
Slide 1/44DCSL: Dependable Computing Systems Lab

NON INTRUSIVE DETECTION AND DIAGNOSIS
OF FAILURES IN HIGH THROUGHPUT

DISTRIBUTED APPLICATIONS

Gunjan Khanna

PhD Final Examination

Advisor : Prof. Saurabh Bagchi
Committee Members: Profs. Ness Shroff, Cristina Nita-

Rotaru, and Rudolph Eigenmann

Dependable Computing Systems Lab
ECE, Purdue University

Slide 2/44DCSL: Dependable Computing Systems Lab

Research Initiatives
• Detection & Diagnosis in Distributed Systems

– Hierarchical Monitor Framework: Generic, re-configurable, non-intrusive,
and scalable

– PRDC’04, SRDS’04, WASR’06, DSN’06 (fast abstract), TDSC’06,
ICSOC’06, TDSC’07, SRDS’07 (2-submissions)

• Virtual Machine Management
– Providing management solutions centered around fault tolerance semantics

to the domain of virtualized server scenarios (jointly with IBM Research)
– NOMS’06, WASR’06
– 2 patents have been filed

• Fault Tolerant Data Dissemination in Sensor Networks
– Provide push-pull based primitive for reliable communication: SPMS,

SPMS-Rec
– DSN’03(fast abstract), DSN’04, WCNC’07, VTC’07

Slide 3/44DCSL: Dependable Computing Systems Lab

Outline of the Talk
Background

Background on detection and diagnosis: Summarize detection and
probabilistic diagnosis approach

Tasks from Prelim Examination
Reduction of State Space
Comparison with Pinpoint
Scaling the Monitor approach: Sampling

Sampling Technique
Motivation
Solution Approach
Experiments and Results

Related Research
High Throughput Detection

Conclusions and Future Work

Slide 4/44DCSL: Dependable Computing Systems Lab

Motivation
• Distributed network protocols are

integral in all sectors
– File servers, databases, e-commerce

applications, p2p etc.

• Increased reliance on these protocols
for critical applications
– Financial, Telecommunications, Security

etc.
– Cost of downtimes of these systems can

run into several millions of dollars
• Financial broker $6.2M/hr (Source:

International Data Corporation, 2005)

• Lack of a comprehensive detection and
diagnosis framework

networknetwork

Detection and Diagnosis is
imperative to improve

reliability

Slide 5/44DCSL: Dependable Computing Systems Lab

Design Goals: Detection and Diagnosis

• Detection: Evidence of a protocol behavior which differs
from the defined set of correct behavior

• Diagnosis: To be able to pin-point the root cause of the
failure

• A generalizable framework which should provide Detection
and Diagnosis

• Treat application entities (or protocol entities) as Black-box
– Non-intrusive approach
– Operate asynchronously

• Online mechanism enforcing low latency and high accuracy
• Autonomic in nature requiring minimum expertise to operate

Slide 6/44DCSL: Dependable Computing Systems Lab

Hierarchical Monitor: Real Time Solution

Detection System
– Logical separation between the protocol

entities (PEs) from monitoring entities
– Define categories of rules for matching

(Anomaly based)
– Fast matching

Diagnosis System
– Causal dependencies are tracked
– Monitor deduces the protocol state
– Non-intrusive diagnostic tests are used
– Black-box diagnosis
– Distributed in nature
– Probabilistic modeling with rich set of

parameters

Slide 7/44DCSL: Dependable Computing Systems Lab

Use of State Transition Diagram

S1

S3

S4S2

e3

e2

e3

e4

e1

e5

e5

e1

Example State Transition Diagram
(STD)

Monitor

e4

e5 e4 Perform state
transition

Update state
variables

Instantiate
Rules

Slide 8/44DCSL: Dependable Computing Systems Lab

Road Map
BackgroundBackground

Brief about Detection and Diagnosis: Summarize detection and proBrief about Detection and Diagnosis: Summarize detection and probabilistic babilistic
diagnosis approachdiagnosis approach

Leftover from Prelim Examination
Reduction of State Space
Comparison with Pinpoint
Scaling the Monitor framework

Sampling TechniqueSampling Technique
MotivationMotivation
Solution ApproachSolution Approach
Experiments and ResultsExperiments and Results

Related ResearchRelated Research
High Throughput DetectionHigh Throughput Detection

Conclusions and Future WorkConclusions and Future Work

Slide 9/44DCSL: Dependable Computing Systems Lab

Prelim Presentation Slide: Future Work
1. Autonomic STD Reduction

– Larger STD causes more links in the causal graph and hence increases the size of
diagnosis tree

– All states and events might not be visible, or might not have rules associated with
them

– Reduce internal states and states which do not have rules: Makes the Monitor
architecture more flexible

2. Comparison with other approaches and generalization
– Applications are composed of multiple services interacting through messages
– Currently working on testing the approach on a e-commerce test-bed using PetStore

3. Detection and Diagnosis in high rate network streams
– We would like to push the knee to the right
– Provide intelligent sampling so as to keep the missed alarms and false alarms low
– Would the detection or diagnosis model require a change ?
– ||Rsv – Rs|| < Є.R

Slide 10/44DCSL: Dependable Computing Systems Lab

1. Autonomic STD Reduction
• Provide offline mechanisms to reduce the states

• Two state reduction mechanisms are proposed: Invisible states and
rule-less states

• Prove transparency of the detection and diagnosis process to the
new state reduction process: Monitor should provide the same
detection and diagnosis results on the original and reduced STD

• Rigorously test the effectiveness through experiments on reliable
multicast protocol TRAM and large random STDs.

