are organized in
arrays, like SRAM arrays, while other latches are scat-
tered within logic blocks. Array latches can be protected
with interleaving and ECC, although such latches are
often accessed with finer granularity than large SRAM
arrays, which increases the relative overhead of protec-
tion. We include this extra cost in Table 3 and project a
higher power overhead than area overhead for protecting
arrays in order to account for the added protection of
latch arrays that may be needed in future processors.

‘Scattered latches’ are more difficult to protect, on
the one hand, because the overhead of interleaving and
ECC is exorbitant without the regularity of an array.
On the other hand, an error in a scattered latch is often
masked by the natural operation of the circuit it is part
of. Various estimates exist for the derating factor that
should be applied for this natural masking, typically
ranging from 90% to 95%. The masking rate may
depend on the application and also on the architecture,
with more streamlined architecture potentially having a
lower rate of masked latch errors. If needed, scattered

latches can be protected against particle-strike-induced
upsets. The two main techniques that can be applied
are hardened latches or a combination of parity predic-
tion from logic with parity checking on a collection of
latch bits. Both techniques can be effective but poten-
tially have high overheads if a large fraction of latches
must be protected. We show the impact of this over-
head in Table 3.

Combinational logic. The trends we expect for particle-
strike-induced soft errors in combinational logic are
again consistent with those for SRAM and latches. The
raw SEU rate associated with combinational logic can
reasonably be estimated at 0:1–0:5 FIT for every 1 FIT
contributed by scattered latches within logic blocks
(Gill et al., 2009). Note that this is the raw upset rate
and does not account for logical masking effects.
Similar to latches, even if an output of a logic gate is
changed, this change is highly unlikely to impact the
final result of the circuit. Because the output of a com-
binational logic path is always a latch, the overall

Table 3. Summary of per-processor particle-strike soft-error characteristics within a compute node (sea level, equator). Note that
other sources of transient faults cannot be ignored.

Array interleaving and SECDED
(Baseline)

DCE [FIT] DUE [FIT] SE [FIT]

45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100,000 50 20,000 1 1000
Scattered latches 200 4000 N/A N/A 20 400
Combinational logic 20 400 N/A N/A 0 4
DRAM 50 50 0.5 0.5 0.005 0.005
Total 1000–5000 100,000 10–100 5000–20,000 10–50 500–5000

Array interleaving and SECDED
(11 nm overhead: ;1% area and \5% power)

DCE [FIT] DUE [FIT] SE [FIT]

45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100,000 50 1000 1 5
Scattered latches 200 4000 N/A N/A 20 400
Combinational logic 20 400 N/A N/A 0.2 5
DRAM 50 50 0.5 0.5 0.005 0.005
Total 1500–6500 100,000 10–50 500–5000 10–50 100–500

Array interleaving and SECDED + latch parity

(45 nm overhead ;10%; 11 nm overhead: ;20% area and ;25% power)

DCE [FIT] DUE [FIT] SE [FIT]

45 nm 11 nm 45 nm 11 nm 45 nm 11 nm

Arrays 5000 100,000 50 1000 1 5
Scattered latches 200 4000 20 400 0.01 0.5
Combinational logic 20 400 N/A N/A 0.2 5
DRAM 0 0 0.1 0.0 0.1 0.001
Total 1500–6500 100,000 25–100 2000–10,000 1 5–20

140 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

masking rate of combinational logic upsets is most
likely close to 99%.

Note that the raw upset rate quoted above already
accounts for electrical masking, which results from the
SEU current pulse being attenuated as it passes through
multiple gates, and for timing or latch masking, which
results from the output of the combinational logic
being observed for only a fraction of the cycle. As with
scattered latches, we expect the raw fault rate to stay
roughly constant as technology scales, and application
and architecture may impact masking rates. The parity-
prediction mechanism that can be used to detect errors
in latches will also detect a large fraction of logic errors.
Other techniques for detecting combinational logic soft
faults at the hardware level include those based on
arithmetic coding (Avizienis, 1973; Rao, 1974; Lo et al.,
1989; Lo, 1994) and replication (Austin, 1999; Slegel et
al., 1999; Saxena and McCluskey, 2002). Moreover,
electrical masking can be increased by using less area
and power-efficient gate designs (Hazucha et al., 2003;
Lunardini et al., 2004).

DRAM. As a rule, DRAM exhibits a fixed rate of
particle-strike soft errors per DRAM die, regardless of
technology. This rate is roughly 10–20 FIT/device, and
a significant fraction affects multiple bits and entire
rows, columns, or banks of the DRAM device
(Sridharan and Liberty, 2012). Many DRAM devices
are required for the capacity of each node. Recent stud-
ies have shown that the error rate of DRAM is far
higher than the particle-strike soft errors, indicating
that hard faults in either the peripheral or signaling cir-
cuits are the main cause of problems (Schroeder et al.,
2009; Hwang et al., 2012; Sridharan and Liberty, 2012).

Regardless of the fault mechanism, DRAM is pro-
tected with ECC, with large-scale systems typically sup-
porting some form of chipkill-level ECC, which is
effective against hard errors as well. We expect that
even if new ECC schemes are needed in the future, their
overhead will overall be similar to the overhead
observed today for most applications.

NVRAM. We cover several technologies: NAND
Flash, spin-transfer torque (STT) memory, phase-
change memory (PCM), and resistive memories such as
memristor.

NAND Flash is vulnerable to soft errors. The FIT
rate per bit is growing with process shrinks. Currently it
is 10�5 FIT. It was 10�8 FIT at the 100 nm technology
node. ECC is needed and used to cope with this rate,
which exceeds that of DRAM. NAND Flash wears out
after approximately 106 rewrite cycles. Many architec-
tural techniques are used to spread the load across the
cells of a chip, a technique called wear leveling. Wear-
out is not a major issue in consumer storage devices
such as media cards. It may be an issue in solid-state
disks, but it is clearly manageable there. As main

memory and cache, Flash is unsuitable for this and
other reasons.

SST, the leading magnetoresistive random-access
memory (MRAM) technology, is under development
by Toshiba and Hynix, which have made prototypes at
30 nm. Samsung has made a device at 17 nm. It is
dense (6F2 feature size). Speed and energy cost are
good. Chips of 1 Gb are under development and may
reach the market in 2014. Wear-out does not appear to
be a concern for STT. It also seems that STT bits can-
not be flipped by particle strikes. Thermal noise seems
to cause something similar to soft errors: errors due to
external stimuli, not internal imperfections. A FIT rate
of 10�10 FIT/bit has been reported. Hard errors are an
issue. It is said that ‘imperfections in the fabrication
process greatly affect the reliability of data in STT-
MRAM. Process variability causes variation in the tun-
neling oxide thickness and cross-section area, which
affects both the static and dynamic behaviors of mag-
netic tunnel junctions, resulting in cell errors’ (Cal
2013). Appropriate responses could include testing and
map-around for bad cells, spare cells, and ECC. (These
comments likely apply to all the memory technologies
we consider.)

PCM is resistive memory in which the state of a
chalcogenide glass is changed between crystalline and
amorphous by heating and either slow or fast cooling.
The resulting change in the electrical resistance deter-
mines the state. Multilevel cells are possible with per-
haps two bits per cell, but possibly fewer (as when
three resistance levels are used). Micron is marketing
45 nm PCM for consumer applications today. PCM
has better endurance than Flash, but it may wear out
after as few as 106 up to a high estimate of 109 cycles
because of the physical stresses of repeated heating and
cooling. It appears to be invulnerable to particle-
induced soft errors. The resistance of the PCM cell
changes with time. Thermal disturbance due to the
heating required for reset of a nearby cell is a chief
cause of resistance drift, and this limits cell density.
The decay of the stored data is similar to the charge
leakage in the DRAM capacitor and, like it, may cause
errors. Some combinations of refresh and ECC can
cope with drift. Because of the necessity for refresh to
arrest drift, it is not clear that PCM is as nonvolatile as
necessary for use in offline storage. The rate of required
refresh will depend on the degree to which storage den-
sity is boosted by using multilevel cells; the tighter the
level spacing, the more frequently the cell must be
refreshed. In particular, a 1-bit cell with only two levels
would have no drift problem. There is thus a complex
design space in which density, the cost of mitigating the
resistance drift, the data retention time, and the error
rate are in competition. Optimization of the PCM cell
and its required refresh and error correction architec-
ture is an area of ongoing research.

Snir et al. 141

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The memristor is a new technology under develop-
ment at HP and Hynix and in other laboratories and
companies. A memristor stores information in the resis-
tance of a cell (like PCM), that resistance being a func-
tion of the past flux (the integral of current) that has
passed through (not by heating, as in PCM). HP and
Hynix have explored memristive systems in which a
metal oxide (often titanium oxide but recently also oxi-
des of tantalum, zirconium, and hafnium) sandwiched
between electrodes is electrochemically changed by the
passage of current. Memristors are two terminal
devices. Like other resistive random-access memory,
memristors appear invulnerable to particle-strike soft
errors, but a nonrecurring or transient error mechanism
in memristors may exist. Recent experimental studies
and models show a tendency to fail to remain in the
lowest resistance state, randomly, with a probability
that is strongly temperature-related. At 1508C, half of
all cells may fail if left unchecked for 10 days (see for
example Gao et al., 2011; Yu et al., 2012). It is not clear
whether these errors are due to cell deficiencies and can
be reduced by mapping out bad cells or are totally ran-
dom and need to be handled by ECC and scrubbing, or
both. Memristors can wear out, but the wear-out
mechanisms are not as clearly understood as they are
for PCM. The ultimate durability of memristors is still
to be determined. In new work on tantalum oxide
memristors, endurance of over 10 billion cycles has
been demonstrated (Yang et al., 2010). Hard-error vul-
nerabilities appear to be due to wear-out, manufactur-
ing issues, and interface/communication issues and
may be comparable to those of PCM.

Nonvolatile memory as a resilience enhancer.

Nonvolatile memory (NVM) is often less vulnerable to
soft error due to cosmic rays than is DRAM, but this is
almost totally irrelevant to our discussion (since other
errors predominate, and NVM has its own sources of
errors). Thus, replacing DRAM with NVM will not, in
and of itself, enhance resilience. Checkpointing, nor-
mally at the application level, is the current default for
preserving the state of an ongoing computation in
order to protect it from a subsequent failure. Because
of the growing size of application state and the failure
of disk-based file systems to provide proportionally
growing bandwidth, checkpointing to shared disk is
not seen as a sustainable approach at exascale. We
expect that on-node NVM will appear, for many rea-
sons. One reason is to serve as fast checkpoint storage,
since write bandwidth will be superior to disk. In order
to cope with node hardware failure, the checkpoint
NVM may be ‘twin-tailed’ (capable of being read by a
service node or another compute node following node
failure). Alternatively, the checkpoints may need to be
delocalized, stored on a buddy node, or made recover-
able by another scheme. DRAM can also be used for

delocalized checkpoints. It will survive node failures
but not global power failures. Since such DRAM will
be on standby mode most of the time, there is no signif-
icant difference in power consumption.

NVM may serve other resilience functions, in part
simply by providing enough memory to do more or as
the top level in a hierarchy of nonvolatile storage com-
ponents. For example, it can be used for logging mes-
sages, in order to support local, uncoordinated
checkpointing, or for holding file system caches.

3.4.2 Compute node hard errors and failures. While we
could provide rough quantitative projections of
particle-strike-induced soft-error rates, we cannot
ignore possible failures and errors (detected and unde-
tected) due to hard faults. Because of the complexity of
designing and efficiently operating future processors,
some failures and errors may be intermittent and mani-
fest only with certain environmental conditions or spe-
cific execution characteristics. Major concerns include
increased early-life failure rate, permanent and inter-
mittent faults associated with device degradation, and
increased storage element error rates because of low-
voltage operation. Quantitative data on how such
hard-fault sources will evolve over technology genera-
tions is difficult to predict. But the effects can be enor-
mous. We briefly discuss the issues below.

Early-life failures (infant mortality). Burn-in for screen-
ing early-life failures is becoming increasingly challen-
ging (Nigh and Gattiker, 2000; Kundu et al., 2004;
Borkar, 2005; Carulli and Anderson, 2005; Van Horn,
2005). Major challenges include power dissipation,
cost, and possibly reduced effectiveness and coverage
of the burn-in test techniques. Burn-in alternatives, for
example Iddq testing (measuring the supply current, or
Idd, in the quiescent state) and very low voltage testing
(Hao and McCluskey, 1993; Gattiker et al., 1996; Chan
et al., 1998; Maxwell et al., 2000), are also experiencing
limitations, including high leakage, process variations,
and reduced voltage margins. At a highly scaled tech-
nology node with minimal reliance on burn-in, the
effects of early-life failures can be significant: on the
order of several thousands of defective parts per mil-
lion. Such a high rate of failures is roughly equivalent
to adding 103–104 FIT to the node failure rate. More
aggressive online techniques for detecting these failures
may become necessary.

Device degradation (aging). Device degradation induced
by degradation mechanisms such as bias temperature
instability (BTI) (Agostinelli et al., 2005; Reddy et al.,
2005; Zhou et al., 2010), hot-carrier injection, time-
dependent dielectric breakdown, or metal electromigra-
tion is becoming important. While design margins
(guard bands) are being squeezed to achieve higher

142 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

energy efficiency, expanded design margins are required
to cope with aging. Hence, traditional speed or voltage
margins to overcome degradation may become too
expensive. Some projections predict that beyond the 14
nm technology node, guard bands due to BTI degrada-
tion may grow to 20% or more, degrading efficiency
and performance by a similar amount. Such guard
bands are highly dependent on the workload, and quan-
titative projections can be highly pessimistic for worst-
case workloads. Moreover, for near-threshold voltages
of operation, a huge dilemma arises: while low-voltage
operation can reduce the amount of aging, high-voltage
turbo modes of operation or fast execution followed by
low-voltage operation for energy efficiency can signifi-
cantly exacerbate this aging effect. Techniques that
dynamically adjust guard bands and improve perfor-
mance and efficiency have been suggested, but their
impact on intermittent failures and errors has not been
fully evaluated. Here, the difference between exascale
and commodity small-scale systems is vast, because of
the scale multiplier of base rates and the impact of large
variances on tightly coupled systems.

Low-voltage storage-element stability. As supply voltage
is reduced in order to improve energy efficiency and
reduce power consumption, maintaining the integrity of
storage elements, including latches, flip-flops, and
SRAM cells, is challenging. For example, Vccmin-related
errors can induce so-called Goldilocks failures (Nassif
et al., 2012): failures that appear hard but are, in fact,
caused by phenomena typically associated with soft fail-
ures. Such failures are expected to become more proble-
matic with increasingly complex circuits and lower
voltage supplies, affecting circuit structures besides
SRAM. At present, the only viable way to deal with
Vccmin errors in sequential elements is to rely on (expen-
sive) circuit-design techniques or resort to high-voltage
operation, resulting in poor energy efficiency.

Possible mitigation techniques. Understanding the
effects of such failures is not enough. The question is,
how do we mitigate them, especially for silent errors
that may lead to SDC? Techniques in the literature that
can be useful include (1) online self-test and diagnos-
tics, (2) concurrent error-detection techniques (similar
to soft errors), (3) adaptive self-tuning and online opti-
mization, and (4) online self-repair. However, these
techniques are generally not supported extensively for
existing processors. If the U.S. Department of Energy
has to rely on COTS components, chances of all these
techniques being supported get even lower. That brings
up the question ‘what hardware and software support
is required for future exascale systems?’

3.4.3 Network. The transport layer of the network,
whether electrical or optical, can be instrumented for

error detection and correction with quantifiable cost.
Thus, for example, on Blue Gene/Q, a combination of
CRC, Reed–Solomon codes, and Hamming codes,
along with a retry mechanism for detected but uncor-
rected errors, reduces the possibility of an error escape
to 1050 (Chen et al., 2011). Thus, network transport
errors are containable. Network logic, on the other
hand, comprises SRAM, latches, and logic, as described
above, with their failure modes and correction tech-
niques. Errors that result in data sent to a wrong desti-
nation are potentially the most damaging but may be
mitigated with hardware or software techniques that
use knowledge of the desired and actual recipients to
trap errors before data corruption occurs. Networks
that support superior error detection and correction,
with tailored mechanisms to ensure correct delivery,
will surely be a part of exascale systems.

3.4.4 I/O. The increased density of disks results in
increased error rates, including an increase in unde-
tected disk errors: those that are not detected by cur-
rent techniques (RAID 6 included). Various techniques
are available for detecting such errors and correcting
them, mostly in the form of added redundancy (Hafner
et al., 2008). In addition, disk failure rates are often
higher than the nominal MTBF would indicate, with a
2%–4% yearly failure rate common (Schroeder and
Gibson, 2007); one parity block (RAID 5) is not suffi-
cient, since the probability of two disk failures within
the same group is too high. The IBM GPFS system
implements in software a RAID 6 scheme (two parity
blocks) that can overcome two disk failures (Fadden,
2012).

While these techniques can practically eliminate the
risk of data loss, they come at a cost: the disk storage
system of a large supercomputer will have continuous
I/O background activity due to RAID reconstruction
after disk failure. The problem is worsened by the
increasing gap between disk capacity and disk band-
width, which results in increasing reconstruction time,
or the need to spread reconstruction across more disks.
This background activity will reduce the effective I/O
bandwidth and cause significant I/O performance jitter.

3.5 Commercial trends

The technology analysis in this section provides insight
into the cost of producing components with acceptably
low failure rates; it does not tell us what the price of
processors that incorporate these technologies will be.
While predicting component prices a decade ahead may
be infeasible, we point out that market trends are not
favorable. High levels of resilience are important for
high-end servers, such as mainframes or RISC/Unix
servers (Sun, Power, Itanium). For many other markets
(mobile, clouds) vendors are likely to accept lower

Snir et al. 143

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

reliability in order to achieve lower cost and lower
energy consumption. Unfortunately, the market for
high-end servers is currently shrinking; the decline is
particularly sharp for high-end RISC Unix servers.
While some of this decline may be attributed to the cur-
rent state of the economy, this sector clearly is an
increasingly small fraction of the IT industry.
Furthermore, this sector is likely to be less price-
sensitive than other sectors. Buyers of mainframes or
high-end Unix servers have been willing to accept large
markups on price per performance, in order to achieve
higher reliability levels. They are also less sensitive to
power consumption, both because they are less sensitive
to operation cost, and because high-end servers usually
are a small fraction of the IT infrastructure. These
trends are likely to lead to an increasing cost differen-
tial between low-reliability components and high-
reliability components and to an absence of high-relia-
bility, low-power components. Systems built with high-
end RISC processors (Sparc64, Power7) are already
rare in the Top500 list.

3.6 Shielding

The impact of particle strike can be reduced by shield-
ing (an area where DOE has significant expertise). The
atmosphere is a natural shield, with higher locations
suffering from higher strike rates; a computer at sea
level will fail less frequently than one at a high-altitude
location. Natural or artificial shielding can further
reduce the neutron flux. For example, 2 m of concrete
will reduce the impact of 10 Mev neutron radiation by
three orders of magnitude (Seltborg et al., 2005); less
energetic neutrons are attenuated much more. On the
other hand, neutrons with energies above 10 MeV carry
a very small fraction of the total energy of cosmic-ray
neutrons (Hess et al., 1959). Hence, the cheapest way of
avoiding the effect of cosmic radiation-induced errors
may be to locate future exascale systems in abandoned
tunnels of the defunct superconducting super collider
or repurposed atomic shelters.

