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Abstract—Interdependent cyber-physical systems (CPS) con-
nect physical resources between independently motivated actors
who seek to maximize profits while providing physical services
to consumers. Cyberattacks in seemingly distant parts of
these systems have local consequences, and techniques are
needed to analyze and optimize defensive costs in the face of
increasing cyber threats. This paper presents a technique for
transforming physical interconnections between independent
actors into a dependency analysis that can be applied to find
optimal defensive investment strategies to protect assets from
financially motivated adversaries in electric power grids.
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I. INTRODUCTION

Industrial control systems (ICS) which drive cyber-
physical systems (CPS) are becoming more interconnected
throughout all domains and across corporations. Success-
ful attacks on CPS’s are becoming more visible [1], as
demonstrated by Stuxnet [2] and shown in a recent ICS-
CERT report [3]. Strongly networked and interconnected
embedded systems are the cornerstone of most CPS’s,
providing and coordinating distributed controls often across
wide area networks. Protecting all of these systems, however,
is impractical–finite resources are allocated to security. The
practitioner community needs an analysis framework and
decision support tool to aid in understanding intentional
attacks on interdependent CPS, their propagation through
interconnected systems, and the impact they have on prof-
itability when financially independent but interconnected
companies face attacks. With such a framework, risk-aware
defensive strategies can be formulated for minimizing the
impact of security attacks.

Understanding and measuring the complex interactions
that occur in interdependent CPS and creating an optimal
response to attacks is an important concern in today’s world
of rising security threats. In a CPS such as the electric
power grid, identifying high-risk components and making
good design choices is no longer a trivial or self-contained
task. The large network of feedback created by corporate

profit optimization complicates risk assessments, especially
when multiple companies are competing for revenues and
their fates are tied in complex ways. Enron demonstrated in
the 2000 California Power Crisis [4] that carefully placed
outages could net huge profits. If we map these manip-
ulations to perturbations that a dedicated adversary could
introduce in the system, then it becomes clear that we need
a scientific basis for seeing which components are most
vulnerable and where defensive investments are likely to
have the best outcome.

This paper addresses the problem of asset protection in
the face of strategic adversaries in electric power grids. The
model that we develop in the paper is of autonomous or-
ganizations (equivalently, corporations) dubbed as “actors”.
The actors own and operate various assets, and cooperate
to provide some end-user visible service. For example,
the natural gas generators(s) and solar energy provider(s)
feeding into the electric grid, provide electric power to end
consumers. Attacks against these assets impact the profits
of the actors. Motivated by the prospect of financial losses,
defensive investments are made by the actors to secure the
cyber systems utilized by the asset. We explore the gamut of
relationships that can exist between the actors as they relate
to the defensive strategies that they deploy. The gamut runs
from actors behaving completely independently through a
subset of them cooperating in securing the assets to perfect
cooperation.

There are a few insights into improving the models for
defensive investment optimization. First, the implications
of attacks in the cyber side should be measured on the
physical side. This enables dependencies to be drawn from
complicated interconnections rather than approximated via
contagion. Second, when every actor in the system is consid-
ered financially motivated, then attacks are driven by profits
and defenses are driven by losses. This allows adversaries
to be profit seeking and creates a complication for defenders
where the assets which cause the most harm to one actor may
be owned by another. When actors are mutually harmed by
an attack, they may wish to collaborate in defense and share
the expense of defending an asset.
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The solution captures the physical interconnections as
a directed flow graph. The nodes and edges capture the
primary supply chain factors involved in a system such as the
interconnected natural gas pipeline and electric grids. These
factors are the maximum capacity, cost per unit flow, and
loss due to inefficiency. The flow is then optimized under a
multi-actor model that measures the profitability of each ac-
tor. This model then serves as the basis for impact analysis—
the supply chain factors are perturbed during cyber-attacks
and the change in profitability is measured. The strategic
adversary model then optimally selects a subset of actors in
the system and targets that have a large positive benefit to the
attacker. The defenders, estimating the adversary strategy,
independently select assets to defend.

The model is evaluated against an interconnected natural-
gas, electric system which is created from data available
from the Energy Information Administration (EIA). The
impact of multiple stakeholders is evaluated in the impact
model, showing that the inclusion of independent actors sig-
nificantly influences the observed impacts of cyber-attacks
on asset owners. The strategic adversary model is evaluated
against varying number of actors and noise to capture
the adversary’s sensitivity to accurate models. Finally, the
defense strategy is analyzed in its effectiveness at protecting
against the strategic adversary.

