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Research Initiatives
• Detection & Diagnosis in Distributed Systems

– Hierarchical Monitor Framework: Generic, re-configurable, non-intrusive, 
and scalable

– PRDC’04, SRDS’04, WASR’06, DSN’06 (fast abstract), TDSC’06, 
ICSOC’06, TDSC’07, SRDS’07 (2-submissions)

• Virtual Machine Management
– Providing management solutions centered around fault tolerance semantics 

to the domain of virtualized server scenarios (jointly with IBM Research)
– NOMS’06, WASR’06
– 2 patents have been filed

• Fault Tolerant Data Dissemination in Sensor Networks
– Provide push-pull based primitive for reliable communication: SPMS, 

SPMS-Rec
– DSN’03(fast abstract), DSN’04, WCNC’07, VTC’07
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Motivation
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Experiments and Results

Related Research
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Motivation
• Distributed network protocols are 

integral in all sectors
– File servers, databases, e-commerce 

applications, p2p etc. 

• Increased reliance on these protocols 
for critical applications 
– Financial, Telecommunications, Security 

etc.
– Cost of downtimes of these systems can 

run into several millions of dollars
• Financial broker $6.2M/hr (Source: 

International Data Corporation, 2005)

• Lack of a comprehensive detection and 
diagnosis framework

networknetwork

Detection and Diagnosis is 
imperative to improve 

reliability
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Design Goals: Detection and Diagnosis

• Detection: Evidence of a protocol behavior which differs 
from the defined set of correct behavior

• Diagnosis: To be able to pin-point the root cause of the 
failure

• A generalizable framework which should provide Detection 
and Diagnosis

• Treat application entities (or protocol entities) as Black-box
– Non-intrusive approach 
– Operate asynchronously

• Online mechanism enforcing low latency and high accuracy
• Autonomic in nature requiring minimum expertise to operate
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Hierarchical Monitor: Real Time Solution 

Detection System 
– Logical separation between the protocol 

entities (PEs) from monitoring entities
– Define categories of rules for matching 

(Anomaly based)
– Fast matching

Diagnosis System
– Causal dependencies are tracked
– Monitor deduces the protocol state
– Non-intrusive diagnostic tests are used
– Black-box diagnosis
– Distributed in nature
– Probabilistic modeling with rich set of 

parameters
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Use of State Transition Diagram
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Example State Transition Diagram 
(STD)

Monitor      

e4

e5      e4      Perform state 
transition

Update state 
variables

Instantiate 
Rules
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Prelim Presentation Slide: Future Work
1. Autonomic STD Reduction

– Larger STD causes more links in the causal graph and hence increases the size of 
diagnosis tree

– All states and events might not be visible, or might not have rules associated with 
them 

– Reduce internal states and states which do not have rules: Makes the Monitor 
architecture more flexible 

2. Comparison with other approaches and generalization
– Applications are composed of multiple services interacting through messages
– Currently working on testing the approach on a e-commerce test-bed using PetStore

3. Detection and Diagnosis in high rate network streams
– We would like to push the knee to the right
– Provide intelligent sampling so as to keep the missed alarms and false alarms low
– Would the detection or diagnosis model require a change ?
– ||Rsv – Rs|| < Є.R
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1. Autonomic STD Reduction
• Provide offline mechanisms to reduce the states

• Two state reduction mechanisms are proposed: Invisible states and 
rule-less states

• Prove transparency of the detection and diagnosis process to the
new state reduction process: Monitor should provide the same 
detection and diagnosis results on the original and reduced STD

• Rigorously test the effectiveness through experiments on reliable 
multicast protocol TRAM and large random STDs. 

• On an average provide over 40% reduction in latency

• Co-contributor: Mike Yu Cheng
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2. Monitor Comparison with Pinpoint
• Pinpoint, an offline diagnosis approach developed by Chen et al. 

