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ABSTRACT

Sellke, Sarah H. Ph.D., Purdue University, May 2010. Analytical Characterization of
Internet Security Attacks. Major Professors: Saurabh Bagchi and Ness B. Shroff.

Internet security attacks have drawn significant attention due to their enormously

adverse impact. These attacks includes Malware (Viruses, Worms, Trojan Horse),

Denial of Service, Packet Sniffer, and Password Attacks. There is an increasing need

to provide adequate defense mechanisms against these attacks. My thesis proposal

deals with analytical aspects of the Internet security attacks, as well as practical

solutions based on our analysis.

First, We focus on modeling and containment of internet worms. We present a

branching process model for the propagation of worms. Our model leads to the de-

velopment of automatic worm containment strategies, which effectively contain both

uniform scanning worms and local preference scanning worms. Incremental deploy-

ment of our scheme provides worm containment for local networks when combined

with traditional firewalls.

Next, we study the capacity of Bounded Service Timing Channels. We derive

an upper bound and two lower bounds on the capacity of such timing channels. We

show that when the length of the support interval is small, the uniform BSTC has the

smallest capacity among all BSTCs. Based on our analysis, we design and implement

a covert timing channel over TCP/IP networks. We are able to quantify the achievable

data rate (or leak rate) of such a covert channel. Moreover, by sacrificing data rate, we

are able to mimic normal traffic patterns, which makes detecting such communication

virtually impossible.
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1. INTRODUCTION

The Internet has become critically important to the financial viability of the national

and the global economy. Meanwhile, we are witnessing an upsurge in the incidents

of attacks on the Internet. In this report, we will provide analytical characteristics

of some of the attacks on the Internet including covert communications, computer

worms and viruses.

Covert communication can be used by a party who has access to sensitive infor-

mation to leak such information to unauthorized party while avoid being detected.

A network covert timing channels can be used by a Trojan horse to leak information

in a noisy network environment by the timing of the packets, not the content of the

packets. Such channels are hard to detect because by examining the content of the

packet alone, it will reveal no information.

Worms and DDoS attacks are more common attacks on the Internet. Code Red,

SQL Slammer, and Sasser are some of the more famous examples of worms that

have caused considerable damage. Network worms have the potential to infect many

vulnerable hosts on the Internet before human countermeasures take place. The

infected hosts can also be controlled by a master machine to launch DDoS attacks on

the Internet.

In the rest of this chapter, we introduce our analytical results and practical solu-

tions in covert network timing channels and Internet worms.

1.1 Internet Worms

Most models of Internet-scale worm propagation are based on deterministic epi-

demic models [6, 26, 29]. They are acceptable for modeling worm propagation when

the number of infected hosts is large. However, it is generally accepted that they
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are inadequate to model the early phase of worm propagation accurately because the

number of infected hosts early on is very small [19].

In our work, we propose a stochastic branching process model for the early phase

of uniform scanning worm propagation. This model captures the worm spreading

dynamics for worms of arbitrary scanning rate, including stealth worms that may

turn themselves off at times. Our analysis shows that it is the total number of

scans that an infected host attempts, and not the more restrictive scanning rate, that

determines whether worms can spread. Moreover, we can probabilistically bound

the total number of infected hosts. The insight from our model provides us with a

mechanism for containing both fast scanning worms and slow scanning worms without

knowing the worm signature in advance or needing to detect whether a host is infected.

This scheme is non-intrusive in terms of its impact on legitimate traffic.

Our modeling and containment schemes are further generalized to preferential

scanning worms. Our analysis and simulation shows that our method can contain

worm infection in a local network, and allows for incremental deployment.

1.2 Theory and Practice of Covert Network Timing Channels

1.2.1 Capacity of Timing Channels with Bounded Service Time

It is well known that queues with exponentially distributed service times have

the smallest Shannon capacity among all single-server queues with the same service

rate. In my thesis, we study the capacity of timing channels in which the service time

distributions have bounded support, i.e., Bounded Service Timing Channels (BSTC).

We derive an upper bound and two lower bounds on the capacity of such timing

channels. The tightness of these bounds is investigated analytically as well as via

simulations. We find that the uniform BSTC serves a role for BSTCs that is similar

to what the exponential service timing channel does for the case of timing channels

with unbounded service time distributions. That is, when the length of the support

interval is small, the uniform BSTC has the smallest capacity among all BSTCs.
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1.2.2 Network Timing Channels: Theory to Practice

There has been significant recent interest in covert communication using timing

channels. In network timing channels, information is leaked by controlling the time

between transmissions of consecutive packets. In TCP/IP timing channels, the ser-

vice time distributions have bounded support. Moreover, we observe that in TCP/IP

networks, end-to-end delays are much larger than the jitter 1.

Based on our theoretical results, we have designed a robust, low-cost, and efficient

L-bits to n-packets scheme for covert communications using timing channels. Our

approach has been to develop easy-to-use encoding and decoding schemes that allow

us to operate at close to the achievable data rate of the timing channel. We have also

implemented a TCP/IP based timing channel on the real Internet and our experiments

show that our scheme achieves between two to five times the data rate over the state-

of-the art.

1.2.3 Concealable Timing Channels

We provide two designs of concealable timing channels. The first one mimics

normal traffic whose packet inter-arrival times are i.i.d., and it can be made compu-

tationally indistinguishable from that of i.i.d. normal traffic. The second design of

our concealable timing channel mimics traffic that are long range dependent. It is

statistically indistinguishable from LRD legitimate traffic and evades current covert

timing channel detections.

It has been shown that the telnet traffic can be modeled by an i.i.d. Pareto dis-

tribution. We demonstrated our design of a timing channel that mimics telnet packet

inter-transmission time distribution such that it is indistinguishable from legitimate

telnet traffic. Since Web traffic accounts for more than half of Internet traffic today,

Camouflaging covert timing channels in Web traffic would be more advantageous for

concealment. Extensive research has shown that Internet traffic, including HTTP

1jitter is defined as the variation of the delay
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traffic, exhibits self-similarity and long range persistence. The covert timing chan-

nels that mimic i.i.d. legitimate traffic cannot imitate HTTP traffic because these

covert traffic patterns are not long range dependent. Therefore, we design a covert

timing channel whose inter-arrival times are long range dependent and have the same

marginal distribution as the inter-arrival times for new HTTP connection traffic.

These inter-arrival times are constructed by combining a Fractional Auto-Regressive

Integrated Moving Average (FARIMA) time series and an i.i.d. cryptographically

secure random sequence.

Experiments are conducted on PlanetLab, and the results are validated against

recent real traffic trace data. Our experiments demonstrate that the traffic from

this timing channel traffic is statistically indistinguishable from legitimate HTTP

traffic and undetectable by all current detection schemes for timing channels. The

concealable timing channels result in a drop of the achievable data rate using the

timing channel, however the resultant non-detectable scheme is still able to achieve a

higher data rate than previous easily detectable timing channel schemes.

Our work on network timing provides three main contributions. The first is to

derive an upper bound and two lower bounds on the capacity of timing channels

with bounded service time. These bounds are asymptotically tight when the service

time is uniformly distributed. The second is to quantify the threat posed by covert

network timing channels by demonstrate that the data rate can be much larger than

previously thought. The third is to use timing channels to communicate at a low data

rate without being detected. This suggests that TCP/IP timing channels can be far

stealthier than previously thought possible.

The rest of report is organize as follows: in chapter 2 and 3, we will provide our

theoretical results on the capacity of timing channels and our design, implementation,

and experimental results on the covert TCP/IP timing channels. In chapter 4, we

will present our research in modeling of scanning worms and our automatic worm

containment mechanisms for both uniform scanning worms and preference scanning

worms.
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2. MODELING AND AUTOMATED CONTAINMENT OF

INTERNET SCANNING WORMS

2.1 Introduction

The Internet has become critically important to the financial viability of the na-

tional and the global economy. Meanwhile, we are witnessing an upsurge in the

incidents of malicious code in the form of computer viruses and worms. One class

of such malicious code, known as random scanning worms, spreads itself without

human intervention by using a scanning strategy to find vulnerable hosts to infect.

Code Red, SQL Slammer, and Sasser are some of the more famous examples of worms

that have caused considerable damage. Network worms have the potential to infect

many vulnerable hosts on the Internet before human countermeasures take place. The

aggressive scanning traffic generated by the infected hosts has caused network con-

gestion, equipment failure, and blocking of physical facilities such as subway stations,

911 call centers, etc. As a representative example, consider the Code Red worm ver-

sion 2 that exploited a buffer overflow vulnerability in the Microsoft IIS web servers.

It was released on July 19th, 2001 and over a period of less than 14 hours infected

more than 359,000 machines. The cost of the epidemic, including subsequent strains

of Code Red, has been estimated by Computer Economics to be $2.6 billion [32].

While Code Red was particularly virulent in its economic impact (e.g., see [3, 21])

it provides an indication of the magnitude of the damage that can be inflicted by

such worms. Thus, there is a need to carefully characterize the spread of worms and

develop efficient strategies for worm containment.

The goal of our research is to provide a model for the propagation of random

scanning worms and the corresponding development of automatic containment mech-

anisms that prevent the spread of worms beyond their early stages. This containment
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scheme is then extended to protect an enterprise network from a preference scanning

worm. A host infected with random scanning worms finds and infects other vul-

nerable hosts by scanning a list of randomly generated IP addresses. Worms using

other strategies to find vulnerable hosts to infect are not within the scope of this

work. Some examples of non-random-scanning worms are email worms, peer-to-peer

worms, and worms that search the local host for addresses to scan.

Most models of Internet-scale worm propagation are based on deterministic epi-

demic models [6, 26, 29]. They are acceptable for modeling worm propagation when

the number of infected hosts is large. However, it is generally accepted that they

are inadequate to model the early phase of worm propagation accurately because the

number of infected hosts early on is very small [19]. The reason is that epidemic

models capture only expected or mean behavior, while not being able to capture the

variability around this mean, which could be especially dramatic during the early

phase of worm propagation. While stochastic epidemic models can be used to model

this early phase, they are generally too complex to provide useful analytical solutions.

In this paper, we propose a stochastic branching process model for the early phase

of worm propagation 1. We consider the generation-wise evolution of worms, with

the hosts that are infected at the beginning of the propagation forming generation

zero. The hosts that are directly infected by hosts in generation n are said to belong

to generation n + 1. Our model captures the worm spreading dynamics for worms

of arbitrary scanning rate, including stealth worms that may turn themselves off at

times.

We show that it is the total number of scans that an infected host attempts, and

not the more restrictive scanning rate, that determines whether worms can spread.

Moreover, we can probabilistically bound the total number of infected hosts. These

insights lead us to develop an automatic worm containment strategy. The main idea is

to limit the total number of distinct IP addresses contacted (denote the limit as MC)

1Branching process approximations to stochastic epidemic processes have been studied rigorously.
A tutorial on this topic can be found in [4].
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per host over a period we call the containment cycle, which is of the order of weeks

or months. We show that the value of MC does not need to be as carefully tuned as

in the traditional rate control mechanisms. Further, we show that this scheme will

have only marginal impact on the normal operation of the networks. Our scheme

is fundamentally different from rate limiting schemes because we are not bounding

instantaneous scanning rates.

Preference scanning worms are a common class of worms but have received signif-

icantly less attention from the research community. Unlike uniform scanning worms,

this type of worm prefers to scan random IP addresses in the local network to the

overall Internet. We show that a direct application of the containment strategy for

uniform scanning worms to the case of preference scanning worms makes the system

too restrictive in terms of the number of allowable scans from a host. We therefore

propose a local worm containment system based on restricting a host’s total num-

ber of scans to local unused IP addresses (denoted as N). We then use a stochastic

branching process model to come up with a bound on the value of N to ensure that

the worm spread is stopped.