Existing techniques in [5–9] have focused on optimizing
and planning resource allocation under constraints that pri-
marily prevent shortages while minimizing costs, but these
techniques do not consider the interdependent nature of
decisions made by entities in an interconnected CPS along
with their security implications. Prior development [10–15]
creates a foundation for solving some of the larger defensive
decisions problems, but it does not consider the interde-
pendence between the CPS and the multi-objective nature
of an intelligent, profit-motivated attacker and distributed
defenders. An impact analysis technique is needed as the
foundation for a utility function in a larger framework that
captures the unique characteristics seen in interdependent
CPS.

Section II provides an overview of the solution with
Section II-D describing the impact model, Section II-E
describing the strategic adversary, and Section II-F detailing
how the defenders react. Section III contains the experimen-
tation, Section IV the related work, and Section V concludes
the paper.

II. THE MODEL

This section provides an overview of our economic model
in energy-based cyber-physical systems.

A. System Goals

The desired outcome driving this work is an optimal
defensive investment strategy for each actor in an interde-
pendent CPS. The first component is an impact analysis tool

that measures the financial outcomes of perturbations in the
physical system, which are driven by cyber-attacks. Embed-
ded systems operating in the CPS are attacked resulting in
reduced asset productivity. The impact analysis is then used
to drive a strategic adversary who evaluates the best targets
to attack, given the particular impact model. The final piece
is the defender who takes the preceding two pieces and
combines them to estimate an attacker’s moves and counter
them with defensive investment at crucial locations in the
system.

B. Multiple Actors
A key divergence from prior work in the techniques

presented in this paper is the presence of multiple inde-
pendent actors. In an interdependent CPS, several different
companies are competing for revenues and profits in an
open market, and these independent actors represent po-
tential benefactors in cases of malice or disruption. When
constructing dependable systems, metrics are often driven
from a monolithic ownership perspective (total throughput,
etc.). In wide-area energy networks, however, the economic
impact of each player must be considered.

C. Attacks and Impacts
From the perspective of multiple actors, an adversary

can create disruptions in the system in a way that profits
some actors while hurting the system overall. Attacks in this
scenario extend as compromising control systems to disrupt
physical flows. Specific attack mechanisms such as buffer
overflow exploits, etc., are not considered in this paper.

Whenever an attack is launched, the impact can be mea-
sured in two ways. First there is a reduction in the efficiency
or capacity of the overall system–a more traditional metric
that measures pre and post-attack profits, with post-attack
profits always being equal or lower to pre-attack levels.
Second there is the independent impact on the multiple
actors in the system. In this case, the combined change in
profit is always negative, but there may be individuals who
benefit from the attack. This is the intuition that drives the
techniques presented in this paper.

D. The Impact Model
The impact model comes from analysis of energy markets.

In these markets, the flow of energy is scheduled with an
objective of minimizing costs at producers and maximizing
utility at consumers. Techniques such as Optimal Power
Flow (OPF) [16] assign power flows to maximize Social
Welfare (SW). In the adaptation used in this paper, a graph
is created to capture the power flow structure for a medium-
term window of time, ignoring the low level mechanics such
as voltages and phase angles required to achieve the required
flows. The following section describes how a graph structure
is created and optimized to reach a maximal Social Welfare.

In an energy-based CPS, the producers have a per-unit
cost and the consumers a per-unit price for energy which
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drives strategies for energy flow. The CPS (and supporting
market mechanisms) optimizes the costs and revenues to
provide for the cheapest energy flows to the highest paying
customers. Traditionally these markets are slow, updating
every 15 minutes, but because electric energy cannot be eas-
ily stored interconnected embedded systems are becoming
active market players [17]. Consequently, the energy flows
in energy CPS are becoming much more dynamic–outages
and changes in demand can result in large and localized
price levels.

1) Social Welfare: The basic energy-based CPS is mod-
elled as a flow graph. The hubs or vertices serve as electrical
buses or gas pipe headers and allow energy to flow via edges
from sources to sinks. Each edge has a capacity, loss, and
cost associated with the flow of energy. For generalizable
equations, the cost may be negative to represent revenues.
The fundamental optimization problem is determining the
flow levels through each edge in the graph. Sources with
cheap energy costs are likely to have high flows. Similarly,
consumers with high revenues will see the most energy. For
the sake of simplicity in algorithmic convergence, the per-
unit costs are assumed fixed at the producers and consumers.