4 Sources and rates of software faults
and errors

A large fraction of system failures is due to software,
rather than hardware. A study of major DOE super-
computers in 2004–2006 showed that about 65% of
failures could be attributed to software (Oliner and
Stearley, 2007), whereas a study of failures in 2012 on
Intrepid, the BG/P system at Argonne National
Laboratory, showed that less than 16% of job crashes
were due to hardware problems (Allcock, 2013, private
communication). Results of studies show variance,
however; a study by Schroeder and Gibson in 2010
showed that failures attributable to hardware ranged
from 30%–60% (Schroeder and Gibson, 2010).

Moreover, the statistics do not include failures due
to application software faults. Computer centers typi-
cally keep statistics only for the failures they see them-
selves responsible for. With application software
failures included, the fraction of failures due to soft-
ware faults is likely to be much higher.

Unfortunately, failures due to software are less well
tracked and characterized. While statistics may indicate
which subsystem crashed (e.g. file system), they do not
indicate why the file system crashed. Therefore, much
of the discussion in this section is qualitative.

4.1 Classes of software faults

Software faults can be grouped into three categories:
pure software problems, hardware problems mishandled
by software, and software causing a hardware problem.

4.1.1 Class 1: Pure software errors. Some of the software
faults in the first category are ‘classical’ correctness issues:
unhandled exceptions, incorrect return values, including
null objects, and incorrect control flows, such as some
function not being called or called under a different condi-
tion from what was desired. Such errors are likely to be
frequent in the exascale system software stack. It is well
known that system software is harder to develop than
application software, kernel software is harder to debug
than user software, and reactive software, where execution
is driven by asynchronous events, is harder to get right
than is transformational software, such as scientific soft-
ware, that transforms an input into an output through a
long sequence of (mostly) deterministic transformations.

Large scale is worsening the frequency or impact of
two other types of software error: concurrency and
performance.

Concurrency errors: Subsystems such as a parallel file
system are large, concurrent applications. Concurrent
code is hard to develop because programmers have dif-
ficulty comprehending the possible interactions between
a large number of agents. Humans often are said to be
able to conceive of concurrency only at a limited scale
(roughly up to 10), much less than the scale of large
supercomputers. Concurrent code also is hard to debug
because of the large number of possible interleavings of
actions. Debugging tools typically are designed to han-
dle bugs caused by the interaction of only two or a few
agents. Because of the large number of agents in super-
computers and their tight interaction, failures due to
subtle interactions between many agents become more
frequent. The problem is compounded by stringent per-
formance requirements that prevent the use of simple,
coarse-grained synchronization. As an example, early
versions of the Luster file system would occasionally
corrupt the data written on files (Hedges et al., 2005).

Performance errors: By ‘performance errors’ we
mean failures due to resource (time, memory, etc.)
exhaustion. These manifest themselves in the form of

144 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

unacceptable performance, or actual crashes, due to
timeouts (‘time overflow’) or buffer overflows. Current
programming models and programming methodologies
do not provide good ways to manage the performance of
large, distributed systems. Estimating the average load on
different nodes is relatively easy, but understanding the
tail of a distribution and evaluating the frequency of rare
events is much harder. A large system is a ‘black swan
detector’: events that occur rarely on one node are much
more frequent with 1,000,000 nodes. Unfortunately,
humans are not good at handling the impact of ‘black
swans’ (Taleb, 2010). The Luster file system has suffered
from multiple performance errors when deployed at large
scale (Shipman et al., 2010). Some of the problems were
due to a lack of clarity on the ‘acceptable performance
behavior’ of applications. Programming models do not
prevent applications from bringing a system down by tax-
ing particular resources. In the case of Luster, one
‘Achilles heel’ was a limited ability to handle metadata
operations. The designers of Luster assumed that no
application would open or close tens of thousands of files
each second; some applications did the unthinkable.

4.1.2 Class 2: Hardware propagating up to software and soft-
ware not handling it correctly. Examples of the second cate-
gory are a node failure not being handled by software at
other nodes (node goes down, the reliability, availability,
serviceability (RAS) system notices it, but the application
does not take that into account); and a disk failure caus-
ing file system failure. These kinds of failures can be seen
as software faults (bugs) because the software is sup-
posed to overcome such hardware failures. In practice,
many failures seem to be due hardware errors that were
mishandled by software. One plausible reason is that
testing code that handles failures is difficult. Another is
that software is typically designed to handle clean, fail-
stop hardware failures but will be taxed by messy, inter-
mittent errors or other strange hardware behavior.

4.1.3 Class 3: Software creating a problem for the
hardware. Incorrect firmware, for example misbehaving
thermal control firmware, can damage hardware; this
can be seen as a firmware fault. Software can trigger an
unusual usage pattern for the hardware, causing hard-
ware errors; this can be seen as a hardware fault. In both
cases, however, the software is actually the culprit.

4.2 Severity of software faults

Not all software errors are equally bad. The syslog
standard (RFC 3164 / RFC 5424) (Network Working
Group, 2009) defines eight levels of severity:

0 Emergency: system unusable
1 Alert: immediate action required
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions

5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

Other dimensions are important as well; in particular,
one must understand the scope of an error: how the
error propagates and what it affects. Errors with a local
effect are much easier to handle than errors that have a
global effect. In software, we want as much as possible
to avoid errors that corrupt the large, global system
state, where recovery will involve the entire system and
may take a long time.

4.3 Evolution of failure types and rates
at the exascale

We expect a significant increase in software faults as
we move to exascale. The software stack will become
more complex as it has to handle more issues (such as
power management, resilience, and heterogeneity) and
has to face ever more stringent performance constraints
(including memory footprint). Correctness bugs will be
more numerous. The increasing scale of such systems
will certainly increase the frequency of concurrency
errors and of performance errors.

The problem is compounded by obstacles due to the
development process for extreme-scale software.
Supercomputing is a small market; the development of
software for the largest systems is usually underfunded
and understaffed. Furthermore, software for the largest
systems is never tested at full scale before they are
deployed: vendors cannot afford to stand test systems
at full scale, and full-scale testing is done on-premise.
As systems keep increasing in size, new software errors
will surface with each new generation of systems, even
if the software does not change.

5 Error prevention, detection, and
recovery

In the preceding two sections we discussed sources of
errors. error-handling can be categorized under several
headings.

Prevention While an error-free system is not within the
realm of possibility, various techniques can reduce the
occurrence of errors.
Prediction Certain patterns of behavior can indicate
future errors. If future errors are predicted with high pre-
cision, then preventive actions can be used to avoid them.
Tolerance Various techniques can be used to ensure
that errors do not lead to failures, even if they are not
detected.
Detection If an error cannot be tolerated, then it must
be detected before it can be corrected.
Containment error-handling is eased if errors are con-
tained so that they affect only a small part of the system.

Snir et al. 145

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Recovery Once an error is detected, forward or back-
ward recovery is used to bring the system back to a cor-
rect state. Recovery will most often be automated.
Diagnosis As part of error detection and recovery, or at
a later time, diagnosis activities can narrow down the
likely cause of an error.
Repair The recurrence of errors can be avoided by
replacing components, updating software, changing
configuration parameters, and so on.

We address each of these approaches in the following
subsections.

5.1 Prevention

We discussed in Section 3 mechanisms for hardening
hardware and avoiding hardware errors. Suitable codes
can be used to detect and correct errors in memory,
caches, and buses. Errors in combinatorial circuits and
latches can be detected and corrected by re-executing
instructions.

Such prevention mechanisms can be used selectively.
For example, one could have more reliable or less reli-
able cores, using either different designs or different
operation parameters (clock speed, voltage); one could
have the ability to run cores in tandem, comparing their
outputs (to the L2 shared cache) in order to detect
errors; one could modify mechanisms for thread-level
speculation or for transactional execution so as to allow
re-execution of code blocks when an error is detected;
and one could have more reliable or less reliable mem-
ory. Some of these choices (e.g. types of memory or
cores) need to be made when hardware is configured.
Others (e.g. voltage levels, clock speeds, or duplicate
execution) can be selected dynamically.

Automatic compensation mechanisms for hardware
faults sometimes lead to poor overall system perfor-
mance. Examples of such scenarios can be found in
prior anecdotal fault analysis of large-scale systems.
Sandia’s Redstorm large-scale runs were plagued by
slower-than-expected performance due to several CPUs
running at 2.0 GHz instead of 2.2 GHz. Another
Sandia system, Thunderbird, experienced poor system
performance due to several InfiniBand links silently
degrading to 256 MB/s instead of 1 GB/s. The tightly
coupled nature of supercomputers exacerbates these
issues, leading to the entire system experiencing perfor-
mance loss as a result of a small set of degraded
components.

One proposed approach is pervasive self-test diag-
nostics that run before and potentially during applica-
tion execution in order to ascertain the health of
system components as well as the overall system
(Kerbyson et al., 2012). Similar diagnostics are run dur-
ing system bring-up and in some cases weekly as part
of scheduled maintenance windows, but systemic errors
and performance degradation caused by transient faults

happen at a much finer granularity because of various
causes, including environmental variability, certain
workloads exercising components of the system in
unusual ways, and human error. The more pervasive
use of such diagnostics would enable a consistent per-
formance environment from run to run, eliminating sig-
nificant variability in application performance resulting
from latent undiagnosed system issues.

The tradeoff here would be the overhead of running
diagnostics at boot time and periodically during execu-
tion versus the possibility of performance degradation.
Some of this overhead may be mitigated by a ‘+1’ core
whose operation will not significantly interfere with the
actual workload running on the other cores. Finding
the right balance between background monitoring, per-
iodic health diagnostics, and other forms of online self-
test will be an important aspect of co-design research
on extreme-scale systems.

A complementary approach to software-based errors
would be to adopt better design and testing methodolo-
gies. For example, performance errors could be avoided
by adopting techniques used in the design of real-time
software for avoiding overcommitment of resources.
Alternatively, resource exhaustion could be avoided by
the use of properly designed feedback mechanisms,
derived from a principled application of control theory.

5.2 Prediction

A failure can be prevented by predicting the faults that
cause the failure and evading the failure. For example,
if one can predict that a node is likely to fail, then one
can prevent job failure by vacating the node and
migrating its workload to another node before the fail-
ure occurs. To do so, one needs to understand which
faults are most likely to cause failures, and one needs
to predict the occurrence of such faults based on past
observations. The prediction should be timely: it is
easy, but not very useful, to predict that each piece of
hardware will eventually fail. Conversely, if the predic-
tion is too close in time to the failure, then there may
not be enough time for evading the failure. Failure pre-
diction is used successfully for a wide range of complex
systems, including railroads (Oh et al., 2006), nuclear
power plants (Zio et al., 2010), and aircraft engines
(Hunter, 1975). Many different techniques can be used
to forecast failures. A fairly complete survey of these
techniques is presented in Salfner et al. (2010).

Several studies suggest that failure can be predicted in
HPC systems. For example, a memory device tends to
show, for a given address, multiple repetitive correctable
errors before showing an incorrectable error (Hwang
et al., 2012). Correlations in time have also been
observed between soft errors and hard errors. Another
recent study (Heien et al., 2011) has observed correlation
in space. The predictability of hard drive failure is at the

146 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

origin of the Self-Monitoring, Analysis and Reporting
Technology (SMART) used in many disks.

In HPC systems, the overall failure prediction work-
flow based on event analysis, its limitations, and needed
improvements are reasonably well identified. HPC sys-
tems are producing events related to the state of their
software and hardware components. Events of the same
type can be clustered into groups. Event correlation
analysis allows establishing stochastic propagation
chains between events of the same group and/or of dif-
ferent groups. Stochastic propagation chains essentially
contain two categories of events: precursors and critical
events. When a critical event is in a propagation chain,
all previous events in the chain are called precursors
(precursors potentially also include critical events). In
the past two years, several key results have demon-
strated that recent advances in event clustering (Gainaru
et al., 2011b), anomaly detection (Gainaru et al., 2012a),
event correlation (Gainaru et al., 2012b), propagation
chain construction (Heien et al., 2011), and online detec-
tion of propagation chains (Gainaru et al., 2011a) can
provide precise failure prediction. The time lag observed
for the most efficient prediction approaches is consistent
with the time taken by proactive actions.

Current predictors can achieve a precision of over
90%, so that preventive actions will be superfluous in
only one-tenth of the cases; acting on such predictions
is usually worthwhile. On the other hand, the recall is
still low and stays below 50% even for the most
advanced prediction approaches: fault prediction can
effectively double the MTBI but cannot replace other
methods, by itself. The main reasons for the low recall
are the lack of precursor events (some failures have no
identified precursors) and the precision losses at each
step of the failure prediction workflow. Thus, an identi-
fied research objective is to improve the whole failure
prediction workflow to increase the failure prediction
coverage from 50% to 80% or 90%.

5.3 Tolerance

For some applications, we may not need to recover
from node failures at all. For example, in derivative-free
parameter estimation of a complex simulation, a node
failure could be ignored and treated as a simulation fail-
ure. However, not all simulation failures are the same.
A graceful failure can yield partial information that
could be used when determining the next experiment to
perform for the optimization. Structured simulation-
based optimization techniques can use this partial infor-
mation to build partial interpolation models and thus
become resilient to node failures. Similarly, we could
use partial solutions for simulations at a looser toler-
ance as long as we account for the truncation error in
the model and optimization.

This approach can be likened to controlling the noise
in simulations (Moré and Wild, 2012). For stochastic

noise, model-based optimization methods have been
developed that specify both a candidate point and the
number of replications needed to obtain sufficient accu-
racy. Parallel replications at a fixed point can be used to
control stochastic noise but not deterministic noise. For
deterministic functions one could use nearby points and
Taylor’s theorem to bound the noise in the simulation.
By neighborhood-sampling one could reduce the noise
in many settings, and these samples may already be
available from previous computations of the algorithm.

An alternative approach is to use insight into the
application to reduce the probability of failure by using
a smaller word size. Variable precision arithmetic can
help in this approach by using bounds on the precision
requirements for Newton solves to compute low-
precision steps initially. Analysis tools, such as those
developed for automatic differentiation and estimating
computational noise, could identify blocks in the code
for which higher precision would lead to improved pre-
cision in function evaluations. Based on this identifica-
tion, one could restructure the computation of a
function so that the least-precision arithmetic was used
in each block to obtain the required precision in the
overall function evaluation. Similar ideas could be
applied for gradient and Hessian evaluations. User-
provided and automatically generated codes for quanti-
ties derived from function values (such as derivatives)
can be significantly less precise than the underlying
function. Analysis of the underlying computational
graph (for example as done by (Kubota 1992)) could
provide insight into reformulations of the derived code
that yield both function and derived values to specified
precision. The use of a smaller word size reduces the
number of gates and latches involved in computations,
thus reducing the frequency of errors.

5.4 Detection

Mechanisms for detecting hardware errors, such as
ECC and circuit-level redundancy, are briefly described
in Section 3. Here we focus on software-driven detec-
tion and application-level detection.

5.4.1 Software-driven detection of hardware errors.
Conventional hardware detectors either have relied on
expensive redundancy-based solutions or have focused
on specific fault models and hardware components.
Recently, considerable work has been done on
software-driven solutions that are oblivious to the fault
model and potentially provide larger hardware cover-
age at low cost. The key observation underlying these
techniques is that the hardware reliability solution
needs to handle only those faults that become observa-
ble to software. This class of solutions, therefore,
focuses on detecting hardware faults by monitoring for
anomalous software behavior or symptoms. Much

Snir et al. 147

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

research has shown that such monitors (implemented
in software and/or hardware) can be inexpensive and
detect a wide range of hardware faults (Goloubeva
et al., 2003; Pattabiraman et al., 2006; Wang and Patel,
2006; Dimitrov and Zhou, 2007; Meixner et al., 2007;
Racunas et al., 2007; Li et al., 2008b; Hari et al., 2009;
Lyle et al., 2009). Moreover, this strategy treats hard-
ware faults as analogous to software bugs, potentially
leveraging software reliability techniques and further
amortizing overheads.

A software-anomaly- or symptom-based detection
strategy must be viewed in the context of a holistic
reliability solution. First, since the hardware fault is
detected through software symptoms, the latency from
the activation of the fault to detection can be high
(relative to traditional hardware-driven techniques).
This requires a sophisticated diagnosis strategy to
determine the root cause of the symptom, namely
whether it was a hardware or a software fault; in the
case of a hardware fault, whether it was a permanent
or a transient fault; and in the case of a permanent
fault, in which field replaceable unit the fault occurred
so as to trigger appropriate repair/reconfiguration and
recovery. Simplifying detection in exchange for a more
complex diagnosis is a reasonable tradeoff since the
former is ‘always on’, whereas the latter is invoked in
the relatively infrequent case of a fault detection.

Second, the longer detection latency also impacts
recovery. Software-driven detection techniques rely on
backward error recovery, typically checkpoint/rollback-
based recovery. Therefore, the detection latency should
be short enough to ensure that a fault-free (recoverable)
checkpoint is available on detection. Another constraint
comes from the need to buffer outputs until they are
known to be fault-free; the detection latency should be
short enough to ensure that this buffering time does not
degrade performance.

Much recent work has been done on individual com-
ponents of the above approach (Prvulovic et al., 2002;
Sorin et al., 2002; Goloubeva et al., 2003; Nakano
et al., 2006; Pattabiraman et al., 2006; Wang and Patel,
2006; Bower et al., 2007; Dimitrov and Zhou, 2007;
Meixner et al., 2007; Racunas et al., 2007; Li et al.,
2008a,b; Sahoo et al., 2008; Hari et al., 2009; Lyle
et al., 2009; Ramachandran, 2011). Recent work on
the SWAT (SoftWare Anomaly Treatment) project (Li
et al., 2008a,b; Sahoo et al., 2008; Hari et al., 2009;
Ramachandran, 2011) has developed an integrated
framework for all components of such a resiliency solu-
tion with promising results. It performs software anom-
aly detections using both hardware monitors (e.g. fatal
traps that require no added cost or more explicit hard-
ware out-of-bounds detectors that detect addressing
anomalies) and software monitors (e.g. the kernel panic
routine that involves zero cost or more explicit
application-level invariant checkers). The detectors

invoke a thin firmware layer that diagnoses the root
cause of the symptom, leveraging the rollback/replay
mechanism available for recovery. Repeated replays on
different cores and units are used to systematically nar-
row down the source of the fault. Once the root cause
is understood and eliminated or repaired, recovery is
invoked, and application execution continues.

The software-driven approach described has several
advantages: (1) generality: it is oblivious to specific fail-
ure modes and microarchitectural or circuit details; (2)
masked faults ignored: it naturally ignores all faults
masked at the software level; (3) customizability: the
software layer in charge of resilience can be customized
to the application and system in various ways; and (4)
amortization of overheads: the approach is inspired by
online software bug detection (Hangal and Lam, 2002;
Ernst et al., 2007) and can leverage similar techniques,
thereby amortizing overheads toward a holistic view of
system reliability.