• On an average provide over 40% reduction in latency

• Co-contributor: Mike Yu Cheng

Slide 11/44DCSL: Dependable Computing Systems Lab

2. Monitor Comparison with Pinpoint
• Pinpoint, an offline diagnosis approach developed by Chen et al.

2002, to address problem determination in internet services
– Pinpoint clusters the components touched by failed transactions to deduce

the most likely cause of failure

• We implement the Pinpoint algorithm and test both approaches on
3-tier e-commerce test bed
– PetStore application on JBoss application server
– 55 client transactions and 4 different type of fault injections

• Monitor outperforms Pinpoint
– Monitor and Pinpoint achieve same accuracy but Monitor has higher

precision
– Monitor has much lower false positives compared to Pinpoint

• Co-contributors: Ignacio Laguna, Fahad Arshad

Slide 12/44DCSL: Dependable Computing Systems Lab

Road Map
BackgroundBackground

Brief about Detection and Diagnosis: Summarize detection and proBrief about Detection and Diagnosis: Summarize detection and probabilistic babilistic
diagnosis approachdiagnosis approach

Leftover from Prelim ExaminationLeftover from Prelim Examination
Reduction of State SpaceReduction of State Space
Comparison with PinpointComparison with Pinpoint
Scaling the Monitor approach Scaling the Monitor approach

Sampling Technique
Motivation
Solution Approach
Experiments and Results

Related ResearchRelated Research
High Throughput DetectionHigh Throughput Detection

Conclusions and Future WorkConclusions and Future Work

Slide 13/44DCSL: Dependable Computing Systems Lab

Scalability: Motivation

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

La
te

nc
y

(m
s)

• Monitor breaks beyond a particular rate of incoming packets (or
adding more protocol entities for verification)

– Increase in the latency of detection

– Loss of accuracy

• Monitor should be applicable to high rate data streams
– Should be able to verify a large number of protocol entities

Slide 14/44DCSL: Dependable Computing Systems Lab

Scalability Challenges
• Computational and memory constraints
• Stateful approach requiring state transitions
• Rule matching is performed for messages which might be

temporally distant

Interceptor

Detection Diagnosis
flag

Incoming
Messages

Monitor

Slide 15/44DCSL: Dependable Computing Systems Lab

Scalability: Design Goals
• Latency and accuracy should not drop drastically

– Graceful degradation of latency and accuracy

• Monitor should be executable on off-the-shelf hardware
– Should not have large memory footprint
– Reduce computations

• Stateful approach should be followed
– Natural errors in systems are stateful
– Example: Failures in Windows NT
– Example: Failure prediction in cycle-sharing systems

Slide 16/44DCSL: Dependable Computing Systems Lab

Road to Developing a Solution (1)
• Detection workload can be represented as

– Work per unit time = rate of incoming messages × the amount of work
performed for each message

• Minimize the cost of processing for each message
– Better data structures

• Sample the incoming messages which the Monitor has to process

Interceptor

Detection Diagnosis
flag

Incoming
Messages

Monitor
Drop Messages

Slide 17/44DCSL: Dependable Computing Systems Lab

Existing Rule Matching
• Rules defined based on protocol specifications and QoS

requirements

• Rules are anomaly based
– Define the correct behavior of the protocol

• Five generic temporal rule categories
– Example:

• The Hello message count should be between 10 and 30 for the next 5000 msec.
(QoS)

• Sender should receive an Ack after sending 32 Data packets (protocol
specification)

Slide 18/44DCSL: Dependable Computing Systems Lab

Road to Developing a Solution (2)

Receive
message

Perform
state

transition

Instantiate
rules

Update
state

variables

Search through the list of
rules

All the active rules have local
copy of the variable

Slide 19/44DCSL: Dependable Computing Systems Lab

Efficient Rule Matching – Monitor-HT (1)
• Rationale

– Provide efficient look-up using hashtables
– Eliminate duplicate copies of the state variable

• State Transition Diagram is organized in a multi-level hashtable
– Constant Order look-up

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event
Objects

Event ID Event
Objects

Event ID

Event Table

Slide 20/44DCSL: Dependable Computing Systems Lab

Efficient Rule Matching – Monitor-HT (2)

• Multiple rules are matching the same message type
– Local variables contain snapshots of the global count at instantiation and at

matching instant

– PE × Event ID tuple is only incremented once

Rule 3
Rule 2
Rule 1 0

0

10
1

1

2
2

2

3

Data

Rule 3
Rule 2
Rule 1
State Var 012

0

1

1

Data

3

Previous Approach New Approach

Slide 21/44DCSL: Dependable Computing Systems Lab

Monitor-HT versus Monitor-Baseline

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

La
te

nc
y

(m
s)

Monitor (Baseline)
Monitor-HT

• We compare the latency of detection of Monitor-Baseline and Monitor-
HT on a reliable multicast protocol TRAM

• Latency is measured from instantiation of rule to the end of rule
matching

• Monitor-HT achieves a 25% higher breaking point in terms of rate of
incoming packets

Slide 22/44DCSL: Dependable Computing Systems Lab

Our Solution Approach: Sampling

• Monitor-HT still has to perform a minimum constant amount of
work for every incoming message
– Modify Monitor-HT to reduce the incoming workload

• Instead of processing every message, sample the incoming
messages (Monitor-S)
1. How and what sampling approach should be taken?
2. How are the rules modified due to sampling?
3. How does Monitor-S track the PE’s STD in the presence of sampling?