The main contributions of the paper are summarized as follows. We provide a

means to accurately model the early phase of propagation of uniform scanning worms.

We also provide an equation that lets a system designer probabilistically bound the

total number of infected hosts in a worm epidemic. The parameter that controls the

spread is the number of allowable scans for any host. The insight from our model

provides us with a mechanism for containing both fast scanning worms and slow

scanning worms without knowing the worm signature in advance or needing to detect

whether a host is infected. This scheme is non-intrusive in terms of its impact on

legitimate traffic. Our model and containment scheme are validated through analysis,

simulation, and real traffic statistics.

The rest of the paper is organized as follows. In Section 2.2, we review relevant

research on network worms. In Section 2.3, we present our branching process model

with corresponding analytical results on the spread of the infection. In Sections 2.4
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and 2.5, we describe an automatic worm containment scheme for random scanning

worms and adaptation to the case of local preference scanning worms. In Section 2.6,

we provide numerical results that validate our model and confirm the effectiveness of

our containment scheme. In Section 2.7, we summarize our contributions and provide

some discussion and directions for future work.

2.2 Related Work

As mentioned in the introduction, deterministic epidemic models have been used

to study worm propagation [26, 29]. For illustration, consider the two-factor worm

model proposed by Zou et al. [29]:

dI(t)

dt
= β(t)[V − R(t)− I(t)−Q(t)]I(t)− dR(t)

dt
, (2.1)

where V is the total number of susceptible hosts on the Internet, and I(t), R(t), Q(t)

represent the number of infectious hosts, the number of removed hosts from the infec-

tious population, and the number of removed hosts from the susceptible population

at time t, respectively. The parameter β(t) is the infection rate at time t and reflects

the impact of the Internet traffic on the worm propagation. The parameters R(t) and

Q(t) reflect the human countermeasures in patching.

When there is no patching and when the infection rate is constant, the two factor

model equation is the random constant spread model (RCS) proposed by Staniford

et al. [26]:
dI(t)

dt
= βI(t)(V − I(t))

These types of models are suitable when there are a large number of infected

hosts. However, during the early stage of the worm propagation, the number of

infected hosts is small and such deterministic models may not accurately characterize

the spread of worms. Nonetheless, most existing models for Internet worms are based

on deterministic epidemic models.

Early worm detection systems have been proposed by several researchers. Zou

et al. use a Kalman filter [30] to detect the worms. The Kalman filter is used to
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detect the presence of a worm by detecting the trend, not the rate, of the observed

illegitimate scan traffic. The filter is used to separate worm traffic from background

non-worm scan traffic. Liljenstam et al. [19] and Berk [5] develop an early worm

detection system called DIB:S/TRAFEN in which a select group of routers forward

ICMP T-3 packets to the analysis station. It is shown in [19] that the total number

of participating routers can be small, but these routers must be distributed across a

significant fraction of the Internet address space to ensure timely and accurate worm

detection. They develop a worm simulation model that is used for generating worm

traffic for evaluating the DIB:S/TRAFEN detection system. Their simulation model

uses a combination of the deterministic epidemic model and a general stochastic

epidemic model to model the effect of large scale worm attacks. They found the

stochastic epidemic model to be useful for modeling the early stage of the worm

spread. However, the complexity of the general stochastic epidemic model makes it

difficult to derive insightful results that could be used to contain the worm.

Rate-control based countermeasures, such as Virus throttling by Williamson [27],

have been shown to be successful in detecting and slowing down fast scanning worms.

Wong et al. [28] studied the effect of rate control on suppressing the spread of the

worms when this mechanism is deployed at various points (e.g., host, LAN, and core

router) of the network. The rate control is effective in slowing down fast worms but

is not effective against slow scanning worms. In addition, the limit on the rate must

be carefully tuned in order to let the normal traffic through.

Zou et al. propose and analyze a dynamic quarantine scheme for Internet worms

[31]. They assume that the underlying worm detection system has a certain false

alarm rate. Their system confines all hosts that have triggered the alarm, and au-

tomatically releases them after a short time. They found that this scheme can slow

down the worm spread but cannot guarantee containment.

Moore et al. [23] examined the reaction time required to contain Internet scale

worms using countermeasures such as blacklisting the infected hosts and content
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filtering at routers. Their study concluded that to effectively contain Internet worms,

it is necessary to take actions early, within minutes of the worm outbreak.

Ganesh et al. investigated how topology affects the spread of an epidemic by

modeling the epidemic spread as a contact process in a finite undirected graph [9].

Most recently, Ganesh et al. proposed an interesting framework [10] to examine the

impact of the worm countermeasures, such as worm throttling and worm quarantine,

on the spread of the worms. The interaction between the worm detection strategy and

worm propagation is viewed as a game. Based on their analysis, they designed optimal

detection rules against scanning worms and further proposed methods of coordinating

information among the end hosts to speed up the detection using Bayesian decision

theory.

Another approach to worm detection is based on Sequential Hypothesis Testing

[13, 37, 41]. To determine if a host is infected, a sequence of connection attempts,

both successful and failed, is examined to validate the null hypothesis that the host

is not infected. If a host is deemed infected, the scans from it are suppressed. The

shortcoming is that the infected hosts may avoid detection if they fake more successful

connections.

2.3 Branching Process Model for Random Scanning Worms

We now present the branching process model we use to characterize the propa-

gation of random scanning worms. Scanning worms are those that generate a list of

random IP addresses to scan from an infected host. The uniform scanning worms

are those in which the addresses are chosen completely randomly while preference

scanning worms weight the probability of choosing an address from different parts

of the network differently. In this paper, we first describe the approach for uniform

scanning worms, and then we present the extension for preference scanning worms.

In our model, a host under consideration is assumed to be in one of three states: sus-

ceptible, infected, or removed. An infected host generates a list of random IP address
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to scan. If a susceptible host is found among the scans, it will become infected. A

removed host is one that has been removed from the list of hosts that can be infected.

We use V to denote the total number of initially vulnerable hosts. The initial

probability of successfully finding a vulnerable host in one scan is p = V
232 , where 232

is the size of current IPv4 address space. We call p the density of the vulnerable

hosts, or vulnerability density.

We use M to denote the total number of scans from an infected host. This M is

the “natural” limit of the worm itself, and is always finite during a finite period of

time. For example, when a worm scans 6 IPs per second, it will scan M = 518, 400

times in a day. We will characterize the values of M that ensure extinction of a

worm in the Internet, and provide the probability distribution of the total number

of infected hosts as a function of M . To that end, we first describe our branching

process model.

2.3.1 Galton-Watson Branching Process

The Galton-Watson Branching process2 is a Markov process that models a popu-

lation in which each individual in generation n independently produces some random

number of individuals in generation n+1, according to a fixed probability distribution

that does not vary from individual to individual [14, 25].

All infected hosts can be classified into generations in the following manner. The

initially infected hosts belong to the 0 − th generation. All hosts that are directly

infected by the initially infected hosts are 1st generation hosts, regardless of when

they are infected. In general, an infected host Hb is an (n + 1)-st generation host

if it is infected directly by a host Ha from the n-th generation. Hb is also called

an offspring of Ha. All infected hosts form a tree if we draw a link between a host

and its offspring. Figure 2.3.1 illustrates the notion of generation-wise evolution. In

this model, there is no direct relationship between generation and time. A host in a

2Branching process models have already been successfully used in modeling the spread of infectious
diseases in the early phase of the outbreak [4].
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higher generation may precede a host in a lower generation, as host D (generation 2)

precedes host B (generation 1) in Figure 2.3.1 (t(D) < t(B)). Figure 2.3.1 illustrates

the Code Red propagation in the early stage showing the growth of the number of

infected hosts of the first 6 generations.
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Fig. 2.1. Generation wise evolution in a tree structure, with O the
initially infected host. O has two offsprings: host A and host B.

Let ξ be the random variable representing the offsprings of (i.e., the number

of vulnerable hosts infected by) one infected host scanning M times. During the

early phase of the propagation, the vulnerability density p remains constant since

the number of infected hosts is much smaller than the number of vulnerable hosts

in the population. Thus, during the initial phase of the worm propagation, ξ is a

binomial(M, p) random variable. Hence,

P{ξ = k} =

(

M

k

)

pk(1− p)M−k, k = 0, 1, · · · , M. (2.2)

Let In be the number of infected hosts in the n-th generation. I0 is the number of

initial hosts that are infected. During early phase of worm propagation, each infected

host in the nth generation infects a random number of vulnerable hosts, independent

of one another, according to the same probability distribution. These newly infected

hosts are the (n + 1)st generation hosts. Let ξ
(n)
k denote the number of hosts infected

by the kth infected host in the nth generation. The number of infected hosts in the
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Fig. 2.2. Growth of the infected hosts in generations. The generation
number is shown next to the growth curve.

(n+1)st generation can be expressed as In+1 =
∑In

k=1 ξ
(n)
k , where ξ

(n)
k are independent

binomial(M, p) random variables.

During the initial worm epidemic, each infected host produces offsprings indepen-

dently and according to the same probability distribution as in Equation (2.2). There-

fore, the spread of infected hosts in each generation {In, n ≥ 0} forms a branching

process. The branching process accurately models the early phase of worm propaga-

tion. When the worm propagation is beyond the early phase, the branching process

model gives an upper bound on the spread of worms. This is because the vulnera-

bility density is smaller and the probability of two infected hosts scanning the same

vulnerable host is higher later on. Thus, if we can ensure that the branching process

does not spread, it also ensures that the worm propagation is contained.

For convenience, we provide a list of the symbols used in our model and their

corresponding definitions in Table 2.1.

We next use the branching process model to answer questions on how the worm

propagates as a function of the total number of allowable scans M .
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Table 2.1
Notations

Symbol Explanation

V The size of the uninfected host population.

p The vulnerability density, specified in terms of entire network address space, used and unused.

e.g. p = V

232 for IPv4.

M The number of scans from a host

MC The maximum number of scans allowed from a host within a containment cycle.

ξ Random number of offsprings generated by each infected host

ξ
(n)
k

Number of offsprings produced by kth host in nth generation

I0 Number of initially infected hosts

In Number of nth generation infected hosts

I Total number of all infected hosts [I =
∑

∞

n=0 In]

π Extinction probability

Pn Extinction probability at nth generation, i.e.,P [In = 0]

2.3.2 Extinction Probability for Scanning Worms

We model worm propagation as a branching process {In}∞n=0, where In is the num-

ber of infected hosts in the nth generation. The extinction probability of a branching

process {In}∞n=0 is the probability that the population dies out eventually. It is defined

as

π = P{In = 0, for some n} (2.3)

When the branching process model is used for the spread of random scanning

worms, the extinction probability measures the likelihood of the worm dying out

after a certain number of generations. When π = 1, we are certain that the infec-

tions from the worm cannot be spread for an arbitrarily large number of generations.

The following Proposition provides the necessary and sufficient condition for worm

extinction.

Theorem 2.3.1 Let {In}n=∞
n=0 be a branching process model for worm propagation,

where In models the number of infected hosts in the nth generation. Let p be the density
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of vulnerable hosts and M be the total number of scans attempted by an infected host.

Then π = 1 if and only if M ≤ 1
p
.