A key limitation of the approach is that some faults
could corrupt application state in undesirable ways but
escape detection. Such SDCs could potentially be cata-
strophic, and much research is required to mitigate their
effects. A key problem is that the conventional method
to quantify the presence or impact of SDCs relies on
fault (or error) injection campaigns (using real applica-
tions; see for example Reis et al., 2005a; Wang and
Patel, 2006; Li et al., 2008b; Lyle et al., 2009). With the
above approach, the impact of a fault depends on the
application and where in the application the fault was
injected. A brute-force fault injection campaign might
require trillions of fault injections (one fault per applica-
tion and hardware fault site) even for simple benchmarks
and hardware fault models and is clearly impractical.
Therefore, statistical fault injection campaigns are used
where a random sample of application instructions (and
hardware sites) is selected for fault injection, but these
do not provide any insight on where (if) SDCs might
occur in the rest of the application. Without such knowl-
edge, it is difficult to design protection mechanisms for
the SDC-vulnerable parts of the application.

Significant progress has been made recently in
addressing this problem. For example, recent work
on Relyzer (Hari et al., 2012a,b) proposes methods to
determine when application-level transient faults are
equivalent, enabling comprehensive analysis by inject-
ing (transient) faults in only one instruction per
equivalence class. Relyzer is able to both determine all
SDC-vulnerable fault sites with relatively high accuracy
for the studied fault model and identify the reason for
the SDC (i.e. the fault propagation path). The latter
motivates low-cost, application-specific detectors
designed to protect only those instructions that
are vulnerable, thereby enabling selective, frugal, and
customizable placement of detectors. The approach
promises quantifiable resiliency vs overhead tradeoff

148 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

curves that can be used as appropriate by the system
designer or application writer. Another project,
SymPLFIED (Pattabiraman et al., 2008), takes a
complementary approach of understanding the
impact of different errors in the same application site
without performing different fault injections for each.
SymPLFIED inserts a symbolic error value and uses
model-checking to explore all execution paths with this
value, ensuring that all paths that result in corruptions
are detected and, if not, to motivate detectors. This
approach has been tried only for relatively small pro-
grams, however, because model-checking is resource-
intensive. The Shoestring project (Feng et al., 2010) has
developed a pure static analysis that identifies instruc-
tions where faults are likely to be detected quickly
enough (e.g. there is a short path in the data-flow graph
from such a fault to enough potentially symptom-
generating instructions) without requiring fault injec-
tions. The rest of the faults are considered vulnerable
and protected by using selective instruction duplication.
Shoestring reduces the SDC rate significantly but is not
yet able to eliminate SDCs or comprehensively identify
where the remaining ones are.

Despite this progress, much research remains to be
done to convert ideas such as these into a practical
workflow that can be demonstrated for all fault models
of interest and that can drive automatic derivation and
insertion of detectors according to customizable resi-
liency vs overhead tradeoff requirements.

5.4.2 Application-level detection of hardware errors. At the
application-software level, we can develop a taxonomy
of errors similar to the one presented in Section 2. We
separate errors into detectable and undetectable errors.
An example of an undetectable error is a corrupted
matrix/vector dimension before we invoke a checksum.
We can further subdivide each category into irrelevant
errors (such as errors in out-of-date data that will not
be used further), correctable errors (such as a single
corrupted matrix element that can be corrected using
checksum), and uncorrectable errors. The key message
is that although application-level detection can handle
some hardware errors, it cannot, on its own, ensure
resiliency. At the same time, application-level detection
can mitigate the overhead of error correction in hard-
ware or lower-level system software and thus forms
part of an integrated approach to resiliency.

Application-level error-detection schemes have been
developed in the context of solvers for linear systems
(Huang and Abraham, 1984; Banerjee and Abraham,
1986; Banerjee et al., 1990; Turmon et al., 2000;
Gunnels et al., 2001; Turmon et al., 2003; Chen and
Dongarra, 2006; Bosilca et al., 2009) and certain itera-
tive methods for solving partial differential equations
(PDEs) (Roy-Chowdhury et al., 1996). These schemes
are based on computing checksums of the rows and/or

columns of the matrix (discretized PDE). The check-
sums can be shown to preserve a range of common
matrix operations such as addition, multiplication, sca-
lar product, and LU and QR decomposition (i.e.
matrix inversion or solves). Checksums can thus detect
errors in common matrix operations, although strictly
speaking we can detect only the fact that the checksum
is inconsistent, which may indicate a corrupted matrix
element or an error during the checksum or matrix
operation (a common misconception). With this caveat,
a single erroneous matrix element can be corrected by
using checksums (more elements can be corrected if the
matrix decomposes and the errors occur in independent
partitions). Unfortunately, the checksums have not
been generalized to multigrid methods (Hackbusch,
1985; Trottenberg et al., 2001) for solving PDEs, which
are optimal in terms of flop counts compared with the
SOR method described in Roy-Chowdhury et al.
(1996). Also, some care is needed to define tests that
ignore normal round-off errors but catch most silent
hardware errors (Turmon et al., 2003).

Application-level detection in other areas of applied
mathematics is less well developed (in part, this situa-
tion may be because other areas such as optimization
or differential equations can be built on resilient linear
algebra routines, provided the remaining computations
are performed in a resilient manner). However, addi-
tional opportunities exist at higher levels of abstraction
to design resilient algorithms at potentially reduced
overheads. For example, when we are solving a non-
linear system of equations, F(x)= 0, with Newton’s
method, we typically promote convergence by enforcing
descent in a merit function such as p(x)= k F(x) k2

2 for
the Newton step, sk , at iteration k, obtained by solving
the linear system rF(xk)sk = �F(xk). Solvers assess
progress by ensuring a sufficient reduction condition in
the merit function (e.g. Fletcher, 1981) such as

p(xk)� p(xk + sk) �
s k F(xk) k2

2 � k rF(xk)sk +F(xk) k2
2

� �

where s 2 (0, 1). We can use this condition to detect
errors during the computation of the (approximate)
Newton step. If the right-hand side is negative, then the
solve failed. If the sufficient reduction condition fails,
then we recompute the Newton step inside a reduced
trust-region (e.g. Conn et al., 1987).

Other application-level error-detection schemes can
be built around invariants. For example, we can detect
errors in the gradient computation, rF(xk), by recom-
puting gradients of p(xk) at a cost that is comparable to
a single function evaluation using automatic differen-
tiation (Griewank and Corliss, 1991) to detect errors
(rp(xk)=rF(xk)F(xk)). Stochastic optimization (Birge
and Louveaux, 1997) and stochastic PDEs (Chow,
2007) also provide error-detection schemes. In both

Snir et al. 149

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

cases, we typically solve an ensemble of systems and
compute expected values. Thus, we can use the devia-
tion from the expected value to detect potential errors
in individual ensembles. However, such a scheme can-
not detect all errors (e.g. those that are close to the
expected value). An interesting challenge is the integra-
tion of hardware error models into the convergence
analysis of these sampling methods.

Invariants can also be derived from the physics of
the simulated system: wind speed is positive and does
not exceed the speed of sound; nearby values cannot be
too different; system energy is preserved. Programmers
often check such invariants in order to debug their
codes; using such checks to catch hardware errors may
not add much coding effort.

The two approaches described in the preceding two
sections (software-driven detection and application-
level detection) are nicely complementary. Software-dri-
ven detection is most effective for errors that affect the
system state or the control state of an application (e.g.
wrong jump) or break the language abstractions (e.g.
corrupt pointers); application state detection is most
applicable when the application computation proceeds
unperturbed, but data values are incorrect. Research is
needed to further study this complementarity and
understand the coverage obtained when both methods
are used.

5.4.3 Behavioral-based detection. The number of cores
used in large-scale systems already exceeds a million
cores. As a result, the challenge of developing correct,
high-performance applications is also growing. When an
application does not complete or completes with incor-
rect results, the developer must identify the offending
task (such as an MPI task) and then the portion of the
code in that task that caused the error. Traditional par-
allel debugging tools (Lourencxo and Cunha, 2001;
Lindekugel et al., 2008; MPIPlugIn, 2013; Rogue Wave
Software, 2013) often perform poorly at large task
counts. Hence, research is actively underway to develop
a detection toolchain that can identify the offending task
and, to a customizable granularity, the relevant portion
of code within the task responsible for the error.

Several debugging tools detect bugs in large-scale
applications without relying on extensive manual effort
demand by debuggers such as gdb, DDT, or
TotalView. These more sophisticated debugging tools
typically focus on detecting violations of deterministic
and statistical properties of the applications.
Deterministic tools can validate certain properties at
runtime; any violation of these properties during an
execution is reported as an anomaly. For example,
FlowChecker (Gao et al., 2010) focuses on
communication-related bugs in MPI libraries. It
extracts information on the application’s intentions of
message passing (e.g. by matching MPI Sends with

MPI Receives) and at runtime checks whether the data
movement conforms to these intentions. Bug localiza-
tion follows directly: the data movement function that
caused a discrepancy is the location of the bug.

Statistical tools (Mirgorodskiy et al., 2006; Gao
et al., 2007) detect bugs by deriving the application’s
normal behavior and looking for deviations from it.
For example, if the behavior of a process is similar to
the aggregate behavior of a large number of other pro-
cesses, then it is considered correct, and different beha-
viors are considered incorrect. Mirgorodskiy et al.
(2006) monitor the application’s timing behaviors and
focus the developer on tasks and code regions that
exhibit unusual behaviors. This approach centers on
function call traces in order to identify the trace that is
most different from other traces. DMTracker (Gao
et al., 2007) uses data-movement-related invariants,
tracking the frequency of data movement and the chain
of processes through which data moves.

While these tools are effective in their own domains,
their primary weakness is that their designs do not con-
sider scalability. Typically, these tools collect trace data
during the application’s execution and write it to a cen-
tral location. They then process the data in order to
detect potential problems. Some recent work has tried
to rectify this problem by analyzing the application’s
behavior online, without any central bottlenecks. One
such work is STAT (Lee et al., 2007, 2008; Ahn et al.,
2009), which provides scalable detection of task equiva-
lence classes based on the functions that the processes
execute. STAT uses MRNet (Roth et al., 2003), a tree-
based overlay network, to gather and merge stack
traces across tasks and presents the traces in a call-
graph prefix tree that identifies task equivalence classes.
STAT removes problems associated with a central bot-
tleneck by reducing the trace data as part of a compu-
tation being performed within the overlay network
through a custom reduction plug-in.

Another work of this type is AutomaDeD
(Bronevetsky et al., 2010; Laguna et al., 2011, 2012),
which performs runtime monitoring of a parallel appli-
cation to build a statistical model of the application’s
typical timing and control-flow behavior. AutomaDeD
models the control flow and timing behavior of appli-
cation tasks as semi-Markov models (SMMs) and
detects faults that affect these behaviors. AutomaDeD
examines how each task’s SMM changes over time and
relates to the SMMs of other tasks in order to identify
the task and code region where a given fault is first
manifested. AutomaDeD detects which time period in
the execution of the application is likely erroneous.
Next, it clusters task SMMs of that period and per-
forms cluster isolation, which uses a novel similarity
measure to identify the task(s) suffering from the fault.
Then, transition isolation detects the transitions that
were affected by the fault more strongly or earlier than

150 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

others, thus identifying the code region where the fault
is first manifested. STAT focuses primarily on the state
of the application once an error manifests itself,
whereas AutomaDeD focuses on scalable analysis of
the entire application execution.

While behavioral-based detection work has been
focused on debugging, the identification of anomalous
behaviors can be used to detect errors that are due to
other causes as well. Further work is needed to make
the behavior-based detection tools robust enough to
rely on in-production systems. One question is how a
detection system should deal with changing workload
patterns, and corresponding discontinuous, but legiti-
mate, changes in the correlation patterns. A related
question is how a detection system should handle noise
in the execution environment, such as that resulting
from congestion on the network switches due to com-
peting applications executing on other nodes. For pur-
poses of scalability, tools compress models for
comparison. It is tempting to use lossy compression for
this purpose. If so, what parts of the model can be
compressed away because they are not germane to the
error detection or localization activities? Moreover, are
the models powerful enough to handle a wide variety
of applications and their legitimate behaviors and yet
simple enough that their parameters can be reliably
derived through training and detection, and localiza-
tion can be done efficiently at runtime using the
models?

5.5 Containment

Most system-level failures affect only a single node.
Statistical analysis (Bautista-Gomez et al., 2011a)
shows that multinode failures, also called correlated
failures, are rare. The probability distribution of multi-
node failures according to the number of nodes
involved in a correlated failure is heavy-tailed: failures
involving the whole system are rare but still happen,
for example in the case of a long power outage.

On the other hand, the global checkpoint/restart
approach to application recovery makes the simplifying
assumption that if an error occurred, then any applica-
tion state could be corrupted. In practice, by the time
an error is detected, it may have propagated to only a
small subset of the application state. Recovery could be
faster if only this small fraction of the application data
was repaired.

5.5.1 Strategies to limit propagation. Various containment
strategies can be used to limit error propagation.

A priori containment recursively divides the
resources of a parallel system and execution of a paral-
lel program into nested disjoint containment domains
(CDs); the goal is to limit recovery to one CD, at the
finest nesting granularity possible. Any error or failure

can be contained within some level of the CD tree and
may be recovered by restoring only the state necessary
to re-execute that CD. State is restored from explicit
preservation clauses within each CD, which permit a
range of preservation/restoration tradeoffs. These
include preserving only a partial state, relying on regen-
eration routines or on state already available elsewhere
in the system or at a higher CD level. Alternatively,
one could use forward recovery of state where the state
of a CD is corrected, for example by extrapolating
from the state of neighbors; this is discussed in Section
5.6.4. These approaches can be applied hierarchically.
If recovery fails at one level of the system it falls back
to recovery at a higher level (which, presumably, is
more expensive but more reliable) (Chung et al., 2012).

The choice of CDs in terms of granularity, preservation/
restoration options, and recovery and detection rou-
tines introduces new, flexible tradeoffs. For example,
one can construct a strict CD hierarchy in which all
communication occurs at a single CD context at a time,
simplifying preservation and recovery. Often, however,
it is preferable to relax this communication constraint
in order to reduce preservation overheads and the gran-
ularity of recovery. When communication is allowed
between CDs, data must first be verified for correctness
in order to prevent silent data correction.
Communication should also be logged in order to retain
the ability to recover CDs in an uncoordinated manner
(see Section 5.6.2). Overall the tradeoffs are between
the cost of preserving state (lower relative overhead for
larger domains) and the cost of CD recovery (which is
relatively higher if containers are large).

CDs can be selected statically, based on the applica-
tion structure and tuned automatically for optimal resi-
lience. For example, in a multiphysics code, modules
running the different physics codes are natural CDs,
with the containment done by the coupler that couples
these modules. Alternatively, one can build CDs auto-
matically by tracking communication during a trial run
and finding good separators in the communication
graph (Ropars et al., 2011).

Another possible approach is a posteriori contain-
ment. The logic of the application may constrain error
propagation. For example, in an iterative algorithm
with nearest-neighbor communication, an error can
propagate at most one neighbor away at each iteration.
In a 3D problem, where each node holds a k 3 k 3 k

subcube, a bit flip in a data element will have propa-
gated to at most ðn=kÞ3 nodes after n iterations. An
algorithm that checks periodically for corrupted values
can compute a posteriori the domain that could be
affected by their error and use localized recovery.

Another form of a posteriori containment is the
retention of multiple checkpoints (Hogan et al., 2012;
Lu et al., 2013) and recovery based on analysis or more
extensive error-checking than one would normally

Snir et al. 151

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

incur at each checkpoint. When an error is manifested
and the system proceeds to recovery, then based on
application semantics, the contents of multiple check-
points can be analyzed to find the most recent one that
has a correct application state that can be resumed.
This is a particularly powerful technique for tolerating
silent errors and may avoid the need for checking
checkpoints for correctness as they are committed.
Such multiversion checkpoints are likely to be most
viable for applications that have modest main memory
requirements, when application-level determination of
critical state is employed, or when additional resources
such as NVRAM are available.

5.5.2 System software. Application recovery requires a
correct functioning of multiple global system services
(resource managers, parallel file system, etc.). Failures
in these systems are much harder to recover from and
often require a time-consuming reboot. Thus, contain-
ment techniques are important for OS functions.

One approach to this problem is to partition system
software in such a way that even when corruption
occurs in systems code, it can be contained, and failures
in a particular core do not impact other cores. Such a
partitioning can be accomplished within an OS image
by taking a formally verified microkernel approach
with the system software (Heiser et al., 2011), by using
a hypervisor such as Palacios (Lange et al., 2010) or a
hybrid kernel approach such as those proposed by NIX
(Ballesteros et al., 2012) or FusedOS (Park et al., 2012).
All of these approaches create strict boundaries
between different software components of the system,
which can be used to facilitate the creation of CDs
within the system services and applications. Selective
restart or fail-over of those partitions can refine the
granularity of recovery to improve efficiency.

5.6 Recovery

Recovery will return the system to a valid state.
Backward recovery returns the system to a previous
state (a previous checkpoint), whereas forward recovery
evolves the system to a new, correct state. Currently, in
high-performance computers, system state is recovered
by forward recovery, while application state is recov-
ered by backward recovery. Checkpoint/restart is
advantageous when large parts of the computation
state change rapidly; this is the case with application
variables in a scientific computation. Replication at
MPI process level has been explored (Ferreira et al.,
2011). Its cost is high, and this approach is competitive
against checkpoint/restart only in extreme situations.
Full-node replication has not been explored in the HPC
domain as far as we are aware. Its cost in development
and overheads would be even more expensive than
replication at the level of MPI processes.

Forward recovery makes sense when a relatively
small part of the state changes; this is the case with a file
system and with the system state (most of which does
not change during a scientific computation). Forward
recovery requires sufficient redundancy in stored state
that a correct state can be recreated if part of it was lost.
It also requires the use of update mechanisms that
ensure that a failure in the midst of an update will not
corrupt the state. Commit protocols and transaction
logging for replay are two examples.

Research efforts in this area focus on avoiding the
need for a global checkpoint/restart for applications, by
ensuring that errors are contained and recovery can be
performed locally. If the OS and runtime have a more
dynamic behavior (e.g. resources added or deleted dur-
ing a computation, processes migrated), then forward
recovery of the OS and runtime will require additional
effort.

5.6.1 Restart. The classical checkpoint/restart strategy
for resilience used in most large-scale executions in
petascale systems has two main limitations: (1) the time
to save the state of the execution (checkpoint) is becom-
ing unacceptable compared with the system MTBF,
and (2) all processes involved in the execution are
restarted from the last checkpoint even if only one pro-
cess fails. Recent results in multilevel checkpointing
and in fault-tolerance protocol show that these two lim-
iting factors could be addressed and make checkpoint/
restart a viable approach for exascale resilience for
errors that are quickly detected (detected in less time
than it takes to commit a checkpoint).

Multilevel checkpointing (hybrid checkpointing) con-
sists of using multiple storage resources with different
characteristics in terms of speed and reliability in order
to respond to different failure scenarios. The main sce-
narios to consider are the crash of a process that can be
restarted on the same node, the failure of a node that
makes that node unavailable for restart, and the failure
of the entire system.