The concept of social welfare or utility follows system-
wide profitability. Maximum revenues and minimum costs
provide for the most social welfare–if a single company
owned all assets this is the best decision to make. Linear
programming is used to solve for the optimal flows in the
system, and utility function is defined as follows. Each edge
has a capacity c(u, v), loss l(u, v), and cost a(u, v). Table I
contains the variable and function names for reference. The
profits are maximized with the listed constraints. Compared
to traditional power system optimizations, these constraints
do not consider the stability of the grid (generator response
time) other than power flow limitations. New technologies
(specifically D-FACTS [18]) allow for a more simplified
view of grid planning.

Utility = min
∑

(u,v)∈E

a(u, v) · f(u, v) (1)

Subject to constraints:

0 ≤ f(u, v) ≤ c(u, v) (2)

d(v) ≤
∑
u∈V

c(u, v)for all v ∈ L (3)

s(v) ≥
∑
u∈V

c(v, u)for all v ∈ G (4)

∑
u∈V

f(u, v) ≤ d(v) for all v ∈ L (5)

∑
v∈V

f(u, v) ≤ s(u) for all u ∈ G (6)

Table I
LIST OF PARAMETER AND FUNCTION DESCRIPTIONS

a(u,v) Unit cost from u to v
c(u,v) Capacity
d(v) Demand
s(v) Supply
f(u,v) Actual flow
l(u,v) Loss percentage
L Set of all sinks/loads
G Set of all sources/generators
U Utility
I Impact
Pa Probability of Attack
Ps Probability of Success, Given Attacked
Cdt(t) Cost of Defending Target t
Catk(t) Cost of Attacking Target t

∑
w∈V

f(u,w)

1− l(u,w)
=

∑
w∈V

f(w, u) ∀ u (7)

The first equation 1 measures profit as a function of
cost and flow in the system. Equations 3 and 4 constrain
demand to levels desired or possible in the system, and
equation 2 enforces capacity constraints. Equations 5 and 6
serve to prevent over-production or over-selling. Equation 7
conserves energy flows through the vertices in the graph. The
division by 1−l(u,w) accounts for losses in transmission by
requiring more total input than output from hubs whenever
energy is being transmitted.

2) Social Welfare with Multiple Actors: The utility func-
tion listed above provides optimal social welfare. A problem
arises, however, when the society is composed of multiple
independent actors who are competing for profits. In this
case, the optimal flows cannot be decided from a single
point of interest. This section describes an algorithm for
determining individual utilities when multiple actors exist
in the system.

Determining how independent players will negotiate on
prices is complex and often modeled in game theory. Work
in [19] for example analyzes games that generate prices
for buyers and sellers in completely open energy markets
using interconnected smart meters. The focus in this work,
however, is not in analyzing these particular games but rather
in providing a reasonable estimate under some assumptions.
The first assumption is that flows always operate at the
social welfare optimum. Intuitively, if the actors were willing
to cooperate with each other, then this equilibrium would
always be reached (as a collation-proof Nash equilibrium).
The individual utilities then are not found by optimizing
flows. Instead, only the profits of the system must be
distributed.

The profits are divided among the actors in the system
by evaluating marginal costs at each point in the system.
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Notionally, the marginal cost represents the price of the al-
ternative (i.e. competition). Since the actors are independent,
they will not collaborate with each other to influence prices.
Therefore, all competition is assumed perfect in the sense
that each actor will charge the maximum up to the marginal
cost at which point a competitor will overtake production.
The marginal cost is calculated by fixing the flows for each
actor by adding a constraint to the optimization problem and
reducing the capacity of each positive-flow edge by one unit.
The reduction in utility is the corresponding marginal cost.
This is done independently for each actor and each edge.

1 : For each a c t o r , f i x edge o u t f l o w s
and d e t e r m i n e m a r g i n a l c o s t

2 : Ass ign f r a c t i o n o f m a r g i n a l c o s t t o
edges i n s i n g l e a c t o r problem

3 : I n c r e a s e f r a c t i o n u n t i l f low i s
p e r t u r b e d

4 : Reduce c o s t a t f low p e r t u r b e d
edges u n t i l f low i s r e s t o r e d
f i x i n g c o s t a t t h o s e edges

While the marginal cost provides a basis for competition,
there are a few profit sharing scenarios that must be resolved
algorithmically. In the case of competitors in series, for
example, each would arrive at the same marginal cost on
its output. They are effectively forced to collaborate on flow
levels as a function of physical layout. The middle actor
cannot resell what it does not receive. To rectify this, the
profit taken by each actor in series is incrementally grown
as listed below. Consequently, the actors receive a portion
of the profit roughly equal to 1/N .

