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Abstract—Gene sequencing instruments are producing huge
volumes of data, straining the capabilities of current database
searching algorithms and hindering efforts of researchers ana-
lyzing larger collections of data to obtain greater insights. In the
space of parallel genomic sequence search, most of the popular
softwares, like mpiBLAST, use the database segmentation ap-
proach, wherein the entire database is sharded and searched on
different nodes. However this approach does not scale well with
the increasing length of individual query sequences as well as
the rapid growth in size of sequence databases. In this paper, we
propose a fine-grained parallelism technique, called Orion, that
divides the input query into an adaptive number of fragments and
shards the database. Our technique achieves higher parallelism
(and hence speedup) and load balancing, while maintaining 100%
accuracy. We show that it is 12.3X faster than mpiBLAST for
solving a relevant comparative genomics problem.

I. INTRODUCTION

One of the foundational building blocks of computational
biology is sequence alignment, looking for similarities between
particular DNA, RNA or protein sequences and a database
of other sequences. Finding regions of similarity between
target sequences and databases helps biologists understand
structural, functional and evolutionary relationships between
sequences to predict biological function of genes, find evolu-
tionary distance between sequences and do genome assembly
by finding common regions and repeats within a genome. For
example, finding large overlaps between the DNA sequences
of a newly discovered biological specimen (the query) and
the DNA sequences of known organisms (the database) can
highlight evolutionary relationships between the organisms.

The classic algorithm for performing sequence align-
ment, identifying matches between a query and a database
of sequences, is the Basic Local Alignment Search Tool
(BLAST) [1], [2]. BLAST operates by comparing each of
the sequences in the input query set against each of the
sequences in a database to identify alignments that partially
or completely overlap. The more similarity there is, the higher
the alignment’s score. E-value ia numerical value that captures
the likelihood that the similarity is statistically significant.
Alignments with E-value below a certain threshold are output
as potential matches by the algorithm. Section II describes the
algorithm in more detail.

The National Center of Biotechnology Information (NCBI)
provides public databases of gene sequences that researchers
can search using BLAST.1. Unfortunately, the explosive
growth in the number of biological sequences poses a

1http://blast.ncbi.nlm.nih.gov/

formidable challenge to the current database searching algo-
rithms. In December 2013, the GenBank database—hosted by
NCBI—had about 170 million sequences, and the number of
bases has doubled approximately every 18 months [3], [19].

Given the exponential growth in the size of sequence
databases, and the requirement to query longer sequences,
current database searching algorithms struggle to provide the
alignment and search results in a timely manner. Early parallel
BLAST implementations [5], [7] exploited coarse-grained par-
allelism: individual queries can be processed simultaneously
against the same database. However, while such parallelism
improves throughput, it does not help an individual researcher
with a single query: For example, a BLAST job with a query
sequence of 100,000 contiguous fragments (i.e., contigs or
overlapping sequenced data reads) BLASTed against the non-
redundant (NR) nucleotide database could take 70 days [30]!
To provide genomics researchers with reasonable latency for
their searches, exploiting additional parallelism has become a
necessity.

The most popular open source parallelization of BLAST is
mpiBLAST, using, unsurprisingly, MPI to run BLAST in paral-
lel on clusters [8]. mpiBLAST adopts a natural parallelization
strategy. Because BLAST compares the input query against
each sequence in the database separately, parallelism can be ex-
ploited by performing multiple such comparisons concurrently.
mpiBLAST thus shards the database into multiple pieces each
containing a subset of the databases’s sequences and distributes
the shards across the computational nodes in the cluster. These
shards can then be searched independently and simultaneously
for alignments with the input query.

Unfortunately, while mpiBLAST can exploit parallelism
by sharding large databases, and even by processing multiple
input queries in parallel, it has significant limitations for
many biological use cases. In long sequence alignment, a long
input query is matched against a database. Such use cases
are becoming increasingly common. With the rapid expansion
of next generation sequencing technologies, the number of
organisms whose entire genomes are being sequenced has been
growing at a rapid pace. Once a genome is sequenced, it is
annotated, which involves (among other processes) comparing
the newly-sequenced genome, or parts thereof, with that of a
closely-related organism or with the expansive NT database,
to establish the evolutionary relations of this newly-sequenced
organism. This results in large queries, with the upper bound
being the size of the entire genome, which can be millions of
nucleotides.

In this scenario, mpiBLAST runs out of parallelization
opportunities. There is but one input sequence, so parallelism
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Fig. 1: Parallelism in genomic sequence search. Our solution
Orion is the first to exploit opportunity for parallelism at all
three levels. mpiBLAST, for example, only uses the lower two
levels.

by processing multiple queries simultaneously is impossible.
And increasing the number of database shards to increase par-
allelism suffers from diminishing returns: even if the database
contains enough sequences to profitably create additional
shards, additional shards increase scheduling overhead as well
as the time required to aggregate the output from each query-
shard work unit.

Moreover, mpiBLAST’s parallelization strategy can lead
to severe load imbalance with large queries, or with queries
of very different sizes. If a query sequence is long, or has
many matches with a particular database sequence, it will take
a long time to process, while a short query sequence, or one
with little similarity to a database sequence can be completed
much faster. As a result, the execution time of different query-
shard work units can vary significantly, a problem that is
only exacerbated as queries get longer [26], [12]. Further,
it is difficult to predict what the running time for a unit
of work will be from simple metrics as the length of the
query [12]. Consequently, the static load balancing approach
of mpiBLAST tends to create severe load imbalances among
the different nodes processing different work units, as we
experimentally show in our evaluation.