• Uniform random sampling
– Uniform random method is oblivious to the incoming message type
– Any sampling approach based on the information of the incoming message

will require some processing of the message before sampling

• We choose uniform random sampling: rate of sampling is
dependent on the rate of incoming messages

Slide 23/44DCSL: Dependable Computing Systems Lab

Rth

Incoming Rate at the Monitor

No Sampling Sampling

How are the rules modified ?
• Assume Monitor-Baseline achieves a desired latency and accuracy uptil Rbp rate

of incoming messages
– Choose Rth < Rbp

• If the incoming rate Rin > Rth
– drop message at the rate of 1 in every Rin /(Rin - Rth) messages
– Incoming rate is recalculated after a window of 30 seconds

• Rules are designed by the system administrator for actual application system and
not the sampled stream seen by Monitor-S

• Scale the constants in the rules by a factor of Rth / Rin
– “receive 10 Acks in 100 sec” then because of sampling the rule is modified to

“receive 10.(Rth / Rin) Acks in 100 sec”

Interceptor
Incoming Rate =

Rin

Avg. Rate at
Monitor < RMRth < Rin

Rth < Rbp

Slide 24/44DCSL: Dependable Computing Systems Lab

How does Monitor-S track the PE’s STD?
• Monitor framework keeps track of the state of the entity for

performing detection
• Dropping a message can cause Monitor-S to lose track of the

current state of the entity

S1

S3

S4S2

e3

e2

e3

e4

e1
e1 e2

e5

e5

e1

Example State Transition Diagram
(STD)

Slide 25/44DCSL: Dependable Computing Systems Lab

Starting with state S1 if 1
message is dropped, then
state vector is given by:
Ŝ1 = {S2, S3, S4}

State Vector (Ŝ)

• Instead of keeping a single current state for the application protocol
entity, keep a vector of possible states
– Ŝ = {S1, S2….SK}

• If r consecutive messages are dropped starting from state Sstart then the
state vector Ŝ consists of the union of states reachable in r steps from
Sstart

• Computing the state vector at runtime: Expensive !
• Compute state vectors Offline

S1

S3

S4S2

Slide 26/44DCSL: Dependable Computing Systems Lab

Example

S1

S4S3
S2

S1 S2 S3 Sk

Example State Vectors at a each level. A depth j represents the state
vector if j messages are dropped consecutively from S1

Ŝ0 =

Ŝ1 =

Ŝr =

r messages

being dropped

S1

S4S3
S2

S1 S2 S3 Sk

Example State Vectors at a each level. A depth j represents the state
vector if j messages are dropped consecutively from S1

Ŝ0 =

Ŝ1 =

Ŝr =

r messages

being dropped

Slide 27/44DCSL: Dependable Computing Systems Lab

Reduction in size of State Vector
• Size of the state vector does not keep growing

– Bounded by the total number of states
– Sampling of a message

• Sampling a particular message causes the size to reduce
• Example: Consider the STD below

– At start: Ŝ = {S1}
– Drop a message: Ŝ = {S2, S3, S4}
– Sample a message (say e3): Ŝ = {S2}

S1

S3

S4S2

e3

e2

e3

e4

e1
e1 e2

e5

e5

e1

Example State Transition Diagram
(STD)

Slide 28/44DCSL: Dependable Computing Systems Lab

Stages of Sampling Approach
S0

At this boundary
we sample a
packet and reduce
the states to some
number j

Stage 1 we start with one
starting state and keep
growing because we drop
r packets.

Stage 2 we start with left
over states and again
keep growing because we
drop r packets.

Stage 3 the system
repeats itself in the same
manner as above…….

Slide 29/44DCSL: Dependable Computing Systems Lab

Analytical Bounds
• Memory requirement is large to store the pre-computed state vectors

– For a k-regular graph, it is k(kr-1)/k-1 if r consecutive messages are dropped
– Use a bit vector representation: proportional to S2.r bits ; where S is the total

state size

• Size of the state vector determines the number of rule instantiations
and hence the overall computation

• For a k-regular graph (representing the STD), we show that the size
of the state vector is asymptotically bounded if

r = min(logkM - 1, logkz)
– r is the number of consecutive packets which can be dropped
– z is the number of different types of messages present in the STD
– M is the total number of outgoing links for all the states in the state vector Ŝ

Slide 30/44DCSL: Dependable Computing Systems Lab

Example Protocol : TRAM
• Tree Based Reliable Multicast Protocol (TRAM)

– It is a scalable protocol aimed to function in large area networks with
hundreds of participants

– Ensures reliability of message transfer in case of node or link failures and
message errors

Sender

RH RH

RH RH

R R R R

R

Data Flow Ack Flow Buffer

Slide 31/44DCSL: Dependable Computing Systems Lab

Example State Transition Diagrams (STD)

s*0

s4

Data

s5

Nack

Ack

Data

NAck

Re-
affiliation

s6

Head Bind

s7

Accept /
Reject

s*0

s8

Hello

s9

TimeOut

HelloReply

Resend
Hello

Drop the
PE

Liveness messages
Data-Ack messages and re-

affiliation

Slide 32/44DCSL: Dependable Computing Systems Lab

• TRAM is used as the application protocol
and fault injection is performed for a burst
length

• Monitor and TRAM run on separate
machines
– Desktop PCs with 2.4GHz processor and 1GB

RAM

• We measure the accuracy and latency
– Accuracy is (1-missed alarms)
– Latency is measured from start of rule

instantiation to the time it took for matching

• Compare Monitor-Baseline, Monitor-HT
and Monitor-S

Experimental Set-Up

r2

r3

RH

S

r1

RH

………

LM

GMmin.ecn.purdue.edu

dcsl-lab

Packet
Forwarding

Slide 33/44DCSL: Dependable Computing Systems Lab

Accuracy Results (Sender-Receiver)

• Monitor-Baseline and Monitor-HT break at 100 pkt/s and 125 pkt/s
respectively

• Monitor-S has a small decrease in accuracy but it still maintains accuracy
at ~ 70% compared to Monitor-HT’s 16% accuracy

0

20

40

60

80

100

0 100 200 300 400 500

Rate of Incoming Packets (pkt/s)

A
cc

ur
ac

y
(%

)
Monitor(Baseline)
Monitor-HT
Monitor-S

Rth = 65 pkt/s

Slide 34/44DCSL: Dependable Computing Systems Lab

Latency Results (Sender-Receiver)

