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Abstract—The growing reliance on Cyber technology for Smart
Grid and other Cyber-Physical Systems (CPS) applications in-
creases high assurance challenges. Advanced Metering Infras-
tructure (AMI) is a critical part of smart grid and failure to
address security risks in it might disrupt utilities in their mission
to deliver power reliably. The objective of this paper is to find
mitigation actions for attacks that might be launched against
AMI. The paper introduces a tool called SecAMI that calculates
the relationship between the speed at which an attack spreads,
the speed at which it can be detected, and the consequences on the
availability of the AMI. The results from SecAMI can be used as
a performance metric to significantly improve the development
and the deployment of Intrusion Detection Systems (IDSs) in
an AMI environment. Experimental results with an IDS called
Amilyzer show that centralized IDS might not work efficiently
in scalable systems comparing with distributed IDS in term of
detection time, especially with a Distributed Denial of Service
(DDoS) attack or remote disconnects on the AMI.

I. INTRODUCTION

A Cyber-Physical System (CPS) is any physical system
that is controlled by a computer or network of computers.
A prominent example of a CPS is the “smart grid,” which
among other use cases refers to the use of information on
current power demands, for example to determine where to
generate power, by how much, how to distribute it, and how
to identify utility customers that are willing to use less power
during peak demand periods.

The component of the smart grid that will directly impact
most people’s lives (as opposed to power intensive businesses,
or the utility backbone itself) is the Advanced Metering
Infrastructure (AMI), sometimes referred to as “smart meters.”
These meters can provide readings to power companies on
demand or be read off remotely. They can also serve as
the targets of commands whereby the meters are connected
to “smart devices” in the house so that, for instance, the
thermostat can be altered, or some appliances can be shut
off during peak demand. They can also be used to centrally
disconnect a house from the utility network, e.g., for load
shedding, or if the customer is in arrears on payments, etc.

Smart meters are typically deployed in a network over a
neighborhood; such a group is commonly referred to as a
Neighborhood Area Network (NAN). NANs are mesh net-
works, wherein each node can communicate with a given
subset of nodes (based on distance, line of sight, and other

factors). In our model, each smart meter also serves as a router,
connecting all the nodes it can communicate with. In each
NAN there is a Data Concentrator Unit (DCU), which is the
central node that gathers data from the smart meters in the
NAN and reports back to the utility company. It is also the
DCU that has the ability to send remote disconnect commands
from the utility to any smart meter.

While smart meters and NANs have many potential advan-
tages, they can also become a double-edged sword by introduc-
ing new vulnerabilities into the utility network. If a malicious
individual gains control over the DCU, she could have the
power to manipulate power loads by changing the data sent
to the utility, which might cause brownouts or blackouts [1].
More directly, an attacker who gains control of the DCU has
the ability to disconnect the entire NAN. The National Elec-
tric Sector Cybersecurity Organization Resource’s (NESCOR)
report from September 2013, identified a failure scenario in
which a malicious individual could launch a mass disconnect
[2]. This scenario, AMI.27, considers that a smart meter could
be stolen from a vendor and reverse engineered, leading to the
identification of a remotely exploitable vulnerability to gain
control of a meter.

This paper introduces SecAMI, a simulation tool at the
NAN level that calculates the relationship between the speed at
which an attack spread, the speed at which it can be detected,
and the consequences for the number of meters connected
in the NAN. The results from SecAMI can be used as a
performance metric to significantly improve the development
and the deployment of Intrusion Detection Systems (IDSs) in
an AMI environment. SecAMI helps us to answer questions
such as which failure scenarios are manageable in terms
of network availability as a consequence of detection and
response timing and which are not. Further it provides an
ability to game out “what if” scenarios with different timing
parameters in an efficient way. SecAMI does this by allowing
the user to simulate a variety of network topologies and
different attack scenarios with varying abilities and goals for
the attackers.