2002,  to address problem determination in internet services
– Pinpoint clusters the components touched by failed transactions to deduce 

the most likely cause of failure

• We implement the Pinpoint algorithm and test both approaches on 
3-tier e-commerce test bed
– PetStore application on JBoss application server
– 55 client transactions and 4 different type of fault injections

• Monitor outperforms Pinpoint
– Monitor and Pinpoint achieve same accuracy but Monitor has higher 

precision
– Monitor has much lower false positives compared to Pinpoint

• Co-contributors: Ignacio Laguna, Fahad Arshad
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Scalability: Motivation
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• Monitor breaks beyond a particular rate of incoming packets (or 
adding more protocol entities for verification)

– Increase in the latency of detection

– Loss of accuracy

• Monitor should be applicable to high rate data streams 
– Should be able to verify a large number of protocol entities
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Scalability Challenges
• Computational and memory constraints
• Stateful approach requiring state transitions 
• Rule matching is performed for messages which might be 

temporally distant

Interceptor

Detection Diagnosis
flag

Incoming 
Messages

Monitor
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Scalability: Design Goals
• Latency and accuracy should not drop drastically 

– Graceful degradation of latency and accuracy

• Monitor should be executable on off-the-shelf hardware
– Should not have large memory footprint
– Reduce computations

• Stateful approach should be followed
– Natural errors in systems are stateful 
– Example: Failures in Windows NT
– Example: Failure prediction in cycle-sharing systems
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Road to Developing a Solution (1) 
• Detection workload can be represented as

– Work per unit time = rate of incoming messages × the amount of work 
performed for each message

• Minimize the cost of processing for each message
– Better data structures

• Sample the incoming messages which the Monitor has to process

Interceptor

Detection Diagnosis
flag

Incoming 
Messages

Monitor
Drop Messages
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Existing Rule Matching
• Rules defined based on protocol specifications and QoS

requirements

• Rules are anomaly based
– Define the correct behavior of the protocol

• Five generic temporal rule categories
– Example:

• The Hello message count should be between 10 and 30 for the next 5000 msec. 
(QoS)

• Sender should receive an Ack after sending 32 Data packets (protocol 
specification) 
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Road to Developing a Solution (2)

Receive  
message 

Perform   
state   

transition   

Instantiate   
rules     

Update     
state    

variables   

Search through the list of       
rules

All the active rules have local     
copy of the variable
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Efficient Rule Matching – Monitor-HT (1)
• Rationale

– Provide efficient look-up using hashtables
– Eliminate duplicate copies of the state variable

• State Transition Diagram is organized in a multi-level hashtable
– Constant Order look-up

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event 
Objects

Event ID Event 
Objects

Event ID

Event Table
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Efficient Rule Matching – Monitor-HT (2)

• Multiple rules are matching the same message type
– Local variables contain snapshots of the global count at instantiation and at 

matching instant

– PE × Event ID tuple is only incremented once
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Monitor-HT versus Monitor-Baseline
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• We compare the latency of detection of Monitor-Baseline and Monitor-
HT on a reliable multicast protocol TRAM

• Latency is measured from instantiation of rule to the end of rule 
matching

• Monitor-HT achieves a 25% higher breaking point in terms of rate of 
incoming packets 
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Our Solution Approach: Sampling

• Monitor-HT still has to perform a minimum constant amount of 
work for every incoming message
– Modify Monitor-HT to reduce the incoming workload 

• Instead of processing every message, sample the incoming 
messages (Monitor-S)
1. How and what sampling approach should be taken?
2. How are the rules modified due to sampling?
3. How does Monitor-S track the PE’s STD in the presence of sampling?

• Uniform random sampling
– Uniform random method is oblivious to the incoming message type 
– Any sampling approach based on the information of the incoming message 

will require some processing of the message before sampling

• We choose uniform random sampling: rate of sampling is 
dependent on the rate of incoming messages
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Rth

Incoming Rate at the Monitor 

No Sampling Sampling

How are the rules modified ?
• Assume Monitor-Baseline achieves a desired latency and accuracy uptil Rbp rate 

of incoming messages
– Choose Rth < Rbp

• If the incoming rate Rin > Rth
– drop message at the rate of 1 in every Rin /(Rin - Rth) messages
– Incoming rate is recalculated after a window of 30 seconds 

• Rules are designed by the system administrator for actual application system and 
not the sampled stream seen by Monitor-S

• Scale the constants in the rules by a factor of Rth / Rin
– “receive 10 Acks in 100 sec” then because of sampling the rule is modified to 

“receive 10.(Rth / Rin) Acks in 100 sec”

Interceptor
Incoming Rate = 

Rin

Avg. Rate at 
Monitor < RMRth < Rin

Rth < Rbp
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How does Monitor-S track the PE’s STD?
• Monitor framework keeps track of the state of the entity for 

performing detection
• Dropping a message can cause Monitor-S to lose track of the 

current state of the entity  
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Example State Transition Diagram 
(STD)
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Starting with state S1 if 1 
message is dropped, then 
state vector is given by:
Ŝ1 = {S2, S3, S4}