To address these concerns, we propose Orion, a new par-
allel BLAST implementation that exploits finer-grained paral-
lelism than mpiBLAST, achieving both more parallelism in the
face of long sequences as well as better load balance. The key
insight behind Orion is that a single, long query sequence need
not be matched against a database sequence serially; instead,
the query can be fragmented into sub-queries (which we call
“query fragments”), each of which can be matched against the
database independently and in parallel. Figure 1 captures the
various levels of parallelism inherent in sequence alignment.
The early approaches to sequence alignment primarily targeted
the lowest level, processing multiple queries in parallel against
the entire database, while mpiBLAST exploits the two lowest
levels, processing the same query against different database
shards simultaneously. Orion exploits all levels of parallelism:
inter-query, intra-database, and intra-query.

Query fragmentation itself is not a new strategy in the
BLAST community. It first arose in recent work that noted that

BLAST’s performance is severely degraded by cache misses
as query size grows, and proposed query fragmentation as
a solution [6], [11]. Such strategies either require access to
the entire query to compute alignments [6], or require that
the query fragments overlap by a substantial amount to avoid
missing alignments [11], obviating parallelism or necessitating
substantial extra work.

In contrast, in Orion, we limit the size of the overlap
by querying the input parameters such as the thresholds in
the BLAST algorithm and the penalties due to a mismatch
in BLAST, and employ a novel extension and aggregation
strategy to avoid missing alignments. Our fragmenting strategy
is such that practically there is no loss in accuracy, i.e., every
sequence that will be matched successfully in BLAST will
also be matched successfully in Orion. However, the overlaps
are not so large as to eliminate the scope for intra-query
parallelism.

We introduce three chief novelties:

1) We develop an analytical model based on BLAST’s
scoring formula that identifies the optimal fragmen-
tation strategy, avoiding redundant work.

2) We introduce a speculative extension strategy that
allows alignments that may cross query fragment
boundaries to be identified.

3) We build an aggregation algorithm that combines full
and partial alignments from each fragment to generate
a final set of alignments that matches the original
sequential algorithm.

We parallelize and implement our algorithm using the
Hadoop MapReduce framework, and demonstrate that our
algorithm yields better parallelization, performance and load
balance than mpiBLAST, while producing the same results.

Outline Section II describes the basic BLAST algorithm,
as well as mpiBLAST’s parallelization strategy. Section III
details the design of Orion’s fragmentation and aggregation
algortihms. Section IV discusses the Hadoop implementation
of Orion. Section V compares Orion to both sequential BLAST
and mpiBLAST. Section VI surveys related work, while Sec-
tion VII concludes.

II. BACKGROUND

This section provides background on the general concepts
of sequence alignment; BLAST, the most popular algorithm
for performing sequence alignment; and mpiBLAST, the most
common parallel implementation of BLAST.

A. Sequence alignment

Sequence search typically examines one or more query
sequences, Q, against a database of reference sequences, D.
The sequences might be nucleotide sequences (e.g., genomes
of organisms) or peptide sequences (the chains of amino
acids that make up a protein). We will focus on nucleotide
sequences for the remainder of the paper. Each query sequence
q ∈ Q is compared against each database sequence d ∈ D to
determine their similarity. Similarity is determined by looking
for long subsequences that are common to both d and q. High
similarity between nucleotide sequences indicate that the same
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d = DACGTTGG

q = CAC   TTGA
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d = DACTTGG
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perfect match

d = DAGTTGG

q = CACTTGA one base-pair
mismatch

d = DA  TTGG
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Fig. 2: Query sequence and possible matching database se-
quences. Matching alignments are shown in bold, red text.
Mismatches and gaps (both inserted and deleted bases) are
underlined. In the second alignment, a possible match is found
by positing that a nucleotide was altered in the database
sequence to produce the query sequence. In the third align-
ment, a possible match is found by positing that a nucleotide
was inserted into the database sequence to produce the query
sequence, while in the fourth alignment, a possible match is
found by positing that a nucleotide was removed from the
database sequence.

gene might exist in both sequences, or that both sequences
have similar biological function. Similarly, regions of little
similarity between sequences might indicate that such regions
do not have any biological importance (they are “junk DNA”).

A nucleotide sequence is represented by a string of bases
drawn from {A,C,G, T}, so finding common sequences be-
tween two such strings seems like it can be solved using tradi-
tional string-matching algorithms. However, because genomes
are constantly mutating, it is often useful to look not for
exact matches, but merely good matches between sequences.
Common alterations to genomic sequences include changes
of a single base, leading to a mismatch between sequences,
and insertion or deletion of a single base, leading to a gap
between sequences. Hence, alignment must consider several
scenarios when looking for a good match. Consider the query
sequence q = CACTTGA shown in Figure 2. There are
several possible database sequences that could “match” q, once
mismatches and insertions and deletions of bases from the
query are taken into account.

Each of the database sequences in Figure 2 represent
a possible alignment; the only difference is in the “score”
given to the alignment: fewer mismatches or gaps produce a
higher score. Nevertheless, having a mismatch or gap does
not disqualify a particular match: a long alignment with
one or two mismatches can produce a higher score than a
short alignment with no mismatches. The classic dynamic
programming algorithm for computing alignments with gaps
and mismatches is Smith-Waterman [28].

B. BLAST

The basic Smith-Waterman algorithm suffices to find align-
ments, but it is slow (O(mn) time to find alignments between
sequences of length m and n) and has high space overhead
(O(mn) space to store the scores in the dynamic programming
matrix). Altschul et al. designed the Basic Local Alignment
Search Tool (BLAST) to perform faster alignments, at the cost
of accuracy (potentially missing some alignments) [1]. While
the details of BLAST are quite complex, here we provide
a high level intuition of BLAST’s operation. We describe
BLAST in terms of a single query q and database sequence d,
though the algorithm ultimately operates on sets of both.