SecAMI can simulate any attack that can be modeled as
follows. The attacker starts at one of the meters, and has an
attack vector that allows her to spread to all of that node’s
neighbors. Based on the time to compromise a neighbor, the



time to detect that a node has been compromised, and the time
to communicate between nodes as inputs, SecAMI plays out
the attack and ultimately reports what percentage of the NAN
is still connected to the DCU. The attack ends once the DCU
has been compromised, or all the compromised nodes have
been dealt with according to a chosen response policies.

Two examples of such attacks are a control flow attack and a
data flow attack. In a control flow attack, the attacker explores
the network, taking control of each visited node, until she
reaches the DCU and can issue a mass disconnect. In the data
flow attack, the attacker injects false data about the load at
each meter into the network, eventually causing a failure [1].
The question that arises for each kind of attack is how quickly
can it spread through a network of meters. There has also
been some work in identifying response actions [3] when an
attack is detected. So a related question is how quickly must
an attack be detected and a response action put in place for
certain requirements to be met. A natural requirement is that
a certain part of the network be reachable from the DCU.

SecAMI achieves those two goals: it quantifies how quickly
an attack spreads, and how quickly a response must be
implemented in order to maintain a given level of network
availability. Additionally, it allows us to examine the effect of
a distributed vs. centralized IDS on network survivability. It
models an attack scenario, a response technique, the network
topology, and the mechanism of spread through the network
and computes the portion of the network that is still reachable
from the DCU.

We also conducted a case study utilizing the Trustworthy
Cyber Infrastructure for the Power Grid (TCIPG) test bed
at the University of Illinois at Urbana-Champaign (UIUC)
[3]. We used the TCIPG test bed to measure transmission
times in the network, and how long it takes to disconnect
a node. Additionally, we obtained the amount of time it takes
Amilyzer, an IDS that looks at network traffic, to determine
that a packet breaks one of its rules and raise an alert. The
results were then used as inputs to SecAMI, thus infusing
a degree of realism in the configuration parameters. We
have open sourced our tool, SecAMI [9], so that smart grid
operators can answer “what if” questions that will help them
provision and protect smart grids.

The rest of the paper is organized as follows. We discuss
some of the related works in Section II. We describe the design
principles and objectives of SecAMI in Section III. We discuss
how we used the UIUC TCIPG test bed in Section IV. The
evaluation methodology is discussed Section V, followed by
the results in Section VI. Finally, Section VII contains our
conclusions and suggestions for future work.

II. RELATED WORKS

In “Who Controls The Off Switch” [1], R. Andersen
raises concerns about the possibility that the remote con-
nect/disconnect capability of smart meters might be abused
by a malicious attack and causes a large-scale blackout. Here
we concentrate on how to prevent such a scenario.

We need an efficient Intrusion Detection System (IDS) with
an optimal distribution of sensors in an AMI. Efficiency of
any IDS can be determined by the detection time and how
fast it is compared to attack time. Therefore, we care about
detection time to know what should be the optimal distribution
of sensors in a NAN that guarantees to detect an attack leaving
the highest possible percentage of AMI alive.

Grochocki et al. [4] proposes a scheme in which the IDS
sensors can be embedded in smart meters. The traffic monitor-
ing coverage of this scheme is wide compared to the traditional
centralized system that uses only the utility server as an
IDS. Consequently, attacks on meters that use these nodes as
routers to reach the DCU will be detected much faster. In [5],
Shin et al. tried to optimize this scheme by minimizing the
number of monitoring meters that give a complete monitoring
coverage for all other smart meters and their communications.
Additionally, they propose a mechanism to allow recovery of
collided packets that are subject to monitoring.

Temple et al. [6] show that when the process of remote
disconnects is implemented with a random delay on the order
of hours, the utility server would gain enough time to react to
multiple cyber-physical attacks. We expand on this work by
investigating exactly how long this delay needs to be relative to
the time it takes an attacker to issue the disconnect commands.
We also quantify the “goodness” of our result in terms of the
percentage of the network that is still connected after an attack.