Proof: According to Theorem 4.5.1 in [25], the extinction probability of a

branching process is 1 if and only if the expected number of offsprings from each

individual is no more than 1.

Let ξ be the random variable representing the number of offsprings produced by an

infected host. ξ is a Binomial random variable with parameters (M, p). The expected

value of ξ is E(ξ) = Mp. By Theorem 4.5.1 in [25], π = 1 if and only if E(ξ) ≤ 1.

Therefore, π = 1 if and only if M ≤ 1
p
.

Since E[ξ] = Mp, Mp is the basic reproduction number, R0, in the epidemiology

literature.

Using Code Red and SQL Slammer as examples, if M is no more than 11,930 and

35,791 respectively, the worms would eventually die out3. The value of M corresponds

to the number of unique addresses that can be contacted and, therefore, the restriction

on M is not expected to significantly interfere with normal user activities. This is

borne out by actual data for traffic originated by hosts at the Lawrence Berkeley

National Laboratory and Bell Labs presented in Section 2.4.

If M is different for different hosts, we can use multi-type branching processes to

obtain conditions under which the extinction probability is 1. If r and 1− r are the

fractions of hosts that scan M1 and M2 times, respectively, the extinction probability

is 1 if M1r + M2(1− r) < 1/p.

2.3.3 Probability Distribution of Total Infections

While the probability of extinction gives us a bound on the maximum number

of allowable scans per host, the true effectiveness of a worm containment strategy

is measured by how many hosts are infected before the worm finally dies out. We

next provide a probability density function for the total number of infections when

3V=360,000 for Code Red, and V=120,000 for SQL Slammer are used in this calculation.
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the total number of scans per host is below 1/p. The probability density function is

applicable only when the total number of scans per host is below 1/p. It has as a

parameter M , which is typically kept below 1/p.

The total number of infections, denoted by I, is the sum of the infections in all

generations (I =
∑∞

n=0 In). Our objective is to provide a simple closed-form equation

that accurately characterizes P{I = k}, the probability that the total number of

hosts infected is k, for a given value of M .

We consider any uniform scanning worm with I0 initially infected hosts. We allow

all hosts to scan M ≤ 1/p times, where the vulnerability density is p, and the total

number of infected hosts is I =
∑∞

n=0 In. As stated earlier, {In} is a branching

process. The infected hosts independently infect a random number of vulnerable

hosts that obeys the same probability distribution as ξ. Since the total number of

scans per infected host is M , ξ is a binomial random variable B(M, p). Further, since

p is typically small in practice (e.g., p ≈ 8.4×10−4 for Code Red), and M is typically

large, the probability distribution of ξ can be accurately approximated by a Poisson

distribution with mean λ = Mp. Hence, the probability density function for ξ is:

P{ξ = k} ≈ e−λ (λ)k

k!
.

It then follows directly from [7] that the total progeny of the branching process has

a Borel-Tanner distribution, i.e.,

P{I = k} =
I0

k(k − I0)!
(kλ)(k−I0)e−kλ, k = I0, I0 + 1, · · · (2.4)

where λ = Mp. The mean and variance of I are given by [7]:

E(I) =
I0

1− λ
V AR(I) =

I0

(1− λ)3

More importantly,

pk = P{I ≤ k} =

k
∑

i=I0

P{I = i} =

k
∑

i=I0

I0

i(i− I0)!
(iλ)(i−I0)e−iλ, k = I0, I0 + 1, · · ·

(2.5)
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Fig. 2.3. Probability Density of I, the total number of infected hosts.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Total Number of Infected Hosts I

P
{I

 ≤
 k

}

M=5000
M=7500
M=10000

k 

Fig. 2.4. Cumulative Distribution of I, the total number of infected hosts.

Equation (2.5) for pk = P{I ≤ k} is important because it probabilistically deter-

mines the spread of the worm for a given limit on the number of scans M . Thus, pk

can be used to design a containment strategy that can be tuned to specifications.
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Consider Code Red with 10 initially infected hosts, as used in [31]. If we would

like p360 = P{I ≤ 360} = 0.99, we could use equation (2.5) to set M = 10, 000

(λ = Mp = 0.83). That is, if we want the total number of infected hosts to be less

than 360 with probability 0.99, we set M = 10000 to achieve this.

Figure 2.3.3 shows the plot of the probability density function of I for three

different values of M for Code Red with 10 initial infections. Figure 2.3.3 plots the

cumulative probability distribution of I for three different values of M for Code Red

with 10 initial infections. As we can see from Figure 2.3.3, with high probability

(0.95), Code Red will not spread to more than 150, 50, and 27 total infected hosts if

the values of M are chosen to be 10000, 7500, and 5000, respectively.

We also consider the SQL Slammer worm with 10 initial infected hosts. If we use

the same value for M (M = 10000), with high probability (0.97), no more than 20

vulnerable hosts (or 10 additional vulnerable hosts) will be infected. This corresponds

to 0.008% of the total vulnerable population. If we further reduce M to 5000, with

high probability (0.97), no more than 4 additional vulnerable hosts will be infected.

Now, we compare this result to existing worm detection systems [19], which pro-

vide detection when approximately 0.03% (Code Red) and 0.005% (slammer) of the

susceptible hosts are infected. This performance is achieved by careful selection of

the routers at which worm detection mechanisms are put in place. With our scheme,

when M is kept below a pre-defined threshold, with very high probability, the infec-

tion will not be allowed to spread that widely. Further, our results also hold for slow

worms, which most other detection techniques, including [19], have trouble detecting.

Based on our analysis, we now develop an automatic worm containment system

that can inhibit the spread of the worms.

2.4 Automated Worm Containment System

The results in Section 2.3 provide us with a blueprint of a host based worm con-

tainment strategy. The containment system is based on the idea of restricting the
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total number of scans to unique IP addresses by any host. We assume that we can

estimate or bound the percentage of infected hosts in our system. Our proposed

automated worm containment strategy has the following steps.

1. Let MC be the total number of unique IP addresses that a host can contact

in a containment cycle. At the beginning of each new containment cycle, set a

counter that counts the number of unique IP addresses for each host to be zero.

2. Increment this counter for each host when it scans a new IP address.

3. If a host reaches its scan limit before the end of the containment cycle, it is

removed and goes through a heavy-duty checking process to ensure that it is

free of infection before being allowed back into the system. When allowed back

into the system, its counter is reset to zero.

4. Hosts are thoroughly checked for infection at the end of a containment cycle

(one by one to limit the disruption to the network) and their counters reset to

zero.

Choose MC to probabilistically bound the total number of infected hosts (I) to less

than some acceptable value ǫ, (e.g. pǫ = P{I ≤ ǫ} ≥ 0.99), as given by Equation (2.5).

Further, the containment cycle can be obtained through a learning process. For

example, initially one could choose a containment cycle of a fixed but relatively long

duration, e.g., a month. Since the value of MC that we can allow is fairly large (on

the order of thousands, as indicated by analysis with SQL Slammer and Code Red)

we do not expect that normal hosts will be impacted by such a restriction. We can

then increase (or, for the rare hosts, decrease) the duration of the containment cycle

depending on the observed activity of scans generated by correctly operating hosts.

Also, the containment cycle is determined to ensure that the number of scans from

legitimate hosts is highly probable to be less than MC . Since typical values of MC are

large (i.e., most legitimate hosts will not reach this value even over a month’s time

frame), the containment cycle is quite large. Typically, computer security patches are
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pushed out weekly or biweekly and machines are brought down during the patching

process. For example, Purdue’s engineering machines are brought down once a week.

The worm containment cycle check can be done during this maintenance period.

The “heavy duty checking” in step 3 could even include human intervention.

Since the number of offending hosts is small, administrators should be able to take

the machine offline and perform a thorough checking. The first step of the heavy-

duty checking should be to follow a common security best-practice procedure. For

example, one must make sure that the anti-virus software is up-to-date and is not

disabled. One also needs to run a file integrity checker to make sure the critical files

are not modified and no new executables are installed. After routine checking with

all the available tools, an experienced system administrator should be able to make

a final decision as to whether or not to let this machine be back online. Figure 2.5

illustrates our worm containment scheme.

We use the 30 day trace of wide-area TCP connections (LBL-CONN-7) [33] orig-

inating from 1645 hosts in the Lawrence Berkeley Laboratory to analyze the growth

of the number of unique destination IP addresses per host (this is clean data over a

period when there was no known worm traffic in the network). Our study indicates

that 97% of hosts contacted less than 100 distinct destination IP addresses during this

period. Only six hosts contacted more than 1000 distinct IP addresses, and the most

active host contacted approximately 4000 unique IP addresses. Figure 2.6 shows the

growth trend of the total unique destination IP addresses for these six most active

hosts.

We also analyze HTTP traffic using more recent trace data from NLANR [2]. The

trace data consists of contiguous Internet access IP headers collected at Bell Labs

during one week in May 2002. The network serves about 400 people. We find that

there are three Web proxies that each have contacted a little over 20K Web servers.

The Web servers being contacted are highly correlated. The total number of distinct

Web servers contacted by all the three proxies is 46K, not 60K. This correlation
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Fig. 2.5. Worm containment system for the uniform scanning worms.
MC is set to 10, 000. The total number of scans for each host is
monitored. The monitoring system can be implemented on each host,
or on the edge router of a local network. Two hosts marked are
removed from the network automatically because their total number
of scans (counter) have reached 10, 000.

may aid in reducing the storage requirement and correspondingly speeding the search

performance when the unique destinations are maintained.

The data on the traffic between the internal hosts and the web proxies is not

available. There are two other hosts which contacted between 5K and 6K Web servers.

The rest of the hosts contacted only a few hundred Web servers. The histogram of
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those hosts (excluding the three proxies and two others mentioned) are shown in

Figure 2.4.

If our containment system is used with the containment cycle to be one week

and MC is set to be 5000, none of the above hosts (except for the five mentioned

above) will trigger an alarm. As shown in section 2.3, with high probability the total

infections caused by Code Red will be under 27 hosts when M = 5000. This suggests

that our containment system is not likely to interfere significantly with normal traffic,

yet it contains the spread of the worms. If our scheme is implemented in a network

with proxies, the best solution would be to have the proxies do the counting of scans

on an individual host basis.

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

4000

Time(Hours)

D
is

tin
ct

 D
es

tin
at

io
ns

Fig. 2.6. Number of Distinct IPs contacted over 30 days for the six
most active hosts (LBL trace data)

The containment cycle can also be adaptive and dependent on the scanning rate

of a host. If the number of scans originating from a host gets close to the threshold,
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Fig. 2.7. Histogram of Distinct HTTP Servers contacted over one
week, excluding the three proxies and two other active hosts with 5K
to 6K destinations (Bell Lab trace data).

say it reaches a certain fraction f of the threshold, then the host goes through a

complete checking process. The advantage of this worm containment system is that

it does not depend on diagnosis of infected hosts over small time-granularities. It is

also effective in preventing an Internet scale worm outbreak because the total number

of infected hosts is extremely low, as shown in the examples in the previous section.

Traditional rate based techniques attempt to limit the spread of worms by limiting

the scanning rate. The limit imposed must be carefully tuned so as to not interfere

with normal traffic. For example, the rate throttling technique [27] limits the host

scan rate to 1 scan per second. The rate limiter can inhibit the spread of fast worms

without interfering with normal user activities. However, slow scanning worms with
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scanning rate below 1 Hz and stealth worms that may turn themselves off at times

will elude detection and spread slowly.