State Vector (Ŝ) 

• Instead of keeping a single current state for the application protocol 
entity, keep a vector of possible states
– Ŝ = {S1, S2….SK}

• If r consecutive messages are dropped starting from state Sstart then the 
state vector Ŝ consists of the union of states reachable in r steps from 
Sstart

• Computing the state vector at runtime: Expensive !
• Compute state vectors Offline

S1

S3

S4S2
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Example 
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S2

S1 S2 S3 Sk

Example State Vectors at a each level. A depth j represents the state 
vector if j messages are dropped consecutively from S1

Ŝ0 = 
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Ŝr = 

r messages 

being dropped
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Example State Vectors at a each level. A depth j represents the state 
vector if j messages are dropped consecutively from S1
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being dropped
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Reduction in size of State Vector 
• Size of the state vector does not keep growing

– Bounded by the total number of states
– Sampling of a message

• Sampling a particular message causes the size to reduce
• Example: Consider the STD below

– At start: Ŝ = {S1}
– Drop a message: Ŝ = {S2, S3, S4}
– Sample a message (say e3): Ŝ = {S2}

S1
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S4S2
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e3

e4

e1
e1 e2

e5

e5

e1

Example State Transition Diagram 
(STD)

Slide 28/44DCSL: Dependable Computing Systems Lab

Stages of Sampling Approach
S0

At this boundary 
we sample a 
packet and reduce 
the states to some 
number j

Stage 1 we start with one 
starting state and keep 
growing because we drop 
r packets.

Stage 2 we start with left 
over states and again 
keep growing because we 
drop r packets.

Stage 3 the system 
repeats itself in the same 
manner as above…….
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Analytical Bounds
• Memory requirement is large to store the pre-computed state vectors

– For a k-regular graph, it is k(kr-1)/k-1 if r consecutive messages are dropped 
– Use a bit vector representation: proportional to S2.r bits ; where S is the total 

state size

• Size of the state vector determines the number of rule instantiations 
and hence the overall computation 

• For a k-regular graph (representing the STD), we show that the size 
of the state vector is asymptotically bounded  if 

r = min( logkM - 1, logkz )
– r is the number of consecutive packets which can be dropped
– z is the number of different types of messages present in the STD
– M is the total number of outgoing links for all the states in the state vector Ŝ
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Example Protocol : TRAM 
• Tree Based Reliable Multicast Protocol (TRAM)

– It is a scalable protocol aimed to function in large area networks with 
hundreds of participants

– Ensures reliability of message transfer in case of node or link failures and 
message errors

Sender

RH RH

RH RH

R R R R

R

Data Flow Ack Flow Buffer
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Example State Transition Diagrams (STD)
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• TRAM is used as the application protocol 
and fault injection is performed for a burst 
length

• Monitor and TRAM run on separate 
machines
– Desktop PCs with 2.4GHz processor and 1GB 

RAM 

• We measure the accuracy and latency
– Accuracy is (1-missed alarms)
– Latency is measured from start of rule 

instantiation to the time it took for matching

• Compare Monitor-Baseline, Monitor-HT 
and Monitor-S

Experimental Set-Up
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r3
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S

r1

RH

………

LM

GMmin.ecn.purdue.edu

dcsl-lab

Packet 
Forwarding
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Accuracy Results (Sender-Receiver)

• Monitor-Baseline and Monitor-HT break at 100 pkt/s and 125 pkt/s
respectively

• Monitor-S has a small decrease in accuracy but it still maintains accuracy 
at ~ 70% compared to Monitor-HT’s 16% accuracy 
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Latency Results (Sender-Receiver)

• Similar to accuracy results Monitor-S has a marginal increase in the 
latency with increasing packet rate as compared to Monitor-HT and 
Monitor-Baseline which have a collapse

• Monitor-S provides detection at a low latency of ~200ms as compared to 
1200ms for Monitor-Baseline for high data rates
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Effects of Varying Rth : Latency

• Here for the plot of Rth = 140 pkt/s we see a sharp spike because 
Monitor-HT’s breaking point(Rbp) is at 125 pkt/s