Multilevel checkpoint restart uses local storage
resources (NVM, hard disk drive (HDD), or solid-state
drive (SSD) devices) as a first level of storage for execu-
tion checkpoints. A second level could use the storage
resources of remote nodes. If a node failed, even if it can-
not be restarted, the execution context of that node could
be restarted from the checkpoint stored on remote node.
Local, persistent storage can also handle node failures if
it is twin-tailed, that is, remotely accessible even after a
node failure. A third level of checkpoint considers an
encoding of several process checkpoints and a distributed
storage of the encoding result on several nodes. Different
encoding algorithms (Xor, Reed Solomon, etc.) can be
used, leading to different levels of reliability. According
to the level of reliability provided by the encoding algo-
rithm, this third level of checkpointing can be used to

152 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

tolerate simultaneous multinode failures. A fourth level
of storage is the remote parallel file system. This level is
relevant only for catastrophic failure scenarios that could
not be covered by the previous checkpointing storage lev-
els, such as the loss of enough nodes to make the restora-
tion of the checkpoint images impossible. Finally, mass
storage can back up disk information, enabling recovery
from catastrophic failures of the file system. The avail-
able bandwidth for checkpoint storage of several levels
of storage is studied in Moody et al. (2010).

Currently, two environments provide multilevel
checkpoint/restart: SCR (scalable checkpoint/restart)
(Moody et al., 2010) and FTI (fault-tolerance interface)
(Bautista-Gomez et al., 2011b). While SCR is keeping
the file interface abstraction, FTI is providing a data
structure abstraction, masking from the programmer
how the data to be saved is actually managed by the
library. Recent results show that a process context of 1
GB can be saved in 2–3 s in local SSD (two SSDs
mounted in RAID0). Such checkpoint speed is orders
of magnitude faster than checkpointing on a remote file
system, which requires tens of minutes on current
petascale systems (about 30 mins if the full system
memory is dumped in the remote file system). An
experiment with FTI on a current large-scale execution
(0.5 million GPU cores) of an earthquake simulation
on a hybrid system composed of CPUs and GPUs
demonstrates very low overheads on the execution time
(less than 10%) when using a checkpoint strategy, com-
pared with a computation that does not checkpoint.
Other research results demonstrate that checkpointing
on remote node memory is even faster than on local
HDD or SSD (Zheng et al., 2012). Research still is
needed, however, in order to understand how to take
advantage of new storage technologies such as phase
change memory. Europe has a project called advanced
multilevel fault tolerance (AMFT) to test this approach
with several storage technologies; the objective is to
include multilevel checkpoint restart in the PRACE
software stack and to prepare for exascale.

5.6.2 Localized restart. Checkpoint/restart is usually
done at the application level. Applications periodically
save state onto storage and provide a callback function
to restore the computation from saved state. For most
applications, the checkpoint size is a fraction of the sys-
tem memory. Checkpointing is coordinated: the
involved processes synchronize before checkpointing
and ensure that no message is in flight during the
checkpoint operation.

If the computation is restarted, then all processes
restart from the last checkpoint, even if only one pro-
cess has failed. In general, this situation cannot be
avoided. If the computation is nondeterministic, the
computation after restart could follow a different path
from that followed before the failure occurred; the

computations of the ‘healthy’ processes may not be
valid anymore. However, most HPC scientific codes are
‘piecewise deterministic’: the execution consists of long
deterministic phases, with nondeterminism occurring at
a small (possibly empty) set of execution points. Thus,
the opportunity exists to use message-logging protocols
in order to avoid global restarts. During the fault-free
execution, all messages contents and nondeterministic
events (reception orders) are recorded. When a failure
occurs, only the failed process restarts; its state is recon-
structed by sending it the messages recorded before the
failure and by forcing the message deliveries in the same
order. Many variants of message-logging protocols
have been developed (Elnozahy et al., 2002). However,
they all share two limitations: (1) the contents of all the
messages need to be saved, requiring a significant
amount of storage; and (2) the nondeterministic events
(reception orders) also need to be stored, thus impact-
ing either the communication latency or the communi-
cation bandwidth, depending on the message-logging
protocol.

A recent analysis of communications patterns in
HPC applications shows two important properties: (1)
communication patterns are either deterministic (the
order and outcome of communication operations at
each process are fixed) or send-deterministic (whatever
the order of reception for each process, the sequence of
send operations is identical in any correct execution)
(Cappello et al., 2010); and (2) communications show
strong spatial and temporal localities and form clusters,
which can be observed manually for some applications
and extracted automatically with graph-partitioning
tools (Ropars et al., 2011). These two properties can be
leveraged to develop new fault-tolerant protocols hav-
ing excellent properties in the HPC context: no global
restart, no need to log all message content, no need to
store reception orders, no risk of restart from the begin-
ning. Two fault-tolerant protocols have been proposed
in the literature (Guermouche et al., 2011, 2012) from
these principles. A hybrid protocol can use coordinated
checkpointing inside clusters and message-logging
between clusters. This protocol is a good match for
HPC applications built of independent modules, such
as the CESM climate simulation code (NCAR, 2014):
checkpoint/restart can be done independently for each
module (cluster), and logging (within the coupling
toolkit) handles interaction within modules. For real
applications, the number of messages to log is a small
fraction (10%) of all the messages sent during the exe-
cution (Guermouche et al., 2012). Other hierarchical,
hybrid fault-tolerant protocols, combining coordinated
checkpointing with some form of message-logging),
have been proposed that do not consider communica-
tion determinism (Bouteiller et al., 2011). They require
logging, in some way, the message reception orders of
all messages.

Snir et al. 153

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

While this progress is encouraging, many research
questions remain open: how to form clusters to reduce
the number of messages to log, how to adapt clusters
to the different communication patterns seen during
the execution, how to prove the deterministic or send-
deterministic nature of communication patterns auto-
matically, how to organize a fully distributed recovery,
how to better understand sources of nondeterminism in
applications that show nondeterministic or send-
deterministic communication patterns, and how to
address them.

Localized restart reduces the total I/O volume
needed to restart, but it may not reduce the restart time
if all nodes have to wait for the failed node to be
restarted. Nevertheless, it still may result in lowered
power consumption, since the waiting nodes can reduce
their power intake. Furthermore, the restart can be
accelerated by being distributed across multiple nodes.

5.6.3 Fault-tolerant data structures. Between application-
level and restart schemes, there are runtime-level tech-
niques for redundancy and repair. These techniques
can operate at the data structure level, below even a
typical application abstraction, and by encoding addi-
tional information into the data structures enable them
to be reconstructed in case of error. Common examples
include i-nodes in filesystems, redundant virtual–
physical mapping information in OS page tables, trees
and lists with multiply linked structures, and
redundancy-encoded arrays and data structures. These
techniques offer the potential for significant recovery
capability under software (compiler, runtime, OS, even
application) control, and they support selective and
flexible usage. One example of such structures has been
proposed in the Global View Resilience (GVR) system
(Fujita et al., 2013).

5.6.4 Application and algorithmic recovery. Application and
recovery techniques can use the algorithmic redundancy
available in many parallel algorithms, in order to recre-
ate a valid computation state if the loss of a (small) part
of the state has been detected. Many simulations use
iterative methods on meshes. When a catastrophic node
failure occurs and is communicated to the remaining
nodes, such a method could approximate the missing
information and continue with the computation, by
extrapolating the missing information from the remain-
ing information. If the method had suitable conver-
gence properties, then the error thus introduced would
be smoothed out, possibly at the price of additional
iterations. More sophisticated recovery methods that
use a hierarchy of meshes generated for multigrid meth-
ods could also be developed. These methods would tra-
verse from fine to coarse and back using restriction and
interpolation operations. By moving to a coarser level,

one could estimate the numerical values of the compu-
tational node that failed, using the interpolation opera-
tion and neighboring values, and then construct a new
mesh for the missing patch and apply interpolation
operations. Such an approach requires knowledge of
how to remesh and recover the mesh hierarchy, and
possibly a rebalancing of the computations to prevent
neighboring nodes from becoming a computational
bottleneck.

When algorithmic redundancy is not available in the
original problem formulation, it may be possible to
add it with little increase in storage and computation.
For example, dense linear algebra computations can be
protected by adding checksums to the original matrix
that are updated during computation, and periodically
checked. In addition, one can checkpoint immutable
outputs as they are produced (Du et al., 2012).

In applications with suitable patterns, the recovery
mechanism might be less intrusive. For example, in
branch-and-bound methods for mixed-integer optimi-
zation, which recursively subdivide the domain and
solve optimization problems on each subdomain, a tree
structure maintains the current state. As long as the
tree structure was available, if a solve on a subdomain
did not complete because of node failure, that subdo-
main could be recovered from the tree and the optimi-
zation problem solved on a different node. The same
approach applies to any functional execution model,
where variables are not mutable: if the evaluation of a
function fails to complete, it can just be recomputed,
assuming the inputs were preserved. This approach is
heavily used by Hadoop to provide resilience (Dean
and Ghemawat, 2008). Also, an input or an intermedi-
ate value may affect only some of the outputs, in which
case it may be possible to restart only some of the com-
putations, even if no intermediate value was preserved
(Gunnels et al., 2001).

This discussion also suggests that algorithm-level
checkpointing can be more efficient than system-level
checkpointing. For example, to ensure that function,
gradient, and Hessian computations are correct, one
needs only to checkpoint the computational graph of
the nonlinear functions, which is orders of magnitude
less information than the values and sparsity patterns.
Similarly, branch-and-bound schemes need only check-
point the root node of each distributed solve, which can
be stored by using two binary vectors.

Another advantage of algorithm-based recovery is
that it may not be necessary to replay the MPI messages
since the last checkpoint. For example, if a node fails
during a distributed solve of F(x)= 0, we can simply
resume the Newton iterations from the checkpoint,
because we are not interested in the sequence of iterates,
xk , but the final solution. This opens the door to new
hybrid methods that combine Newton with Gauss–
Jacobi steps. The analysis of such methods remains an

154 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

open problem. In the context of stochastic optimiza-
tion, asynchronous techniques already exist that can
accommodate missing subproblem solves (Linderoth
and Wright, 2003).

5.6.5 Fault-tolerant MPI. Application-level recovery needs
to be preceded by system-level recovery. For example,
if a node has failed, then the application has to be
made aware of the failure and has to continue its execu-
tion in a well-defined environment, in order to execute
the recovery code. This problem is usually addressed in
the context of MPI. Can we ensure that the failure of
one node will not cause processes running on other
nodes to crash? How can we inform the other processes
of the failure? What is the state of MPI after the crash?
Projects aimed at providing a fault-tolerant MPI have
been going on for over a decade (Fagg and Dongarra,
2000; Bouteiller et al., 2006), and several prototype
implementations of fault-tolerant versions of MPI
exist. The MPI forum has discussed several proposals
for standardizing fault-tolerant MPI (Bland et al.,
2012) but has not agreed yet on a standard.

A similar problem occurs for any library that
requires consistent state across multiple nodes. These
include mathematical libraries and I/O libraries. For
each of these, we need to define what the state of the
system is after a failure and how the information about
the failure is propagated.

5.6.6 Rejuvenation. Software rejuvenation is meant to
mitigate the problem of software aging, in which the
state of the software system degrades with time (Castelli
et al., 2001). The primary causes of this degradation are
the exhaustion of OS resources (such as file handles or
network sockets), data corruption, and numerical error
accumulation. Eventually, software aging leads to per-
formance degradation or correctness problems such as
hang or crash failure. Some typical causes of this degra-
dation are memory bloating and leaking, unterminated
threads, unreleased file-locks, data corruption, storage-
space fragmentation, and accumulation of round-off
errors. These causes also affect HPC applications, and
hence software rejuvenation is a relevant technique in
our tool chest. In particular, accumulation of round-off
errors is a problem in some numerical computations
that appear in HPC applications (Hamming, 1987).

Software rejuvenation essentially involves occasion-
ally terminating an application or a system, cleaning its
internal state, and restarting it. This process removes
the accumulated errors and frees up OS resources, thus
preventing in a proactive manner an unplanned and
potentially expensive system outage due to the software
aging. Much research has been done in order to deter-
mine optimal times to do software rejuvenation
(Avritzer et al., 2006; Grottke and Trivedi, 2007); for

example, when the load on the system is low, the
amount of corrupted state is likely to be small, or a fail-
ure is impending. With an appropriate choice, the cost
of system downtime can be reduced significantly com-
pared with reactive recovery from failure.

Surprisingly, software rejuvenation has not been
widely used in HPC applications. In Naksinehaboon
et al. (2010), the authors argue that rejuvenation should
be tried in HPC applications only at the level of indi-
vidual OS kernel, rather than the entire system. They
propose three scheduling strategies for rejuvenation:
using the MTTF, the median of TTFs, and the reliabil-
ity of the system. Based on failure data extracted from
System 20 at Los Alamos National Lab (2006), they
evaluate the hypothesis that rejuvenation together with
checkpoint/restart can reduce the lost computation,
over simply checkpoint/restart. The verdict is mixed.
Only by a careful estimate of TTFs can rejuvenation
give benefits. Not surprisingly, more rejuvenations
quickly reach a point where they hurt overall
performance.

Nevertheless, it seems worthwhile to further explore
the application of rejuvenation in HPC applications.
The first issue that needs to be considered is what state
should be saved and ‘rejuvenated’. Related to this is
how that state should be compartmentalized so that a
quick rejuvenation is possible. The second issue is when
to trigger the rejuvenation. In addition to the factors
that have already been explored in non-HPC domains,
here one must also consider the interactions of the node
being rejuvenated with all the other nodes in the cluster
on which the application is running. Done right, soft-
ware rejuvenation holds the promise of extending the
MTBF and reducing the frequency of checkpoint/
restart.

6 System view of resilience

We discussed in the preceding section mechanisms for
detecting hardware errors at the system software or
application level. A similar interplay between the vari-
ous system layers applies to all aspects of resilience.
Proper interfaces between the different layers are
required in order to propagate information about
faults, errors, and failures in various subsystems to the
subsystems that will be involved in managing them: the
subsystems that need to act upon the information to
contain and recover from the errors and the subsystems
and will be further involved in diagnosis and repair.
Furthermore, resilience techniques are often based on
the assumption that a single fault will occur at a time.
It is hard enough to address in a systematic manner all
possible faults and practically impossible to address in
a systematic manner all possible combinations of multi-
ple faults. The ‘single fault’ assumption is statistically
valid if errors are rare and are cleared rapidly. It also

Snir et al. 155

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

requires the error-handling infrastructure to be flawless.
Therefore, the correctness and the performance of the
fault-handling software are paramount considerations.

6.1 Fault and error management

Each layer of running software should be able to
optionally specify its dependencies, namely, which
errors in other subsystems may affect it and the desig-
nated error handlers for different types of error,
whether internal or external. Operational error-
handling may also dump local data in support of later
fault management activities (diagnosis and repair). In
general, the invocation of error handlers must be care-
fully ordered. For simplicity, let us consider each
higher-layer (or procedurally deeper) error handler as
being pushed onto a stack. When passing error-
handling control to successive error handlers, the sys-
tem will invoke the topmost handler on the stack.
When returning, the handler will indicate whether the
error was successfully handled. If it was not, the next
handler on the stack is invoked. In this way, error-
handling passes from the most specific to the most gen-
eral handler, with increasingly general actions
attempted to recover from the error. The problem is
complicated by the existence of a horizontal as well as
a vertical organization: the error handler can be
invoked on a node different from the node that sig-
naled the error; the error can be signaled in a place dif-
ferent from the place where it occurred; and errors may
be signaled multiple times, through different mechan-
isms. For example, the failure of a node can lead to an
error being signaled through the hardware-monitoring
infrastructure to the system console; it may cause com-
munication timeouts, generating error messages at
other nodes that communicate through the failed node;
and it may generate a timeout on a system or applica-
tion heartbeat. We need to ensure that recovery actions
are not duplicated and are properly ordered.

As information on faults or errors propagate
through the system, it is also important to properly
map their semantics from level to level, into terms
meaningful to each level and to the recovery abilities of
each level. For example, if a bit switched in memory,
the hardware layer will want to know the physical
address of the affected location and will want to further
localize the failure to a hardware subcomponent, such
as CPU, cache, or memory. The system layer will want
to know how far the error could have propagated; the
application level will want to know which variables
may be corrupted; and so on. Therefore, it is useful to
define at each level the set of conditions that can be sig-
naled, so that a fairly generic, portable error interface
can be used to program error handlers at each level.
Having such a generic classification of error types for
applications will allow a more portable programming

model and a simpler evaluation of the effects of errors
on application execution.

Diagnosis and repair may involve more elaborate
actions that have to be coordinated across layers. For
example, a node failure is recovered by replacing the
node (possibly involving the global resource manager),
updating routing tables and MPI structures, and
restarting from the last checkpoint. Later diagnosis and
recovery actions may include running detailed diagnos-
tics and replacing the node.

A viable model for diagnosis and repair could be a
software repository that allows subscriptions to fault
management updates, thus allowing arbitrarily complex
recovery and repair actions. In addition, these actions
need information about static and dynamic configura-
tion of the system: what the hardware and system con-
figuration is, which applications run on which nodes,
what the software configuration of the application
(source code, compiler versions, library versions, etc.)
was, and so on. Today, this information is typically dis-
tributed across multiple databases or is not captured at
all. As a result, root cause analysis is much more pain-
ful than it should be. All configuration changes should
be captured and configuration information stored in a
repository, using schemata that reflect the logical sys-
tem organization.

6.2 Reporting of software-detected errors

The various software layers, including the top-level
application, can detect errors that were not caught by
the lower-level layers. The application code may detect
outliers, for example, that may indicate SDC.
Therefore, reporting can also move information down-
ward. This approach is complicated, however, since the
information cannot be fully trusted (is the algorithm
sure that an SDC happened, or could this be the effect
of a data race?) and the information comes with less
detail than information produced by lower-level detec-
tion mechanisms (the algorithm may not know where
and when a bit was flipped). The passing of such infor-
mation is likely to invoke a complex procedure that
evaluates the reliability of the information, based on
other information available to the recipient (e.g. infor-
mation about the sender) and triggers activities to iso-
late and diagnose potentially faulty components. Such
a level of activity is probably more appropriate as part
of diagnosis and repair, when more complex, trainable
logic can be used.

6.2.1 Error management: Algorithm hints and watchpoints.
Different parts of the software stack typically have dif-
ferent capabilities for handling a propagated fault or
error. For example, in many situations, an application
and its runtime may be able to validate its results and
recover from an underlying error or fault. Similarly, a
communication library may be able to establish a

156 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

dynamic alternative connection on detection of a lost
communication error. In such cases, an interface that
allows the different software to express their inherent
fault-tolerance capabilities would be useful.
Algorithmic hints would also allow lower-level software
to understand what level of error semantics is useful to
the upper application layers and what level of fault
information could be conveyed to them. We explore
algorithm hints in greater detail in Sections 6.5 and 6.6.

In many situations, the application or the lower-level
subsystem can recover from an underlying error but
needs to execute recovery code for that purpose. For
example, an application may tolerate a corrupted data
value by interpolating a replacement value from neigh-
bor points in a mesh. This approach is most efficient if
the error is detected and the recovery action enacted as
soon as possible after the error occurred. In this sce-
nario, the application (or underlying runtime) will reg-
ister its ability to handle some types of error and will
register the exception handler to be invoked when such
an error occurs. For example, the algorithm could
identify memory regions that it wants to ‘watch’ along
with the recovery procedure for errors in this region.
Then when an error is found by the hardware and
translated up the software stack, it will trigger the
appropriate exception handler, passing to it the loca-
tion and type of error. The compiler and runtime need
to ensure that the granularity of error reporting by
hardware (e.g. ECC block) matches the granularity of
software objects.