In contrast, our worm containment system can contain fast worms, slow worms,

and stealth worms. The fast scanning worms will reach the limit on MC sooner, while

the slow worms will reach this limit after a longer period of time. As long as the

host is disinfected before the threshold is reached, the worm cannot spread in the

Internet. This strategy can effectively contain the spread of uniform scanning worms

in local networks. When the global total number of infected hosts is low, the number

of infected hosts in any local networks must also be very low.

Our worm containment scheme can be deployed at end hosts and edge routers.

When it is deployed at routers, special care must be taken when the network uses

proxies or NAT. The counting of distinct destination IPs for each host is best placed

at the proxies or inside the NAT. When the worm containment system is deployed

outside NAT and proxies, a higher limit on MC can be allocated based on the normal

traffic patterns. Deploying our scheme at routers also requires protection against

spoofing of IP addresses in order to correctly identify the offending hosts. The host’s

MAC address and IP address should be used together for identifying the offending

host. Commercial products , such as CounterPoint by Mirage Networks, uses a host’s

MAC address for identifying an infected host.

In the future, we would like to design and implement our worm containment

module at the edge routers. We plan to use real trace data to test the performance,

usability and scalability of our scheme. Meanwhile, we are also interested in evaluating

the deployment of our scheme at strategically positioned routers. Defending against

worms that exploit high vulnerability density is another interesting topic for future

research.
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2.5 Local Preference Scan Worms

Local preference scanning (LPS) worms, such as Code Red II, scan more intensely

in local networks. Code Red II scans a completely random address only 1/8 of the

time. It scans the the same /16 network 1/2 of the time, and it scans the same /8

network 3/8 of the time. When vulnerable hosts are more dense in the local networks,

the LPS worms spread much faster in the enterprise network. The faster spread is

the result of the following two factors. One is that LPS worms scan the local network

thousands of times more than do uniform scanning worms. The other factor is the

higher vulnerability density in the local network due to similar configurations among

machines in a subnet.

In this section, we extend our worm containment system developed in Section 2.4

to contain LPS worms in enterprise networks by removing the infected hosts in a

timely manner. In order to prevent DOS attacks using IP spoofing, we need to use

the host’s MAC address and IP address to identify the offending host before it is

taken off line, or use anti-spoofing software with our scheme. We show that our LPS

containment scheme prevents the worm from spreading inside the local networks.

Moreover, we provide analysis and simulations of global containment of LPS worms.

When the LPS worm containment scheme is deployed in an enterprise network with

traditional firewalls around the enterprise network boundary, worm containment in-

side the local network can be achieved without the requirement of participation and

coordination from outside networks. Our simulations show that when this scheme is

partially deployed, the LPS worm is likely to be contained on a global scale when

the initially infected hosts are in the protected networks. Our analysis and simula-

tion shows that when this scheme is deployed 100%, we can achieve not only local

containment, but also global containment.

Our approach relies on the fundamental argument that there naturally exist large

swaths of unused IP address space in today’s IPv4 infrastructure (roughly 25% of the

address space is used). The legitimate hosts are unlikely to scan multiple times to
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the unused addresses and therefore the number of such scans can be used to estimate

the number of worm scans. When the number of worm scans exceeds the limit due to

the epidemic theory, the machine is quarantined to prevent the spread of the worm.

This approach is also used in LaBrea [18], DIB/TRAN [19], and the worm monitor-

ing system proposed by Zou et al. [30]. Network Intrusion Detection System Bro [24]

can also be configured to perform dark-address detection. Commercial worm con-

tainment systems such as C ounterPoint by Mirage Networks [20] and CounterACT

by Forescout [12] also use the dark-address scan detection approach. In the dark-

address detection approach, a worm infection is declared when a host has attempted

to connect to the dark-addresses a number of times (denoted by N).

It is generally recognized that the choice of N is important - too small an N value

will result in high number of false alarms, while too large an N value will result in a

detection delay, allowing the worms to spread. Our contribution is that we provide

an upper bound on N to guarantee worm containment. N is given in terms of the

local vulnerability density p1 and the dark-address density u. To contain worms, we

require N ≤ u
p1

.

2.5.1 Model

As in our model for uniform scanning worms, we take a host-centric view of worm

propagation. We consider an infected host along with the /16 network and the /8

network to which it belongs. Let p1, p2, and p3 be the vulnerability densities of the

/16 network, /8 network, and the Internet respectively. Let M1, M2, and M3 be the

total number of scans by an infected host in the /16 network, /8 network and the

Internet. Let f1, f2 and f3 be the fraction of times a worm scans the /16 network,

the /8 network, and the Internet. The total number of scans is M = M1 + M2 + M3

and Mi = fiM for i = 1, 2, 3.

Let ξ1, ξ2, and ξ3 be the number of offsprings an infected host produces in the

/16 network, the /8 network, and the Internet when it scans M times. The random
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variables ξi are binomially distributed with parameters (Mi, pi), i = 1, 2, 3. Moreover,

E[ξi] = Mipi = Mfipi. The total number of offsprings ξ produced by an infected host

is then ξ = ξ1 + ξ2 + ξ3, and E[ξ] = M(f1p1 + f2p2 + f3p3). When the vulnerable

hosts are much denser inside the internal networks (i.e. p1 >> p3 and/or p2 >> p3),

LPS worms pose a more serious threat to the internal networks than to the rest of the

Internet. This is because a single infected host produces far more offsprings inside

local networks.

Our worm containment system for uniform scanning worms restricts the total

number of outgoing connections to below M ≤ 1/p. If we adopt the same scheme to

contain LPS worms in an enterprise network consisting of several /16 networks, in each

/16 network, M1 needs to be considerably smaller because of the higher vulnerability

density p1 in the network. In a /16 network with 600 vulnerable hosts (p1 ≈ 0.01),

the original containment scheme requires M1 ≤ 100, that is, no host is allowed to

contact more than 100 distinct destinations in that /16 network. It is over-restrictive

because some benign hosts may in fact contact 100 distinct IP addresses in the local

network over a period of time.

In the following, we will show how to extend our worm containment system to

contain LPS worms in enterprise networks. We use a /16 network to illustrate our

new scheme.

2.5.2 LPS Worm Containment System Analysis

Our LPS worm containment system limits the total scans a host can make to

the dark-address space. In a containment cycle (weeks or months), if a host scans

the dark-addresses N times, it is automatically disconnected from the network for a

thorough checkup. It is desirable that N be large so that normal activities will not

be disrupted, while still containing LPS worms effectively.

If a host is infected, its total number of scans to dark-addresses N provides essen-

tial information on the total number of worm scans M1,w and the number of offsprings
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ξ1 it produces. To prevent the worms from spreading, we must limit the expected

number of offsprings to below 1. This can be achieved by limiting N , the total num-

ber of dark-address scans per host. We provide the probability distribution of M1,w

and ξ1 for a given value of N in the following proposition.

Theorem 2.5.1 Let u be the density of the dark IP addresses and p1 be the vulnerable

density in an enterprise network (u + p1 ≤ 1). Suppose an infected host is removed

from the network when it hits the dark-address the N th time. Let M1,w be the total

worm scans in the local network by an infected host and ξ1 be the number of offsprings

produced by a single infected host in the network. Then

(1) M1,w is a negative binomial random variable having distribution:

P{M1,w = m} =

(

m− 1

N − 1

)

uN(1− u)m−N , m = N, N + 1, N + 2, · · ·

and E[M1,w] = N/u.

(2) ξ1 is a negative binomial random variable having distribution:

P{ξ1 = k} =

(

k + N − 1

k

)

(
p1

p1 + u
)k(

u

p1 + u
)N , k = 0, 1, 2, · · ·

and E[ξ1] = Np1/u.

Proof: (1) Suppose an infected host scans m times and is stopped at the N th

scan to the un-used IP addresses, (m ≥ N). The mth scan falls into the un-used IP

addresses. Among the first m−1 scans, it scans the un-used IP addresses N−1 times

and scans the vulnerable and healthy hosts m−N times. Thus,

P{M1,w = m} =

(

m− 1

N − 1

)

uN(1− u)m−N , m = N, N + 1, · · ·

Therefore, M1,w is a negative binomial random variable with mean E[M1,w] = N/u.

(2) When the infected host is removed after N scans to the un-used IP addresses,

P{ξ1 = k|M1,w = m} =

(

m−N

k

)

(
p1

1− u
)k(1− p1

1− u
)m−N−k
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Hence, P (ξ1 = k) =

∞
∑

m=N+k

P (ξ1 = k|M1,w = m)P (M1,w = m)

=

∞
∑

m=N+k

(

m−N

k

)

(
p1

1− u
)k(

1− u− p1

1− u
)m−N−k ×

(

m− 1

N − 1

)

uN(1− u)m−N

=
∞

∑

m=N+k

(

m−N

k

)(

m− 1

N − 1

)

pk
1(1− u− p1)

m−N−kuN

=

(

k + N − 1

k

)

pk
1u

N ×
∞

∑

m=N+k

(

m− 1

k + N − 1

)

(1− u− p1)
m−N−k

=

(

k + N − 1

k

)

pk
1u

N(p1 + u)−N−k

=

(

k + N − 1

N − 1

)

(
p1

p1 + u
)k(

u

p1 + u
)N

Thus, ξ1 is a negative binomial random variable with parameters (N, u
p1+u

), and

E[ξ1] = Np1

u
.

Proposition 2 shows that the number of worm scans M1,w is not affected by p1,

but the number of internal offsprings ξ1 is a function of u, N , and p1. Figure 2.8

shows the pmf of M1,w for u = 0.5 and N = 20. Figure 2.5.2 illustrates the pmf’s of

ξ1 for the same u and N values as in Figure 2.8, with p1 values 0.01, 0.03, and 0.05.

In particular, when p1 = 0.05, E[ξ1] = 2. That is, if u = 50%, N = 20, and there are

roughly 3000 vulnerable hosts in a /16 network, one infected host on average infects

2 vulnerable hosts during the initial worm outbreak.

To prevent the worms from spreading, we will limit the expected number of off-

springs per host E[ξ1] to below 1 by the extinction theorem for branching processes.

Since E[ξ1] = Np1/u, we require N ≤ u/p1, We denote Nmax = ⌊u/p1⌋.
The local vulnerability density p1 will decrease when more vulnerable hosts become

infected. The above bound on N is derived using the vulnerability density in the

early stage when it is the largest, so the bound Nmax is still valid when more hosts

become infected. Moreover, when this bound is enforced, the total number of the

infected hosts would be small and a large fraction of vulnerable hosts is automatically

protected from the LPS worms.
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Fig. 2.8. Probability Density Function of M1,w (u=0.5, N=20).

Our next proposition provides analysis on the global impact of the LPS worm

containment.

Theorem 2.5.2 Let p1, p2, p3 be the vulnerability densities for all /16 networks, /8

networks, and in the whole Internet respectively. The LPS worm scans /16 networks,

/8 networks and the Internet f1, f2, and f3 fraction of times, f1 + f2 + f3 = 1 and

f1 > f2 > f3. Let ξ be the number of offsprings an infected host produces. Then

E[ξ] = N
u
(p1 + p2

f2

f1
+ p3

f3

f1
).

Proof: Let ξ2 be the number of offsprings an infected host produces in the /8

network but outside the /16 network. When the infected host scans the /16 network

M1,w times, it scans /8 networks it belongs to M1,w · (f2/f1) times.

E[ξ2] = p2E[number of scans in /8 network]

= p2E[M1,w ·
f2

f1
] = p2

N

u
· f2

f1
=

Np2

u
· f2

f1
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Similarly, the expected number of offsprings an infected host produces outside the

/8 network is:

E[ξ3] =
Np3

u
· f3

f1

.