BLAST has three phases: (i) the k-mer match phase; (ii)
the ungapped alignment phase; (iii) the gapped alignment
phase. In all three phases, BLAST relies on a scoring function
that provides a numerical score for the current proposed
alignment. In the first phase, BLAST considers every k-length
subsequence (called k-mers) of q and d and looks for k-
mers that appear in both.2 This step is performed efficiently
by creating a lookup table with all k-letter words in q. The
algorithm then walks through d and uses the lookup table to
see if a k-length subsequence of d matches any part of q. These
matches are seeds of potential alignments.3

In the second phase, ungapped alignment, each seed is ex-
tended both to the left and right allowing both perfect matches
(corresponding nucleotides in q and d) and mismatches (dif-
ferent nucleotides in q and d). While perfect matches increase
the score of the potential alignment, mismatches decrease the
score. BLAST tracks the current score of the alignment, s, and
the maximum score seen so far for the current seed, smax.
If smax − s is greater than some threshold tx (called the X-
drop threshold), the second phase terminates, returning the
alignment with the peak score for the current seed. If the
returned alignment’s score s is greater than some threshold
tu (which we call the ungapped threshold), the alignment is
passed to phase three. As an optimization, if a seed is contained
within a previously-found alignment, the seed can be skipped.

In phase three, gapped alignment is performed. The un-
gapped alignment is extended in both directions, this time
allowing insertions and deletions to occur as the alignment
is extended. As in the second phase, the maximum score of
the alignment smax is tracked, and if the current score s drops
below smax by more than tx, the phase is terminated and the
resulting alignment is returned.

After each seed is processed, all the alignments that score
above a threshold of statistical significance (called the E-value)
are sorted and returned to the user. Numerically, the lower the
E-value is the better the match is, i.e., lesser is the chance
that the alignment happened purely by chance. Therefore, if
the calculated E-value is less than the E-value threshold, is
the alignment output to the end user. Table I summarizes the
parameters used in BLAST.

2When performing nucleotide (DNA or RNA) alignment, only exact k-mer
matches are identified; when performing protein alignment, partial matches
can be found, with scores based on the particular peptides matched.

3Note that this is the phase where inaccuracy relative to Smith-Waterman
is introduced, as alignments that do not have a k-mer seed will be missed.
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Parameter Description Default value
k Length of initial seeds 11
tx X-drop value 20, 15
tu Ungapped alignment threshold N/A
E Final reporting threshold 10

TABLE I: Parameters and default values for BLAST. There
are two default x-drop values, the first for ungapped alignment
and the second for gapped alignment. There is no default value
for tu, as the score threshold for significance is dependent on
query and database sequence length.

C. mpiBLAST

Figure 1 shows the types of parallelism that arise in
BLAST. Most early attempts to parallelize BLAST exploited
the coarsest granularity of parallelism: each query q in the
set of queries Q is processed independently. The database
D of sequences is replicated on each compute node, and
queries are then processed simultaneously on each node [7],
[5]. Later approaches adopt a more aggressive, finer-grained
parallelization strategy: in addition to partitioning the query
set Q into individual queries Q1, Q2, . . . , the database is
partitioned into subsets D1, D2, . . . . For clarity, we will refer
to partitioning the query set as segmenting the query set, and
partitioning the database as sharding the database. Each pair
(Qi, Dj) represents a work unit, applying one query segment
against one database shard. The work units can be processed
in parallel, with the results from each query aggregated later.
Perhaps the best-known example of this parallelization strategy
is mpiBLAST [8].

mpiBLAST follows the master-worker paradigm. Before
alignment can start, the master shards the database into disjoint
partitions of approximately equal size and places them in
shared storage. The master uses a greedy algorithm to assign
unprocessed database shards to its workers. Query segments
are then handed to each worker. A worker executes the basic
BLAST algorithm for the query segment on its database
shard(s) and sends the results back to the master. The master
ensures that every query segment is processed against every
database shard, and also aggregates the results for each query,
performing the final sorting to present the queries’ alignments.
mpiBLAST achieves parallelism by segmenting the queries
and sharding the database, and in addition improves perfor-
mance relative to non-sharing implementations by choosing
shard sizes so that each shard fits in a worker node’s main
memory.

mpiBLAST works well when Q contains many short
sequences and D is large, affording it opportunities both
to create sufficient parallelism and to provide load balance
(by generating far more work units than worker processes).
However, in many biological settings, these assumptions do not
hold true. For example, it is common to match a single, large
query sequence against a small database (e.g., matching a long
human DNA sequence against a database containing genomes
for each human chromosome). In such settings, mpiBLAST
cannot generate enough work to provide parallelism and load
balance. Even if the database is large enough to shard, long
queries lead to more variable runtime [26], [12], creating load
imbalance problems. Moreover, because mpiBLAST relies on
the basic BLAST algorithm at each worker, it suffers from
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Fig. 3: mpiBLAST behaviour for long sequences

poor performance in the face of long queries [6].

We studied the scalability of mpiBLAST, in terms
of length of query sequences handled by performing ex-
periments to search Human genes from the NCBI gene
database(http://www.ncbi.nlm.nih.gov) over the Drosophila
melanogaster database. The sequences ranged from 3000bp to
99Megabp (base pairs) in length. We used a small test cluster
of 4 nodes and 64 cores to do the experiments. To enable
mpiBLAST to fully exploit available parallelism, we made 64
shards of the database. Figure 3 shows that performance of
mpiBLAST is good at query sequences of length less than
1 Mbp, but starts to worsen at a threshold of 1Mbp. The
performance worsens rapidly beyond this threshold of 1Mbp,
reaffirming the poor performance of mpiBLAST in the face of
long queries as mentioned above.

In the next section, we discuss our design of a new parallel
BLAST implementation that provides parallelism and load
balance even for large queries.

III. DESIGN OF ORION

This section discusses the design of Orion. Implementation-
specific details are discussed in Section IV. The high-level
architecture of Orion is shown in Figure 4.