• Similar to accuracy results Monitor-S has a marginal increase in the
latency with increasing packet rate as compared to Monitor-HT and
Monitor-Baseline which have a collapse

• Monitor-S provides detection at a low latency of ~200ms as compared to
1200ms for Monitor-Baseline for high data rates

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

La
te

nc
y

(m
s)

Monitor (Baseline)
Monitor-HT
Monitor-S

Rth = 65 pkt/s
for Monitor-S

Rate of incoming packets (pkt/s)

Slide 35/44DCSL: Dependable Computing Systems Lab

Effects of Varying Rth : Latency

• Here for the plot of Rth = 140 pkt/s we see a sharp spike because
Monitor-HT’s breaking point(Rbp) is at 125 pkt/s

• Rth should be appropriately chosen, preferably far below Rbp to
account for inaccuracies in estimating Rbp and fast fluctuations in
incoming data rate

0

100

200

300

400

0 100 200 300 400 500 600

Rate of Packets (pkt/s)

La
te

nc
y

(m
s)

50 pkt/s
65 pkt/s
100 pkt/s
140 pkt/s

Rate of incoming packets (pkt/s)

Slide 36/44DCSL: Dependable Computing Systems Lab

Variation in Size of State Vector (|Ŝ|)

• Sample run of Monitor-S measuring |Ŝ| at receipt of every alternate
packet

• In Region 1, |Ŝ| drops in steps from 9 to 6 and finally to 1. The drop in |Ŝ|
is because of the unique possibility of the sampled event in only some of
the states

• In Region 2, |Ŝ| increases from 1 to 3 because of a message drop

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Time (seconds)

S
ta

te
 V

ec
to

r
Si

ze

Rate = 250pkt/s
Rth = 65pkt/sRegion 1

Region 2

Slide 37/44DCSL: Dependable Computing Systems Lab

Latency Results (Sender-RH-Receiver)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

Rate of incoming packets (pkt/s)

La
te

nc
y

(m
s) Monitor (Baseline)

Monitor-HT
Monitor-S

Rth = 65pkt

• We repeat the experiments with sender-RH-receiver topology
• Single sender, 2 RHs and 2 receivers, one receiver under each RH
• We observe similar results as in sender-receiver scenarios

Rth = 65 pkt/s

Slide 38/44DCSL: Dependable Computing Systems Lab

Road Map
BackgroundBackground

Brief about Detection and Diagnosis: Summarize detection and proBrief about Detection and Diagnosis: Summarize detection and probabilistic babilistic
diagnosis approachdiagnosis approach

Leftover from Prelim ExaminationLeftover from Prelim Examination
Reduction of State SpaceReduction of State Space
Comparison with PinpointComparison with Pinpoint
Scaling the Monitor approach Scaling the Monitor approach

Sampling TechniqueSampling Technique
MotivationMotivation
Solution ApproachSolution Approach
Experiments and ResultsExperiments and Results

Related Research
High Throughput Detection

Conclusions and Future WorkConclusions and Future Work

Slide 39/44DCSL: Dependable Computing Systems Lab

Related Research
• Change Detection in Networking

– Sketch based approaches: Deltoids, Infocom’05, Infocom’06
– Develop statistical models to describe the stream behavior
– In Monitor state of the application is closely examined and it accounts for

spikes as well. Provides flexibility to switch to sampling or no-sampling

• Stateful Detection
– Particular attention from the security community in building Intrusion

Detection Systems
– Snort uses aggregated information from TCP packets to make decisions
– SciDive provides stateful detection engine for VoIP
– Restricted to the domain and focussed on accuracy

• Detection in Distributed Systems
– Heartbeats, watchdogs
– Detection of Failures using event graphs

Slide 40/44DCSL: Dependable Computing Systems Lab

Contributions of the Research Initiative
• We proposed a generic hierarchical framework black-box system –

the Monitor, to provide non-intrusive detection and diagnosis in
distributed systems

• We developed a stateful detection mechanism that can scale to a
high data rate of the application protocol

• The Monitor can account for uncertainties of the deployment
environment as well as imperfect knowledge of the characteristics
of the protocol entities

• We provide state reduction methods to address the problem of state
space explosion

• Scalability is achieved by a sampling approach which reduced the
overall workload at the Monitor for a given message rate

Slide 41/44DCSL: Dependable Computing Systems Lab

Future Work
• Autonomic Recovery

– Recovery is the logical next step after detection and diagnosis of failure
– How to provide autonomic recovery in the current framework
– Fault Tolerant Community lacks model for generic autonomic recovery:

More work is needed to fully understand the potential of autonomic recovery

• Application of the Monitor framework in other scenarios
– System Management in Virtualized Server Environments

• Virtual machines are emerging as a new paradigm for distributed computing
• Virtualization, in its microcosm, brings a whole new challenge to system

management. The increased layer causes increased complexity and makes it
harder for a system administrator to find and resolve failures

– Windows Device Drivers

• Modeling of the Monitor Framework
– Develop more accurate theoretical models

Slide 42/44DCSL: Dependable Computing Systems Lab

Publications: Monitor Project
• Journal

– “Automated Rule-Based Diagnosis in Distributed Systems,” G. Khanna, P. Varadharajan, Y.
Cheng, S. Bagchi, M. Correia, and P. Verissimo, accepted in IEEE Transactions on Dependable
and Secure Systems (TDSC), May 2007.

– “Automated Online Monitoring of Distributed Applications Through External Monitors,” G.
Khanna, P. Varadharajan, and S. Bagchi, in IEEE Transactions on Dependable and Secure
Computing (TDSC), Feb. 2006.