• Rth should be appropriately chosen, preferably far below Rbp to 
account for inaccuracies in estimating Rbp and fast fluctuations in 
incoming data rate

0

100

200

300

400

0 100 200 300 400 500 600

Rate of Packets (pkt/s)

La
te

nc
y 

(m
s)

50 pkt/s
65 pkt/s
100 pkt/s
140 pkt/s

Rate of incoming packets (pkt/s)

Slide 36/44DCSL: Dependable Computing Systems Lab

Variation in Size of State Vector (|Ŝ|)

• Sample run of Monitor-S measuring |Ŝ| at receipt of every alternate 
packet

• In Region 1, |Ŝ| drops in steps from 9 to 6 and finally to 1. The drop in |Ŝ| 
is because of the unique possibility of the sampled event in only some of 
the states

• In Region 2, |Ŝ| increases from 1 to 3 because of a message drop
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Latency Results (Sender-RH-Receiver)
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• We repeat the experiments with sender-RH-receiver topology
• Single sender, 2 RHs and 2 receivers, one receiver under each RH
• We observe similar results as in sender-receiver scenarios

Rth = 65 pkt/s
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Related Research 
• Change Detection in Networking 

– Sketch based approaches: Deltoids, Infocom’05, Infocom’06
– Develop statistical models to describe the stream behavior
– In Monitor state of the application is closely examined and it accounts for 

spikes as well. Provides flexibility to switch to sampling or no-sampling

• Stateful Detection 
– Particular attention from the security community in building Intrusion 

Detection Systems
– Snort uses aggregated information from TCP packets to make decisions
– SciDive provides stateful detection engine for VoIP
– Restricted to the domain and focussed on accuracy

• Detection in Distributed Systems 
– Heartbeats, watchdogs
– Detection of Failures using event graphs

Slide 40/44DCSL: Dependable Computing Systems Lab

Contributions of the Research Initiative
• We proposed a generic hierarchical framework black-box system –

the Monitor, to provide non-intrusive detection and diagnosis in 
distributed systems

• We developed a stateful detection mechanism that can scale to a 
high data rate of the application protocol

• The Monitor can account for uncertainties of the deployment 
environment as well as imperfect knowledge of the  characteristics 
of the protocol entities

• We provide state reduction methods to address the problem of state 
space explosion

• Scalability is achieved by a sampling approach which reduced the
overall workload at the Monitor for a given message rate
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Future Work 
• Autonomic Recovery 

– Recovery is the logical next step after detection and diagnosis of failure
– How to provide autonomic recovery in the current framework
– Fault Tolerant Community lacks model for generic autonomic recovery: 

More work is needed to fully understand the potential of autonomic recovery

• Application of the Monitor framework in other scenarios
– System Management in Virtualized Server Environments

• Virtual machines are emerging as a new paradigm for distributed computing
• Virtualization, in its microcosm, brings a whole new challenge to system 

management. The increased layer causes increased complexity and makes it 
harder for a system administrator to find and resolve failures

– Windows Device Drivers

• Modeling of the Monitor Framework
– Develop more accurate theoretical models 
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Publications: Monitor Project
• Journal

– “Automated Rule-Based Diagnosis in Distributed Systems,” G. Khanna,  P. Varadharajan, Y. 
Cheng, S. Bagchi, M. Correia, and P. Verissimo, accepted in IEEE Transactions on Dependable 
and Secure Systems (TDSC), May 2007.

– “Automated Online Monitoring of Distributed Applications Through External Monitors,” G. 
Khanna, P. Varadharajan, and S. Bagchi, in IEEE Transactions on Dependable and Secure 
Computing (TDSC), Feb. 2006.

• Conference and Workshops
– “Stateful Detection in High Throughput Distributed Systems,” G. Khanna, I. Laguna, F. 

Arshad, and S. Bagchi, in submission to SRDS 2007. 
– “Probabilistic Diagnosis through Non-Intrusive Monitoring in Distributed Applications,” G. 

Khanna, I. Laguna, F. Arshad, and S. Bagchi, in submission to SRDS, 2007. 
– “State Space Reduction for efficient Detection and Diagnosis in Distributed Systems,” G. 