Policy-based approach provides a pragmatic solution for
many CPS challenges [7]. Berthier et al. [3] presented Am-
ilyzer, a centralized specification-based intrusion detection
system that leverages NESCOR failure scenarios [1] to define
a comprehensive set of security policy rules.

III. DESIGN

Our goal is to determine how quickly an attack can spread
through a NAN. This is difficult because we are dealing
with a network of embedded systems with less processing
power than the computers in traditional networks that have
been extensively studied. Furthermore, the fact that the mesh
network does not have dedicated routers changes the timing
of data transmission. Consequently, a new tool built around
the characteristics of the NAN networks is needed.

The opposite question is also interesting: how quickly must
an IDS respond to an attack? We evaluate this based on how
much of the network is still reachable from the DCU after an
attack in order to see at a high level how the response and
attack times interact.

In addition to how quickly an IDS should respond to an
attack, there is a question of what response to choose. We
consider two different policies. The first is to disconnect
the node from the network. This also disconnects any node
whose sole path to the DCU goes through the disconnected
node. In effect, the network reconfigures around the change
if possible. The second possible response, which assumes
encrypted network traffic, is to change the network key and
not send the new one to the compromised node. This way,



all traffic from the compromised node would be disregarded
because it would not decrypt properly.

Beyond attack and response times, we also look at the effect
of where the attacker starts. We start the attack both close to
the DCU and far from it to show the effect of the starting point
on network survivability. In general, the attacker will not know
where the DCU is, and can be assumed to be equally likely
to start at any meter in the NAN. Consequently, we report
network survivability averaged over the attacker starting at
each meter for each of our experiments on attack and response
time.

A significant advantage of SecAMI over existing simulators
and traditional attack graph approaches is to allow the user
to focus on the key characteristics of the attack and defense,
such as how the attack spreads and at what rate, abstracting
out many of the lower level details. Attack graphs are not
useful in this context because meters are all homogenous and
so subject to the same access patterns and vulnerabilities. The
attacker can move to any node connected to the compromised
node. Consequently, attack graphs add no more information
than the network topology.

A. Attack Model

SecAMI is agnostic to the motivations of the attacker and
how the attack is implemented, focusing instead on how
the attack spreads and the relevant timing information. The
attacker takes some amount of time, referred to as the attack
time, to compromise a node. After that time, the attacker
controls that node and can use it to launch new attacks on
other nodes. Specifically, SecAMI assumes the attacker attacks
all the neighboring nodes. These ongoing attacks depend on
the originating node remaining in the attacker’s control. If the
attacker loses control of the originating node due to a response
from the IDS, the attack fails. The attack continues until either
the DCU is compromised or the attacker controls all the meters
in the NAN (note, this almost never occurs without the attacker
also controlling the DCU, but it is theoretically possible).

B. Network Topology

SecAMI can be run on any network the user specifies, with
the convention that the DCU is at node 0. For our experiments,
we observed that the NAN is a mesh network, most of which
follow a power law distribution wherein most nodes have few
neighbors, but a few key nodes have many neighbors [8]. We
generated example networks with 50 - 150 nodes, and with 2,
6, or 10 as the maximum number of connections per node.

IV. TRACE-BASED SIMULATION

To insure that our simulation results are as close to reality as
possible, we used the TCIPG test bed to measure the network
parameters of interest. We measured the time to communicate
with a meter, the time to disconnect a meter, and the perfor-
mance of an IDS called Amilyzer. The communication time
was used in our general simulation, the time to disconnect a
meter was used as a proxy for attack time in conjunction with

Fig. 1. TCIPG AMI test bed used to derive parameters for the simulation [3]

Amilyzer as a case study to see how vulnerable existing NANs
might be.

The test bed consists of about 20 OpenWay1 meters manu-
factured by Itron and connected to each other over a RFLAN
mesh network (Fig.1). They in turn are connected via a cell
relay to an Ethernet switch. The Ethernet switch in turn
connects the meters to the collection engine back end. The
collection engine is the interface through which commands
are issued to the meters. The Ethernet switch also connects to
Amilyzer, the IDS.