A. Query fragmentation

As introduced earlier, Orion uses as a fundamental strategy,
the fragmentation of a query and matching the fragments
in parallel. Continuing with the notation from Section II,
we have a query set Q, which comprises individual queries
Q1, Q2, · · · , Qm. The entire database is D and it is sharded
into disjoint shards D1, D2, · · · , Dn. Further, Orion fragments
each query Qi into fragments Qi1, Qi2, · · · , Qik. Our design
creates equal-sized query fragments, by determining the opti-
mal fragment size.

A simple approach to query fragmentation is as follows:
for a given query Qi,match each query fragment against each
database shard in parallel, using baseline, sequential BLAST.
After all fragments of Qi have been matched against each
database sequence, aggregate the results, combining align-
ments from neighboring fragments that can be concatenated
to form a larger alignment, and report them. Unfortunately,
this simple strategy, which assumes that query fragments are
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> tu base pairs> tu base pairs

Fragment 1

Fragment 2

< tu base pairs
query Qi

Fig. 5: Example alignment that spans two disjoint query
fragments. The alignment is shaded, while the darker shaded
regions represent ungapped sub-alignments that would be
reported as part of Phase ii of BLAST.

independent, is incorrect; if an alignment spans two query
fragments, then the portion of the alignment that lies in each
fragment may not have a high enough score to be reported.

Consider Figure 5. It shows an alignment that spans two
query fragments with no overlap. The shaded(dark and light)
portion of the query represents the alignment that should be
reported, while the darker shaded portion represents ungapped
sub-alignments that exceed the threshold tu, introduced in
Section II (it is the number of base pairs that produce a
long enough alignment to pass the score threshold). While
the search over fragment 1 will return a partial alignment,
triggered by the first ungapped sub-alignment, the search over
fragment 2 will not return any alignments: the portion of the
final alignment that lies in fragment 2 does not have any
sufficiently-long ungapped alignments to pass the threshold in
phase ii of BLAST.

This situation is not a corner case, rather it is quite common
in practice, with the likelihood increasing with decreasing size
of each query fragment. The choice of short query fragments
is of course appealing from the point of view of increasing
the number of work units and the degree of parallelism. Note,
also, that this issue applies not only to the tu threshold, but
also to the two other thresholds in BLAST: the initial k-mer
threshold (if a k-mer spans two fragments, it will never be
discovered) and the final E-value thresholds. In general, if the

> tu base pairs> tu base pairs

Fragment 1

Fragment 2

> tu base pairs
query Qi

Fig. 6: Alignment with sufficient overlap

overall alignment passes a threshold, but the sub-alignments
found on each fragment do not, the alignment will be missed.

Fragment overlap: To overcome the missed alignment
problem described above, Orion uses a combination of over-
lapping query fragments and alignment aggregation. To see
why overlapping fragments can be useful, consider overlapping
neighboring query fragments by k nucleotides. By doing so,
it is no longer possible to miss a k-mer match. Intuitively,
the overlap should be large enough such that the following
condition holds.

If there is a matching sequence between the query
and the database, then the partial matches within
each query fragment should be able to pass each of
the thresholds of the three phases.

How large is large enough will depend on various factors
— the lengths of the query and of the database, the thresholds
for ungapped and gapped alignments, the E-value threshold,
and the word size for the initial k-mer matches. Now there is
a downward pressure on the size of overlap. Too much overlap
will mean the work of matching will be duplicated in nodes
that are processing adjacent query fragments. Some earlier,
non-parallel implementations of BLAST have suggested over-
lapping queries, but typically choose extremely large overlap
values to avoid missing alignments [31]

Orion chooses the overlap to be tu, and can find the whole
alignment of Figure 5 Fragment 1 sees a partial alignment and
Fragment 2 sees a partial alignment, and there is no longer
any way to miss any sub-alignments, as shown in Figure 6

B. Alignment aggregation

In Orion, rather than adopting an ad hoc approach to
fragment overlap, we use a more disciplined strategy. In par-
ticular, we note that we can introduce an additional alignment
aggregation phase to the search process. As Orion processes
a single query fragment, if an alignment does not hit a query
boundary (i.e., the entire alignment fits in a single fragment),
it is returned as normal. But if a partial alignment does hit a
fragment boundary, it may be part of a larger alignment that
spans two fragments. Hence, Orion returns these alignments
as well.

After all of the query fragments have been processed,
Orion performs alignment aggregation. Any alignments that lie
entirely within a single fragment can be returned as is (note
that alignments that lie entirely within the overlap between
two fragments will be returned by both fragments). However,
any alignments that hit query boundaries must be combined
with alignments from the other side of the boundary. Orion
“undoes” the overlap between the alignments, merges them
together and then reports the result only if the combined
alignment passes all the score thresholds.

5



> tu base pairs

Fragment 1

Fragment 2

> tu base pairs

< tu base pairs

query Qi

Fig. 7: Alignment with fragment overlap. Fragment 2 must
perform gapped extension despite not seeing a high-scoring
alignment.

1) Speculative extension: For the reduction phase to work
properly, if a partial alignment hits the fragment boundary,
Orion must perform gapped extension even if the partial
alignment doesn’t meet the ungapped alignment threshold. To
see why this is necessary, consider the alignment in Figure 7.

The alignment contains a single ungapped subalignment
that exceeds the threshold. This subalignment falls entirely
within fragment 1, so fragment 1 proceeds with gapped align-
ment, finding the lightly shaded portions of the alignment.
However, fragment 2 does not see enough of the ungapped
alignment to trigger gapped extension, and hence the portion
of the alignment that lies only in fragment 2 would be missed.