Therefore, the expected number of offsprings each infected host produces is:

E[ξ] = E[ξ1 + ξ2 + ξ3] =
Np1

u
+

Np2

u
· f2

f1
+

Np3

u
· f3

f1
=

N

u
(p1 + p2

f2

f1
+ p3

f3

f1
)

When E[ξ] < 1, the LPS worm can be contained globally, and the average global

total number of infected hosts is E[I] = I0/(1−E[ξ]). Proposition 3 also tells us that

our LPS worm containment system cannot contain uniform scanning worms, because

their scanning pattern has the following parameters: f2/f1 = 256 and f3/f1 = 65536.
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This will result in a large number of infections outside the local networks. Therefore,

we need both containment schemes to contain all scanning worms.

The scanning strategy of Code Red II has the following parameters: f1 = 1/2, f2 =

3/8 and f3 = 1/8. Thus, f2/f1 = 3/4, f3/f1 = 1/4. Assume our networks have the

following parameters: p1 = 0.02, p2 = 10−3 and p3 = 10−4. If we use N = 20, u = 0.5

for LPS containment, then E[ξ] = 40(0.02 + 10−3 · 0.75 + 10−4 · 0.25) = 1.101. In this

scenario, the worm will spread to the Internet. If the LPS containment system uses

N = 10, u = 0.5, then the worm will be contained globally since E[ξ] = 0.55 < 1.

2.5.3 LPS Worm Containment System Deployment

The above analysis suggests that in order to protect local networks from worm

infections, the local network addresses should be allocated in such a way that the ratio

u
p1

is larger than the number of dark-address connections expected from a normal host

(denoted as Nt). Choosing N so that Nt < N < u
p1

allows worm containment without

intruding on normal-user activities.

To deploy the new worm containment system in an existing network, we need to

know the parameters u, p1, and Nt. Here, u is the density of dark-address space; p1

is the estimated vulnerability density inside the network; Nt is a tolerable threshold

value—a benign host will not mistakenly scan the dark addresses more than this value

in a containment cycle. Nt is an optional parameter that may be set by the system

administrator. The value of the local vulnerability density p1 can be estimated based

on the most common applications with open server ports. The value of u is known to

the network administrator from the number of machines in the local network. Using u

and p1, we can calculate Nmax = ⌊( u
p1

)⌋. The actual threshold N for the containment

system should be less than Nmax to guarantee containment and greater than Nt to

not interfere with normal user activities. When Nmax ≥ Nt, we can set N = Nt.

However, when Nmax < Nt, we could set N = Nmax and tolerate a higher rate of false

alarms in order to contain the worms.
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Our analysis shows that if a local network has very high vulnerability density, the

dark-address based scheme will be too restrictive in the number of dark address space

scans allowed. One solution for the high vulnerability density networks is to adopt

the 24-bit block private address scheme. For example, networks utilizing private

addresses 10.0.0.0/24 can accommodate 360,000 hosts with u ≈ 0.98. If we make a

conservative estimate on p1 by assuming all these hosts are vulnerable, p1 ≈ 0.02.

The value of Nmax = 49.

We agree that an organization that has u/p1 close to 1 and is unwilling to take

measures (such as private address space) to increase the value, our scheme will not be

useful. In general, local networks with dense and homogeneous software deployment

are at a higher risk of worm infections. However, our simulation of incremental

deployment shows that our scheme is beneficial even for those unprotected networks

when the initial infection starts from the protected networks.

The goal of our worm containment system is to probabilistically contain the worms

in a non-intrusive manner without explicitly detecting the infected hosts. Our scheme

allows hosts to stay in the infected state for some time until their dark address scans

reach the limit, and it still guarantees containment. This is fundamentally different

from worm detections.

By combining traditional firewalls around the enterprise network boundary and

our worm containment system within the enterprise network, worm containment can

be achieved without the requirement of participation and coordination from outside

networks. This allows for incremental deployment of the worm containment system

for individual networks. Figure 2.10 illustrates the worm containment system for

preference scanning worms.

A strong firewall at the enterprise network boundary is necessary to achieve worm

containment inside the enterprise network. Consider an enterprise network consist-

ing of a /16 network. Consider the situation when worms are spreading outside the

network with more than 65K hosts already infected. One random scan from each

infected host to the enterprise network will cause a significant fraction of vulnerable
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Fig. 2.10. Worm containment systems for the preference scan worms.
The value Nmax is chosen to be 20. Two hosts are disconnected from
the network because their total dark address space scans has reached
20.

hosts to be infected. The first approach to counter the problem is to apply the same

limit on the number of scans to unused address space to an external host as to an

internal host. When the external host reaches this limit, a firewall rule is introduced

to block any incoming scans from the suspected host. The challenges in creating

accurate firewall rules (countering address spoofing, for example) are out of the scope

of this paper and the reader is referred to [39] (pp. 340-351) for details. However, this

approach fails if this suspected external host is not prevented from infecting other
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vulnerable external hosts. Failing that, more infected hosts are generated in the ex-

ternal network, which in turn scan to the internal network. Repeating the process

of blacklisting the external hosts leads to the situation where all susceptible internal

hosts are eventually infected. Since the spread of worms outside the networks cannot

be controlled by an internal worm containment system, it suggests a complementary

approach. The approach is that we restrict the number of hosts (servers) that are ac-

cessible from outside the enterprise network. All other hosts should be hidden behind

the firewall and not accessible from outside networks. In the event of Internet scale

worm outbreaks, the small number of externally accessible servers may be infected.

However, these servers cannot spread the worms to the internal networks because

the worm containment system will disconnect the servers when they become infected.

Moreover, the threshold value N for the servers can be carefully tuned down to a

smaller number to further restrict the worm propagation. The subsetting to create a

few externally accessible servers seems feasible in many enterprise settings since only

a few servers (e.g., web server) need be exposed to the external network.

It is challenging to contain hitlist worms. Hitlist worms create a target list of

probable victims. However, as noted in [40], building the hit-list is non-trivial. A small

hit-list can be compiled from readily accessible public sources, such as a metaserver

that maintains a list of servers for different games (GameSpy is one example). Such

a hit-list may accelerate a scanning worm, but is unlikely to be very damaging by

itself. Building comprehensive hit-lists takes more effort. A distributed scan to find

vulnerable hosts appears a likely strategy. The scans must be low rate to avoid

detection. Since our worm containment system can contain the slow spreading worms,

it will prevent the hitlist from being built through such low rate random scanning.

2.6 Simulation Results

We use a discrete event simulator to simulate scanning worm propagation with our

defense strategies. We first simulate a uniform scanning worm with our containment
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scheme. In this simulator, each vulnerable host is assigned a IPv4 address randomly,

and each will be in one of the three states: susceptible, infected, and removed. A host

is in removed state if it has sent M scans. The infected hosts independently generate

random IP addresses to find the victims. If the random IP address matches any of

the IP addresses of the hosts in the susceptible state, the susceptible host will become

infected.

In our simulation for Code Red, we used V = 360, 000 for the vulnerable popula-

tion size and I0 = 10 for the number of initially infected hosts. We used M = 10, 000,

which is below the threshold required for worm extinction. In this case, p = 8.38×10−5

and λ = Mp = 0.838.
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Fig. 2.11. Probability density for total number of infected hosts

As discussed earlier, the total number of infected hosts I measures how well a

worm is contained. We ran this simulation 1000 times and collected the values of I.

Figure 2.6 shows the relative frequency of I from our simulations and the probability

density function of I obtained from our theoretical results in Section 2.3. Figure 2.12
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Fig. 2.12. Cumulative Distribution of total number of infected hosts

shows the relative cumulative frequency of I from our simulations and the cumulative

distribution function of I from the theoretical analysis.

The simulation results validate the accuracy of our model and the effectiveness

of our containment strategy. Figures 2.6 and 2.12 demonstrate that our simulation

results match closely with the theoretical results from Section 2.3. We can see from

Figure 2.12 that with high probability (0.95), the total number of infected hosts is

held below 150 hosts. As mentioned in Section 2.3, one can reduce the spread of

infection by further reducing the value of M .

To demonstrate the variability of worm propagation, we show two sample paths

among our 1000 simulation runs in Figures 2.6 and 2.6. In one scenario depicted in

Figure 2.6, there are a total of approximately 300 hosts infected. Figure 2.6 shows

another scenario when there are 55 total infected hosts. In the first scenario, the

active number of infected hosts (number infected - number removed) is held below 30

at all times. This is due to our countermeasure that when a host scans M = 10, 000

times, it is removed. The worm ceased spreading after all infected hosts were removed.
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In the second scenario, the removal process quickly catches the infection process, so

that the worm dies out rapidly. We used M = 10, 000 for both scenarios. Using

formula provided in section 2.3, we obtain E(I) = 58 and σ(I) = 45. The variation

is large and can be significant in the early stage, which will have significant effect in

modeling the latter stage of growth of the worm. Stochastic models need to be used

to capture this variation.

We used a scan rate of 6 scans/second for Code Red for the purpose of illustrating

worm propagation and containment with respect to time. This scan rate is taken

from the empirical study in [21]. Figure 2.6 shows that the worm dies out completely

in 750 minutes. In the simulation run shown in Figure 2.6, the worm dies out in less

than 200 minutes.
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Fig. 2.15. Probability density and Cumulative distribution of I (SQL Slammer)

We also ran our simulations with SQL Slammer parameters. Here we used V=120,000

as used in [19], I0 = 10, and M = 10, 000. The experiments with Slammer show a

close match between predicted and observed values, and this is borne out by Fig-
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Fig. 2.16. Probability density and Cumulative distribution of I (SQL Slammer)

ures 2.15 and 2.16. The worm containment scheme contains the infection to below

20 hosts (i.e., only 10 newly infected hosts) with a very high probability.

To illustrate the effectiveness of our LPS worms, we also simulated our LPS worm

containment system in a /16 network. In this simulator, the addresses for the vul-

nerable hosts and the dark IP addresses are randomly chosen from the /16 network.

The infected hosts independently generate random /16 IP addresses to find vic-

tims. If the random IP address matches any of the IP addresses of the hosts in

the susceptible state, the susceptible host will become infected. If it matches any of

the dark IP addresses, the counter for its dark address scans will be increased. An

infected host is removed if it has sent N scans to the dark addresses.

In the first three scenarios for the LPS worm containment system, we set the

unused IP address density to equal 50% (u = 0.5), as in [19], and the number of

initial infections I0 is set to 20. We ran each of the scenarios 1000 times and collected

the number of total infections in the /16 network for each run.
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Figure 2.6 shows the effectiveness of the worm containment scheme when N = 20

for various vulnerability densities. As shown in Figure 2.6, with high probability

(0.99), the total number of infected hosts in the network is less than 45 when there

are 300 and 600 vulnerable hosts. When number of vulnerable hosts is increased to

1200, the containment system is less effective due to increased vulnerability density.
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Fig. 2.17. The Cumulative Distribution of Total Number of Infected
Hosts (u = 0.5, N = 20, and I0 = 20). In (a) V = 300, 600, 1200 and
in (b) V = 1800.