6.2.2 Error management: Communication errors. Communi-
cation errors require added attention because their
effect can be global. A misrouted message could corrupt
state at any node in the system. This can be handled in
a variety of ways.

We can provide sufficient levels of error-handling in
hardware to ensure that communication errors are fail-
stop errors, where the communication fails but no
incorrect message is delivered. An end-to-end protocol
(a variant of the sliding window protocol) can ensure
that message deletions are detected and corrected for
point-to-point communication channels. However, the
support for correction may require additional buffering
space (to save message copies) and additional latency
(to receive acknowledgments and ensure that messages
will be transmitted in the right order, even in the face
of errors). The problem is harder to manage for collec-
tive communications or one-sided communications.
Application hints that relax message-passing semantics
(e.g. relax ordering requirements) could be used to
improve communication performance.

6.3 Responding to and handling of faults/errors

Various components of a system (whether software or
hardware) can receive information about a fault or

error occurring in a specific part of the system. Several
of these components could independently be interested
in handling this fault and initiating a recovery section.
These different recovery actions may be interdependent:
they need to occur in a correct order, and the recovery
procedure for a component may depend on the out-
come of previous recovery procedures. For example, a
partition may require a new node to replace a failed
node. The application recovery could follow different
paths if the request succeeded or failed.

Response prioritization is an inherent part of
response negotiation. The system-wide resilience infra-
structure will need to support mechanisms that will
allow declaring response priorities of various compo-
nents for the variety of faults that they might receive.
In addition, interfaces are needed to allow components
to specify the outcome of their recovery procedure. On
failure of failure handling by the first component, the
infrastructure should be able to delegate the responsi-
bility to the next component on the list. Response
negotiation can become more complicated when
response priorities for components differ between vari-
ous job executions.

6.4 Fault/error propagation and security implications

While a large amount of information related to faults
and errors is present on systems, not all of it can be
made available to all consumers because of security
reasons. Often, low-level hardware/system fault infor-
mation is made available only to administrators of the
system. A system-wide fault-sharing infrastructure
needs to have mechanisms and interfaces to control
access to different types of information, for example by
using capability-based security.

6.5 Top-down view of errors

Higher-level algorithms may not require notification or
recovery from certain types of error, since the normal
course of computation will overcome the error. A pro-
totypical example is solving a nonlinear system of equa-
tions using Newton’s method. The basic steps of
Newton’s method are to compute the residual, solve a
linear system of equations with the residual on the
right-hand side to obtain a direction, determine a step
length along the direction, and update the iterate. For
well scaled problems, Newton’s method can ignore
errors in many parts of the computations without suf-
fering ill effects.

We will often tolerate errors in the least significant
digits of the mantissa of floating point numbers (say,
the last eight digits), as these would be analogous to
rounding errors, but we would need to detect and cor-
rect errors in the sign, exponent, or most significant
mantissa digits. The recovery may be recomputation in

Snir et al. 157

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

the case of the residual or switching to using the stee-
pest descent direction in the step-length computation.
We cannot tolerate errors in the sparsity structure of
the Jacobian matrix, but we can easily tolerate low-
order errors in the nonzero values of the Jacobian
matrix. High-order errors in the sign, exponent, or
most significant digits can also be tolerated, but there
are consequences, such as degradation in the conver-
gence rate of Newton’s method and requiring extra
iterations to converge to an acceptable solution. As
long as the Jacobian matrix is correct or suffers from
only low-order errors a large fraction of the time, then
there is little impact on performance, and one may need
to perform only a single extra iteration. We do note
that a change in the sign or magnitude of the values
can result in a positive definite matrix becoming indefi-
nite and thus impacting linear solvers, such as the con-
jugate gradient method. Errors in the computation of
the norm of the residual can be tolerated in the step-
length calculation. Such errors may not be tolerated in
the convergence tests, however, if the error results in a
smaller norm of the residual that triggers premature
termination of the algorithm.

Similar observations can be made about other types
of algorithms and about other software subsystems.
These suggest the need for an interface that enables an
application or a software subsystem to provide hints
and describe which lower-level errors it can tolerate.
The lower software layers and the hardware could then
provide differentiated levels of resilience, protecting
state that the application cannot repair, if corrupted.
These could include using more resilient memory,
duplicating critical computation (done automatically
by the compiler and runtime), or checking double-
precision calculations with (cheaper) single-precision
ones. Providing increasing levels of resilience would
come at higher costs, with tradeoffs of both power and
performance, thus requiring that the provided set of
interfaces be expressive enough to allow upper-layer
software to specify their tradeoff preferences.

6.6 Bottom-up view of errors

This section focuses on issues related to exposing error
semantics upstream (to higher-level libraries or applica-
tions), the amount of information to be exposed, and the
information to expose. Cost is a big challenge in detect-
ing and correcting errors in the underlying hardware.
The challenge is how to minimize the power and perfor-
mance costs of highly effective error detection. Can we
make use of high-level (e.g. application level or high-level
system stack) information to minimize this cost?

Error semantics and translation. While an error can
influence multiple layers of the hardware/software
stack, how an error is interpreted can differ for each
layer of the stack. For example, a fault on fan #1508

might be relevant at the hardware layer to correct or
work around, but it might not have much semantic
meaning for the application. Similarly, the fact that
memory variable ‘X’ is corrupted might be relevant for
an application, but it might not have much semantic
meaning for the hardware developer, unless the virtual
memory address and eventually the appropriate physi-
cal memory address translation are known.

Amount and type of error information exposed. The
amount of error information propagated to upper
layers needs to be tunable. While some upper layers can
benefit from having information on every ECC error
(corrected, or detected but not corrected) that the hard-
ware encounters, other upper layers might be interested
only in uncorrected errors. Similarly, an application
might not necessarily care about errors on all of its
memory regions. For example, as discussed in Section
6.5, if a higher-level library can correct memory faults
on a region of memory, it might not care about the
lower level of the stack returning errors for that region
of memory. Such a model should also allow software
architects to define the contract or expectations they
have from the lower layers of the stack.

How can such hints on criticality be generated? Does
the hardware need to provide low-level information to
the higher layers so that the critical hints can be gener-
ated? Once hints are generated and passed down, sev-
eral opportunities can exist.

Example 1. The built-in soft-error resilience (BISER)
technique (Zhang et al., 2006; Mitra et al., 2007) can be
configured, during system operation, to operate in one
of two modes: an error-resilient mode in which BISER
protection is turned on, and an economy mode in which
BISER protection is turned off. Such configurability
can be implemented in hardware and may be activated
through software orchestration. It can minimize the
system-level power cost of BISER by turning on the
error-resilient mode only for critical computation.
However, dynamic reliability management across multi-
ple abstraction layers and orchestration of information
flow across abstraction layers to utilize such configur-
ability during system operation are open research ques-
tions. For BISER, one can piggyback on existing
scannable signals available on-chip, but a general ques-
tion concerns the costs that are incurred for such config-
urability at the hardware level. Can such configurability
be implemented for arbitrary techniques (e.g. easy for
core/thread duplication)? Is it easy for inline checking
techniques such as parity prediction? What is the level
of configurability that should be supported?

Example 2. One can combine software-level error resili-
ence techniques with circuit-level techniques using a
‘temporal combination’ approach.

For a memory controller unit (MCU) in a multicore
system on a chip (SoC), for example, we can start with

158 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

request duplication with BISER flip-flops in economy
mode. We then switch the BISER flip-flops into error-
resilient mode (i.e. incurring high power costs) and turn
off request duplication when the systems stalls because
of pending requests (which indicate high-traffic situa-
tions). We switch back to request duplication with
BISER flip-flops switched to economy mode when all
queues have only a few entries (to indicate low-traffic
situations). Such ‘temporal combination’ simultaneously
incurs a very small performance cost (performance
impact similar to that of BISER-only and far better than
request-duplication-only) and a small energy cost (similar
to request-duplication-only and far better than BISER).

Example 3. Depending on workload, temperature sen-
sors, and so forth, the fault-sharing framework can pass
on the information to hardware to initiate fault man-
agement, for example online circuit failure prediction
through reactive online self-test and diagnostics. This
approach minimizes any side effects and can initiate
proactive self-repair.

7 Possible scenarios

We present in this section several possible scenarios for
handling failures at exascale, describe their pros and
cons, and discuss technologies needed to support each
scenario.

7.1 Base scenario

In the base scenario, errors are handled the same way
they are handled now: applications use global

checkpoint/restart, and system software is either
restarted upon failure or handles its own recovery. The
obvious advantage of this scenario is that it requires
(almost) no change in current application codes and
requires no changes in the overall infrastructure for
error recovery. (One required change will be more fre-
quent checkpoints; with high-frequency checkpoints, it
is unlikely that checkpoints will be identical to the out-
put that goes to long-term storage or to in situ
analysis.)

The performance of global checkpoint/restart
schemes has been analyzed by multiple authors (Young,
1974; Daly, 2006). We recapitulate the analysis in
Appendix A. This analysis enables us to compute an
optimal checkpoint interval, given checkpoint time and
MTTF; next we can compute the utilization of such sys-
tems, namely, the fraction of total computer time that is
usefully applied to computation, rather than used for
checkpointing and restart or wasted because of failures.

We plot in Figure 5 utilization as function of check-
point time and recovery time. Utilization depends on
the length of checkpoint and recovery relative to
MTTF; if all three parameters are increased or
decreased by the same ratio, then utilization is
unchanged. Therefore, we express checkpoint time and
recovery time as a fraction of MTTF. Figure 6 shows
the same data, in the form of a contour map.

Suppose we want to achieve a utilization of more
than 80%. Then Figure 6 indicates that we need to
keep checkpoint time at 1%–2% of MTTF and recov-
ery time at 2%–5% at MTTF. Assume that the MTTF
of an exascale system is 30 min. Then global checkpoint

0.02

0.04

0.06

0.08

0.10

Checkpoint time

0.02

0.04

0.06

0.08

0.10

Recovery
time

0.6

0.7

0.8

Utilization

Figure 5. System utilization as a function of checkpoint and recovery time.

Snir et al. 159

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

should be done in less than 20 s, and recovery in about
a minute. It does not seem feasible to checkpoint so
fast on disk, but it is feasible to checkpoint in a few sec-
onds in RAM. Several schemes have been proposed for
hybrid or multilevel checkpointing where frequent
checkpoints are done in memory or, less frequently, on
disk (Moody et al., 2010; Bautista-Gomez et al.,
2011b). One can use either nonvolatile RAM to store
checkpoints or volatile RAM with a RAID scheme that
allows recovery from the failure of one (or more)
nodes. (The first option may be constrained by the lim-
ited number of write cycles supported by various
NVRAM technologies.)

Such a scheme has an obvious cost: the need to sig-
nificantly increase the amount of memory by, say, 50%.
This will have a significant impact on the system acqui-
sition cost. Note, however, that the increase in power
consumption is negligible. This is obvious for NVRAM
but true also for DRAM, since checkpoint memory
would be in standby mode most of the time.

The two main obstacles to this approach are the need
to detect errors in a timely manner and the need for fast
recovery. We looked in Section 3 at soft errors due to
particle strikes and estimated that current technologies
could be used to keep their frequency at current levels
at a cost of \20% additional silicon and power.
However, these numbers involve considerable uncer-
tainty. Particle strikes are only one of multiple potential
new sources of errors, and the impact of near-threshold
logic was not taken into account. Furthermore, for rea-
sons explained in Section 3.5, there is no certainty that
the market will produce the low-energy, high-resilience
components that would be needed to avoid silent errors

in hardware at an acceptable price. If silent errors can
propagate into checkpoints, then checkpoints are not of
much use.

While the time for backward recovery from check-
point at the application level is essentially gated by I/O
rates, the time for forward recovery that reboots or
repairs various system software components is gated by
the computation overhead of boot or repair code. Boot
time of large systems may currently exceed 30 min;
without a change, the boot time of an exascale super-
computer could exceed its MTBF: not a sustainable sit-
uation. This last problem is common to all envisaged
scenarios for resilience. Therefore, advances that reduce
boot time and repair time for the system infrastructure
at exascale are essential. Also essential are advances
that reduce the likelihood of system failures, in particu-
lar software failures.

7.2 System software scenario

In the second scenario, hardware is assumed not to pro-
vide enough detection, and therefore SDC events occur
too frequently to be ignored. Instead, we assume that
data corruption can be prevented, detected, and cor-
rected or else tolerated with no change to the applica-
tion software.

Not all hardware errors have the same severity. A bit
flip in a large array of data may have little impact on
the final answer; a bit flip in a program counter or a
data pointer is likely to have a stranger, less predictable
impact; and a bit flip in a page table or a routing table
is likely to have a catastrophic impact. Luckily, the soft-
ware error detection schemes described in Section 5.4.1
are more likely to detect the ‘bad errors’: those that will
have a significant impact on the final answer or will
cause a crash. Furthermore, redundancy can be used in
order to reduce the probability of ‘bad errors’. Critical
computations can be executed twice (and the redun-
dancy can be introduced automatically by a compiler;
see Reis et al., 2005b; Yu et al., 2009); more reliable
memory may be used for more sensitive data, and so
forth.

A plausible hypothesis is that silent hardware errors
fall into two categories: ‘pleasant errors’ that can be
treated as aleatoric uncertainty in the computation and
‘nasty errors’ that, essentially, change the computation
model. The latter must be treated as epistemic errors
that cannot be modeled as statistical noise and have to
be avoided or corrected. Fortunately, ‘nasty errors’ are
likely to be less frequent than ‘pleasant errors’ in large
scientific codes and are easier to avoid or correct. If this
hypothesis is correct, then SDC events can be survived
with little to no change in application codes. This
hypothesis needs to be validated for all or a large frac-
tion of large scientific workloads.

The system scenario also covers schemes for using
local restart, thus reducing restart overhead, provided

Figure 6. System utilization as a function of checkpoint and
recovery time: contour map.

160 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

that the construction of node clusters (application con-
tainers) can be automated.

7.3 Application scenarios

Handling resilience without changes in application
codes may turn out to be too expensive. We envisage
two subcases: those in which the application code has
to handle only tolerance or detection and those in
which the application code also has to handle
correction.

We discussed fault-tolerant algorithms in Section
5.3, algorithmic fault detection in Section 5.4.2, and
algorithmic recovery in Section 5.6.4. The main issue
with these techniques is that they are specific to one or
to a family of algorithms. We need generic techniques
that will apply to all computations of interest for the
exascale era and efficient techniques that will apply to
the large majority of these computations.

Another issue is how to compose different
approaches to resilience. If one module can tolerate
silent bit flips, another module can detect them effi-
ciently and recover using checkpoints, and yet another
module needs redundant execution, how are these three
modules coupled in one application?

8 Suggested actions

We outline in this section actions that are suggested by
this workshop.

8.1 Information gathering

The different scenarios imply very different strategies
for achieving the required level of resilience, from possi-
bly significant investments in hardware that has little
use outside extreme-scale computing to possibly signifi-
cant investments in recoding existing applications. At
this time, we do not have enough information to choose
a direction; more information-gathering is essential. We
propose several activities for that purpose.

8.1.1 Characterization of sources of failures on current
systems. DOE has a rich source of information in the
form of the message logs that are collected at each of
the supercomputing centers at DOE labs.
Unfortunately, most of this data is not centrally col-
lected; also, different vendors use distinct terminolo-
gies, so that data cannot be directly compared. To the
best of our knowledge, there are no vendor restrictions
on the publication of data owned by the various cen-
ters. Initial discussions with vendors indicate a willing-
ness to help analyze the data.

We propose to establish, as soon as possible, a cen-
tralized repository within DOE that will systematically
collect event logs and other relevant information from

all DOE supercomputing centers. In parallel, we pro-
pose to invest in tools to normalize these logs into a
vendor-neutral notation and to anonymize them. DOE
would then make these cleansed logs available to the
broader research community.

We note that the paper of Schroeder and Gibson on
‘Understanding failures in petascale computers’
(Schroeder and Gibson, 2010) cites three repositories
for computer failure data. Two (at Los Alamos
National Laboratory and NERSC) do not seem to be
accessible on the web. The third, the Computer Failure
Data Repository (CFDR) at http://cfdr.usenix.org,
which is maintained by Bianca Schroeder, is easily
accessible. This situation suggests that a community
effort will be more productive than the individual
efforts of supercomputing centers.

Event logs provide failure symptoms but do not pro-
vide a root cause for each failure. Root cause analysis is
now a tedious manual process that engages much of the
time of the staff at supercomputing centers. We propose
two efforts on root cause analysis:

1. Develop a registration system that will facilitate
recording the results of the manual root cause anal-
ysis. The goal is to annotate event logs with the
results of such analyses.

2. Develop better tools for root cause analysis.
Existing software products, such as SMARTS of
EMC (EMC, 2014), could be a good start for such
development.

8.1.2 Study of frequency of silent errors. Currently there
exists a large uncertainty about the frequency of SDC
events. On the one hand, the practice of supercomputer
users is to assume such events do not occur. On the
other hand, anecdotal evidence on the nonreproducibil-
ity of computations that are supposed to be bit-
reproducible suggests they do occur, and occur quite
frequently.

We propose to push a study on the frequency of
SDC events on current supercomputers. Such a study
could be effected by running a background job on as
many nodes as possible on various supercomputers.
The job would produce bit-reproducible, testable results
and be used to detect SDCs.

8.1.3 Refinement of estimates on future hardware
technologies. The main uncertainty about future road-
blocks to resilience concerns the frequency of hardware
SDC events. Our analysis showed that cosmic-radia-
tion-induced SDCs could be managed at a cost of less
than 20% in circuitry and in power consumption, using
current methods. More research in this area could fur-
ther reduce the gap. However, the study ignored other
issues (subthreshold logic, aging). In any case, the main
uncertainty about future hardware technologies is less

Snir et al. 161

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

about what can be done and more about what will be
done by industry, given market forces. It will be useful
to complement technological studies with economic
studies, based on the evolution of different markets
(high-end server, cloud, mobile). The key question to
be addressed is the following: what is the market size
for processors that have low power, high resilience, and
high floating-point performance?

8.2 Research areas

We divide research directions into three categories.

Necessary technologies: Technologies that will be neces-
sary for resilience at extreme scale, no matter what sce-
nario ends up being pursued.
Generally useful technologies: Technologies that will be
useful no matter what scenario ends up taking effect.
Scenario-specific technologies: Technologies that will
come into play only under a subset of the scenarios.

DOE investments in R&D should focus on the road-
blocks we know will certainly exist, and less so on
roadblocks that are still hypothetical. On the other
hand, one may justify investments in scenario-specific
technologies as a risk-reduction action, if the technol-
ogy is necessary under some plausible scenario and the
time lag from research to deployment is expected to be
significant.

8.2.1 Necessary technologies. In any scenario, it will be
essential to reduce the frequency of system failures,
contain them, and reduce recovery time from system
failures. Some of the problems may have simple engi-
neering solutions, for example, fast boot from NVM.
Solutions to other problems may require new structures
and mechanisms for global system services. Some of the
current research on error containment that is now
focused on application errors could be fruitfully applied
to system errors. Faster recovery from file system fail-
ures will be important.

Another critical technology is the communication
infrastructure that enables recovery actions at different
levels of the system. This infrastructure will need to be
as resilient as the current out-of-band networks that
collect hardware-monitoring information and channel
it to the hardware-monitoring console. But the infra-
structure also will need to handle software failures and
avoid the sequential bottleneck of one global monitor-
ing point.