Khanna, Y. Cheng, S. Bagchi, in submission 2007.
– “Self Checking Protocols: A Step Towards Fault Tolerance in Services” G. Khanna, in 

ICSOC, PhD Symposium, 2006. 
– “Providing Automated Detection of Problems in Virtualized Servers using Monitor 

Framework,” G. Khanna, S. Bagchi, K. Beaty, A. Kochut, N. Bobroff, and G. Kar, in Workshop 
on Applier Software Reliability (WASR) held in conjunction with DSN, 2006. 

– “Modeling Probabilistic Diagnosis Parameters,” G. Khanna, Y. Cheng, and S. Bagchi, Fast 
Abstract in Dependable Systems and Networks (DSN), 2006. 

– “Self Checking Network Protocol: Monitor Based Approach,” G. Khanna, P. Varadarajan, and 
S. Bagchi, In Symposium on Reliable and Distributed Systems, (SRDS), pp. 18-30, Florianopolis, 
Brazil, 2004. 

– “Failure Handling in a Reliable Multicast Protocol for Improving Buffer Utilization and 
Accommodating Heterogeneous Receivers,” G. Khanna, J. S. Rogers, and S. Bagchi, Pacific 
Rim Dependable Computing (PRDC), 2004. 
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Other Publications
• Conference and Workshops

– “Performance comparison of SPIN based Push-Pull Protocols” R. Khosla, X. Zhong, G. 
Khanna, S. Bagchi, and E. J. Coyle, in Wireless Communications and Networking 
Conference (WCNC), 2007.  

– “Data Centric Routing in Sensor Networks: Single-hop broadcast or Multi-hop 
unicast?,” R. Khosla, X. Zhong, G. Khanna, S. Bagchi, and E. J. Coyle, in Vehicular 
Technology Conference (VTC), 2007.

– “Dynamic Application Management to address SLAs in a Virtualized Server 
Environment,” G. Khanna, K. Beaty, A. Kochut, and G. Kar, in Network Operations and 
Management (NOMS), 2006.

– “Synchronization Attacks Against 802.11,” G. Khanna, A. Masood, and C. N. Rotaru, in 
Network and Distributed System Security Symposium (NDSS) Workshop, Feb 2-4, San 
Diego, 2005.

– “Fault Tolerant Energy Aware Data Dissemination Protocol in Sensor Networks,” G. 
Khanna, S. Bagchi, and Y. S. Wu, In Dependable Systems and Networks (DSN), pp. 795-
804, Florence, Italy, 2004. 

– “Data Dissemination Protocol to account for Node and Link Failures in Sensor 
Networks,” G. Khanna, S. Bagchi, and Y. S. Wu, Fast Abstract Dependable Systems and 
Networks (DSN), 2003.
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Thank You !!!
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Backup Slides
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Motivation for State Space Reduction
• Complex Distributed Applications

– Large scale 
– Complex protocol

• Result: Large state space
– Cause state space explosion for verification

• For a monitoring system
– Not all transitions are valuable to a monitoring system
– Internal transition of a protocol entities 
– Transition of protocol entities behind firewall 
– No rule associate with a particular transition
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• Monitor(s) has a rule base for verification 
– All states are not verified

• Some states might be internal because of the black-box model of 
the protocol entities
– Internal States can cause Monitor to loose track 

• STD must be reduced to circumvent these cases

STD Reduction: Monitor Performance

S1 i1 / o1 S2

i2 / o2
S3

S1 i1 / o1 S2

i2 / o2
S3
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Related Work: State Space Explosion

Reachability
Analysis

Partial-Order
Reduction

Symbolic Model 
Checking

Asynchronous 
Protocol Verification

Synchronous Hardware 
Synthesis

Equivalence Classes Binary Decision Diagrams

Reachability
Analysis

Partial-Order
Reduction

Symbolic Model 
Checking

Asynchronous 
Protocol Verification

Synchronous Hardware 
Synthesis

Equivalence Classes Binary Decision Diagrams

– Simple example: consider a trace s1→α1 s2→α2 s3→α3 s4. If transition α2 is 
hidden (i.e., internal) then partial order method will mark states s3 and s4 as 
unreachable and reduce both

– But a monitoring system may want to verify state s4
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STD Reduction : 2 Phase Reduction
• Removing internal transitions

– C1:“If a state does not have any external transition edge, then remove that 
state and re-assign all the external outgoing transition edges of the reduced
state”.