1 : S e t t h e s u p p l y / demand t o i t s maximum
v a l u e a t t h e i n t e r f a c e between a c t o r s

2 : Op t imize l o c a l p r o f i t s
3 : Pas s t h e a c t u a l s u p p l y used by each

a c t o r t o a d j u s t t h e demand a t t h e
i n t e r f a c i n g a c t o r s

4 : Repea t 1 3 f o r each a c t o r u n t i l d ( u )
c o n v e r g e s w i t h i n a t o l e r a n c e ( 0 . 5 %)

3) Impact Measurement and Attacks: The impact is mea-
sured by perturbing some part of the model (cost, loss, etc.)
as follows. Impact = Utility′ − Utility where Utility′ =
Utility as a, c, l→ a′, c′, l′.

Attacks in the model are directly represented by augment-
ing the different model parameters (effectively changing the
graph itself). In a realistic scenario, the adversary would
compromise a control system via an advance persistent threat
or other control system vulnerability and obtain an ability
to influence the system. The attack could be abrupt and
eliminate the capacity of a generator or transmission line.
It could also be more subtle and cause slight increases in
loss, for example.

4) Knowledge Perturbations: Similar to an actual attack,
the model may also be perturbed to represent uncertainty
about parameters in the system. An adversary, for example,
may collect system information from public sources or via

inspection (e.g. from a satellite photograph). To model this
behavior, each parameter in the system is perturbed by a
normal distribution with a mean centered at the original
value. A parameter σ represents the knowledge level as a
normal distribution i.e. c′(u, v) = N (c(u, v), σ2).

5) Model Limitations: Often in grid planning, day-ahead
projections are used to schedule around generator con-
straints. For example, it may take several minutes (or hours)
for generating facilities to achieve maximum output. While
this is an important concept in long term planning, the flows
presented here capture only particular time intervals where
demand and generation are expected to be fixed and attain-
able. A time-domain component can be added to the model
by integrating several instances of the utility function to
represent varying demands and generating constraints. The
approaches presented in this paper, however, are designed
and evaluated only for a single demand instance that is
assumed to extend for the duration of an attack.

E. Profiting from Manipulations

Perturbations in the model result in changed profits for
each actor, and a strategic adversary (SA) attempts to cause
perturbations in a profitable way. Disrupted flows will cause
losses for the owner of an attacked asset while changing
market conditions for other players in the system. For
example, an outage may result in a competitor elimination
type of a scenario allowing additional profits to be extracted
by certain players in the system. In other cases, such as a
consumer distribution outage, every actor in the system loses
from reduced sources of revenue. Based on this intuition, a
strategic adversary can profit from the system by finding
targets that benefit a subset of actors with whom she has a
vested interest.

1) Profit Collection: In the case of a perturbation (suc-
cessful attack), the SA is able to collect some percentage
of profit or loss that an actor experiences. This is generally
achieved by buying and selling stocks or energy delivery
futures. For example, the SA might buy stock in actor A,
launch an attack which profits A causing the stock to rise in
value, and then selling the stock to recover a profit. Similarly,
the SA may buy a future delivery contract for energy at a
pre-negotiated price, perturb the system, and the resell the
energy at an elevated (or reduced) price for a profit or loss.
In this way, the SA is able to collect profits in the system.

2) Attack Vectors: Each edge in the graph represents a
physical component or asset in the energy system. Each
asset (or target from the SA’s perspective) may be controlled
by a host of control system devices. These devices are not
homogeneous, and some effort must be expended for attack-
ing each target. For example, a SA may launch an advance
persistent threat that requires careful design, reconnaissance,
and re-design of the viruses to successfully disrupt the
physical system. Therefore, the cost to attack each target
is not fixed and must be evaluated by the adversary to
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determine the best targets to attack. More generally, the
attack vector chosen has a cost and potential return, and
the SA must optimize this decision process.

3) Selecting Targets: The SA performs the following
optimization problem using mixed integer linear program-
ming (MILP). The value IM [a, t] is the impact matrix that
measures the profit from perturbing target t on actor a. If
the value is negative, then that actor experiences a loss for
that target. Each target t ∈ T has an expected cost of attack
Catk(t) and a probability of successful attack Ps(t). The
attacker’s target set is T (i), actor set A(i), and is limited
to spending MA in attack expenses. The SA optimizes her
returns as follows:

max
T,A

∑
i∈T

−Catk(i) +
∑
j∈A

IM [j, i] · T (i) ·A(j) · Ps(i)


(8)

Subject to constraints:

T (i) ∈ {0, 1} (9)

A(j) ∈ {0, 1} (10)∑
i∈T

(T (i) · Catk(i)) ≤MA (11)

Equation 8 selects A and T to maximize the return on
investment (ROI). Equation 9 and 10 force integer values
for target/actor selection, and equation 11 enforces budget
constraints. The value of a target is approximated as linearly
additive since a single attacker is considered, though some
choices may be submodular or supermodular. The set A is
not fixed or constrained, and if A is every actor, the target set
T will be empty because the underlying system is operating
at a maximal social welfare.