• Conference and Workshops
– “Stateful Detection in High Throughput Distributed Systems,” G. Khanna, I. Laguna, F.

Arshad, and S. Bagchi, in submission to SRDS 2007.
– “Probabilistic Diagnosis through Non-Intrusive Monitoring in Distributed Applications,” G.

Khanna, I. Laguna, F. Arshad, and S. Bagchi, in submission to SRDS, 2007.
– “State Space Reduction for efficient Detection and Diagnosis in Distributed Systems,” G.

Khanna, Y. Cheng, S. Bagchi, in submission 2007.
– “Self Checking Protocols: A Step Towards Fault Tolerance in Services” G. Khanna, in

ICSOC, PhD Symposium, 2006.
– “Providing Automated Detection of Problems in Virtualized Servers using Monitor

Framework,” G. Khanna, S. Bagchi, K. Beaty, A. Kochut, N. Bobroff, and G. Kar, in Workshop
on Applier Software Reliability (WASR) held in conjunction with DSN, 2006.

– “Modeling Probabilistic Diagnosis Parameters,” G. Khanna, Y. Cheng, and S. Bagchi, Fast
Abstract in Dependable Systems and Networks (DSN), 2006.

– “Self Checking Network Protocol: Monitor Based Approach,” G. Khanna, P. Varadarajan, and
S. Bagchi, In Symposium on Reliable and Distributed Systems, (SRDS), pp. 18-30, Florianopolis,
Brazil, 2004.

– “Failure Handling in a Reliable Multicast Protocol for Improving Buffer Utilization and
Accommodating Heterogeneous Receivers,” G. Khanna, J. S. Rogers, and S. Bagchi, Pacific
Rim Dependable Computing (PRDC), 2004.

Slide 43/44DCSL: Dependable Computing Systems Lab

Other Publications
• Conference and Workshops

– “Performance comparison of SPIN based Push-Pull Protocols” R. Khosla, X. Zhong, G.
Khanna, S. Bagchi, and E. J. Coyle, in Wireless Communications and Networking
Conference (WCNC), 2007.

– “Data Centric Routing in Sensor Networks: Single-hop broadcast or Multi-hop
unicast?,” R. Khosla, X. Zhong, G. Khanna, S. Bagchi, and E. J. Coyle, in Vehicular
Technology Conference (VTC), 2007.

– “Dynamic Application Management to address SLAs in a Virtualized Server
Environment,” G. Khanna, K. Beaty, A. Kochut, and G. Kar, in Network Operations and
Management (NOMS), 2006.

– “Synchronization Attacks Against 802.11,” G. Khanna, A. Masood, and C. N. Rotaru, in
Network and Distributed System Security Symposium (NDSS) Workshop, Feb 2-4, San
Diego, 2005.

– “Fault Tolerant Energy Aware Data Dissemination Protocol in Sensor Networks,” G.
Khanna, S. Bagchi, and Y. S. Wu, In Dependable Systems and Networks (DSN), pp. 795-
804, Florence, Italy, 2004.

– “Data Dissemination Protocol to account for Node and Link Failures in Sensor
Networks,” G. Khanna, S. Bagchi, and Y. S. Wu, Fast Abstract Dependable Systems and
Networks (DSN), 2003.

Slide 44/44DCSL: Dependable Computing Systems Lab

Thank You !!!

Slide 45/44DCSL: Dependable Computing Systems Lab

Backup Slides

Slide 46/44DCSL: Dependable Computing Systems Lab

Motivation for State Space Reduction
• Complex Distributed Applications

– Large scale
– Complex protocol

• Result: Large state space
– Cause state space explosion for verification

• For a monitoring system
– Not all transitions are valuable to a monitoring system
– Internal transition of a protocol entities
– Transition of protocol entities behind firewall
– No rule associate with a particular transition

Slide 47/44DCSL: Dependable Computing Systems Lab

• Monitor(s) has a rule base for verification
– All states are not verified

• Some states might be internal because of the black-box model of
the protocol entities
– Internal States can cause Monitor to loose track

• STD must be reduced to circumvent these cases

STD Reduction: Monitor Performance

S1 i1 / o1 S2

i2 / o2
S3

S1 i1 / o1 S2

i2 / o2
S3

Slide 48/44DCSL: Dependable Computing Systems Lab

Related Work: State Space Explosion

Reachability
Analysis

Partial-Order
Reduction

Symbolic Model
Checking

Asynchronous
Protocol Verification

Synchronous Hardware
Synthesis

Equivalence Classes Binary Decision Diagrams

Reachability
Analysis

Partial-Order
Reduction

Symbolic Model
Checking

Asynchronous
Protocol Verification

Synchronous Hardware
Synthesis

Equivalence Classes Binary Decision Diagrams

– Simple example: consider a trace s1→α1 s2→α2 s3→α3 s4. If transition α2 is
hidden (i.e., internal) then partial order method will mark states s3 and s4 as
unreachable and reduce both

– But a monitoring system may want to verify state s4

Slide 49/44DCSL: Dependable Computing Systems Lab

STD Reduction : 2 Phase Reduction
• Removing internal transitions

– C1:“If a state does not have any external transition edge, then remove that
state and re-assign all the external outgoing transition edges of the reduced
state”.

– C2:“If a state exists which has both internal and external transition edges,
we need to remove the internal messages and re-assign the external
incoming and outgoing transition edges of that state”.

i1int / o1
int i2ext / o2

ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

Slide 50/44DCSL: Dependable Computing Systems Lab

STD Reduction : Two Phase Reduction
• Removing rule less states

– Reduces the amount of storage and computation needed at the detection
process

– Reducing the number of nodes that need to be traversed during the diagnosis
process

• Analytically prove that reduction process does not affect the
missed alarms or false alarms generated during the detection
procedure
– No modification to the rule structure or detection procedure

• Analyze the performance gains through actual test-bed
experiments running the Monitor framework
– Significant reduction in latency of detection and diagnosis

Slide 51/44DCSL: Dependable Computing Systems Lab

Solution Approach

S11

S12 S13

PE1 S21

S22 S23

PE2

S31

S32 S33

PE3

S11

S12 S13
M1

S31

S32 S33

S21

S22 S23

M2

Monitoring module

Protocol Entity (PEi)

Si1

Si2 Si3

STD for a PEi , shared by
the monitoring module as
well.