– C2:“If a state exists which has both internal and external transition edges, 
we need to remove the internal messages and re-assign the external 
incoming and outgoing transition edges of that state”.

i1int / o1
int i2ext / o2

ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext
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STD Reduction : Two Phase Reduction
• Removing rule less states

– Reduces the amount of storage and computation needed at the detection 
process

– Reducing the number of nodes that need to be traversed during the diagnosis 
process

• Analytically prove that reduction process does not affect the 
missed alarms or false alarms generated during the detection 
procedure
– No modification to the rule structure or detection procedure

• Analyze the performance gains through actual test-bed 
experiments running the Monitor framework
– Significant reduction in latency of detection and diagnosis
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Solution Approach
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the monitoring module as 
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S31
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S31
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S21
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S21
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Protocol Entity (PEi)

Si1
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STD for a PEi , shared by 
the monitoring module as 
well. 
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Removing Internal Transition
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Removing internal transitions (STD→STD′)
• The transition is internal to the PE -> no externally visible 

message.

• The monitoring system is placed in a network location where the 
observation of the PE is not perfect

• There are firewall rules that block the monitoring system from 
observing this kind of transition.
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Case 1
• C1:“If a state does not have any external transition edge, then 

remove that state and re-assign all the external outgoing transition 
edges of the reduced state”. 

S1 i1int / o1
int S2

i2ext / o2
ext S3

S1 i1int / o1
int S2

i2ext / o2
ext S3

S1

i2ext / o2
ext

S3
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Case 2
• C2:“If a state exists which has both internal and external transition edges, we 

need to remove the internal messages and re-assign the external incoming and 
outgoing transition edges of that state”. 

i1int / o1
int i2ext / o2

ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext
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Case 3: Non-deterministic transitions

i1int / o1
int i2ext / o2

ext

i4ext / o4
ext

S1 S2 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7

i2ext / o2
ext

i4ext / o4
ext

S1 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7
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Removing transition without rules
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STD reduction due to ruleless states (STD′→STD′′) 
• Reduces the amount of storage and computation needed at the 

detetion process
• Reducing the number of nodes that need to be traversed during 

the diagnosis process
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5 types of rules

• Type II: St is the state of an object at time t : St ≠ St+∆, if event Ei
takes place at t 

• Type V: This rule prevents a state transition from Si back to the 
same state within time β of first arriving at Si. 

αββαα >++∈∀≠⇒+∈∀= ..);0,0()0,0( tstttiSstttiSs
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Case 1
• C1: A state Si has no rule ∧ (∀Sj  ∈ predecessor(Si)) Sj has no rule of type V ∧

Sj has no rule on transition edge i1ext/o1ext⇒ Remove Si and incoming 
transitions of Si.

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule

i2ext / o2
ext S3

Rule
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Case 2: Type V Rule
• C2: A state Si has no rule and (∃Sj  ∈ predecessor(Si)) s.t. Sj has a rule of type V 

⇒ Do not remove Si.

S1
Rule V

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule 

S1
Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule

i2ext / o2
ext

S3

S1
Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule 
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Case 3: Type II Rule
• A state Si has no rule and (∃Sj  ∈ predecessor(Si)) s.t. Sj has a rule of type II ∧ Tj

is self-loop ⇒ Do not remove Si. 

S1
Rule II

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i0ext / o0
ext
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Example: Simple
• Example

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i3ext/ o3
ext

S3
Rule

S1
Rule

i2ext / o2
ext S4

Rule 

i3ext / o3
ext

S3
Rule
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Example: Complex edge

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i2ext/ o2
ext

S3
Rule

S1
Rule

(i1ext /o1
ext) * (i2ext / o2

ext) S4
Rule 

i2ext / o2
ext

S3
Rule
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Experiments
• Developed an emulator system 

– generates a random STD 
– emulates PEs which performs transitions

• Divided the experiments into two parts: 
1) Static  

• Test the efficacy of the reduction mechanism by inputting several STDs which 
have internal states and rule less states.

2) Dynamic
• Test the latency of the Montior System
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Emulator
• Performs two tasks: 

1. Generate a random state transition diagram via generating a random graph
• Generates a random connected graph  
• Marks some of the transition edges E to be internal 
• Marks states to contain rules 

2. Emulate PEs which perform transitions according to the generated STD. 
• Emulates some PEs which exchange messages amongst each other 
• Via performing a random walk over the generated STD
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STD’ Reduction

percentage of state space reduction =(#states in STD – #states in STD′)/ #states in STD

The STD contains 4V edges

• We can see that for a fixed fraction of internal transition edges, the 
percentage of state space reduction remains constant with 
increasing state size. 
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STD’ Reduction

• An increase in percentage of state space reduction with increasing 
percentage of internal transition edges. 