We measured the Ping and Remote Disconnect commands
on the TCIPG test bed. The Ping command sends a message
back and forth to a meter, we used this to determine the
communication time between a meter in the NAN and the
DCU. The Remote Disconnect removes a meter from the
NAN, and would be used by an attacker in our control flow
attack to remove meters from the NAN once the DCU is
compromised.

The test bed does not currently support encrypted traffic,
so the times measured do not include encryption overhead.
Additionally, we used the time for a remote disconnect com-
mand as the time to compromise a node because it involves
communicating with a node, some processing, and then a
response. We recognize this may have inaccuracies, but it
was the best proxy available. The test bed experiments are
limited due to the practical constraint that the meters are not
programmable. Therefore, we were unable to inject attack
traffic for example, or put timing probes for the code executing
on a meter.

V. EVALUATION

A. System Description

SecAMI takes three inputs. The first is the network topology
of the NAN for the simulation. This consists of the nodes in
the network, and their connections. SecAMI includes a tool to
automatically generate a network of a user-specified size with
connections between nodes generated randomly according to a
power-law distribution with a parameter α of 2.5. The second
and third parameters are timing information, on the time to

1This paper in no way suggests that there are vulnerabilities in OpenWay
meters. They are just used to get realistic time measurements and we could
have used meters from any other manufacturer with the same effect.



detect an attack, and the time it takes an attack to propagate
from one node to a neighboring node. These times can be
measured in a controlled environment, such as a test bed, and
then entered into SecAMI to determine the resiliency of a
large-scale network to the attack.

B. Simulator

The simulator has two parts. The first generates a network
topology for the simulation, as described below. This allows
us to vary the number of nodes in the network, as well as
their connectivity to one another. The second part consists of a
series of rules for how the attack proceeds and is detected. This
allows us to examine how a hypothetical attack on the network
against a given IDS model would proceed. At each time step
we can observe the number of connected, compromised, and
disconnected nodes (Fig. 2).

1) Network Topology: The first part generates mesh net-
works with a user specified number of nodes, and maximum
number of connections per node. The actual number of con-
nections a given node has a random variable with values from
1 to the specified maximum number of neighbors. Additional
connections are added to avoid partitions in the network. For
our evaluation, the graph generator is used to create networks
of three different sizes: 50, 100, and 150 nodes. For each
of these sizes, we create a subclass of graph based on the
maximum number of connections per node, there are three
such subclasses: 2, 6, and 10 maximum connections. We create
5 random, independent instances of each of these subclasses,
and report simulation results averaged across the five instances
for each of the 9 size × maximum degree combinations.

For each node in the graph, a power law random number
generator is used to determine the number of connections that
node should have. Then, for each node in turn, it randomly
selects a node it is not yet connected to, but that still has con-
nections available, and connects to that node. This is repeated
until the current node is out of its allotted connections, and
then the next node is considered. If no node exists that still
has connections remaining, a new node is created to satisfy
the current node’s need for a connection.

2) Simulation: The second part is the simulator itself.
It implements our attack and response models as described
below. We use the simulator in two ways. First we use it to
determine a general relationship between attack time, detection
time, and network survivability. For this, we input a fixed set
of attack, and detection and response times. The response in
our simulations is always initiated from the DCU, under the
assumption that it is more secure than individual meters. Some
sample attack and response strategies are shown in the table
below.

The key inputs are the NAN topology, the compromise
time, the detection time, and the communication time between
nodes. From those, it simulates the attack, modifying the NAN
as it goes. The simulation terminates when there are no more
compromised nodes, or the DCU itself has been compromised.
At the end, it determines how many nodes are still reachable
from the DCU (0 if the DCU itself has been compromised),

TABLE I
SOME OF SECAMI SAMPLE ATTACK AND RESPONSE STRATEGIES

and reports this as a percentage of the original nodes in the
NAN. Other metrics can also be collected (though not done
for our evaluation), such as the throughput of data reaching
the DCU, the average latency of data reaching the DCU, the
consumption of bandwidth in the NAN.