To avoid this problem, Orion performs gapped extension
speculatively: fragment 2 performs gapped extension for its
partial alignment anyway. Because the actual score of the
ungapped alignment is not known (as it lies partially in
fragment 1), Orion uses a relative scoring metric. Rather than
extending the alignment until the score drops to tx below the
maximum score seen so far, Orion starts the scoring at 0, and
extends the alignment until the score drops to −tx. This results
in slightly longer gapped extensions, but the excess is cleaned
up during alignment aggregation.

We note, also, that fragment overlap plays a role in specu-
lative extension. If Orion performs an extension, speculative or
otherwise, of a partial alignment that hits a fragment boundary,
and the extension is terminated (due to X-dropoff) within the
overlap region, then the partial alignment does not need to be
returned, as the neighboring fragment will be able to see the
entire alignment (consider if the lightly shaded portion on the
right side of Figure 7 did not exist; Fragment 1 would see the
entire alignment).

2) Possible missed alignments: There is one corner case
where Orion will miss a query alignment that the baseline
BLAST would have found. Such a miss happens due to the
query fragmentation of Orion, and despite the overlaps in
the query fragments. The inaccuracy arises in the case where
an alignment spans two fragments, but the portion of the
alignment that lies in one fragment does not contain any k-mer
matches. In this case, that fragment will not even initiate the
search for an alignment. We expect this case to be extremely
rare in practice. Experimentally we find that such a miss never
happens in our evaluation, and thus we achieve accuracy of
100%.

C. Calculating overlap length

So the question arises what should be the ideal overlap
length. The overlap must be at least k: smaller overlaps may
result in k-mer hits being missed. Increasing overlap length
beyond k makes extensions more likely to terminate within

fragment boundaries, resulting in less work during alignment
aggregation. Nevertheless, making overlaps too large results in
redundant work during the search phase.

We choose our overlap size with these criteria in mind. In
particular, we choose our overlap size to ensure that ungapped
alignments that pass the tu threshold lie within each fragment.
According to [13], the expected value (E-value) of a single
distinct alignment may be calculated by the formula

E = Kmne−λS

where, K and λ are Karlin-Altschul parameters, m and n
are the effective lengths of the query sequence and database,
respectively, and S is the alignment score. The “effective”
lengths are shorter than the actual lengths to account for the
fact that an optimal alignment is less likely to start near the
edge of a sequence than it is to start away from that edge. We
want to calculate the smallest value of S that will cause the
calculated E-score to be less than the threshold E-value (the
notation we have used for the latter is simply E).

Putting these constraints together (detailed derivation fol-
lows that in [10]), we derive the following formula for frag-
ment overlap (L).

Slb = d
ln(Kmn/Eth)

λ
e

L = max(k, Slb/p) (1)

where, k is the word size of the initial k-mer match, Slb is the
shortest ungapped alignment that still passes the E-value test
(i.e., calculated E score is exactly equal to E-value and any
shorter ungapped alignment will not pass this test). This Slb
is then divided by the reward for match of one single bp, p,
to come up with the length of the overlap (in terms of bp). To
account for the degenerate case where the calculated value of
Slb/p is smaller than the length of the initial k-mer match, the
max is taken in the final calculation of L.

This choice of L guarantees the following property. Con-
sider two adjacent fragments F1 and F2 (Figure 5 or Figure
7 may serve as a reference). If in the baseline (unfragmented)
query, there is a sequence with enough of a match with the
database such that Ecalculated ≤ E, then, there is enough
overlap between F1 and F2 such that there will be a sub-
sequence in either F1 or F2 that will give Ecalculated(sub-
sequence) ≤ E.

D. Threshold for fragment size

Intuitively, it seems clear that Orion should not fragment
a query that is smaller than a certain size. This is due to the
fact that there is a certain overhead of fragmentation—divide
the query up, send each query fragment to a separate node,
and after the parallel matches, aggregate the results of the
individual matches to create the final output. These costs must
be balanced against the additional scope for parallelization,
and (to a second order effect) better load balancing, that results
from fragmenting the query. Further, there is a constant cost
of running the baseline sequential BLAST.

Orion takes these two factors into account to select a
desired query fragment length. The desired query fragment
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length depends on both the database and the exact query
simply because the amount of work that is to be done depends
on these two elements. However, for the purpose of calibration,
it is clearly infeasible for Orion to determine this desired query
fragment length for every query for each database it is to be
run against. Therefore, we make the practical simplification
of performing this calibration once for each database that
the matching is going to be performed against. We find
that experimentally this simplification is justified with little
performance degradation compared to the ideal design choice.

IV. IMPLEMENTATION

In this section we describe the implementation of Orion.

A. Sharding the database and fragmenting the query

Orion uses mpiBLAST’s mpiformatdb tool to format
and to shard the database. It divides the database into a
specified number of shards, which are approximately equal
in size and are then placed on shared storage.

To fragment the query, Orion uses a simple preprocessing
step that takes as input the database length, the original query
sequence and the desired fragment length of each query. Orion
then calculates the overlap length using Equation 1, fragments
the input query sequence using the fragment length and overlap
length parameters, and places the fragmented query sequence
on shared storage.

B. Parallel BLAST search

Orion’s parallel BLAST search on each fragment/shard
work unit naturally fits into the MapReduce paradigm [9],
with each of the fragment/shard search tasks as a “map” task.
We use Hadoop streaming to implement the map phase of
the parallel blast search. The map tasks run NCBI blastall
for every fragment/shard pair with the specified arguments for
the program, the database shard, and the query. The outputs
are the parsed BLAST results for search of the query over
the respective database shard. The parsed output of BLAST
search reports for each alignment the identifier for the database
sequence, the offsets of the alignment in the database, the
length of the database sequence, the query fragment identifier,
query fragment length, offsets of alignment in the query
fragment, the sense of the alignment, the E-value, and the
number and location of matches, mismatches, and gaps. This
information resides in files stored on HDFS. The identifier for
the database sequence as the key and the alignment information
as the value is fed to the reduce phase.