S11

S12 S13

PE1
S11

S12 S13

PE1 S21

S22 S23

PE2
S21

S22 S23

PE2

S31

S32 S33

PE3
S31

S32 S33

PE3

S11

S12 S13

S11

S12 S13
M1

S31

S32 S33

S31

S32 S33

S21

S22 S23

S21

S22 S23

M2

Monitoring module

Protocol Entity (PEi)

Si1

Si2 Si3

Si1

Si2 Si3

STD for a PEi , shared by
the monitoring module as
well.

Slide 52/44DCSL: Dependable Computing Systems Lab

Removing Internal Transition

Slide 53/44DCSL: Dependable Computing Systems Lab

Removing internal transitions (STD→STD′)
• The transition is internal to the PE -> no externally visible

message.

• The monitoring system is placed in a network location where the
observation of the PE is not perfect

• There are firewall rules that block the monitoring system from
observing this kind of transition.

Slide 54/44DCSL: Dependable Computing Systems Lab

Case 1
• C1:“If a state does not have any external transition edge, then

remove that state and re-assign all the external outgoing transition
edges of the reduced state”.

S1 i1int / o1
int S2

i2ext / o2
ext S3

S1 i1int / o1
int S2

i2ext / o2
ext S3

S1

i2ext / o2
ext

S3

Slide 55/44DCSL: Dependable Computing Systems Lab

Case 2
• C2:“If a state exists which has both internal and external transition edges, we

need to remove the internal messages and re-assign the external incoming and
outgoing transition edges of that state”.

i1int / o1
int i2ext / o2

ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

Slide 56/44DCSL: Dependable Computing Systems Lab

Case 3: Non-deterministic transitions

i1int / o1
int i2ext / o2

ext

i4ext / o4
ext

S1 S2 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7

i2ext / o2
ext

i4ext / o4
ext

S1 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7

Slide 57/44DCSL: Dependable Computing Systems Lab

Removing transition without rules

Slide 58/44DCSL: Dependable Computing Systems Lab

STD reduction due to ruleless states (STD′→STD′′)
• Reduces the amount of storage and computation needed at the

detetion process
• Reducing the number of nodes that need to be traversed during

the diagnosis process

Slide 59/44DCSL: Dependable Computing Systems Lab

5 types of rules

• Type II: St is the state of an object at time t : St ≠ St+∆, if event Ei
takes place at t

• Type V: This rule prevents a state transition from Si back to the
same state within time β of first arriving at Si.

αββαα >++∈∀≠⇒+∈∀= ..);0,0()0,0(tstttiSstttiSs

Slide 60/44DCSL: Dependable Computing Systems Lab

Case 1
• C1: A state Si has no rule ∧ (∀Sj ∈ predecessor(Si)) Sj has no rule of type V ∧

Sj has no rule on transition edge i1ext/o1ext⇒ Remove Si and incoming
transitions of Si.

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule

i2ext / o2
ext S3

Rule

Slide 61/44DCSL: Dependable Computing Systems Lab

Case 2: Type V Rule
• C2: A state Si has no rule and (∃Sj ∈ predecessor(Si)) s.t. Sj has a rule of type V

⇒ Do not remove Si.

S1
Rule V

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule

i2ext / o2
ext

S3

S1
Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule

Slide 62/44DCSL: Dependable Computing Systems Lab

Case 3: Type II Rule
• A state Si has no rule and (∃Sj ∈ predecessor(Si)) s.t. Sj has a rule of type II ∧ Tj

is self-loop ⇒ Do not remove Si.

S1
Rule II

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule

i0ext / o0
ext

Slide 63/44DCSL: Dependable Computing Systems Lab

Example: Simple
• Example

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule

i3ext/ o3
ext

S3
Rule

S1
Rule

i2ext / o2
ext S4

Rule

i3ext / o3
ext

S3
Rule

Slide 64/44DCSL: Dependable Computing Systems Lab

Example: Complex edge

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule

i2ext/ o2
ext

S3
Rule

S1
Rule

(i1ext /o1
ext) * (i2ext / o2

ext) S4
Rule

i2ext / o2
ext

S3
Rule

Slide 65/44DCSL: Dependable Computing Systems Lab

Experiments
• Developed an emulator system

– generates a random STD
– emulates PEs which performs transitions

• Divided the experiments into two parts:
1) Static

• Test the efficacy of the reduction mechanism by inputting several STDs which
have internal states and rule less states.

2) Dynamic
• Test the latency of the Montior System

Slide 66/44DCSL: Dependable Computing Systems Lab

Emulator
• Performs two tasks:

1. Generate a random state transition diagram via generating a random graph
• Generates a random connected graph
• Marks some of the transition edges E to be internal
• Marks states to contain rules

2. Emulate PEs which perform transitions according to the generated STD.
• Emulates some PEs which exchange messages amongst each other
• Via performing a random walk over the generated STD

Slide 67/44DCSL: Dependable Computing Systems Lab

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

Number of States

Pe
rc

en
ta

ge
 o

f S
ta

te
 R

ed
uc

tio
n(

%
)

10% Internal Edges
30% Internal Edges
50% Internal Edges
70% Internal Edges
90% Internal Edges

STD’ Reduction

percentage of state space reduction =(#states in STD – #states in STD′)/ #states in STD

The STD contains 4V edges

• We can see that for a fixed fraction of internal transition edges, the
percentage of state space reduction remains constant with
increasing state size.