When the number of vulnerable hosts is 1800, having the same parameters as in the

above scenarios (u = 0.5 and N = 20) will not contain the worms. Figure 2.6 shows

the cumulative distribution function of the the total number of infections I (u = 0.5,

N = 20, and I0 = 20). As shown in Figure 2.6, with probability more than 0.9, the

total number of infections will exceed 500. This is because in this case, p1 = 0.0275

so that Nmax = ⌊0.5/0.0275⌋ = 18. When we set N = 20 for the worm containment

systems, the average number of offsprings from an infected host during the early phase

is approximately 1.1, only slightly higher than 1. But, this results in a large fraction of



42

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Infected Hosts I

   
   

   
   

 P
{I

 <
 k

}

Fig. 2.18. The Cumulative Distribution of Total Number of Infected
Hosts (u = 0.5, N = 20, and I0 = 20). In (a) V = 300, 600, 1200 and
in (b) V = 1800.

vulnerable hosts getting infected. Because the local vulnerability density p1 decreases

as more vulnerable hosts become infected, the number of offsprings from later infected

hosts will decrease. Therefore, not all the vulnerables in the local network will be

infected. The total number of the infected infected hosts is less than 1000 (out of

1800) with high probability.

Our analysis gives a network designer an easily quantifiable trade-off. First, reduce

N to give tighter probabilistic bound on the total number of infected hosts at the risk

of higher false alarm. Second, increase dark address space to again give the tighter

bound at the risk of not fully utilizing the allocated IP address space.

Next, we simulated incremental deployment scenarios on a single /8 network that

contains 256 /16 networks. We simulated a LPS worm that randomly scans the local

/16 network 1/2 of the time and the /8 network 1/2 of the time. Each /16 network

has V=1200 vulnerable hosts.
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Fig. 2.19. The Cumulative Distribution of Total Number of Infected
Hosts (V = 1800, I0 = 20). In (a), u = 0.5, N varies; In (b) N = 20,
u varies.

In our simulations with 100% deployment (i.e., all the /16 networks within the

/8 have the defense mechanism deployed), there are 5 to 20 of these vulnerable hosts

which are externally visible (denoted as EV in the plot). Only these externally visible

hosts can be infected by hosts scanning from other networks. In one scenario, the

network with initially infected hosts has V0 = 1800 vulnerable hosts. In three other

scenarios, the network with initially infected hosts has V0 = 1200 vulnerable hosts.

In all the scenarios, the initially infected hosts lie within a single /16 network and are

20 in number.

Our results are shown in Figure 2.21. We can see that when V0 = 1200, the

number of infections in the local network is between 50 to 150, and the total number

of infections in all outside networks is very small. When V0 = 1800, the total number

of infections outside of the network is also small (about 100), despite a large number

of hosts being infected inside the network. Our analysis and simulations both show
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that our LPS worm containment scheme can indeed provide global containment with

universal deployment.

Next, we simulated partial deployment scenarios with only one protected network,

as well as 50%, 75%, and 90% of the /16 networks being protected by our LPS worm

containment scheme. There are 20 externally visible hosts (EV = 20) in each of the

/16 networks. As mentioned earlier, V = 1200 for each /16 network. We only simulate

the scenarios when the initially infected hosts are in protected networks. When the

initially infected host reside in an unprotected network, the worm will spread to all

the unprotected networks eventually. The number of the initially infected hosts is 5

(I0 = 5) in our simulations.

We ran our simulation 1000 times in each partial deployment scenario. Our re-

sults are summarized in Table 2.2. In all scenarios, the worm is completely contained

within the originating network over 76% of the time. When only 50% of the net-

works are protected, the worm escapes to the unprotected networks only 12.7% of



45

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Inside Infected Hosts I

C
um

ul
at

iv
e 

F
re

qu
en

cy
 P

{I
 <

 k
}

CDFs of Number of Inside Infections

 

 

V0=1800, EV=20
V0=1200, EV=20
V0=1200, EV=10
V0=1200, EV=5

Fig. 2.21. Full Deployment of LPS containment scheme, with infec-
tions inside the original infections network

Table 2.2
Simulation Results on Partial Deployment

Networks with LPS Worm Containment 90% 75% 50% ONE

Contained in Originating Network 76.6% 77.6% 76.4% 76.9%

Contained in Protected Networks 20% 15.2% 10.9% 0

Escaped to Unprotected Networks 3.4% 7.2% 12.7% 23.1%

the time; it is contained in other protected networks 10.9% of the time and is com-

pletely contained in the originating network 76.4% of the time. When the LPS worm

containment system is deployed in only one network in which the initially infected

host originates, there is also a 76.9% chance that the worm is completely contained

in the local network. This is not surprising since the protected networks have the

same configurations, and the probability that the infection will spread outside the
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Fig. 2.22. Full Deployment of LPS containment scheme, with infec-
tions outside the original infected networks.

network is the same. However, the more networks deploy the LPS worm containment

system, the less likely the worm infection will spread to the unprotected networks.

Higher participation in LPS worm containment also makes it less likely for the initial

infection to start in the unprotected networks.

The reason is that the average total internal infections is about 19, starting with

5 infected hosts. Average scans per host going outside the /8 network is about

40 before it gets quarantined. So the total number of scans from the originating

/16 netowrk on average is approximately 800. The vulnerability density in the /8

network p2 = 20/65536 = 3 × 10−4 when EV = 20, assuming pessimistically that

all the external visible host are vulnerable. The probability of finding an externally

visible host in the /8 network through the preferential scan is very small (less than

0.25). Also, the expected number of external hosts that would be infected by the

originating /16 network is very small (about 0.23).
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Our simulation result shows that partial deployment of our LPS worm contain-

ment scheme can benefit the global network. If the initially infected host is in an

unprotected network, the worm spread will be slowed down, depending on the how

large the deployment base is. Let Vu be the total number of vulnerable hosts from

unprotected network, and pu = Vu/232. If the infection originates from the unpro-

tected networks, the worm propagation is at least the speed as if the vulnerability

density is p = pu.

Our analysis and simulation shows that our LPS worm containment system is very

effective when there is a 100% deployment. When there is only a partial deployment,

it protects the local networks and provides global benefit. Since this scheme benefits

the local network, it is likely to be adopted by more organizations over time.

2.7 Conclusion

In this paper, we have studied the problem of combating Internet worms. To that

end, we have developed a branching process model to characterize the propagation

of Internet worms. Unlike deterministic epidemic models studied in the literature,

this model allows us to characterize the early phase of worm propagation. Using

the branching process model we are able to provide a precise bound M on the total

number of scans that ensure that the worm will eventually die out. Further, from our

model we also obtain the probability that the total number of hosts that the worm

infects is below a certain level, as a function of the scan limit M . The insights gained

from analyzing this model also allow us to develop an effective and automatic worm

containment strategy that does not let the worm propagate beyond the early stages

of infection. Our strategy can effectively contain both fast scan worms and slow scan

worms without knowing the worm signature in advance or needing to explicitly detect

the worm. We show via simulations and real trace data that the containment strategy

is both effective and non-intrusive.
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We extended the worm containment scheme to local preference scanning worms. In

this scheme, we restrict the total number of scans per host to the dark address space.

We derive the precise bound N on the total number of scans to the dark address

space which ensures that the worm will be contained. This containment scheme,

combined with firewalls at the network boundary, allows for incremental deployment

of the worm containment system without participation of outside networks.

For further work, we would like to propose a statistical model for the spread of

topology-aware worms and subsequently design mechanisms for automatic contain-

ment of such worms. We would also like to characterize the deviation of our proposed

branching process model from the “ideal” stochastic epidemic model, assuming that

the values of its rich set of parameters were available. Finally, we would like to de-

sign and implement our worm containment schemes with real data from enterprise

networks.
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3. CAPACITY BOUNDS ON TIMING CHANNELS WITH

BOUNDED SERVICE TIMES

3.1 Introduction

A timing channel is a non-conventional communication channel, in which a mes-

sage is encoded in terms of the arrival times of bits. The receiver observes the time

of the departing bits and decodes the message. It has been shown in [42] that when

the service time of the queue is exponentially distributed, the channel capacity, e−1µ

nats/sec, is the lowest among all the servers with the same service rate µ. Most of

the existing work such as in [42–49] has been focused on Exponential Service Timing

Channels (ESTC). The discrete-time counterpart has been studied in [51, 52].

While ESTC has the lowest capacity among all servers with the same service rate,

deterministic service timing channels have infinite capacity. In [53], we estimated the

lower bounds on the capacities of single-server timing channels in which the service

time distributions are uniform (uniform BSTC), Gaussian (GSTC), and truncated

Gaussian (Gaussian BSTC). The capacities of these channels are on the order of

µ log2(µσ)−1 bits/sec as σ → 0, where µ is the service rate and σ is the standard

deviation of the service time.

In many real world applications, the service time distributions have bounded sup-

port. By bounded support, we mean that there exist some constants a, ∆ > 0, such

that the i.i.d. service times S1, S2, · · · satisfy P (a < Sk < a + ∆) = 1. Such tim-

ing channels are called Bounded Service Timing Channels (BSTC), and (a, a + ∆)

is called a support interval of the BSTC. We are especially interested in BSTC with

small relative fluctuation of the service time, i.e. ∆/a≪ 1.

In this paper, we focus on the capacity of BSTCs with support intervals symmetric

about the mean service time 1
µ
, i.e. support intervals of the form ( 1

µ
− ǫ, 1

µ
+ ǫ). The
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service time distribution does not need to be symmetric about 1/µ. We derive an

upper bound CU(ǫ) on the capacity of BSTC using a feedback argument, and two

zero-error capacity lower bounds, CL,1(ǫ) and CL,2(ǫ), using geometrically distributed

inter-arrival times. While CU(ǫ) is dependent on the service time distribution, both

CL,1(ǫ) and CL,2(ǫ) are independent of the distribution of the service time, given the

support interval. All these results can easily be extended to BSTCs that have support

intervals asymmetric about 1
µ
, i.e. of the form ( 1

µ
− ǫL, 1

µ
+ ǫR).

We further show that these bounds are asymptotically tight for the uniform BSTC.

By the tightness, we mean, when ǫ is small, the capacity of the uniform BSTC is

CL,2(ǫ) + o(1) (or CL,1(ǫ) + O(1)). Since our lower bound CL,2(ǫ) is universal for all

BSTC, the uniform BSTC serves a role similar to that of the ESTC in the paper

by Anantharam and Verdu [42]. Namely, when ǫ is small, the uniform BSTC has

the smallest capacity among all BSTCs, just as the exponential service time has the

smallest capacity when considering unbounded service time distributions.

The rest of the paper is organized as follows: In Section 3.2 we provide an upper

bound CU(ǫ) on the capacity of BSTC using a feedback argument. In Section 3.3,

we provide two lower bounds CL,1(ǫ) and CL,2(ǫ), both of which are asymptotically

tight but in different senses. Furthermore, we show that the second lower bound,

exploiting the absolute timing information, is extremely close to the capacity of the

uniform BSTC when small ǫ is considered and is hence asymptotically optimal. We

conclude our paper in Section 3.4.

3.2 An Upper Bound on the Capacity of BSTCs

Bounded Service Timing Channels (BSTC) are single-server queue based timing

channels in which the service times S1, S2, · · · are i.i.d. with bounded support. In this

paper, we consider servers with support intervals symmetric about the mean service

time E[Sk] = 1
µ
, i.e. ∃ǫ, 0 < ǫ < 1

µ
such that P ( 1

µ
− ǫ < Sk < 1

µ
+ ǫ) = 1. The service

times S1, S2, · · · of the uniform BSTC are i.i.d. U( 1
µ
− ǫ, 1

µ
+ ǫ) uniform random
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variables. The service times S1, S2, · · · of the Gaussian BSTC are i.i.d. truncated

Gaussian random variables with density function:

f(x) =
1

K
√

2πσ
exp(−(x− 1/µ)2

2σ2
) I(

1

µ
− 3σ,

1

µ
+ 3σ)

where ǫ = 3σ < 1
µ
, and K =

∫ ∞

−∞
f(x)dx = 0.997.