C. Aggregation of results

The aggregation phase is the Reduce phase of Orion’s Map-
Reduce job. It is required to merge overlapping alignments that
cross over fragment boundaries and present the alignments as
a single alignment as would have been reported by BLAST.
The key is the database sequence identifier which divides the
space of alignments results. In simple words, it first collects
all alignments from all the query fragments that matched a
particular database sequence together. It then finds overlapping
or adjacent alignments from this set and aggregates them.
Finally the set contains all aggregated alignments. The benefit

of choosing sequence identifier from the database as the key
is that multiple reducers can work in parallel over different
database sequences.

D. Sorting of results to create final output

Orion outputs alignment results in decreasing order of their
scores or increasing E-value. Orion samples the score data
for a rough approximation of the distribution of the score
values, and then different ranges of values are assigned to
different reducers to sort in parallel. Finally the merge is done
in parallel, since the range of score values for each reducer
task is known. The result is the final set of alignments sorted
according to E-values, exactly what would be returned by
(serial) BLAST.

V. EVALUATION

In this section we present a performance evaluation of
Orion on the Gordon supercomputing system. We first com-
pare the execution times of Orion and mpiBLAST, the most
popular open-source parallel implementation of BLAST. We
then compare the scalability and the effectiveness of load
balancing of the two solutions. We also evaluate the overall
speedup for Orion, and do a sensitivity study to determine
the relationship between query fragment length and execution
time for Orion. We use a biologically relevant comparative
genomics problem which searches queries from the human
genome over the Drosophila melanogaster database, to validate
that Orion has performance gains in realistic scenarios, as we
detail in Section V-B.

A. Experimental Setup

We use the Gordon supercomputing system to run our
experiments. Gordon is a dedicated XSEDE cluster maintained
by the San Diego Supercomputer Center. Each compute node
contains two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy
Bridge) processors and 64 GB of DDR3-1333 memory. We
used a cluster of 64 such nodes, each node having 16 cores.

In these experiments the internal BLAST implementation
for both mpiBLAST and Orion used default values for E-value,
match rewards, mismatches and gap penalty, and the drop off
values and all other configurable parameters (see Table I). The
overlap length was calculated using Equation 1. The relevant
parameters for the overlap equation are given in Table II.

Parameter Value
Length of Drosophilia database 122,653,977
k 0.711
λ 1.374

TABLE II: Parameters required to calculate overlap length

We used Hadoop version 1.1.1 and mpiBLAST’s latest
version-1.6.0 in the experiments. The Hadoop cluster was
setup such that one node acted as both the master node and
the slave node. All the other nodes were configured as slave
nodes. The master node in the Hadoop cluster assumes the
role of namenode, secondary namenode and jobtracker. The
slave nodes act as datanodes and tasktrackers. All the nodes
in the cluster act as both storage and compute nodes. Each
node was configured to run a maximum of 16 map and reduce
tasks concurrently, to match the number of cores on the nodes.
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B. Biological relevance of evaluation strategy

With the availability of whole-genome sequences for an
increasing number of species, we are now faced with the
challenge of decoding the information in these sequences.
Comparative genome sequence analysis for multiple species
at varying evolutionary distances, often termed phylogenetic
footprinting, is a powerful approach for identifying protein
coding and functional noncoding sequences. Drosophila or
fruit fly has been valuable as a model organism for studying
human behavior, development, and diseases, given the parallels
between the genomes of humans and these tiny flies. In
addition, their short life spans and prolific breeding allows for
quick turnaround of large-scale biological experiments. Com-
parison of the Drosophila genome with the human genome, for
example, revealed that approximately 75% of human disease
genes have homologs in Drosophila [4]. Motivated by this,
in this paper we have used Drosophila as a model reference
genomic database for aligning a set of long genomic scaffolds
of human chromosomes; scaffolds are assemblies of contigs
and gaps reconstructed from the NGS reads. The final goal
of the genomic comparisons, as done in this paper, would
be to explore the evolutionarily-conserved sequences from
Drosophila to humans. For example, ultra-conserved elements
(UCEs) are arguably the most constrained sequences in the hu-
man genome and the majority of these are outside the protein-
coding regions [15]. Thus, one exciting use case for such
rapid comparisons of long human chromosomal sequences
with other databases (e.g., Drosophila database), at differ-
ent evolutionary distances, could be to discover new UCEs
present across varying evolutionary distances. Interestingly,
single nucleotide polymorphisms (SNPs) in UCEs have been
linked to cancer risk, impaired transcription factor binding, and
homeobox gene regulation in the central nervous system [24].
Our future efforts will be directed at aligning long or complete
cancer genome sequences, from databases such as the Cancer
Genome Atlas Network [18], with normal genome sequences
to detect the altered sequences driving different types of cancer.

C. Comparison of Execution Times

In this section we compare the time to completion of a
query set for Orion and mpiBLAST. We use human chro-
mosome contigs as our query sequences, and the Drosophila
melanogaster representing the fruit fly genome as our database.
The Drosophila database has an unformatted size of 118MB
database and contains 1170 sequences. All the databases were
taken from NCBI. Contigs are contiguous sequences that
form part of the organism’s genome after cleanup has been
performed on the raw NGS instrument reads.

Orion is aimed at solving the problem of delivering an
efficient and low latency genomic sequence search system for
long sequences. To validate this we choose a query set that
consists of 16 sequences which are genomic contigs and scaf-
folds randomly selected from different human chromosomes.
The query sizes range from 1 Mbp (Mbp=106 base pairs) to
71 Mbp. mpiBLAST performance is sensitive to the number of
database shards used, and Orion performance too is sensitive
to the number of database shards and query fragments. Hence
the number of shards chosen for Orion and mpiBLAST, and
the fragment size chosen for Orion were such that both Orion
and mpiBLAST have optimal performance for the specific
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Fig. 8: Execution Time Comparison for Orion and mpiBLAST

configuration of the experimental machine. We performed the
experiment by varying the number of cores in the cluster to
study the scalability of Orion and mpiBLAST.