8.2.2 Generally useful technologies. Some technologies are
useful no matter what scenario takes effect. One exam-
ple is fault prediction and avoidance: predicting node
failures and migrating a node workload before the node
fails. Successful fault prediction and avoidance

effectively increase the system MTBF, thus increasing
the system utilization.

Another example is provided by technologies for
fault containment. Avoiding a global restart can reduce
the time and energy consumed by restarts, thus improv-
ing system performance.

8.2.3 Scenario-specific technologies. Scenario-specific tech-
nologies include all the technologies that will be
required if SDCs become a major problem: technolo-
gies for system software error detection, containment,
and correction, and technologies for application-level
error tolerance, detection, containment, and correction.

Arguably, the choice between handling errors in
hardware or in firmware is a vendor choice. Vendors
will choose one or the other, or a mix of the two,
according to the relative non-recurring and recurring
costs of the two approaches. Research in DOE can help
in exploring firmware-level resilience solutions. We rec-
ommend a co-design collaboration between DOE
research and vendors in exploring the right mix of
hardware and system software approaches that would
provide the appearance of a failure-free system to the
application layer.

Application-level error-handling is a much more sig-
nificant departure from current practice, one that
should be entertained only if the other options are not
feasible or have a significant cost. Application-level
error correction will require new services from the
underlying hardware and software, for example the
ability to provide differentiated resilience quality for
computations or storage, fault-tolerance at the level of
MPI and other global libraries, and mechanisms for
signaling errors to application code. Since these are
needed for research in application-level error-handling,
their development should be a priority.

A main focus on application-level error-handling
should be on generic techniques that apply to all appli-
cations or large classes of applications. These are
needed in order to avoid having to develop a unique
solution for each application code. If different tech-
niques are used for different codes, then one will need
methods for composing these techniques.

We note that application-level tolerance or detection
of SDCs is more important than application-level cor-
rection, since global/checkpoint restart is still viable at
exascale, provided one can ignore or detect errors.

8.3 Integration

Much of the current research on resilience is addressing
small sections of the problem, for example how to tol-
erate or detect SDC errors for a particular algorithm.
Point solutions are useful only if they fit in an overall
resilience architecture. For example, algorithm error-
handling may assume that some system services

162 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

continue to be available after an error has occurred
and may be able to handle some errors (a bit flip in
data) while ignoring other errors (a bit flip in a poin-
ter). These assumptions and limitations must be made
explicit in order to ensure that error modes ignored by
the point solution are either sufficiently rare or handled
by another point solution.

We need to develop a resilience architecture that spe-
cifies (1) which errors are assumed to occur and which
errors are assumed to be so rare as to be ignored and
(2) what the division of labor is between the various
layers of the system in handling frequent errors.

As long as we have not converged to one scenario,
we will have multiple resilience architectures. But each
of them must be brought to a reasonable level of com-
pleteness in order to make sure the different approaches
are comprehensive.

Acknowledgements

We thank the U.S. Department of Energy for its financial
support of ICiS; the ICiS director and steering committee for
the support provided to our workshop; and, in particular,
Cheryl Zidel for her outstanding administrative support
before, during, and after the workshop. We also thank Gail

Pieper for her thorough editing of this report, and Lucy
Novell and Daniel Katz for useful comments.

Funding

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
(contract DE-AC02-06CH11357).

References

Agostinelli M, Pae S, Yang W, et al. (2005) Random charge

effects for PMOS NBTI in ultra-small gate area devices.

In: Proceedings of the 2005 IEEE international reliability

physics symposium (IRPS), pp. 529–532.
Ahn DH, Supinski BRD, Laguna I, et al. (2009) Scalable

temporal order analysis for large scale debugging. In:

International conference for high-performance computing,

networking, storage and analysis (SC).
Austin TM (1999) DIVA: A reliable substrate for deep sub-

micron microarchitecture design. In: Proceedings of the

annual international symposium on microarchitecture

(MICRO), pp. 196–207.
Avizienis A (1973) Arithmetic algorithms for error-coded

operands. IEEE Transactions on Computers C-22(6):

567–572.
Avižienis A, Laprie J, Randell B, et al. (2004) Basic concepts

and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing 1(1):

11–33.
Avritzer A, Bondi A, Grottke M, et al. (2006) Performance

assurance via software rejuvenation: Monitoring, statistics

and algorithms. In: Proceedings of the IEEE/IFIP interna-

tional conference on dependable systems and networks

(DSN), pp. 435–444.

Bailey FR, Bell G, Blondin J, et al. (2007) Petascale metrics

panel report. Available at: http://research.microsoft.com/

en-us/um/people/gbell/supers/ascac_petascale_metrics_panel_

report_and_executive_summary_2007-02-12.pdf (accessed 25

February 2014)
Ballesteros FJ, Evans N, Forsyth C, et al. (2012) Nix: A case

for a manycore system for cloud computing. Bell Labs

Technical Journal 17(2): 41–54.
Banerjee P and Abraham J (1986) Bounds on algorithm-based

fault tolerance in multiple processor systems. IEEE Trans-

actions on Computers C-35(4): 296–306.
Banerjee P, Rahmeh J, Stunkel C, et al. (1990) Algorithm-

based fault tolerance on a hypercube multiprocessor. IEEE

Transactions on Computers 39(9): 1132–1145.
Bautista-Gomez LA, Tsuboi S, Komatitsch D, et al. (2011a)

FTI: High performance fault tolerance interface for hybrid

systems. In: International conference for high-performance

computing, networking, storage and analysis (SC).
Bautista-Gomez L, Komatitsch D, Maruyama N, et al.

(2011b) FTI: High performance fault tolerance interface

for hybrid systems. In: International conference for high-

performance computing, networking, storage and analysis

(SC).
Birge J and Louveaux F (1997) Introduction to Stochastic Pro-

gramming. Berlin: Springer Verlag.
Bland W, Bouteiller A, Herault T, et al. (2012) An evaluation

of user-level failure mitigation support in MPI. In: Träff J,

Benkner S and Dongarra J (eds) Recent Advances in the

Message Passing Interface. New York, NY: Springer, pp.

193–203.
Borkar S (2005) Designing reliable systems from unreliable

components: The challenges of transistor variability and

degradation. IEEE Micro 25(6): 10–16.
Bosilca G, Delmas R, Dongarra J, et al. (2009) Algorithm-

based fault tolerance applied to high performance comput-

ing. Journal of Parallel and Distributed Computing 69(4):

410–416.
Bouteiller A, Herault T, Bosilca G, et al. (2011) Correlated set

coordination in fault tolerant message logging protocols.

In: Euro-Par 2011: Parallel Processing Workshops (eds E

Jeannot, R Namyst and R Jean), 29 August– 2 September

2011, France, pp. 51–64. New York, NY: Springer.
Bouteiller A, Herault T, Krawezik G, et al. (2006) MPICH-V

project: A multiprotocol automatic fault-tolerant MPI.

International Journal of High Performance Computing

Applications 20(3): 319–333.
Bower F, Sorin D and Ozev S (2007) Online diagnosis of hard

faults in microprocessors. ACM Transactions on Architec-

ture and Code Optimization 4(2).
Bronevetsky G, Laguna I, Bagchi S, et al. (2010) Auto-

maDeD: Automata-based debugging for dissimilar paral-

lel tasks. In: Proceedings of the IEEE/IFIP international

conference on dependable systems and networks (DSN),

pp. 231–240.
Cai K and Qin Z, Memory Device with Soft-Decision Decod-

ing. US Patent 20130107611 A1, May 2, 2013.
Cappello F, Geist A, Gropp B, et al. (2009) Toward exascale

resilience. International Journal of High Performance Com-

puting Applications 23(4): 374–388.
Cappello F, Guermouche A and Snir M (2010) On communi-

cation determinism in parallel HPC applications.

Snir et al. 163

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

In: Proceedings of the 19th international conference on com-

puter communications and networks (ICCCN), pp. 1–8.
Carulli J and Anderson T (2005) Test connections-tying appli-

cation to process. In: IEEE Workshop on Silicon Errors in

Logic–System Effects, Stanford University, CA.
Castelli V, Harper RE, Heidelberger P, et al. (2001) Proactive

management of software aging. IBM Journal of Research

and Development 45(2): 311–332.
Chan JTY, Tseng CW, Chu YC, et al. (1998) Experimental

results for IDDQ and VLV testing. In: Proceedings of the

IEEE VLSI test symposium, pp. 118–125.
Chen D, Eisley NA, Heidelberger P, et al. (2011) The IBM

Blue Gene/Q interconnection network and message unit.

In: International conference for high-performance comput-

ing, networking, storage and analysis (SC).
Chen Z and Dongarra J (2006) Algorithm-based

checkpoint-free fault tolerance for parallel matrix com-

putations on volatile resources. In: Proceedings of the

20th international parallel and distributed processing sym-

posium (IPDPS).
Chow P (2007) Stochastic Partial Differential Equations. Boca

Raton/ London/ New York: Chapman & Hall/CRC.
Chung J, Lee I, Sullivan M, et al. (2012) Containment

domains: A scalable, efficient, and flexible resilience

scheme for exascale systems. In: International conference

for high-performance computing, networking, storage and

analysis (SC).
Conn AR, Gould NI and Toint PL (1987) Trust-Region Meth-

ods. Philadelphia, PA: Society for Industrial and Applied

Mathematics.
Daly J, Adolf B, Borkar S, et al. (2012) Inter agency work-

shop on HPC resilience at extreme scale. Available at:

http://institutes.lanl.gov/resilience/docs/Inter-AgencyResi-

lienceReport.pdf (accessed 25 February 2014).
Daly JT (2006) A higher order estimate of the optimum

checkpoint interval for restart dumps. Future Generation

Computer Systems 22(3): 303–312.
Dean J and Ghemawat S (2008) MapReduce: Simplified data

processing on large clusters. Communications of the ACM

51(1): 107–113.
DeBardeleben N, Laros J, Daly J, et al. (2010b) High-end

computing resilience: Analysis of issues facing the HEC

community and path-forward for research and develop-

ment. Technical Report LA-UR-10-00030, DARPA, VA.

available at http://www.csm.ornl.gov/;engelman/publica-

tions/debardeleben09high-end 2/25/14
DeHon A, Carter N and Quinn H (eds) (2011) Final report

for CCC cross-layer reliability visioning study. 3 March

Available at: http://xlayer.org/FinalReport (accessed 25

February 2014).
Dimitrov M and Zhou H (2007) Unified architectural support

for soft-error protection or software bug detection. In:

Proceedings of the conference on parallel architecture and

compilation techniques, pp. 73–82.
Dixit A, Heald R and Wood A (2009) Trends from ten years

of soft error experimentation. In: The workshop on silicon

Available at: http://softerrors.info/selse/images/selse_2009/

Papers/selse5_submission_29.pdf (acessed 25 February

2014).
Dongarra J, Beckman P, Moore T, et al. The international

exascale software project roadmap International Journal

of High Performance Computing Applications, 25(1), 3–

60, 2011.
Downing R, Nowak J and Tuomenoksa L (1964) No. 1 ESS

maintenance plan. Bell System Technical Journal 43(5):

1961–2019.
Du P, Bouteiller A, Bosilca G, et al. (2012) Algorithm-based

fault tolerance for dense matrix factorizations. In: Proceed-

ings of the 17th ACM SIGPLAN symposium on principles

and practice of parallel programming, New York, NY, pp.

225–234.
Elnozahy ENM, Alvisi L, Wang YM, et al. (2002) A survey

of rollback-recovery protocols in message-passing systems.

ACM Computing Surveys 34(3): 375–408.
Elnozahy (editor) System Resilience at Extreme Scale White

Paper available at http://citeseerx.ist.psu.edu/viewdoc/

download?rep=rep1&type=pdf&doi=10.1.1.205.4240acc

essed 2/25/14
EMC (2014) Smarts: Automated IT management enabling ser-

vice assurance. Available at: http://www.emc.com/it-man-

agement/smarts/index.htm (accessed 25 February 2014).
Ernst MD, Perkins JH, Guo PJ, et al. (2007) The Daikon sys-

tem for dynamic detection of likely invariants. Science of

Computer Programming 69(1): 35–45.
Fadden S (2012) An introduction to GPFS version 3.5. Avail-

able at: www-03.ibm.com/systems/jo/resources/introduc-

tion-to-gpfs-3-5.pdf (accessed 25 February 2014).
Fagg G and Dongarra J (2000) FT-MPI: Fault tolerant MPI,

supporting dynamic applications in a dynamic world. In:

Dongarra J, et al. (eds) Recent Advances in Parallel Virtual

Machine and Message Passing Interface (Lecture Notes in

Computer Science, vol. 1908). Berlin/Heidelberg: Springer,

pp. 346–353.
Feng S, Gupta S, Ansari A, et al. (2010) Shoestring: Probabil-

istic soft error reliability on the cheap. In: Proceedings of

the international conference on architectural support for pro-

gramming languages and operating systems (ASPLOS),

pp. 385–396.
Ferreira KB, Stearley J, Laros JH III, et al. (2011) Evaluating

the viability of process replication reliability for exascale

systems. In: International conference for high-performance

computing, networking, storage and analysis (SC).
Fletcher R (1981) Practical Methods of Optimization. Volume

2: Constrained Optimization. New York, NY: John Wiley

& Sons.
Fujita H, Schreiber R and Chien AA (2013) It’s time for new

programming models for unreliable hardware. In: Proceedings

of the international conference on architectural support for pro-

gramming languages and operating systems (ASPLOS).
Gainaru A, Cappello F and Kramer W (2012a) Taming of

the shrew: Modeling the normal and faulty behavior of

large-scale HPC systems. In: Proceedings of the IEEE

international parallel & distributed processing symposium

(IPDPS).
Gainaru A, Cappello F, Fullop J, et al. (2011a) Adaptive

event prediction strategy with dynamic time window for

large-scale HPC systems. In: Proceedings of managing

large-scale systems via the analysis of system logs and the

application of machine learning techniques (SLAM’11), pp.

4:1–4:8.
Gainaru A, Cappello F, Snir M, et al. (2012b) Fault predic-

tion under the microscope: A closer look into HPC

164 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

systems. In: International conference for high-performance

computing, networking, storage and analysis (SC).
Gainaru A, Cappello F, Trausan-Matu S, et al. (2011b)

Event log mining tool for large scale HPC systems. In:

Euro-Par 2011: Parallel Processing Workshops. New

York M Alexander, P D’Ambra, A Belloum, et al. (eds),

NY: Springer.
Gao B, Zhang H, Chen B, et al. (2011) Modeling of reten-

tion failure behavior in bipolar oxide-based resistive

switching memory. IEEE Electron Device Letters 32(3):

276–278.
Gao Q, Qin F and Panda DK (2007) DMTracker: Finding

bugs in large-scale parallel programs by detecting anomaly

in data movements. In: International conference for high-

performance computing, networking, storage and analysis

(SC).
Gao Q, Zhang W and Qin F (2010) FlowChecker: Detecting

bugs in MPI libraries via message flow checking. In: Inter-

national conference for high-performance computing, net-

working, storage and analysis (SC).
Gattiker A, Nigh P, Grosch D, et al. (1996) Current signa-

tures for production testing [CMOS ICs]. In: IEEE inter-

national workshop on IDDQ testing, pp. 25–28.
Geist A, Lucas B, Snir M, et al. (2012) U.S. Department of

Energy fault management workshop. Technical report,

U.S. Department of Energy, DC.
Gill B, Seifert N and Zia V (2009) Comparison of alpha-

particle and neutron-induced combinational and sequen-

tial logic error rates at the 32nm technology node. In:

IEEE international reliability physics symposium, pp.

199–205.
Goloubeva O, Rebaudengo M, Reorda MS, et al. (2003)

Soft-error detection using control flow assertions. In: Pro-

ceedings of the international symposium on defect and fault

tolerance in VLSI systems, pp. 581–588.
Griewank A and Corliss G (1991) Automatic Differentiation

of Algorithms: Theory, Implementation, and Application.

Philadelphia, PA: Society for Industrial and Applied

Mathematics.
Grottke M and Trivedi KS (2007) Fighting bugs: Remove,

retry, replicate, and rejuvenate. IEEE Computer 40(2):

107–109.
Guermouche A, Ropars T, Brunet E, et al. (2011)

Uncoordinated checkpointing without domino effect for

send-deterministic MPI applications. In: IEEE interna-

tional parallel & distributed processing symposium

(IPDPS), pp. 989–1000.
Guermouche A, Ropars T, Snir M, et al. (2012) HydEE: Fail-

ure containment without event logging for large scale

send-deterministic MPI applications. In: IEEE interna-

tional parallel & distributed processing symposium

(IPDPS), pp. 1216–1227.
Gunnels J, Katz D, Quintana-Orti E, et al. (2001) Fault-toler-

ant high-performance matrix multiplication: Theory and

practice. In: Proceedings of the international conference on

dependable systems and networks (DSN), pp. 47–56.
Hackbusch W (1985) Multi-Grid Methods and Applications.

Berlin: Springer-Verlag.
Hafner JL, Deenadhayalan V, Belluomini W, et al. (2008)

Undetected disk errors in RAID arrays. IBM Journal of

Research and Development 52(4.5): 413–425.

Hamming R (1987) Numerical Methods for Scientists and

Engineers. New York: Dover Publications.
Hangal S and Lam MS (2002) Tracking down software bugs

using automatic anomaly detection. In: Proceedings of the

2002 international conference on software engineering.
Hao H and McCluskey E (1993) Very-low-voltage testing for

weak CMOS logic ICs. In: Proceedings of the IEEE inter-

national test conference (ITC), pp. 275–284.
Hari SKS, Adve SV and Naeimi H (2012a) Low-cost

program-level detectors for reducing silent data corrup-

tions. In: Proceedings of the IEEE/IFIP international con-

ference on dependable systems and networks (DSN).

Hari SKS, Adve SV, Naeimi H, et al. (2012b) Relyzer:

Exploiting application-level fault equivalence to analyze

application resiliency to transient faults. In: Proceedings

of the international conference on architectural support

for programming languages and operating systems

(ASPLOS).
Hari SKS, Li ML, Ramachandran P, et al. (2009) mSWAT:

Low-cost hardware fault detection and diagnosis for mul-

ticore systems. In: Proceedings of the annual international

symposium on microarchitecture (MICRO), pp. 122–132.
Hazucha P, Karnik T, Bloechel SWB, et al. (2003) Measure-

ments and analysis of SER tolerant latch in a 90 nm

dual-Vt CMOS process. In: IEEE custom integrated

circuits conference, pp. 617–620.
Hedges R, Loewe B, McLarty T, et al. (2005) Parallel file sys-

tem testing for the lunatic fringe: The care and feeding of

restless I/O power users. In: Proceedings of the 22nd IEEE/

13th NASA Goddard conference on mass storage systems

and technologies, pp. 3–17.
Heien E, Kondo D, Gainaru A, et al. (2011) Modeling and

tolerating heterogeneous failures in large parallel systems.