4) Limitations of the Adversary Model: While the SA
model presented captures the adversary’s operational char-
acteristics, estimating the probability of successful attack
and the cost to execute an attack can be difficult from
the adversary’s perspective. Some gentle probing, however,
can provide first level approximation. The point of these
parameters is to allow for exploration of defense method-
ologies in the sense that adding layers of security reduces
the probability of successful attack and increase the cost
of an attack. The SA model can become computationally
difficult to solve as the system grows in both the number of
actors and targets. This problem can be alleviated to some
extent by partitioning the system and actors into a divide-
and-conquer algorithm. The submodular and supermodular
concerns can be alleviated by limiting the attacker’s budget
as a complex multi-system attack is rather unlikely.

F. Defense

The defenders are all actors in the system who are fun-
damentally optimizing their defensive investment decisions.

Given the likelihood of an attack Pa, the likelihood of a
attack being successful Ps, the expected impact I , and the
cost to defend Cd, the actor decides to defend a target if
PsPaI > Cd. The defensive model is integrated with the
other two components, the strategic adversary model and
the interdependent impact model, through the parameters I
and Pa, respectively. The probability of attack is created by
the defender’s model of the strategic adversary.

1) Strategy: Each actor a in the system owns a subset of
targets, Ta. For each target t, a binary defense decision D(t)
is made by the owning actor a. D(t) = 1 means that the
asset is defended, D(t) = 0 means it is not. The investment
is limited by the defensive resource MD(a). The defender
then optimizes as follows:

max
D

∑
t∈Ta

(Pa(t) · I(a, t) · (1−D(t))− Cd(t) ·D(t))

(12)
Subject to the constraint:

D(t) ∈ {0, 1} (13)∑
t∈Ta

(D(t) · Cd(t)) ≤MD(a) (14)

Equation 12 trades the cost of defense against the expected
loss due to an attack and results in an optimal defense subject
to the constraint in Equation 14 which caps the amount of
expenditures on defense to MD. This can be solved using
MILP, as in the strategic adversary case.

2) Limiting Information: Similar to the strategic adver-
sary, the defender may have limited information about the
system. The impact matrix that the defender bases her
decisions on may be formed by a noise-perturbed model of
the underlying system, i.e. I ′. The defender is responsible
for determining which targets the strategic adversary will
attack, Pa. This is done by evaluating the SA model from the
defender’s view of the system. For this, the defender perturbs
I ′ with her estimate of the knowledge that the adversary has
and creates I ′′.

3) Collaboration in Defensive Strategy: Multiple defend-
ers may wish to coordinate defensive operations for certain
targets in the system. Some links may have negligible owner
impact but cause substantial losses in other parts of the
system. For example, the lowest cost power source becoming
disrupted increases costs for all energy buyers, so they may
wish to pool resources to defend the low cost source.

Collaboration may occur based on varying levels of agree-
ments. In one extreme, no actors are collaborating, and in
another extreme, all actors are collaborating. In order to
cooperatively defend a particular asset, all actors interested
must have negative impact values for that particular target.
At target t, CD(t) is the set of valid cooperating defenders.
The optimization is as follows:
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Define:
Ccd(a, t) =

Cd(t) · I(a, t)∑
i∈CD(t) I(i, t)

(15)

Optimize:

(16)

max
D

∑
i ∈T

 ∑
j∈CD(i)

(Pa(j, i) · IM [j, i] · (1−D(i)))

− Cd(i) ·D(i)


Subject to the constraints:

D(i) ∈ {0, 1} (17)∑
i∈Ta

(D(i) · Ccd(j, i)) ≤MD(j) ∀j ∈ A (18)

These equations are identical to the earlier set when
|CD(t)|= 1 ∀t. The optimization in Equation 16 makes
a decision on the total cost to defend a target when its
impact is combined across cooperative defenders. Pa(a, t)
takes into account the fact that each defender, actor a, may
have a different perceived attack probability based upon the
limited information model it uses in assessing defense.

4) Defender Model Discussion: The defender model pro-
vides a basis for evaluating dependability from the perspec-
tive of an impending strategic adversary. In a traditional
dependability model, the defender evaluates self-loss and
proportionally protects assets as a way to mitigate those
losses. In the SA model the defender is performing the same
analysis, but the likelihood of those losses are driven by
a for-profit adversary. In this way, traditional dependability
models can be augmented with probability of failures that
include security-oriented attack probabilities.