Figure 8 shows the performance of of mpiBLAST and
Orion for the chosen query set. Note the logarithmic scale
on the Y-axis. From the figure we see that the performance of
Orion is significantly better than mpiBLAST at all configura-
tions of number of cores in the system. As expected, as the
number of cores increase the execution time goes down for
both Orion and mpiBLAST. However Orion performs about
12.3X better on an average for the chosen query set.

Now, looking at the performance on individual query
sequences within the query set, we noted that Orion is 23X
faster than mpiBLAST for the longest (71 Mbp) of the
query sequences. We also noted that the gain of Orion over
mpiBLAST increases with increase in query sequence length.
Further, mpiBLAST could not handle sequences longer than 96
Mbp and terminated with an error message complaining that it
required about 2178 Gb of memory for dynamic programming!
The vast majority of the human chromosomes are longer than
96 Mbp and thus, with the current state-of-the-art, we would
not be able to run a parallel sequence matching for this wide
variety of genomic sequences.

It should be noted that while Orion achieved superior per-
formance for the longer queries, it did not miss any alignments
reported by mpiBlast, which is the same as alignments reported
by BLAST. Thus, the accuracy of Orion remained at 100% for
all the query sequences.

D. Load Balancing

mpiBLAST’s parallelization strategy of segmenting the
input query set into individual queries can lead to severe load
imbalance among the worker processes. Thus, some processes
do the bulk of the work and a majority of the processes
terminate quickly. In contrast Orion’s query fragmentation
strategy divides the entire work into smaller work units, each
of which is handled by a Hadoop task. This reduces the vari-
ability in load distribution, and enables greater predictability
in execution times of each work unit. This ultimately leads to
a more efficient use of system resources.

We validate this by comparing the search times of mpi-
BLAST’s processes and Orion’s Map and reduce tasks’ run
times in the 256 core configuration of Experiment 1. Since
the running times of the tasks in Orion and the processes in
mpiBLAST are not comparable, we use Coefficient of Variation
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Fig. 9: Speedup for Orion of searching Homo Sapien genomic
scaffolds on Drosophila database

(CV) to measure the variability in the run times. CV is defined
as Mean/Standard Deviation. Table III shows that CV for
mpiBLAST processes’ run times is higher than Orion’s. This
shows that Orion achieves better load balance than mpiBLAST.

Metric mpiBLAST Orion
Average (s) 315.78 2.10
Standard Deviation (s) 182.18 0.25
Coefficient of Variation 0.58 0.24

TABLE III: Average, standard deviation (in seconds) and
coefficient of variation for processes in mpiBLAST and Map
and Reduce Tasks in Orion

E. Scalability Tests

To evaluate the scalability of Orion, we run and profile
a sequence search job with long queries over the Drosophila
database. The sequences used here are even bigger than the
ones used in Experiment 1, we used 32 sequences in the range
of 1Mbp-99Mbp, and thus well beyond the usable range of
mpiBLAST.

We increase the number of cores in the system from
4 nodes (64 cores) to 64 nodes (1024 cores) and measure
the speedup achieved as illustrated in Figure 9. As can be
seen, Orion scales to 1024 cores at a nearly constant parallel
efficiency, i.e., the slope of the speedup curve is almost
constant. At 1024 cores, Orion achieves a speedup of 5 times
the baseline of 64 cores. This speedup demonstrates that
Orion can fully leverage the massive parallelism of today’s
supercomputing systems while solving important biological
problems.

F. Comparison with Blast+

In this experiment we compared the performance of Orion
and BLAST+. BLAST+ is a new suite of BLAST tools that
runs on the NCBI servers. It is interesting to compare Orion
and BLAST+ since BLAST+ also performs what they call
“query splitting” to address the failure of BLAST to run long
sequences [6]. BLAST+ is designed to run on standalone
Linux/Windows boxes and uses multithreading for enhancing
performance. We ran Homo sapiens chromosomal sequences
and genomic scaffolds, shown on the X axis in Figure 10
as queries over the Drosophila database using Orion and
BLAST+. We ran BLAST+ with 16 threads to fully utilize
the available cores in the node, and ran Orion with 16 Map
and Reduce tasks on a single node. Note that BLAST+ is only
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Fig. 11: Sensitivity of Orion to fragment length

capable of running on a single node, which severely limits its
applicability for large workloads.

As seen in the figure, Orion performs better than BLAST+
for all the sequences with length of more than 10 Mbp.
For smaller sequences, BLAST+ performs better than Orion
due to the constant overhead of Hadoop job setup and tear
down Orion has, which is higher than the completion time of
BLAST+ for the smaller queries. However it should be noted
that this is a small constant overhead. Also the performance
gains for Orion increase with increasing query sequence length.
The performance gain of Orion over BLAST+ can be attributed
to the finer level of parallelism of Orion. It exploits both intra-
database and intra-query parallelism, while BLAST+ can only
exploit intra-query parallelism.

G. Sensitivity study of Orion for different fragment lengths

Finally, we studied the sensitivity of Orion to different
fragment lengths and show the results in Figure 11. We note
that there are competing concerns regarding fragment length.
Larger fragments mean less opportunities for alignments to
cross boundaries, and thus less work to perform during
alignment aggregation. However, as fragments get longer, the
scope for parallelism decreases, and if fragments get too long,
BLAST (which Orion uses) begins to suffer from poor cache
behavior [6]. In addition the number of work units which is
given by the number of query fragments times the number
of database shards, should be larger than the number of
available cores. Hence, we expect there to be a sweet spot
in performance. We show this sweet spot for a 14.5M base-
pair query against the Drosophila database. The ideal fragment
length is 1.6M base pairs. This kind of calibration of Orion can
be done once, for each database and then it can be used with
the optimal (or near optimal) fragment size determined during
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the calibration. Note that for small queries, with size smaller
than the optimal fragment length, the sweet spot is never hit
and Orion does not benefit from fragmenting the query.