Slide 68/44DCSL: Dependable Computing Systems Lab

STD’ Reduction

• An increase in percentage of state space reduction with increasing
percentage of internal transition edges.

• A state is removed only if all incoming transition edges are internal.

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90

Percentage of Internal Edges (%)

Pe
rc

en
ta

ge
 o

f S
ta

te
 R

ed
uc

tio
n

(%
)

Slide 69/44DCSL: Dependable Computing Systems Lab

Diagnosis in a gist
• Monitor maintains a causal graph with events ordered according to

the logical time

• c by building a Diagnosis tree of all the nodes which sent messages
to nf say set A.

• Each node in the suspicion set is tested using a test procedure

• If all nodes are not faulty then suspicion set is expanded to include
the nodes which sent messages to nodes in A.

Slide 70/44DCSL: Dependable Computing Systems Lab

Causal Graph & Diagnosis Tree

A

C

B
1

2

3

4

4 PEs namely A, B, C
and D exchange
messages 1-8 amongst
each other. The message
number indicates the
causal order i.e.
message 1 precedes all
of the rest of messages.

D
5

8

6
7

A.LC4, D.LC38

C.LC4, D.LC15

C.LC3, A.LC24

C.LC2, B.LC33

B.LC5, D.LC2

B.LC4, A.LC3

B.LC2, C.LC1

A.LC1, B.LC1

Sender.LogicalClock ,
Receiver.LogicalClock

7

6

2

1

Message ID

D

C

CB

B

A

3

5 7

2 1

Diagnosis Tree

Slide 71/44DCSL: Dependable Computing Systems Lab

Failure Detection

• Monitor uses rule base to verify the observed messages
– Generic architecture widely applicable through using specific rule base
– Black-box, non-intrusive semantics

• Scalability is achieved through hierarchical design

• Automatic load balancing helps in making the system auto-
configurable

Slide 72/44DCSL: Dependable Computing Systems Lab

Pinpoint’s Approach to Diagnosis(1)
• Pinpoint is an approach developed by Chen et.al in 2002 to address

problem determination in E-commerce system
– Approach is generic can be applied in larger context

• It uses a dependency matrix describing the dependence of client
transaction on web components
– Components consists of EJBs, and servlets

• Internal and external failure detectors are used to determine
success of client transactions

Web client
emulator

J2EE Application Server

Web Tier

JSP

EJB Tier

EJB

EJB

EJB

communication layer

Database

communication layer

JSP

servlet

servlet

Web client
emulator

J2EE Application Server

Web Tier

JSP

EJB Tier

EJB

EJB

EJB

communication layer

Database

communication layer

JSP

servlet

servlet

Slide 73/44DCSL: Dependable Computing Systems Lab

Pinpoint’s Approach to Diagnosis(2)
• A failure column is added to the dependency matrix which

contains the outcome of the transaction (failed or success)
• Pinpoint correlates the failures of transactions to the components

that are most likely to be the cause of the failure
• Example:

10004

01013

01112

00101

Component CComponent BComponent AFailureClient Request
ID

10004

01013

01112

00101

Component CComponent BComponent AFailureClient Request
ID

Slide 74/44DCSL: Dependable Computing Systems Lab

Comparison with Pinpoint: Experimental Set-up
• We implement the Pinpoint algorithm and create a e-commerce

system as described in the Pinpoint paper
– PetStore application deployed on JBoss application server

• Provide external and internal failure detectors to both Monitor and
Pinpoint for a fair comparison of only diagnosis approaches

Slide 75/44DCSL: Dependable Computing Systems Lab

Experimental Set-up
• We use a total of 55 client transactions out of which 45 are unique.
• We chose 9 components, 6 EJBs and 3 servlets as our target

components for fault injection
– Examples: AddressEJB, AsyncSenderEJB etc.

• We perform 4 different type of fault injection into the components
similar to Pinpoint
– Declared Exception, Undeclared Exception, Endless call and Null call

• Similar to Pinpoint we use 1-component, 2-component and 3-
component triggers for fault injection
– In a 2-component trigger, a sequence of 2-components is determined and

whenever the sequence is touched during a transaction, the last component
in the transaction is injected with the fault

• Accuracy and Precision metrics are compared
– Predicted Fault set is {A, B, C}, but only {A} has a fault then accuracy is

100% but precision is 33.3%.

Slide 76/44DCSL: Dependable Computing Systems Lab

1-Component Faults
• All 4 types of fault injections are performed on each of the 9

components
• Pinpoint has high false positives rates but the accuracy eventually

reaches 1. In contrast, the Monitor has a much higher accuracy
keeping a low false positive rate. Monitor’s accuracy also reaches
1 but at a much lower value of false positives (0.6) as compared to
Pinpoint (> 0.9)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive=(1-Precision)

Pi
np

oi
nt

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

False Positive = (1-Precision)

M
on

ito
r A

cc
ur

ac
y

Slide 77/44DCSL: Dependable Computing Systems Lab

2-Component Faults
• Monitor outperforms Pinpoint in the 2-component fault injection.
• One can see that accuracy reaches a maximum of 0.83 compared to

1.00 in 1-component injection
• In 2-component fault injection the accuracy is not as high as 1-

component faults because the number of diagnosis instances are far
less

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

False Positive= (1-Precision)

Pi
np

oi
nt

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

False Positive =(1-Precision)

M
on

ito
r A

cc
ur

ac
y

Slide 78/44DCSL: Dependable Computing Systems Lab

3-Component Faults

• The relative behavior of the Monitor’s diagnosis algorithm and
Pinpoint’s approach remains the same in 3-component faults as
well

• Monitor achieves low false positive rates which providing a much
higher accuracy than Pinpoint