III. EXPERIMENTATION

A. CPS Model

1) Physical Model: An interdependent gas-electric sys-
tem comprised of six western US states was captured for
experimentation. A simulation was constructed using the
algorithms described in the paper in MATLAB/Octave using
”linprog” and the GLPK linear programming solvers. The
model is based on information available from the Energy
Information Administration (EIA) [20, 21]. Each state’s
vertex in the graph corresponds with its geographic centroid,
for purposes of calculating per-unit transmission losses.
Each state has two vertices with two consumers–one for
gas and one for electricity. In total there are 12 vertices
and 18 long haul transmission edges. Figure 1 depicts the
infrastructure for the two systems, and the interconnection
occurs between the load side of gas (b) and the generation
side of electricity (a).

(a) Electric Model

(b) Natural Gas Model

Figure 1. A flow model is created for six Western US states for both an
electric (a) and natural gas (b) infrastructure.

2) Interconnected Infrastructure Model: Four functions
must be defined for hubs and edges in the gas infrastructure.
The cost function a is based on the average price paid
in each state over a year. For import edges, where gas is
purchased out-of-model, the cost is taken to be 25% lower
than the price customers pay, allowing for transportation
costs. For the loss function l, a calculation is made based on
a typical loss of 1% per 400 km [22], since the actual loss
rates vary based on each individual pipeline’s construction
characteristics. The resulting loss rates are seen in Figure 1
(b). The capacity function c directly maps to EIA’s dataset
[20]. For the loss on the gas to electricity transformation,
we use each state’s energy information profile. Finally the
supply, imports, and demand for each state were calculated
by converting yearly consumption into smaller time scale
amounts. The values for the electric infrastructure are cal-
culated similarly.

Similarly, the values for the electric infrastructure are
calculated using the EIA sources [21]. Each state has a
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suite of electric energy sources to choose from, nuclear,
coal, natural gas, solar, etc., and each source has its own
edge into the hub. The prices for these different sources are
estimated and the supply and consumer pricing in the system
is assumed static because most contracts are negotiated for
terms of a day or longer [23].

We wish to create a more challenging model to evaluate
noticeable impact of an attack (and the resultant defensive
investments). To create a more challenging model, we make
several modifications to the baseline model presented above.
The installed electric capacity c is reduced by 25% to
account for inoperable generators due to maintenance and
climate, and the demand is increased by 65% from the daily
average to represent a high-demand period, i.e. in the peak
of winter. With these adjustments, the system has about 15%
spare capacity which is in line with the EIA’s spare-capacity
estimates.

3) Attacker and Ownership Model: The profit-seeking
SA may select any attack vector and model perturbation in
practice. In this experiment, the perturbation for a particular
target is to reduce its capacity to zero, modeling an outage
scenario. This could easily be achieved by crashing a pro-
grammable logic controller (PLC) rather indiscriminately,
and is thus a moderate complexity attack.

For each experiment, multiple random sets of actors are
created and measured, and the results taken as means across
these variations. The distribution is that if there are N
actors, each asset has a frac1N chance of belonging to
any particular actor.

B. Experiment 1: Interdependent Model

The focus of this experiment is to analyze the behavior
of the interdependent system under attacker perturbations.

The premise of creating a multi-actor impact model is that
having multiple actors competing over resources allows for
some actors in the system to benefit from attacks. To capture
this effect, the summation of positive (and negative) impacts
are observed in the system in this experiment. As the number
of actors increases, two things will occur. First, competitor
elimination becomes more prevalent, i.e., for some functions
in the CPS, a monopoly is created, laying the foundation for
more profits for some players. Second, since the attacks are
really zero-sum, the gains will be met with corresponding
loss potentials.

Figure 2 shows the absolute value of gain or loss in
the system, averaged across random ownership, versus the
number of actors present. The amount of gain in the sys-
tem increases with actors, as expected, but tapers off as
additional competition becomes impossible due to a nearly
independent ownership model. The given model has 12
points of competition mapping to the 12 hubs in the gas
and electric system, and so saturation occurs around the 12
actor mark in the graph. The takeaway here is that gains are

met with losses, and that gains increase with the number of
actors.

Figure 2. The total gain and loss in the system, as the sum across impacts
felt by all actors, increase as the number of actors in the system increase
up to a point of saturation. The sum of the gain and negative loss remain
constant.