In: International conference for high-performance comput-

ing, networking, storage and analysis (SC).
Heiser G, Ryzhyk L, Von Tessin M, et al. (2011) What if you

could actually trust your kernel. In: 13th workshop on hot

topics in operating systems (HotOS).
Hess WN, Patterson HW, Wallace R, et al. (1959) Cosmic-ray

neutron energy spectrum. Physical Review 116(2): 445.
Hogan S, Hammond J and Chien AA (2012) An evaluation

of difference and threshold techniques for efficient check-

pointing. In: 2nd workshop on fault-tolerance for HPC at

extreme scale (FTXS 2012).
Huang KH and Abraham J (1984) Algorithm-based fault tol-

erance for matrix operations. IEEE Transactions on Com-

puters C-33(6): 518–528.
Hunter R (1975) Engine failure prediction techniques. Aircraft

Engineering and Aerospace Technology 47(3): 4–14.
Hwang AA, Stefanovici IA and Schroeder B (2012) Cosmic

rays don’t strike twice: Understanding the nature of

DRAM errors and the implications for system design. In:

Proceedings of the international conference on architectural

support for programming languages and operating systems

(ASPLOS), pp. 111–122.
Ibe E, Taniguchi H, Yahagi Y, et al. (2010) Impact of scaling

on neutron-induced soft error in SRAMs from a 250 nm

to a 22 nm design rule. IEEE Transactions on Electron

Devices 57(7): 1527–1538.
Katz D and Some R (2003) NASA advances robotic space

exploration. Computer 36(1): 52–61.

Snir et al. 165

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Katz DS, Daly J, DeBardeleben N, et al. (2009) 2009 fault tol-

erance for extreme-scale computing workshop. Technical

report ANL/MCS-TM-312, Argonne National Labora-

tory, IL.
Kerbyson D, Rajamony R and Van Hensbergen E (2012) Per-

formance health monitoring for large-scale systems. In:

Second international workshop on high-performance infra-

structure for scalable tools.
Kubota K and Iri M (1992) Estimates of rounding errors with

fast automatic differentiation and interval analysis. Journal

of Information Processing 14(3): 508–515.
Kundu S, Mak T and Galivanche R (2004) Trends in manufac-

turing test methods and their implications. In: Proceedings

of the international test conference (ITC), pp. 679–687.
Laguna I, Ahn DH, de Supinski BR, et al. (2012) Probabilis-

tic diagnosis of performance faults in large-scale parallel

applications. In: Proceedings of the 21st international con-

ference on parallel architectures and compilation techniques,

pp. 213–222.
Laguna I, Gamblin T, de Supinski BR, et al. (2011) Large

scale debugging of parallel tasks with AutomaDeD. In:

International conference for high-performance computing,

networking, storage and analysis (SC).
Lange J, Pedretti K, Hudson T, et al. (2010) Palacios and kit-

ten: New high performance operating systems for scalable

virtualized and native supercomputing. In: IEEE interna-

tional symposium on parallel & distributed processing

(IPDPS), pp. 1–12.
Lee GL, Ahn DH, Arnold DC, et al. (2007) Benchmarking

the stack trace analysis tool for Blue Gene/L. In: Interna-

tional conference on parallel computing: Architectures, algo-

rithms and applications (ParCo).
Lee GL, Ahn DH, Arnold DC, et al. (2008) Lessons learned

at 208K: Towards debugging millions of cores. In: Interna-

tional conference for high-performance computing, network-

ing, storage and analysis (SC).
Li ML, Ramachandran P, Sahoo S, et al. (2008a) Trace-based

microarchitecture-level diagnosis of permanent hardware

faults. In: Proceedings of the IEEE/IFIP international con-

ference on dependable systems and networks (DSN).
Li ML, Ramachandran P, Sahoo S, et al. (2008b) Under-

standing the propagation of hard errors to software and

implications for resilient systems design. In: Proceedings of

the international conference on architectural support for

programming languages and operating systems (ASPLOS),

pp. 265–276.
Lindekugel K, DiGirolamo A and Stanzione D (2008) Archi-

tecture for an offline parallel debugger. In: International

symposium on parallel and distributed processing with appli-

cations (ISPA’08), pp. 227–235.
Linderoth J and Wright S (2003) Decomposition algorithms

for stochastic programming on a computational grid.

Computational Optimization and Applications 24(2):

207–250.
Lo JC (1994) Reliable floating-point arithmetic algorithms for

error-coded operands. IEEE Transactions on Computers

43(4): 400–412.
Lo J, Thanawastien S and Rao T (1989) Concurrent error

detection in arithmetic and logical operations using Berger

codes. In: Proceedings of 9th symposium on computer arith-

metic, pp. 233–240.

Los Alamos National Lab (2006) Operational data to support

and enable computer science research. Available at: http://

institutes.lanl.gov/data/fdata/ (accessed 25 February 2014).
Lourencxo J and Cunha J (2001) Fiddle: A flexible distributed

debugger architecture. In: International conference on com-

putational science (ICCS), pp. 821–830.
Lu G, Zheng Z and Chien AA (2013) When are multiple

checkpoints needed? In:3rd workshop on fault-tolerance for

HPC at extreme scale (FTXS 2013).
Lunardini D, Narasimham B, Ramachandran V, et al. (2004)

A performance comparison between hardened-by-design

and conventional-design standard cells. In: 2004 workshop

on radiation effects on components and systems, radiation

hardening techniques and new developments.

Lyle G, Cheny S, Pattabiraman K, et al. (2009) An end-to-

end approach for the automatic derivation of application-

aware error detectors. In: Proceedings of the IEEE/IFIP

international conference on dependable systems and net-

works (DSN), pp. 584–589.
Maxwell P, O’Neill P, Aitken R, et al. (2000) Current ratios:

A self-scaling technique for production IDDQ testing. In:

Proceedings of the international test conference (ITC), pp.

1148–1156.
Meixner A, Bauer ME and Sorin DJ (2007) Argus: Low-cost,

comprehensive error detection in simple cores. In: Proceed-

ings of the annual international symposium on microarchitec-

ture (MICRO), pp. 210–222.

Mirgorodskiy AV, Maruyama N and Miller BP (2006) Prob-

lem diagnosis in large-scale computing environments. In:

International conference for high-performance computing,

networking, storage and analysis (SC).
Mitchell R (1977) The Underground Grammarian, Vol., No.

1, January. Available at http://www.sourcetext.com/gram-

marian/ (accessed 25 February 2014).
Mitra S, Zhang M, Seifert N, et al. (2007) Built-in soft error

resilience for robust system design. In: IEEE international

conference on integrated circuit design and technology.
Mokhtarani A, Kramer W and Hick J (2008) Reliability

results of NERSC systems. https://publications.lbl.gov/

islandora/object/ir%3A150330 (accessed 25 February

2014).
Moody A, Bronevetsky G, Mohror K, et al. (2010) Design,

modeling, and evaluation of a scalable multi-level

checkpointing system. In: International conference for

high-performance computing, networking, storage and

analysis (SC).
Moré JJ and Wild SM (2012) Estimating derivatives of noisy

simulations. ACM Transactions of Mathematical Software

38(3): 19: 1–19: 21.
MPIPlugIn (2013) MPI plugin for KDevelop. Available at:

http://sourceforge.net/projects/mpiplugin/ (accessed 25 Feb-

ruary 2014).
Nakano J, Montesinos P, Gharachorloo K, et al. (2006)

ReVive I/O: Efficient handling of I/O in highly-available

rollback-recovery servers. In: Proceedings of the interna-

tional symposium on high performance computer architec-

ture (HPCA).
Naksinehaboon N, Taerat N, Leangsuksun C, et al. (2010)

Benefits of software rejuvenation on HPC systems. In:

International symposium on parallel and distributed process-

ing with applications (ISPA), pp. 499–506.

166 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Nassif S, Kleeberger V and Schlichtmann U (2012) Goldilocks

failures: Not too soft, not too hard. In: 2012 IEEE interna-

tional reliability physics symposium (IRPS), pp. 2F–1.
NCAR (2014) Community earth system model. Available at:

http://www2.cesm.ucar.edu/ (accessed 25 February 2014).
Network Working Group (2009) The syslog protocol. Avail-

able at: http://tools.ietf.org/html/rfc5424 (accessed 25

February 2014).
Nigh P and Gattiker A (2000) Test method evaluation experi-

ments and data. In: Proceedings of the international test

conference (ITC), pp. 454–463.
Oh J, Washington SP and Nam D (2006) Accident prediction

model for railway-highway interfaces. Accident Analysis

and Prevention 38(2): 346–356.
Oliner A and Stearley J (2007) What supercomputers say: A

study of five system logs. In: Proceedings of the IEEE/IFIP

international conference on dependable systems and net-

works (DSN), pp. 575–584.
Park Y, Van Hensbergen E, Hillenbrand M, et al. (2012)

FusedOS: Fusing LWK performance with FWK function-

ality in a heterogeneous environment. In: 24th international

symposium on computer architecture and high performance

computing (SBAC-PAD), pp. 211–218.
Pattabiraman K, Nakka N, Kalbarczyk Z, et al. (2008)

SymPLFIED: Symbolic program-level fault injection and

error detection framework. In: Proceedings of the IEEE/

IFIP international conference on dependable systems and

networks (DSN).
Pattabiraman K, Saggese GP, Chen D, et al. (2006) Dynamic

derivation of application-specific error detectors and their

implementation in hardware. In: European dependable

computing conference, pp. 97–108.
Prvulovic M, Zhang Z and Torrellas J (2002) ReVive: Cost-

effective architectural support for rollback recovery in

shared-memo multiprocessors. In: Proceedings of the

annual international symposium on computer architecture

(ISCA).
Racunas P, Constantinides K, Manne S, et al. (2007) Pertur-

bation-based fault screening. In: Proceedings of the inter-

national symposium on high performance computer

architecture (HPCA), pp. 169–180.
Ramachandran P (2011) Detecting and recovering from in-

core hardware faults through software anomaly treatment.

PhD Thesis, University of Illinois at Urbana Champaign,

IL.
Randall A V (2006) The Eckert tapes: Computer pioneer says

ENIAC team couldn’t afford to fail – and didn’t. Compu-

terworld 40(8): 18
Rao TRN (1974) Error Coding for Arithmetic Processors.

Orlando, FL: Academic Press, Inc.
Reddy V, Krishnan A, Marshall A, et al. (2005) Impact of

negative bias temperature instability on digital circuit relia-

bility. Microelectronics Reliability 45(1): 31–38.
Reis G, Chang J, Vachharajani N, et al. (2005a) Software-

controlled fault tolerance. ACM Transactions on Architec-

ture and Code Optimization 2(4): 366–396.
Reis GA, Chang J, Vachharajani N, et al. (2005b) SWIFT:

Software implemented fault tolerance. In: Proceedings of

the international symposium on code generation and optimi-

zation, pp. 243–254.

Rogue Wave Software (2013) TotalView Debugger. Avail-

able at: http://www.roguewave.com/products/totalvie-

w.aspx (accessed 25 February 2014).
Ropars T, Guermouche A, Ucxar B, et al. (2011) On the use of

cluster-based partial message logging to improve fault tol-

erance for MPI HPC applications. Euro-Par 2011: Parallel

Processing Workshops. In: 17th International Euro-

ParConference (eds J Emmanuel, N Raymond and R

Jean), Bordeaux, France, 29 August– 2 September 2011,

pp. 567–578. New York, NY: Springer.

Roth PC, Arnold DC and Miller BP (2003) MRNet: A

software-based multicast/reduction network for scalable

tools. In: International conference for high-performance

computing, networking, storage and analysis (SC).
Roy-Chowdhury A, Bellas N and Banerjee P (1996) Algo-

rithm-based error-detection schemes for iterative solution

of partial differential equations. IEEE Transactions on

Computers 45(4): 394–407.
Sahoo S, Li ML, Ramchandran P, et al. (2008) Using likely

program invariants to detect hardware errors. In: Proceed-

ings of the IEEE/IFIP international conference on depend-

able systems and networks (DSN), pp. 70–79.
Salfner F, Lenk M and Malek M (2010) A survey of online

failure prediction methods. ACM Computing Surveys 42:

1–42.
Saxena N and McCluskey E (2002) Dependable adaptive

computing systems – the ROAR project. In: IEEE interna-

tional conference on systems, man, and cybernetics, pp.

2172–2177.
Schroeder B and Gibson GA (2007) Disk failures in the real

world: What does an MTTF of 1,000,000 hours mean to

you. In: Proceedings of the 5th USENIX conference on file

and storage technologies (FAST), pp. 1–16.
Schroeder B and Gibson GA (2010) A large-scale study of

failures in high-performance computing systems. IEEE

Transactions on Dependable and Secure Computing 7(4):

337–350.
Schroeder B, Pinheiro E and Weber WD (2009) DRAM

errors in the wild: A large-scale field study. In: Proceedings

of the eleventh international joint conference on measure-

ment and modeling of computer systems, pp. 193–204.
Seltborg P, Polanski A, Petrochenkov S, et al. (2005) Radia-

tion shielding of high-energy neutrons in SAD. Nuclear

Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated

Equipment 550(1): 313–328.
Shipman G, Dillow D, Oral S, et al. (2010) Lessons learned in

deploying the world’s largest scale Lustre file system. In:

The 52nd Cray user group conference.
Slayman C (2011) Soft error trends and mitigation techniques

in memory devices. In: Proceedings of the annual reliability

and maintainability symposium (RAMS), pp. 1–5.
Slegel TJ, Averill RM III, Check MA, et al. (1999) IBM’s S/

390 G5 microprocessor design. IEEE Micro 19(2): 12–23.
Snir M and Bader DA (2004) A framework for measuring

supercomputer productivity. International Journal for High

Performance Computing Applications 18(4): 417–432.
Sorin D, Martin MMK, Hill MD, et al. (2002) SafetyNet:

Improving the availability of shared memory multiproces-

sors with global checkpoint/recovery. In: Proceedings of

Snir et al. 167

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

the annual international symposium on computer architec-

ture (ISCA).
Spainhower L and Gregg T (1999) IBM S/390 parallel enter-

prise server G5 fault tolerance: A historical perspective.

IBM Journal of Research and Development 43(5.6):

863–873.
Sridharan V and Liberty D (2012) A study of DRAM failures in

the field. In: International conference for high-performance

computing, networking, storage and analysis (SC).
Stearley J (2005) Defining and measuring supercomputer

reliability, availability, and serviceability (RAS). In: Pro-

ceedings of the Linux clusters institute conference.
Taleb N (2010) The Black Swan: The Impact of the Highly

Improbable. New York: Random House Trade Paperbacks.
Trottenberg U, Oosterlee C and Schüller A (2001) Multigrid.

New York, NY: Academic Press.
Turmon M, Granat R and Katz D (2000) Software-imple-

mented fault detection for high-performance space appli-

cations. In: Proceedings of the IEEE/IFIP international

conference on dependable systems and networks (DSN),

pp. 107–116.

Turmon M, Granat R, Katz D, et al. (2003) Tests and toler-

ances for high-performance software-implemented fault

detection. IEEE Transactions on Computers 52(5): 579–591.
Van Horn J (2005) Towards achieving relentless reliability

gains in a server marketplace of teraflops, laptops, kilo-

watts, and ‘‘cost, cost, cost’’.: Making peace between a

black art and the bottom line. In: Proceedings of the IEEE

international test conference (ITC), p. 8.
Wang N and Patel S (2006) ReStore: Symptom-based soft

error detection in microprocessors. IEEE Transactions on

Dependable and Secure Computing 3(3): 188–201.
Wittgenstein L (1953) Philosophical Investigations.: The Mac-

millan Company, New York.
Yang J, Zhang M, Strachan J, et al. (2010) High switching

endurance in TaOx memristive devices. Applied Physics

Letters 97(23): 232102.
Young JW (1974) A first order approximation to the opti-

mum checkpoint interval. Communications of the ACM

17(9): 530–531.
Yu J, Garzaran MJ and Snir M (2009) Esoftcheck: Removal

of non-vital checks for fault tolerance. In: Proceedings of

the 7th annual IEEE/ACM international symposium on code

generation and optimization, pp. 35–46.
Yu S, Yin Chen Y, Guan X, et al. (2012) A Monte Carlo study

of the low resistance state retention of HfOx based resistive

switching memory. Applied Physics Letters 100(4): 043507.
Zhang M, Mitra S, Mak TM, et al. (2006) Sequential element

design with built-in soft error resilience. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 14(13):

1368–1378.
Zheng G, Ni X and Kalé L (2012) A scalable double in-

memory checkpoint and restart scheme towards exascale.

In: Proceedings of the IEEE/IFIP international conference

on dependable systems and networks (DSN), pp. 1–6.
Zhou J, Wang M and Wong M (2010) Instability of p-channel

poly-Si thin-film transistors under dynamic negative bias

temperature stress. In: 17th IEEE international symposium

on the physical and failure analysis of integrated circuits

(IPFA), pp. 1–4.

Zio E, Maio FD and Stasi M (2010) A data-driven approach

for predicting failure scenarios in nuclear systems. Annals

of Nuclear Energy 37: 482–491.

Author biographies

Marc Snir is the Director of Argonne’s Mathematics
and Computer Science Division and the Michael
Faiman and Saburo Muroga Professor in the
Department of Computer Science at the University of
Illinois at Urbana-Champaign. His research is focused
on HPC, with recent work on programming models,
performance analysis, and resilience. Snir received his
PhD from the Hebrew University of Jerusalem. He
spent time at NYU, where he worked on the NYU
Ultracomputer, and at IBM Research, where he led the
research team that worked on the software for the
IBM SP and Blue Gene systems. At UIUC, he headed
the CS department and led the creation of the Illinois
Informatics Institute. Marc Snir is an AAAS, ACM,
IEEE, and Argonne Fellow. He has recently received
the IEEE Award for Excellence in Scalable Computing
and the IEEE Computer Society Seymour Cray
Computer Engineering Award.

Pavan Balaji holds appointments as a Computer
Scientist at the Argonne National Laboratory, as an
Institute Fellow of the Northwestern-Argonne Institute
of Science and Engineering at Northwestern University,
and as a Research Fellow of the Computation Institute
at the University of Chicago. He leads the
Programming Models and Runtime Systems group at
Argonne. His research interests include parallel pro-
gramming models and runtime systems for communica-
tion and I/O, modern system architecture (multicore,
accelerators, complex memory subsystems, high-speed
networks), and cloud computing systems. He has nearly
100 publications in these areas and has delivered nearly
120 talks and tutorials at various conferences and
research institutes. He is a recipient of several awards
including the U.S. Department of Energy Early Career
award in 2012, TEDx Midwest Emerging Leader award
in 2013, Crain’s Chicago 40 under 40 award in 2012,
Los Alamos National Laboratory Director’s Technical
Achievement award in 2005, Ohio State University
Outstanding Researcher award in 2005, five best-paper
awards, and various others. He serves as the worldwide
chairperson for the IEEE Technical Committee on
Scalable Computing (TCSC). He has also served as a
chair or editor for nearly 50 journals, conferences, and
workshops, and as a technical program committee
member in numerous conferences and workshops. He is
a senior member of the IEEE and a professional mem-
ber of the ACM. More details are available at http://
www.mcs.anl.gov/;balaji.