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

False Positive=(1-Precision)

Pi
np

oi
nt

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False Positive=(1-Precision)

M
on

ito
r A

cc
ur

ac
y

Slide 79/44DCSL: Dependable Computing Systems Lab

Behavior of Components
• For the success of Pinpoint’s algorithm, the components should

behave independently
• Presence of tightly coupled components can cause the clustering

approach to suffer
• We observe some coupling in the target components as well

– PetStore software is written in such a manner that required coupling of
multiple components

0

1

2

3

4

5

6

Add
re

ss
EJ

B

Asy
nc

Se
nd

er
EJB

Cata
log

EJB

Con
ta

ctI
nfo

EJ
B

Cre
dit

Car
dE

JB

Sho
pp

ing
Clie

ntF
ac

ad
eL

oc
...

or
de

r.d
o

en
ter

_o
rd

er
_in

for
m

ati
on

.sc
re

en

ite
m.sc

re
en

Components where faults are injected

of

 ti
gh

tly
 c

ou
pl

ed
 c

om
po

ne
nt

s

Slide 80/44DCSL: Dependable Computing Systems Lab

Comparison with Pinpoint: Conclusions

• Monitor’s probabilistic diagnosis is compared with Pinpoint
approach to diagnosis
– Pinpoint is implemented
– Monitor and Pinpoint are used to diagnose failures in an e-commerce set up
– Experimental set-up is made close to the Pinpoint paper and same fault

injection are performed

• Monitor outperforms Pinpoint by achieving higher accuracy for the
same precision values

• Monitor achieves lower precision numbers for 1, 2, and 3-
component faults thus providing a low false positive rates

Slide 81/44DCSL: Dependable Computing Systems Lab

Effects of Varying Rth : Accuracy

• Beyond Rth Monitor switches from Monitor-HT to Monitor-S

• Difference in characteristics of the curve around Rth provides the
system administrator a useful tuning parameter

0

20

40

60

80

100

0 100 200 300 400 500 600

Rate of Packets (pkt/s)

A
cc

ur
ac

y
(%

)

50 pkt/s
65 pkt/s
100 pkt/s

Slide 82/44DCSL: Dependable Computing Systems Lab

Example of Detection Rules on TRAM

• T R4 S4 E11 30 500 5000 S4 E2 1 8 4000 7000: The rule has a
precondition to check data packets (E11) arrival within 5000msec.
This causes the post condition that at least one ack(E2) (between 1
and 8) must be sent

• T R3 S5 E13 0 5 5000: This rule ensures that the number of re-
affiliation packets (E13) is no more than 5 within 5000ms in state
S7

• T R3 S0 E1 10 30 5000: This rule of type 3 checks for the hello
packet(E1) rate. The E1 message count should be between 10 and
30 for the next 5000 msec

• T R4 S0 E10 1 4 1000 S3 E8 1 2 3000 4000: Head Adv.(E10)
messages should be eventually followed by Accept message(E8)

Slide 83/44DCSL: Dependable Computing Systems Lab

Rule Base
• Monitor is provided with Normal Rule Base for detection and

Strict Rule Base for diagnosis

• A few examples of SRB rules
– S1 E11 1 S3 E11 30 1 : A single data packet must be followed by 30 more

data packets
– S6 E1 1 S6 E9 1 1 : Hello Message must be followed by a Hello Reply
– S1 E11 1 S2 E11 1 1 : A repair head must send out each data packet which

is received
– S0 E15 1 S1 E14 1 1: A receiver sends a Head-Bind message then it should

receive multiple Head-Ack packets

Slide 84/44DCSL: Dependable Computing Systems Lab

Related Research
Observer Systems

– Near identical approach is presented through the observer system
• Monolithic Entity, Formal verification required [Diaz ’94]

– Approach using Communicating Finite State Machines (CFSM) [Seviora
DSN ’02]

• Global correctness is assumed via individual local interaction verifications
• Claim to eliminate the state space explosion problem

Diagnosis
• White-Box diagnosis

– Have access to the internals of the system [Gruschke 1994], [Sanders 2005]
– Use active probing to infer the problem
– Use of heavy instrumentation
– Embedding event generators in the application

Slide 85/44DCSL: Dependable Computing Systems Lab

Related Research
• Multiprocessor diagnosis

– Deterministic diagnosis approach: First diagnosis approach by PMC [Preparata
et.al. 1967]

– Several testing graph based approaches have been proposed with variation in number
of tests and graph structure

– t-diagnosable [Hakimi 74]
– Hierarchical testing algorithm was proposed requiring (log N)2 testing rounds

[Nanya 98]
– Probabilistic diagnosis by Fussel and Rangarajan [1989], followed by [Kang and Lee

1994]
– Assume no distinction between the protocol entities and testing entities
– Employ explicit tests to the entities

• Debugging in Distributed Applications
– Industrial research has focused on problem determination on distributed applications

like eCommerce. For e.g. dependency graph [Kar, Hellerstein]
– Different approaches incorporating probing, dependency analysis and adaptive

diagnosis have been proposed
– Black-Box: It aims to find a find causal relationship between the RPC messages

• Stops at finding the causal relationship
• Offline Method which involves heuristics [Aguilera 2003]

Slide 86/44DCSL: Dependable Computing Systems Lab

Temporal rules
Type I:

Type II:

Type III:
L ≤ |Vt| ≤ U (ti,ti+k)

Type IV:
∀t∈(ti,ti +k) L ≤ |Vt| ≤ U ⇒L′ ≤ |Bq| ≤ U′, ∀q∈(tn,tn+b)

truefor (,) truefor (,)p N N q I IS T t t k S T t t b= ∈ + ⇒ = ∈ +

St is the state of an object at time t : St ≠ St+∆, if event Ei
takes place at t