C. Experiment 2: Strategic Adversary

The strategic adversary model is examined to determine
what causes most damage to the system.

The SA’s goal is to extract profit from the system by
attacking assets, subject to a constraint on the total budget
she can expend for launching such attacks. The result of
applying costs to attacks is constraining the number of
targets or particular targets that the attacker can disrupt. For
explorations in this section, the costs are uniform across
targets to remove some of the complexities involved in
understanding the model behavior and instead a limit to the
number of targets will be used.

The SA launches an attack as a set of targets and actors
with whom the SA will share in profit, which is determined
by solving the optimization function introduced in Section
II-E3. To this end, the success metric of the SA is simply
the sum of the profits across the target and actor set chosen.

For this experiment, the SA is given a system with varying
numbers of actors and varying amounts of knowledge,
represented as the standard deviation (σ) of noise. The
intuition is that an increasing number of actors provides a
more granular option for target selection. An attack on a
particular target may cause, relatively speaking, a gain and
a loss to a particular actor. If that actor becomes subdivided
into two new owning actors, then the remaining profitable
actor can be selected by the SA. The other dimension is
that when the SA knows less about the system, through
the addition of model noise, suboptimal decisions will be
made. Experimentally the SA’s target determination is done
based on a noisy view of the system, while the actual impact
comes from what the ground truth model experiences due
to an attack.

Figure 3 shows the profitability of the SA, averaged across
random ownership distributions, while selecting a maximum
of six targets to attack. With a larger number of actors in
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the system, the success of the SA is increased as expected,
with the 2-actor scenario having the worst profitability. This
follows the curve in Figure 2. As the knowledge level of
the attacker is decreased, the effectiveness of the attack also
decreases due to poorer decision making.

Figure 3. This figure shows the profitability of the strategic adversary
versus the amount of knowledge (inverse of noise) that it has about the
system. As the noise increases, the profitability decreases. Additionally, as
the number of actors increases, the profitability of the SA also increases
because of profit opportunities.

Figure 4 compares the SA’s anticipated versus observed
profitability. As the knowledge of the SA decreases, and
the model becomes noisy, the attacker’s anticipated profit
does not decrease, but his actual profit does. This suggests
a viable defense policy — deception, specifically, making
the attacker think that he knows the protected system better
than he does in practice. Then, the attacker may be willing to
expend greater resources only to realize after launching the
attack that he obtained diminished returns (corresponding to
the solid line in the figure).

Figure 4. This compares the profit of attack for a 6-actor system. The SA
anticipated returns, based on the noisy model, do not decay with knowledge
level. This means that if the SA is overconfident, the observed returns will
be much less than anticipated.

D. Experiment 3: The Defenders
The defenders are comprised of every actor in the system,

acting in self-interest to mitigate losses due to attacks.
When making assessments about defense, a fixed system

budget is assumed (12 assets) and then divided among the

actors evenly. This means that in a 12-actor system, each
actor can defend a single target, and in a 2-actor system,
each actor can defend 6.

The defender’s goal is to minimize the impact of an attack.
The metric we use for this experiment is then the reduction
in the impact of the possible attack to the defenders.

To be successful, the defender must accurately reason
about the strategic adversary’s targets and then move to
protect ones that cause a significant loss to itself and
are likely to be attacked. This it does under incomplete
knowledge (hence the σ for the various parameters that it has
to estimate). Further, in estimating the adversary’s strategy, it
has to speculate on the level of knowledge for the adversary
(hence, a speculated σ for the various parameters that the
adversary uses). This mechanism is as detailed in Section
II-F2.

Figure 5 shows the effectiveness of defense for a varying
number of actors across the noise that the defender has in
its model of the system. The Y-axis is the metric that is
calculated as follows: compute, for a fixed attack (single
asset), the gain to the adversary when the entire system is
undefended; compute for the same attack the gain to the
adversary when the defender makes the optimized decision
to protect some assets. The metric is the difference of these
two values. As the noise increases, the effectiveness of the
defense decreases. Intuitively this is because the defender is
not completely aware of the impact that an attack has against
a particular target and therefore may choose the assets that
she wants to defend unwisely. As the number of actors in
the system increases, the effectiveness of defense decreases
for two reasons. First, the actors are each operating with
a smaller defense budget since the funding is constant for
the system, thus decreasing per-actor as the actors increase.
Therefore, the actor with large negative-impact targets may
be underfunded. Second, the actor who should defend an
asset may not be the owner, leading to inefficient investing.