H. Results on larger databases

Orion consistently outperforms mpiBLAST over other
databases as well. We also performed experiments over two
larger databases — the Mouse genome database (unformatted
size 2.77G) and the NT database (56.5 G) and found similar
results. For example, with mpiBLAST, the search of a single
query sequence NG 007092 having 2311 Kilo basepairs over
the mouse database took 2664 seconds to complete while
Orion completed the search in 201 seconds while for the
even larger NT database a single query sequence NT 077570,
having 263 Kilo base pairs, took almost an hour and a half
(5,271.8 seconds), while Orion ran in 15 minutes using the
sweet spot for the fragment length determined for query
NT 077570. Thus Orion also scales to bigger databases. At
these large database sizes the difference in matching times
between our solution and the current state-of-art becomes even
more significant and impactful.

VI. RELATED WORK

A vast body of research [25], [14], [21], [17], [20],
[16], [23], [29] has addressed the parallelization of sequence
alignment algorithms based on various parallel programming
paradigms in the wake of the massive data sets generated
by next-generation high-throughput sequencing systems. These
parallelization methods can be classified into two categories
by their approaches to data decomposition. In the first cate-
gory, where mpiBLAST belongs, the database that contains
reference sequences is partitioned into multiple shards and
hence a query sequence can be searched simultaneously against
different shards by different execution units, i.e., processes
or threads. Methods in the second category consider a large
set of queries and by parallelizing the alignment of multiple
queries, reduce the overall finish time. The set of queries
are simply split into smaller subsets and the alignment of
different subsets are executed in parallel by different execution
units. The rest of this section reviews several representative
works from both the categories. None of the schemes described
here adopt the same query fragmentation strategy as Orion
(though some fragment sequences in the database). To our
knowledge, Orion’s fragmentation strategy is unique among
parallel BLAST implementations.

CloudBurst [25] is modeled after the short read-mapping
program RMAP [27], but implements the algorithm as a
classic MapReduce program to parallelize execution using
multiple compute nodes. Like RMAP, CloudBurst takes a seed-
and-extend approach, extracting all k-mers in the reference
sequence and non-overlapping k-mers in all queries in the map
phase, sorting all k-mers by their sequence in the shuffling
phase, and finally in the reduce phase identifying k-mers
shared between the reference sequence and the queries and
extending them into end-to-end alignments allowing for a
fixed number of insertions, deletions or mismatches. It is
optimized for the alignment of many short queries against long
reference sequences. Like the database sharding in mpiBLAST,
CloudBurst partitions database sequences into 65 kb chunks
with 1kb overlaps to support cross-chunk alignment of queries

shorter than 1 kb. The shuffle phase which is essentially an
all-to-all communication among all compute nodes imposes a
high throughput demand on the network and will eventually
become the scalability bottleneck.

CloudBLAST [16] uses the Hadoop MapReduce frame-
work to parallelize the alignment of a set of queries. Similar
to our approach that builds on top of the established BLAST
implementation, CloudBLAST runs BLAST as map tasks of
Hadoop over a distributed cluster of virtual machines. The
set of queries are partitioned into subsets, which is then
assigned to map tasks that search the subset of queries over
the entire database. Without exploiting the parallelism from
database sharding, CloudBLAST suffers poor performance
when dealing with large reference databases.

Yang et al. [31] also identify the scalability limitation of
BLAST for long query sequences and employ the Hadoop
framework to speedup the alignment of long sequences. The
parallelism in their scheme comes solely from database shard-
ing: they exploit the file segmentation in HDFS to split a large
database into 64MB chunks and run a query as parallel map
tasks against different chunks of the database. Long reference
sequences in the database are also split into fragments of fixed
size with overlaps to reduce the possibility that a map task
needs to access chunks of the database stored on a remote
node.

GPU-BLAST [29] achieves nearly 4X speedup on a 1.15
GHz NVIDIA Fermi GPU over the single-threaded NCBI-
BLAST running on an 2.67 GHz Intel Xeon CPU. It takes
the database sharding approach by assigning the reference
sequences in the database to different GPU threads for parallel
alignment. To mitigate the performance penalty from thread
divergence, GPU-BLAST also includes a preprocessing step
that sorts all reference sequences in the database by their
lengths to avoid having threads of the same warp work on
reference sequences with significant length differences.

VII. CONCLUSIONS

With the ever increasing importance of gene sequencing
and alignment to systems biology, and the corresponding
increase in the number, size and variety of queries and genomic
databases, it is of paramount importance that computational
sequencing algorithms be parallelized efficiently. Prior ap-
proaches to parallel BLAST search did not exploit all available
parallelism, leading to unacceptably slow performance when
performing matches on large query sequences. In this paper,
we have presented Orion, which uses a novel paralleliza-
tion strategy, fragmenting individual queries into overlapping
fragments. Through a careful analysis, we determine how
to fragment the queries such that the accuracy of the final
alignments is not reduced. Our evaluation with real biological
use cases shows that Orion significantly outperforms the most
popular parallel BLAST implementation, called mpiBLAST,
for large queries. For example, with a large NCBI database
called the NT database and a long query corresponding to
a human chromosome, Orion shows a 5X improvement in
execution time over mpiBLAST. Further, the nature of genome
alignment is such that static scheduling does not work well. As
a result, mpiBLAST shows significant load imbalance. Orion
on the other hand, thanks to using the Hadoop framework,
achieves load balancing across all the computational cores.
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