• A state is removed only if all incoming transition edges are internal.
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Diagnosis in a gist
• Monitor maintains a causal graph with events ordered according to 

the logical time 

• c by building a Diagnosis tree of all the nodes which sent messages 
to nf say set A.

• Each node in the suspicion set is tested using a test procedure 

• If all nodes are not faulty then suspicion set is expanded to include 
the nodes which sent messages to nodes in A. 
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Causal Graph & Diagnosis Tree
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B
1
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4
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and D exchange 
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number indicates the 
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message 1 precedes all 
of the rest of messages. 
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Failure Detection

• Monitor uses rule base to verify the observed messages
– Generic architecture widely applicable through using specific rule base
– Black-box, non-intrusive semantics

• Scalability is achieved through hierarchical design 

• Automatic load balancing helps in making the system auto-
configurable
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Pinpoint’s Approach to Diagnosis(1)
• Pinpoint is an approach developed by Chen et.al in 2002 to address 

problem determination in E-commerce system
– Approach is generic can be applied in larger context

• It uses a dependency matrix describing the dependence of client 
transaction on web components
– Components consists of EJBs, and servlets

• Internal and external failure detectors are used to determine 
success of client transactions 

Web client 
emulator

J2EE Application Server

Web Tier

JSP

EJB Tier

EJB

EJB

EJB

communication layer

Database

communication layer

JSP

servlet

servlet

Web client 
emulator
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Web Tier

JSP
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EJB

EJB

EJB

communication layer

Database

communication layer
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servlet
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Pinpoint’s Approach to Diagnosis(2)
• A failure column is added to the dependency matrix which 

contains the outcome of the transaction (failed or success)
• Pinpoint correlates the failures of transactions to the components 

that are most likely to be the cause of the failure
• Example:

10004

01013

01112

00101

Component CComponent BComponent AFailureClient Request 
ID

10004

01013

01112

00101

Component CComponent BComponent AFailureClient Request 
ID
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Comparison with Pinpoint: Experimental Set-up
• We implement the Pinpoint algorithm and create a e-commerce 

system as described in the Pinpoint paper
– PetStore application deployed on JBoss application server

• Provide external and internal failure detectors to both Monitor and 
Pinpoint for a fair comparison of only diagnosis approaches
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Experimental Set-up
• We use a total of 55 client transactions out of which 45 are unique.
• We chose 9 components, 6 EJBs and 3 servlets as our target 

components for fault injection 
– Examples: AddressEJB, AsyncSenderEJB etc. 

• We perform 4 different type of fault injection into the components 
similar to Pinpoint
– Declared Exception, Undeclared Exception, Endless call and Null call 

• Similar to Pinpoint we use 1-component, 2-component and 3-
component triggers for fault injection 
– In a 2-component trigger, a sequence of 2-components is determined and 

whenever the sequence is touched during a transaction, the last component 
in the transaction is injected with the fault

• Accuracy and Precision metrics are compared
– Predicted Fault set is {A, B, C}, but  only {A} has a fault then accuracy is 

100% but precision is 33.3%. 
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1-Component Faults
• All 4 types of fault injections are performed on each of the 9 

components 
• Pinpoint has high false positives rates but the accuracy eventually 

reaches 1. In contrast, the Monitor has a much higher accuracy 
keeping a low false positive rate. Monitor’s accuracy also reaches 
1 but at a much lower value of false positives (0.6) as compared to 
Pinpoint (> 0.9)
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2-Component Faults
• Monitor outperforms Pinpoint in the 2-component fault injection. 
• One can see that accuracy reaches a maximum of 0.83 compared to 

1.00 in 1-component injection
• In 2-component fault injection the accuracy is not as high as 1-

component faults because the number of diagnosis instances are far 
less 
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3-Component Faults

• The relative behavior of the Monitor’s diagnosis algorithm and 
Pinpoint’s approach remains the same in 3-component faults as 
well

• Monitor achieves low false positive rates which providing a much
higher accuracy than Pinpoint 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

False Positive=(1-Precision)

Pi
np

oi
nt

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False Positive=(1-Precision)