The simulation contains two levels. The first level cycles
through the graphs, attack to detect time ratios, and attacker
starting points. The second part takes these settings and runs
the actual simulation, generating a data point. During the
simulation, it maintains a calendar of events (implemented as
a priority queue), for instance when a node will be reached,
or compromised, or when the fact that a node has been
compromised will be detected. The first event to be scheduled
is when the starting point of the attack will be compromised.
Once that happens, a detection event is scheduled for that node,
and an event for the spread to the next node is scheduled. This
repeats until there are no more events remaining, which means
that the attack has been stopped, or the DCU is compromised.

3) Simulation Rules: The following are the detailed rules
for both the attack scenario, and our response to an ongoing
attack. Once a node has been compromised, the attacker can
move to any of its neighbors, and makes a random choice
about which neighbor to attack next. This move takes hop time,
after which the attacker has compromised the new node. This
can easily be made probabilistic by assigning a pre-specified
probability for the successful compromise of a vulnerable
node. Back at the original node, the attacker selects another
node to compromise. The attacker can attack all neighbors of
a node once he has compromised it. An attack is detected after
hop time times the shortest path to the DCU (computed using
Dijkstra’s algorithm), plus a constant detection time. Once it
has been detected that a node has been compromised, that node
is removed from the NAN. Further, any ongoing attack from

Fig. 2. SecAMI Architecture



that node is terminated, and its target is not compromised.
Consequently, the DCU has to detect that some node has been
compromised before it can compromise other nodes in order
to stop the attack. This becomes more likely as the attack gets
closer to the DCU.

We investigated two different responses to attacks using Se-
cAMI. The first is the simplest: simply disconnect a node from
the network. A subtler approach is to change the cryptographic
key for the network, thus rendering the compromised meter
incapable of communicating, but still able to function as a
traditional “dumb” meter. Both these response strategies have
been proposed and evaluated in the context of AMI [10].

VI. RESULTS

A. General relationship

The main goal of SecAMI evaluation is to answer questions
such as which attack scenarios are “under control”, i.e., cause a
tolerable level of damage to the network, in terms of detection
and response timing and which are not. To achieve this goal,
we simulate a variety of network topologies and get the
average of results over all graphs, in order to avoid dependence
on a particular topology, and achieve a more general result
on the class of graph involved. Furthermore, we simulate the
attacker starting at all possible meters in the NAN and average
the results for a given topology.

We created graphs with 50, 100, and 150 nodes. For each
node level, we created five graphs with 2, 6, or 10 maximum
additional connections. We were primarily interested in the
effect of the ratio between the time to compromise a node
to the time to detect and respond to a node compromise. As
such the absolute values did not matter, so we used 1 to 10 as
the compromise times, and 0 to 9 as the detection times. This
generated 58 unique ratios, giving us a sufficient number of
data points to plot. We used every node in the graph in turn as
the starting point for the attack. We generate results for each
of the nine size × node degree combinations.

We first show the impact of having the attacker start close
to the DCU or far from it when the response is to remove
the node from the graph. There are two factors at work here:
the closer to the DCU an attack is, the faster it can respond
due to lower transmission time. However, an attack closer to
the DCU is potentially capable of doing more damage by
disconnecting more of the graph. We find that the mitigation
time advantage outweighs the added vulnerability, and that
the network availability is higher for attacks starting near the
DCU, by an average of 18.7% (Fig. 3) starting with a attack to
detect ratio of 1.4. The network’s ability to reconfigure itself
(basically changing the connectivity) also contributes to this,
making it hard for any node, even one close to the DCU to
disconnect large amounts of the graph if removed.