We will first provide an upper bound on the capacity of the BSTC by using a

feedback argument of these channels.

Proposition 1 Consider a BSTC with service rate µ and support interval ( 1
µ
−ǫ, 1

µ
+

ǫ).

(a) An upper bound CU(ǫ) on the capacity of the BSTC is CU(ǫ) = µ sup0<γ<1 G(ǫ, γ) bits/sec,

where

G(ǫ, γ) = γ[log2(ǫµ + 1
γ
− 1) + log2(e)− log2(µ)− h(Si)]

(b) CU(ǫ) for the uniform BSTC with service rate µ and support interval ( 1
µ
−ǫ, 1

µ
+ǫ)

is the smallest among all BSTC with the same service rate and support interval.

[Proof] (a) Let Si be the service time of the ith bit, and let ai and di be the

arrival and the departure time of the ith bit, respectively. Further, let Ai and Di be

the inter-arrival time and the inter-departure time between the (i − 1)st bit and the

ith bit, respectively, and let Wi be the queue’s idle time before the arrival of the ith

bit.

An upper bound CU is the capacity CFB of the timing channel in which there is an

additional feedback channel providing the queue size information on the server back

to the transmitter, so that the sender has the knowledge of di−1 before deciding ai.

With the feedback information, the sender has full control over Wi and can completely

avoid any queueing. Thus, the timing channel is reduced to a sequentially juxtaposed

i.i.d. channel: Wi → Wi + Si. The capacity of this new channel with feedback

information is simply

CFB = sup
λ<µ

λI(Wi; Wi + Si),

where λ is the inter-departure rate (λ = 1/E[Di]) and I(Wi, Wi + Si) = h(Wi + Si)−
h(Si).
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Since Wi + Si − ( 1
µ
− ǫ) > 0 and E[Wi + Si − ( 1

µ
− ǫ)] = 1

λ
− 1

µ
+ ǫ, We have

sup
Wi>0

[h(Wi + Si)] ≤ 1 + ln(
1

λ
− 1

µ
+ ǫ) nats. Thus,

CFB = sup
λ<µ
{λ[1 + ln(

1

λ
− 1

µ
+ ǫ)− h(Si)]}

= µ sup
λ<µ
{λ
µ

[ln(
µ

λ
− 1 + ǫµ) + 1− ln(µ)− h(Si)]

Let γ = λ/µ. Define

G(ǫ, γ) = γ[log2(ǫµ +
1

γ
− 1) + log2(e)− log2(µ)− h(Si)]

We have an upper bound on the capacity of BSTCs:

CU(ǫ) = CFB = µ sup
0<γ<1

G(ǫ, γ) bits/sec

(b) Since the uniform U( 1
µ
− ǫ, 1

µ
+ ǫ) random variable has the maximum entropy

among all random variables with the support interval ( 1
µ
−ǫ, 1

µ
+ǫ), G(ǫ, γ) in part (a)

for the uniform BSTC is the smallest among all BSTC for each γ. Therefore, CU(ǫ)

for the uniform BSTC is the smallest among all BSTCs with the same service rate

and support interval.

It is apparent that the value of CU(ǫ) is dependent on the service time distribution.

Next, we will provide two zero-error lower bounds CL,1(ǫ) and CL,2(ǫ) on the capacity

for BSTCs. Both lower bounds are independent of the service time distributions given

the support interval.

3.3 Two Lower Bounds on the Capacity of BSTCs

3.3.1 The First Lower Bound

In this section, we will provide a sub-optimal lower bound CL,1 on the capacity

of BSTC. This lower bound is obtained by using a coding scheme in which the inter-

arrival times A1, A2, · · · are i.i.d. geometric random variables. We require Ai ≥ 1
µ

+ ǫ
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to avoid queuing. Further, the possible values of Ai are spaced 4ǫ apart to allow

error-free decoding. More precisely, A1, A2, · · · are i.i.d. random variables with the

following probability mass function:

P{Ai = (
1

µ
+ ǫ) + k(4ǫ)} = p1(1− p1)

k, k = 0, 1, · · ·

Since this encoding scheme does not require prior knowledge of the service time

distribution, given the support interval ( 1
µ
−ǫ, 1

µ
+ǫ), it yields a universal lower bound

CL,1(ǫ) on the capacity of BSTC.

We now state our first lower bound Lemma without proof. The proof is provided

in our online technical report [54].

Lemma 1 Consider a BSTC where the service times S1, S2, · · · , are i.i.d. random

variables with service rate µ and P [Si ∈ ( 1
µ
− ǫ, 1

µ
+ ǫ)] = 1. A zero-error lower bound

CL,1(ǫ) on the capacity of the timing channel is:

CL,1(ǫ) = µ sup
0<γ<(1+ǫµ)−1

γ[H(p1)/p1] bits/sec

where H(p) = −p log2(p)− (1− p) log2(1− p) and

p1 =
4ǫµ

1/γ − 1 + 3ǫµ
.

Figure 3.1 shows CL,1(ǫ) as a function of the load factor γ = λ/µ when ǫµ = 0.01,

along with the upper bounds CU(ǫ) for uniform BSTC and Gaussian BSTC. As shown

in this figure, CL,1 = 3.4µ bits/sec, and CU for the uniform BSTC (4.16µ bits/sec)

is smaller than that of the Gaussian BSTC (4.58µ bits/sec). This is expected by

Proposition 1(b).

Now, we compare the performance of CL,1(ǫ) with our upper bound CU(ǫ). Denote

∆C1(ǫ) = CU(ǫ) − CL,1(ǫ). We will show that ∆C1(ǫ) for the uniform BSTC is the

smallest among all BSTC and ∆C1(ǫ) = O(1) for the uniform and Gaussian BSTC.

Proposition 2 For BSTC with service rate µ and support interval, ( 1
µ
− ǫ, 1

µ
+ ǫ),

∆C1(ǫ) satisfies:
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Fig. 3.1. Capacity Lower Bound CL,1 compared with CU for the uni-
form and Gaussian BSTC when ǫµ = 0.01 (in bits per average service
time).

(a) ∆C1(ǫ) < µ(log2(e) + D(Sn||Uµ,ǫ)) bits/sec, where D(·||·) is the Kullback-Leibler

distance and Uµ,ǫ is the uniform distribution on ( 1
µ
− ǫ, 1

µ
+ ǫ).

(b) ∆C1(ǫ) for the uniform BSTC is the smallest such difference between our CU(ǫ)

and CL,2(ǫ) among all BSTCs with the same service rate µ and support interval ( 1
µ
−

ǫ, 1
µ

+ ǫ).

[Proof]

(1) We wish to show ∆C1(ǫ) ≤ µ[log2(e)− h(Sn) + log2(2ǫ)] bit/sec. By Proposition

1,

CU(ǫ) = µ sup0<γ<1 G(ǫ, γ) bits/sec, where

G(ǫ, γ) = γ[log2(ǫµ + 1
γ
− 1) + log2(e)− log2(µ)− h(Si)].
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By Lemma 1,

CL,1(ǫ) = µ sup
0<γ<(1+ǫµ)−1

γ[H(p1)/p1] bits/sec,

where H(p) = −p log2(p)− (1− p) log2(1− p) and

p1 = (4ǫµ)(1/γ − 1 + 3ǫµ)−1. Thus,

∆C1 = CU(ǫ)− CL,1(ǫ)

< µ sup
0<γ<(1+ǫµ)−1

[G(ǫ, γ)− γH(p1)/p1] (3.1)

First, express the first term of G(ǫ, γ), log2(ǫµ + 1/γ − 1), in terms of p1.

p1 =
4ǫµ

1/γ − 1 + 3ǫµ
⇒ ǫµ =

(1/γ − 1)p1

4− 3p1

Thus, ǫµ + 1/γ − 1 = (ǫµ)(4−2p1

p1
), so that

G(ǫ, γ)

= γ[log2(ǫµ +
1

γ
− 1) + log2(e)− log2(µ)− h(Si)]

= γ{log2[(ǫµ)(
4− 2p1

p1

)] + log2(e)− log2(µ)− h(Si)}

= γ{log2[(ǫ)(
4− 2p1

p1
)] + log2(e)− h(Si)}

Thus,

G(ǫ, γ)− γH(p1)/p1

= γ{log2[(ǫ)(
4− 2p1

p1

)] + log2(e)− h(Si)} − γH(p1)/p1

= γ[log2(2ǫ(2− p1)/p1) + log2(e)− h(Si)

+(log2(p1) + (1− p1)/p1 log2(1− p1))]

= γ[log2(e)− h(Sn) + log2(2ǫ)]

+γ[log2(2− p1) + (
1− p1

p1

) log2(1− p1))]

= γ[log2(e) + D(Sn||Uµ,ǫ)]

+γ[log2(2− p1) + (
1− p1

p1

) log2(1− p1))]
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Since log2(2− p) + 1−p
p

log2(1− p) < 0 and 0 < γ < 1,

we have G(ǫ, γ)− γH(p1)/p1

< γ[log2(e) + D(Sn||Uµ,ǫ)] < log2(e) + D(Sn||Uµ,ǫ)

By equation (1), ∆C1(ǫ) ≤ µ[log2(e)) + D(Sn||Uµ,ǫ)] bits/sec.

(2) By Proposition 1 part (b), CU(ǫ) the uniform BSTC with service rate µ and

support interval ( 1
µ
− ǫ, 1

µ
+ ǫ) is the smallest among all BSTCs with the same service

rate and support interval, and by Lemma 1, CL,1(ǫ) is independent of the service

distribution. Therefore, ∆C1 for the uniform BSTC is the smallest among all BSTCs

with service rate µ and support interval ( 1
µ
− ǫ, 1

µ
+ ǫ)

Table 3.1
The Upper and Lower Bounds on the Capacity of uniform BSTC and
Gaussian BSTC (in bits per average service time).

ALL Uniform Uniform Gaussian Gaussian

ǫµ CL,1 CU ∆C1 CU ∆C1

10−1 1.4500 2.0314 0.5814 2.3927 0.9428

10−2 3.4287 4.1582 0.7295 4.5833 1.1547

10−3 5.9081 6.7469 0.8388 7.2127 1.3045

We obtain ∆C1(ǫ) < log2(e)µ bits/sec ≈ 1.447µ bits/sec for uniform BSTCs, and

∆C1(ǫ) < 2.004µ bits/sec for Gaussian BSTCs by Proposition 2(a).

In Table 3.1, we show the values of CL,1(ǫ) for BSTCs, and the values of CU(ǫ) and

∆C1(ǫ) for the uniform BSTC and the Gaussian BSTC when ǫµ = 10−1, 10−2, and 10−3.

We can see that ∆C1 < 2µ bits/sec for all ǫ in this Table.

Our first lower bound CL,1(ǫ) is sub-optimal by using a naive coding scheme with

a large (4ǫ) spacing. Nevertheless, it is a good lower bound because it is tight in

the sense that for the uniform BSTC, ∆C1(ǫ) < 1.447 bits/sec for all ǫ. That is,
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the capacity of the uniform BSTC is CL,1(ǫ) + O(1). Moreover, it is universal for all

BSTC in a given support interval.