M
on

ito
r A

cc
ur

ac
y



Slide 79/44DCSL: Dependable Computing Systems Lab

Behavior of Components
• For the success of Pinpoint’s algorithm, the components should 

behave independently
• Presence of tightly coupled components can cause the clustering 

approach to suffer
• We observe some coupling in the target components as well 

– PetStore software is written in such a manner that required coupling of 
multiple components
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Comparison with Pinpoint: Conclusions

• Monitor’s probabilistic diagnosis is compared with Pinpoint 
approach to diagnosis
– Pinpoint is implemented 
– Monitor and Pinpoint are used to diagnose failures in an e-commerce set up
– Experimental set-up is made close to the Pinpoint paper and same fault 

injection are performed

• Monitor outperforms Pinpoint by achieving higher accuracy for the 
same precision values

• Monitor achieves lower precision numbers for 1, 2, and 3-
component faults thus providing a low false positive rates
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Effects of Varying Rth : Accuracy

• Beyond Rth Monitor switches from Monitor-HT to Monitor-S

• Difference in characteristics of the curve around Rth provides the 
system administrator a useful tuning parameter 
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Example of Detection Rules on TRAM

• T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has a 
precondition to check data packets (E11) arrival within 5000msec. 
This causes the post condition that at least one ack(E2) (between 1 
and 8) must be sent

• T R3 S5 E13 0 5 5000: This rule ensures that the number of re-
affiliation packets (E13) is no more than 5 within 5000ms in state 
S7

• T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello 
packet(E1) rate. The E1 message count should be between 10 and 
30 for the next 5000 msec

• T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv.(E10) 
messages should be eventually followed by Accept message(E8)



Slide 83/44DCSL: Dependable Computing Systems Lab

Rule Base
• Monitor is provided with Normal Rule Base for detection and 

Strict Rule Base for diagnosis 

• A few examples of SRB rules
– S1 E11 1 S3 E11 30 1 : A single data packet must be followed by 30 more 

data packets
– S6 E1 1 S6 E9 1 1 :  Hello Message must be followed by a Hello Reply
– S1 E11 1 S2 E11 1 1 : A repair head must send out each data packet which 

is received
– S0 E15 1 S1 E14 1 1: A receiver sends a Head-Bind message then it should 

receive multiple Head-Ack packets  
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Related Research 
Observer Systems

– Near identical approach is presented through the observer system
• Monolithic Entity, Formal verification required [Diaz ’94]

– Approach using Communicating Finite State Machines (CFSM) [Seviora
DSN ’02]

• Global correctness is assumed via individual local interaction verifications
• Claim to eliminate the state space explosion problem 

Diagnosis
• White-Box diagnosis

– Have access to the internals of the system [Gruschke 1994], [Sanders 2005]  
– Use active probing to infer the problem 
– Use of heavy instrumentation
– Embedding event generators in the application
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Related Research 
• Multiprocessor diagnosis

– Deterministic diagnosis approach: First diagnosis approach by PMC [Preparata
et.al. 1967]

– Several testing graph based approaches have been proposed with variation in number 
of tests and graph structure  

– t-diagnosable [Hakimi 74]
– Hierarchical testing algorithm was proposed requiring (log N)2 testing rounds 

[Nanya 98]
– Probabilistic diagnosis by Fussel and Rangarajan [1989], followed by [Kang and Lee 

1994]
– Assume no distinction between the protocol entities and testing entities
– Employ explicit tests to the entities 

• Debugging in Distributed Applications 
– Industrial research has focused on problem determination on distributed applications 

like eCommerce. For e.g. dependency graph [Kar, Hellerstein]
– Different approaches incorporating probing, dependency analysis and adaptive 

diagnosis have been proposed
– Black-Box: It aims to find a find causal relationship between the RPC messages

• Stops at finding the causal relationship
• Offline Method which involves heuristics [Aguilera 2003]
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Temporal rules
Type I: 

Type II:

Type III:
L ≤ |Vt| ≤ U (ti,ti+k)

Type IV:
∀t∈(ti,ti +k) L ≤ |Vt| ≤ U ⇒L′ ≤ |Bq| ≤ U′, ∀q∈(tn,tn+b)

truefor ( , ) truefor ( , )p N N q I IS T t t k S T t t b= ∈ + ⇒ = ∈ +

St is the state of an object at time t : St ≠ St+∆, if event Ei
takes place at t 