Next, we consider the attacker starting at every meter, and
average the results together (Fig. 4). We show results for three
of the nine scenarios, combined onto one graph. Namely, for
50 nodes and 2 connections, 100 nodes and 6 connections, and
150 nodes and 10 connections. These were chosen to show
representative results for each node and connection category.

Fig. 3. Results when the attack begins far from the DCU vs. near the DCU

As the graph below shows, the ratio between the attack time
and the detection time needs to be at least 3:1 to preserve a
significant portion (above 90%) of the network, regardless of
the size or connectedness of the topology. In other words, the
time to detect and respond must be at most one third of the
time to compromise a node. A sharp spike happens at this ratio
and a large part of the network is available if the detection and
response are faster than this.

B. Re-key Response

We also show the impact of changing the network’s cryp-
tographic key in response to an attack instead of removing
the compromised node. Once the key has been changed, the
compromised node can no longer communicate with the rest
of the network. As a result, any ongoing attack in which that
node is involved is terminated. We experimented with this
technique on both highly connected networks (maximum of
10 connections per node) and sparsely connected networks
(maximum of 2 connections per node) of network size 50, 100,
and 150. Changing the key of the network is a more effective
response than simply removing the compromised node from
the network. For the sparsely connected network, the required
attack to response time network for high availability after the
attack drops to 1.4 (note that the attack has a greater impact
on the smaller network, Fig. 5). The highly connected network
fares even better, with the required ratio dropping to 1.14
(Fig. 6). This intervention is more effective because it will
reach nodes that are under attack sooner than it will reach the
compromised node itself thereby preventing the attack spread.

Fig. 4. Results for graphs with 50,100, and 150 nodes



Fig. 5. Results for the Re-key network response with few connections

Fig. 6. Results for the Re-key network response with many connections

C. Case Study

We performed a case study of a control flow attack based
on our data from the TCIPG test bed. For this case study,
we used the Ping time (III.C.1) as the network transmission
time between two neighboring meters. For the attack, we had
a remote disconnect command being sent from the DCU. We
found experimentally that a remote disconnect time on the
testbed is quite slow, approximately 10 seconds. For the detec-
tion, we had the node send the remote disconnect command to
the Amilyzer for its analysis and then Amilyzer’s processing
time before it flags the detection. Finally, for response, we
had a command go out from the DCU to the compromised
node. We found that the ratio of attack time to detect and
respond time was very high, 94.9. Our detection time may be
unrealistically fast, because we are assuming that something
detectable is transmitted towards the DCU as soon as a node
is compromised. Under the experimental conditions, we found
that 90% - 98% of the network remained connected (Table II).

TABLE II
RESULTS FOR THE CASE STUDY WITH 20, 50, AND 100 NODES

VII. CONCLUSION

The paper proposes the tool SecAMI that allows a net-
work operator to do risk assessment for Advanced Metering
Infrastructure (AMI). It allows one to configure the kind of
attack - the speed, the vantage point of the adversary, etc.,
the kind of detection, and the kind of response - the time
for disconnecting a suspect node or initiating a re-keying
of cryptograph keys. Under the configuration, the simulation
can determine various output metrics. We present results for
the percentage of the network that is connected to the Data
Concentrator Unit (DCU) under attack conditions. The tool
will allow an administrator to determine how much faster
detection and response need to be for keeping a certain fraction
of the network functional. Our experimental results show that
there is a critical threshold for IDS speed. To reach this
threshold, either IDSs can be sped up (if need be), or more
IDSs can be deployed in a distributed manner in a given NAN.
Thus, centralized IDS might not work efficiently in scalable
systems in term of detection time, especially with a Distributed
Denial of Service (DDoS) attack or remote disconnects on
the AMI. This emphasizes the promise of distributed IDS
technology for AMI as proposed in [11]. Future work should
focus on evaluating several attack methodologies and detection
mechanisms. Additional types of attack should be considered
that may affect the high availability of any AMI. Furthermore,
SecAMI will be used to find the “optimal” distribution of
intrusion detection sensors in a distributed IDS over a scalable
AMI.
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