168 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Todd Munson received a BS in Computer Science from
the University of Nebraska in 1995, and an MS in 1996
and PhD in 2000 in Computer Science from the
University of Wisconsin at Madison. He is a
Computational Scientist in the Mathematics and
Computer Science Division at Argonne National
Laboratory, a Senior Fellow in the Computation
Institute at the University of Chicago and Argonne
National Laboratory. The primary focus of his
research is algorithms and applications of numerical
optimization and variational inequalities. He has been
widely recognized for his contributions. Among other
honors he was awarded a Presidential Early Career
Award for Scientists and Engineers from the White
House, an Early Career Scientist and Engineer Award
from the U.S. Department of Energy in 2006, and the
Beale-Orchard-Hayes Prize from the Mathematical
Programming Society in 2003. He has twice been
invited to the White House to meet the President of the
United States (Bush 41 and Bush 43).

Andrew A Chien is the William Eckhardt Professor in
Computer Science at the University of Chicago. He is
also a Senior Fellow at UC’s Computation Institute
and a Senior Computer Scientist at Argonne National
Laboratory. His research interests include parallel com-
puting, computer architecture, and cloud computing.
From 2005 to 2010, Chien was Vice President of
Research at Intel Corporation where he launched new
initiatives in parallel software, mobile computing, cloud
computing, and exascale research. From 1998 to 2005,
Chien was the SAIC Endowed Chair Professor in the
Department of Computer Science and Engineering
where he founded the Center for Networked Systems at
the University of California San Diego. From 1990 to
1998, he was a Professor of Computer Science at the
University of Illinois at Urbana-Champaign and the
National Center for Supercomputing Applications
(NCSA). He has served on numerous advisory commit-
tees for the National Science Foundation, Department
of Energy, and universities such as Stanford, EPFL,
and Cal-Berkeley. Chien earned BS, MS, and PhD
degrees at the Massachusetts Institute of Technology,
and is a Fellow of the ACM, IEEE, and AAAS.

Pradip Bose is a research scientist at IBM T. J. Watson
Research Center, where he manages a department on
power-efficient, resilient systems. He holds a PhD from
the University of Illinois at Urbana-Champaign. He
has been associated with the definition and pre-silicon
modeling of virtually all POWER-series processors,
beginning with the original pre-product super scalar
RISC project at IBM. He is a member of IBM’s
Academy of Technology and an IEEE Fellow.

Al Geist is a Corporate Research Fellow at Oak Ridge
National Laboratory. He is the Chief Technology

Officer of the Leadership Computing Facility. His
recent research is on exascale computing and resilience
needs of hardware and software.

Saurabh Bagchi is a Professor in the School of
Electrical and Computer Engineering and the
Department of Computer Science (by courtesy) at
Purdue University in West Lafayette, Indiana. He is a
Senior Member of IEEE and ACM, a Distinguished
Speaker for ACM, an IMPACT Faculty Fellow at
Purdue (2013–14), and an Assistant Director of the
CERIAS security center at Purdue. He leads the
Dependable Computing Systems Laboratory (DCSL),
where his group performs research in practical system
design and implementation of dependable distributed
systems. Since 2011, he has been serving as a Visiting
Scientist with IBM Austin Research Lab.

Mattan Erez is an Associate Professor at the
Department of Electrical and Computer Engineering at
the University of Texas at Austin. His research focuses
on improving the performance, efficiency, and scalabil-
ity of computing systems through advances in hard-
ware architecture, software systems, and programming
models. The vision is to increase the cooperation across
system layers and develop flexible and adaptive
mechanisms for proportional resource usage. Erez
received a BSc in Electrical Engineering and a BA in
Physics from the Technion, Israel Institute of
Technology, and his MS and PhD in Electrical
Engineering from Stanford University.

Sarita V Adve is Professor in Computer Science at the
University of Illinois. Her research interests are broadly
in computer architecture and systems. She leads the
SWAT project, one of the early projects to explore hol-
istic software-driven solutions for hardware resiliency.
She is an ACM Fellow, an IEEE Fellow, and an ABI
Women of Vision award winner in innovation.

Sven Leyffer is a senior computational mathematician
in the Mathematics and Computer Science Division at
Argonne National Laboratory, and a Senior Fellow of
the Computation Institute. He obtained his PhD from
the University of Dundee, UK, and has held postdoc
positions at Dundee, Northwestern University, and
Argonne. He is a Fellow of the Society for Industrial
and Applied Mathematics.

Nathan DeBardeleben received his PhD in Computer
Engineering from Clemson University in 2004 and
started at Los Alamos National Laboratory the same
year. DeBardeleben has been influential in defining the
field of HPC resilience, its challenges and potentials.
He has co-authored a handful of governmental position
papers on the subject as well as his own research publi-
cations. In his own research, his focus is on characteriz-
ing the impact of soft errors on systems and

Snir et al. 169

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

applications. DeBardeleben is on numerous reliability
program committees, runs his own workshop (Fault-
tolerance for HPC at Extreme Scale (FTXS)) and runs
the Los Alamos National Laboratory resilience site
(http://institute.lanl.gov/resilience/).

Christian Engelmann is Task Lead of the System
Software Team in the Computer Science and
Mathematics Division at Oak Ridge National
Laboratory. He earned his PhD in Computer Science
in 2008 and his MSc in Computer Science in 2001, both
from the University of Reading, UK. He also obtained
a German Certified Engineer diploma in Computer
Systems Engineering in 2001 from the University of
Applied Sciences, Berlin. Engelmann’s research aims at
computer science challenges for extreme-scale HPC
system software, such as dependability, scalability,
and portability. His primary expertise is in HPC resili-
ence, that is, providing efficiency and correctness in the
presence of faults, errors, and failures through avoid-
ance, masking, and recovery. His secondary expertise is
in HPC hardware/software co-design through light-
weight simulation of extreme-scale systems with millions
of processor cores to study the impact of hardware
properties on parallel application performance.

Jim Belak is a senior scientist in the Condensed Matter
and Materials Division at Lawrence Livermore
National Laboratory. He is Co-PI and Deputy Director
for the Exascale Co-design Center for Materials in
Extreme Conditions (ExMatEx), a joint project with
Los Alamos National Laboratory, ORNL, SNL-A,
Stanford, and CalTech, funded by the DOE Office of
Advanced Scientific Computing Research. The goal of
ExMatEx is to use the supercomputer codes used to
study matter under extreme conditions to guide the
design of future supercomputers and use the under-
standing gained to refactor and create new supercom-
puter codes. He earned his PhD in Condensed Matter
Physics from Colorado State University.

Fred Johnson is currently with SAIC serving as senior
SAIC technical advisor to the DOE NNSA Advanced
Simulation & Computing organization. He has retired
as the Senior Technical Manager for Computer Science
in DOE/ASCR where he was the Program Manager
responsible for fundamental computer science research
and research on high-performance system software and
tools including programming models, debugging and
performance evaluation tools, software component
architectures for high-performance systems, and next-
generation runtime and OSs.

Pedro Diniz earned his PhD from the University of
California, Santa Barbara, in Computer Science in
1997. Since then he has been a Research Assistant
Professor of Computer Science with the University of
Southern California in Los Angeles, California. He has

also been involved in several research projects focusing
on programming technology and execution models
addressing productivity-related issues as well as fault-
tolerance for large-scale high-performance architec-
tures. He has participated in various scientific proposal
review boards at the National Science Foundation as
well as at the European Commission in Brussels. Over
the last 20 years he has been heavily involved in the sci-
entific community having participated as part of the
technical program committee of over 15 international
conferences in the area of HPC, reconfigurable and
field-programmable computing.

Paul Coteus is an IBM Fellow in the Systems
Department at the Thomas J. Watson Research
Center. Coteus completed his PhD in Physics at
Columbia University and joined IBM in 1988, leav-
ing his position as Assistant Professor of Physics at
the University of Colorado. He has directed and
designed advanced packaging for high-speed electro-
nics, memory systems, and processor complexes. He
is currently the Chief Engineer of Data Centric
Systems, and also leads the system engineering for
the full line of Blue Gene Supercomputers, honored
in 2008 with the National Medal of Technology and
Innovation. He is an IEEE Fellow, a member of
IBM’s Academy of Technology, and an IBM Master
Inventor. He has authored more than 90 papers in
the field of electronic packaging, and holds over 120
US patents.

Rinku Gupta is a senior scientific developer at Argonne
National Laboratory. She received her MS degree in
Computer Science from Ohio State University in 2002.
She has several years of experience developing systems
and infrastructure for enterprise HPC. Her research
interests primarily lie towards middleware libraries,
programming models, and designing fault-tolerance
frameworks in HEC systems. More details about her
are available at http://www.mcs.anl.gov/;rgupta.

Franck Cappello holds a Senior Computer Scientist posi-
tion at Argonne National Laboratory where he leads the
resilience effort. He is the main PI of the G8 ‘Enabling
Climate Simulation at Extreme Scale’ project gathering
research groups from six countries. He is also the initia-
tor and co-director of the INRIA-Illinois-ANL Joint
Laboratory on Petascale Computing. Before moving to
USA, he led the Grand-Large and Grid’5000 projects in
France at INRIA, focusing on high-performance issues
and research methodology for large-scale distributed
systems. He has authored more than 130 papers and
contributed to more than 70 program committees. He is
an editorial board member of the international Journal
of Grid Computing, Journal of Grid and Utility
Computing, and Journal of Cluster Computing. He
served in the steering committees of IEEE HPDC and

170 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

IEEE/ACM CCGRID. He is the Program Co-Chair of
ACMHPDC 2014 and ACM CAC 2014.

Rob Schreiber is a Distinguished Technologist at
Hewlett Packard Laboratories. Schreiber’s research
spans sequential and parallel algorithms for matrix
computation, compiler optimization for parallel lan-
guages, and high-performance computer design. With
Moler and Gilbert, he developed the sparse matrix
extension of Matlab. He created the NAS CG parallel
benchmark. He was a designer of the High
Performance Fortran language. At HP, he led the
development of PICO, a system for synthesis of cus-
tom hardware accelerators. His recent work concerns
architectural uses of CMOS nanophotonic communi-
cation and NVM architecture. He is an ACM Fellow,
a SIAM Fellow, and was awarded, in 2012, the
Career Prize from the SIAM Activity Group in
Supercomputing.

Dean Liberty is a Fellow at Advanced Micro Devices
(AMD). He leads the Reliability/Availability/
Serviceability (RAS) Architecture and Strategy team,
focusing on long-term planning, detailed architecture,
and short-term implementation for resilience in AMD
processors. Dean has been in the computer industry for
over 30 years, and involved in HPC systems for over 20
years. His experience covers a range of hardware and
software, and his interests lie in bridging the gap
between the two.

Eric Van Hensbergen is currently a principal design
engineer at ARM Research in Austin, Texas. His cur-
rent research focuses on exploring energy-efficient
approaches to HPC through balance-driven co-design.
Previous to ARM he was a research staff member in the
Future Systems department at IBM’s Austin Research
Lab. Over 12 years at IBM Research, he worked on dis-
tributed OSs for HPC, low-power dense server and net-
work processor appliance blades, DRAM power
management, full system simulation, HPC, hypervisors,
and the Linux OS. Before coming to IBM, he worked
for four years at Lucent Technologies Bell Laboratories
on the Plan 9 and Inferno OSs.

Sriram Krishnamoorthy received his BE degree from
the College of Engineering-Guindy, Anna University,
Chennai, and his MS and PhD degrees from The Ohio
State University, Columbus, Ohio. He is currently a
research scientist at Pacific Northwest National
Laboratory. His research focuses on parallel program-
ming models, fault tolerance, and compile-time/runtime
optimizations for HPC. He has over 60 peer-reviewed
conference and journal publications, receiving best-
paper awards for his publications at the International
Conference on High Performance Computing
(HiPC’03) and the International Parallel and

Distributed Processing Symposium (IPDPS’04). He is a
recipient of the U.S. Department of Energy Early
Career award and Pacific Northwest National
Laboratory’s Ronald L. Brodzinski Award for Early
Career Exceptional Achievement in 2013. He is a senior
member of the IEEE and a professional member of
ACM.

Subhasish Mitra directs the Robust Systems Group in
the Department of Electrical Engineering and the
Department of Computer Science of Stanford
University, where he is the Chambers Faculty Scholar
of Engineering. Before joining Stanford, he was a
Principal Engineer at Intel Corporation. His research
interests include robust system design, VLSI design,
CAD, validation and test, and emerging nanotechnolo-
gies. His research results have seen widespread prolif-
eration in industry, and have been recognized by
several prestigious awards including the Presidential
Early Career Award for Scientists and Engineers from
the White House, the Intel Achievement Award, Intel’s
highest corporate honor, and several best-paper awards
for publications at major conferences and journals. He
is a Fellow of the IEEE.

Jon Stearley is a senior member of technical staff at
Sandia National Laboratories. His interests include his-
torical and live mining of system logs to identify the
root causes of faults, the propagation of errors, and
their effects on user jobs, towards faster fixes today and
better designs tomorrow.

Saverio Fazzari works for Booz Allen acting as a senior
technical advisor to DARPA and other government
agencies for numerous programs. Fazzari has a strong
background in all areas of semi-conductor design and
fabrication, from algorithm development through
device implementation. His specialty is advanced circuit
design and development strategies with a focus on
hardware cyber security issues including trusted design
and fabrication. His experience includes extensive com-
mercial experience, leading production innovation and
development across all facets of the electronic design
process.

Jacob A Abraham is a Professor in the Department
of Electrical and Computer Engineering at the
University of Texas at Austin. He is also director of the
Computer Engineering Research Center and holds a
Cockrell Family Regents Chair in Engineering. He
received a bachelor degree in Electrical Engineering
from the University of Kerala, India, in 1970. His MS
degree, in Electrical Engineering, and PhD, in Electrical
Engineering and Computer Science, were received from
Stanford University, California, in 1971 and 1974,
respectively. From 1975 to 1988 he was on the faculty
of the University of Illinois, Urbana, Illinois.

Snir et al. 171

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

William Carlson is a member of the research
Computing Sciences Staff at the IDA Center for
Computing Sciences where, since 1990, his focus has
been on applications and system tools for large-scale
parallel and distributed computers. He also leads the
UPC Language Effort, a consortium of industry and
academic research institutions aiming to produce a uni-
fied approach to parallel C programming based on glo-
bal address space methods. Carlson graduated from
Worcester Polytechnic Institute in 1981 with a BS
degree in Electrical Engineering. He then attended
Purdue University, receiving MSEE and PhD degrees
in Electrical Engineering in 1983 and 1988, respectively.
From 1988 to 1990, Carlson was an Assistant Professor
at the University of Wisconsin–Madison, where his
work centered on performance evaluation of advanced
computer architectures.

Robert W Wisniewski is an ACM Distinguished
Scientist and the Chief Software Architect for Extreme-
Scale Computing and a Senior Principal Engineer at
Intel Corporation. He has published over 60 papers in
the area of HPC, computer systems, and system perfor-
mance, and has filed over 50 patents. Before coming to
Intel, he was the chief software architect for Blue Gene
Research and manager of the Blue Gene and exascale
research software team at the IBM T.J. Watson
Research Facility, where he was an IBM Master
Inventor and lead the software effort on Blue Gene/Q,
which was the fastest machine in the world on the June
2012 Top 500 list, and occupied four of the top 10 posi-
tions. Prior to working on Blue Gene, he worked on
the K42 scalable OS project targeted at scalable next-
generation servers and the DARPA HPCS project on
continuous program optimization that utilizes inte-
grated performance data to automatically improve
application and system performance. Before joining
IBM Research, and after receiving a PhD in Computer
Science from the University of Rochester, he worked at
Silicon Graphics on high-end parallel OS development,
parallel real-time systems, and real-time performance
monitoring.

Appendix A Derivation of optimal
checkpoint interval

We assume a global checkpointing model: the system is
periodically taking global checkpoints; after a failure,
computation is restarted from the last checkpoint. We
use the following parameters:

� Checkpoint time is C.
� Recovery time is R.
� Checkpoint interval is t: a new checkpoint is taken

time t after the previous checkpoint started, or time
t after a failure occurred.

� Probability of failure within a time interval t is
F(t).

� Time to first failure given that a failure occurs within
the interval t is W (t).

We assume that C, R, and t are constant, while W (t) is
a random variable. We further assume that the system
is memoryless: F(t) and W (t) are the same, for each
time interval.

We divide the computation into epochs: a new epoch
starts when a failure occurred, or when a checkpoint
completed. Let Compi be the amount of useful compu-
tation done in epoch i and let Timei be the amount of
wallclock time consumed by epoch i. Compi are i.i.d.
random variables and Timei are i.i.d. random variables
(Compi and Timei are not independent).

We have

Comp=
t � C if epoch completes normally
�R otherwise

�

ð1Þ

The �R represents the fact that not only was no
progress made, but the computation now requires
recovery. Also,

Time=
t if epoch completes normally
W (t) otherwise

�

ð2Þ

We define the utilization of the system to be ratio
between compute time and wall-clock time:

Util= lim
n!‘

Pn
i= 1 CompiPn
i= 1 Timei

We have (1=n)
Pn

i= 1 Compi ! E½Comp� and
(1=n)

Pn
i= 1 Timei ! E½Time�, so that

Util =
E½Comp�
E½Time� ð3Þ

We derive, from equations (1) and (2),

E½Comp�=(1� F(t))(t � C)� F(t)R

and

E½Time�=(1� F(t))t +F(t)E½W (t)�

so that

Util =
(1� F(t))(t � C)� F(t)R

(1� F(t))t +F(t)E½W (t)� ð4Þ

Note that this formula does not involve any approx-
imation and does not depend on the distribution of
between-failure intervals.

172 The International Journal of High Performance Computing Applications 28(2)

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

We shall assume from now on that failures occur
according to a Poisson process, and normalize time so
that MTTF equals 1 (i.e. we express checkpoint time
and recovery time as fractions of MMTF). Thus,

F(t)= 1� e�t

and

E½W (t)�= 1

F(t)

ðt

0

xe�x dx

But

ðt

0

xe�x dx= �(x+ 1)e�x=1jt0 = �(t + 1)e�t + 1

Thus

E½Comp�= e�t(t � C)� (1� e�t)R=(t � C +R)e�t � R

E½Time�= te�t � (t + 1)e�t + 1= 1� e�t

and

Util =
(t � C +R)e�t � R

1� e�t

We want to select the t that maximizes utilization. Such
t solves the equation

dUtil

dt
= 0

We compute derivatives and obtain the equation

(e�t � (t � C +R)e�t)(1� e�t)

� ((t � C +R)e�t � R))e�t = 0

Simplifying, we obtain the equation

e�t = 1� t +C ð5Þ

and

Util=
(t � C +R)(1� t +C)� R

t � C
= 1� t +C � R

ð6Þ

We solve equation (5) numerically, for different val-
ues of M and R, and plug into equation (6) in order to
compute the best possible utilization, as a function of
(relative) MTTI and recovery time.

Various approximations can be derived from equa-
tion (5): if we approximate ex with the first three terms
of its Taylor expansion, then we get

1� t � t2

2
= 1� t +C ð7Þ

so that topt =
ffiffiffiffiffiffi
2C
p

and Util = 1�
ffiffiffiffiffiffi
2C
p

+C � R.
If the MTBF is M (rather than 1), we get

topt =M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C=M

p
=

ffiffiffiffiffiffiffiffiffiffiffi
2CM
p

and

Util = 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C=M

p
+

C � R

M

The approximation is valid when C � M (Young,
1974). Higher-level approximations are derived in Daly
(2006).

Snir et al. 173

 at PURDUE UNIV LIBRARY TSS on March 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