Figure 5. The effectiveness of a defense is graded by its impact reduction
in ground truth versus the knowledge level of the defender, modeled as
noise added to the ground truth. As the number of actors increases, the
effectiveness of the defense decreases due to misaligned incentives and a
lack of pooled defensive budgets.

Figure 6 investigates the impact of collaboration in a
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system of 4 actors. The collaboration allows the defenders to
share in defensive costs, in this case for all assets, as long as
they have an aligned defensive incentive. That is, if a target
causes damage to actor A and actor B, A and B will split the
defensive costs proportional to their individual impacts. This
allows actors to more optimally defend assets by sharing
in costs. This effect wears off as noise increases and the
defenders are unsure about which assets are important.

Figure 6. The impact of collaboration is measured by allowing the actors
to share in defensive costs. When the costs are shared, more effective
investments can be made.

Figure 7 compares the impact of collaboration across
different actor sizes. In the first case of 2 actors, it is likely
that an attack on one target helps actor 1 and hurts actor
2, resulting in a limited collaboration opportunity. In some
cases, the attack harms a common supplier or common
customer which motivates collaboration. As the number
of actors increases, the opportunity for collaboration also
increases and results in larger gains. However, for a large
number of actors - 12 in our experimental scenario, where
there are 96 assets - the incentive for collaboration increases
but this is counteracted by forces seen in Figure 5 that the
effectiveness of defense decreases.

Figure 7. Collaboration allows actors to improve their defenses. In this
case, the system-wide defensive investment is fixed as the number of actors
increases, resulting in reduced benefit of collaboration as the number of
actors increases and their individual budgets dwindle.

IV. RELATED WORK

A collection of games surveyed in [24, 25], called inter-
dependent information security games, evaluate the impact
of defensive decisions made by one player on the others.
These games define the players’ interaction generally in a
contagion-type model[26, 27], whereas this paper focuses on
interactions that occur as a result of physical interconnection.
Some games target network control systems specifically
[28], however these models do no address the physical
interdependent [25, 29] aspect of security.

The finances related to attacks have been studied in [29].
The game provides for reduced returns on investments by
the attacker should the defender make a defensive move for
the right asset. This model is useful for evaluating how a
strategic adversary might be impacted in the long term. In
this paper, however, the short term impacts are studied.

A. Electric System Modeling

Solving for optimal energy flows in interconnected energy
systems is not a new problem, and many solutions exist
for providing and optimizing flows around well-developed
constraints. Most of these techniques, however, are not
suitable for multi-player games because a single player
(the independent system operator or ISO) is responsible
for collecting and managing bids in a closed market. This
work focuses on the market aspects more than the constraint
aspects as in security constrained unit commitment (SCUC)
[5] which provides system stability (security) during failures.
The SCUC method has been extended to interconnected gas-
electric systems and provides for useful, however complex
planning [6–9]. This paper focuses on the multi-player
aspects once a particular energy flow has been established
by the simple flow-optimization problem provided.

B. Computer Security and Graphs

General approaches to computer security are not able to
map to the objectives (profit) that this paper focuses on.
Information stolen in computer hacks is discrete, non-time
varying, and thus generally binary. Work in [30, 31] iden-
tifies at-risk components using graphical interdependencies
with this binary attack objective in mind. Using pure graphic
methods in determining the risk of components was done in
[32], but viability of the approach was questioned in other
research [33]. Existing graph-based techniques are useful
for establishing some level of interdependency [34], but the
problem of developing a security strategy around physical
flow perturbations has not been adequately addressed for
interdependent CPS.

C. Games and Defense

Several games have been studied when the impact of
attack known outside of a CPS context. Several recent
techniques [11–15] evaluate how game theory can apply to
different grid-based scenarios. This work supplements these
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contributions by providing a strategic adversary model with
multiple profit-impacted actors. More research is needed to
evaluate the impacts of interdependencies in the physical
domain with defender and attacker strategies.

V. CONCLUSION

In this paper, we present a modeling technique for evalu-
ating cybersecurity defensive investments in interconnected
cyber-physical systems. An impact analysis technique en-
ables multiple actors to compete and maximize their indi-
vidual profits in a flow-optimization problem. The multi-
actor approach allows a strategic adversary to exist who
extracts profits from the system by selecting targets to attack
and assuming the role of some of the actors in the system.
A defensive strategy creates defense optimizations in the
face of a strategic adversary. Our experimentation evaluates
the impact of attacks, ownership, defensive investments,
and collaboration among defenders. We find that as the
number of actors increases and greater competition results, a
strategic adversary is able to net more profit from carefully
targeted attacks. However, collaboration among actors, even
if budget limited, can significantly blunt the effects of such
strategic attacks.
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