We now present our optimal lower bound CL,2(ǫ) for BSTCs, which is also in-

dependent of the service time distribution given the support interval. However, it

requires knowledge of absolute timing information at both sender and receiver.

3.3.2 The Second Lower Bound

To derive our second zero-error lower bound CL,2, the receiver is required to use

more computational power to recover the absolute time. When the absolute time is

available to the receiver, we use a slotted-arrival-time coding scheme to obtain our

lower bound CL,2(ǫ).

Lemma 2 Assuming that absolute time information is available to both the sender

and the receiver, a zero-error lower bound CL,2(ǫ) on the capacity of BSTCsde with

service rate µ and support interval ( 1
µ
− ǫ, 1

µ
+ ǫ) is:

CL,2(ǫ) = µ sup
0<γ<(1+(1+2α)ǫµ)−1

γ[H(p2)/p2] bits/sec

where H(p) = −p log2(p)− (1− p) log2(1− p),

p2 =
2ǫµ

1
γ
− 1 + (1− 2α)ǫµ

, and α = ⌈1 + ǫµ

2ǫµ
⌉ − 1 + ǫµ

2ǫµ
.

Proof. When the absolute time information is available, we use slotted arrival times

with slot size 2ǫ. That is, the arrival time of the ith bit, ai, is restricted to be on the

grid t = (2ǫ)ki, ki = 0, 1, 2 · · · .
To see why our scheme works, we start with a simple example of encoding messages

by sending only one bit at time a1. Let d1 be the departure time of that bit. Assuming

the queue is initially empty, we have d1 = a1 + S1. In our scheme, the only possible

values of a1 are (2k)ǫ, k = 0, 1, 2, · · · . Since S1 ∈ ( 1
µ
− ǫ, 1

µ
+ ǫ), we have a1 = (2k)ǫ

if and only if d1 ∈ Ik = (µ + (2k − 1)ǫ, µ + (2k + 1)ǫ). Moreover, Ik and Ik′ do not

overlap if k 6= k′.



58

To decode a message, the receiver uses slotted departure times with slot size 2ǫ,

and the kth slot corresponds to the time interval Ik = ( 1
µ

+ (2k − 1)ǫ, 1
µ

+ (2k + 1)ǫ).

Upon observing a bit departing at time d∗
1 in slot k∗, i.e. d∗

1 ∈ Ik∗, the receiver can

recover the arrival time correctly as a∗
1 = (2k∗)ǫ.

When we encode messages by transmitting more than one bit, the receiver can

decode the message error-free in exactly the same way as transmitting only one bit,

as long as there is no queueing at the server. To avoid queueing, simply choose ki so

that ki ≥ ki−1 + 1+ǫµ
2ǫµ

for i ≥ 2. This condition is equivalent to ai − ai−1 ≥ 1
µ

+ ǫ.

Thus, in our coding scheme, the inter-arrival times A1, A2, · · · must satisfy (1)

Ai = 2k′ǫ and (2) Ai ≥ 1
µ

+ ǫ.

Let K0 = ⌈1 + ǫµ

2ǫµ
⌉, and α = K0 −

1 + ǫµ

2ǫµ
, 0 ≤ α < 1.

Choose A1, A2, · · · to be i.i.d. geometric random variables

that satisfy (1) and (2), with probability mass function:

P [Ai = K0(2ǫ) + k(2ǫ)] = p2(1− p2)
k, k = 0, 1, · · ·

Let λ be the departure rate and γ = λ/µ. We have

1/λ = E[Di] = E[Ai] = K0(2ǫ) + 2ǫ( 1
p2
− 1). Thus,

p2 =
2ǫµ

1
γ
− 1 + ǫµ− 2α(ǫµ)

Since I(Ai; Di) = h(Ai) = H(p2)/p2, we have

C ≥ I(Ai; Di)

E[Di]
= µ[γH(p2)/p2]

for all γ, such that 0 < γ < (1 + (1 + 2α)(ǫµ))−1.

Therefore,

CL,2(ǫ) = µ sup
0<γ<(1+(1+2α)ǫµ)−1

γ[H(p2)/p2] bits/sec

The major difference between the first scheme in Section 3.3.1 and the second

scheme is that the timing information is now embedded in the absolute timing of
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each arrival rather than the traditional inter-arrival time. Or equivalently, the timing

information is in the inter-arrival time between the i-th bit and the timing origin,

rather than in the lapse between the i-th and the (i − 1)-th bits, so that the noisy

component of the service time is kept at 2ǫ rather than 4ǫ, the superposition of the

noises from both the i-th and the (i− 1)-th bits.

The absolute timing (or the timing origin), on the other hand, is generally not

available at the receiver end. Nonetheless, by slightly increasing the size of the slots,

from 2ǫ to 2ǫ + δ, where δ serves as a guard band, the absolute timing information

recovery problem is reduced to a grid realigning problem. The goal of this problem is

to find a realignment such that no departure time falls into the guard band δ. With

a sufficiently long observation period, the recovery is always possible in probability.

By further reducing the size of the guard band δ, we obtain the same lower bound in

Lemma 2 as if we have the absolute timing information.
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Fig. 3.2. Capacity Lower Bound CL,2 compared with CU for the uni-
form and Gaussian BSTC when ǫµ = 0.01 (in bits per average service
time).
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Figure 3.2 shows the universal lower bound CL,2(ǫ) for BSTCs as a function of

the load factor γ = λ/µ for µǫ = 0.01, along with upper bounds CU(ǫ) for uniform

BSTCs and Gaussian BSTCs. As shown in Figure 3.2, CU(ǫ) for uniform BSTCs is

extremely close to CL,2(ǫ).

In the next Proposition, we will show that CL,2(ǫ) is asymptotically optimal in

the sense that, CU(ǫ)− CL,2(ǫ)→ 0 as ǫ→ 0 for uniform BSTCs.

Proposition 3 Denote ∆C2(ǫ) = CU(ǫ)− CL,2(ǫ).

(a) ∆C2 for a uniform BSTC is the smallest such difference between our CU(ǫ) and

CL,2(ǫ) among all BSTCs with same service rate µ and support interval ( 1
µ
− ǫ, 1

µ
+ ǫ).

(b)∆C2(ǫ)→ 0 as ǫ→ 0 for uniform BSTC.

Proof

(a) Same argument as in the proof of Proposition (2)(b).

(b)We wish to show ∆C2(ǫ)→ 0 as ǫ→ 0 for uniform BSTC.

As in the proof of Proposition 2,

∆C2(ǫ) = CU(ǫ)− CL,2(ǫ)

= µ sup
0<γ<1

G(ǫ, γ)− sup
0<γ<(1+ǫµ)−1

[γH(p2)/p2]

First, express the first term of G(ǫ, γ), log2(ǫµ + 1/γ − 1), in terms of p2. Since

p2 =
2ǫµ

1
γ
− 1 + (1− 2α)ǫµ

⇒ ǫµ =
( 1

γ
− 1)p2

2− (1− 2α)p2
,

we have ǫµ +
1

γ
− 1 = (

1

γ
− 1)(

2 + 2αp2

2− (1− 2α)p2
) = (ǫµ)(

2

p2
+ 2α).
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Since h(Si) = log2(2ǫ) for uniform BSTC, we have

G(ǫ, γ) = γ[log2(ǫµ +
1

γ
− 1) + log2(e)− log2(µ)− h(Si)]

= γ{log2[(ǫµ)(
2

p2
+ 2α)] + log2(e)− log2(µ)− log2(2ǫ))}

= γ{log2(
1

p2
+ α) + log2(e)}

Thus,

G(ǫ, γ)− γH(p2)/p2

= γ[log2(
1

p2
+ α) + log2(e)]− γH(p2)/p2

= γ[log2(
1

p2
+ α) + log2(e)

+(log2(p2) +
1− p2

p2
log2(1− p2)]

= γ[log2(e) + (
1− p2

p2
) log2(1− p2))] + γ log2(1 + αp2)

Let γ∗ = γ∗(ǫ) be the value where G(ǫ, γ) achieves its maximum, i.e. CU(ǫ) =

G(ǫ, γ∗). The corresponding value of p∗2 sastifies p∗2 → 0 as ǫ→ 0. Thus,

log2(e) + (
1− p∗2

p∗2
) log2(1− p∗2)→ 0 as ǫ→ 0,

and log2(1 + αp∗2)→ 0 as ǫ→ 0.

Thus for uniform BSTCs,

(G(ǫ, γ∗)− γ∗H(p∗2)/p
∗
2) −→ 0 as ǫ→ 0.

Therefore, ∆C2(ǫ)→ 0 as ǫ→ 0 for uniform BSTCs.

Proposition 3 shows that CL,2(ǫ) is asymptotically tight for the uniform BSTC.

By tightness, we mean that when ǫ is small, the capacity of the uniform BSTC is

CL,2 + o(1). Since our lower bound CL,2(ǫ) is universal for all BSTCs, the uniform

BSTC serves a role similar to that of the ESTC in [42]. Namely, when ǫ is small,

the uniform BSTC has the smallest capacity among all BSTCs, while the exponential
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service time has the smallest capacity when considering unbounded service time dis-

tribution. Further, Proposition 3(b) does not hold for Gaussian BSTC. We can show

that ∆C2(ǫ) > 0 as ǫ→ 0 for Gaussian BSTC.

Table 3.2 shows the values of the universal lower bound CL,2(ǫ) of BSTCs, CU and

∆C2 for uniform BSTCs and Gaussian BSTCs, for various values of ǫµ. When ǫµ =

10−3, CL,2 = 6.7384µ; and for the uniform BSTC, CU = 6.7469µ and ∆C2 = 0.0086µ.

Using the two tight bounds, we can infer that the capacity of this uniform BSTC is

6.7µ bits/sec.

Table 3.2
The Upper and Lower Bounds on the Capacity of uniform BSTC and
Gaussian BSTC (in bits per average service time).

ǫµ ALL Uniform Uniform Gaussian Gaussian

CL,2 CU ∆C2 CU ∆C2

10−1 1.9106 2.0314 0.1198 2.3927 0.4812

10−2 4.1240 4.1582 0.0342 4.5833 0.4593

10−3 6.7384 6.7469 0.0086 7.2127 0.4743

3.4 Conclusion

We have studied the capacity of timing channels with bounded service times. We

have obtained an upper bound, and two universal lower bounds on the capacity of

BSTCs. These bounds are shown to be asymptotically tight for uniform BSTCs. An

interesting observation that comes about as a by-product of this work is that the

uniform BSTC serves a role similar to that of the ESTC in [42], i.e., when ǫ is small,

the uniform BSTC has the smallest capacity among all BSTCs.
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4. TCP/IP TIMING CHANNELS: THEORY TO

IMPLEMENTATION

4.1 Introduction

The Orange Book [57] defines a covert channel to be “any communication channel

that can be exploited by a process to transfer information in a manner that violates

the system’s security policy.” A covert timing channel is a type of covert channel in

which sensitive information is transmitted by the timing of events. In a multi-level

security (MLS) system, covert timing channels can be used by a HIGH process to

leak classified information to a LOW process. In a networked environment, it can be

used by a program that has access to sensitive information to leak the information

through packet inter-transmission times.

Designing and implementing timing channels over a shared network between two

distant computers is challenging. Network timing channels are inherently “noisy” due

to the delay and jitter in networks, which distort the timing information from the

sender when it reaches the receiver. In [58], the authors designed and implemented

an IP covert timing channel using an on-off coding scheme, where the reception or

absence of a packet within a time interval signals bit 1 or bit 0, respectively. This

timing channel achieves a data rate of 16.67 bits/sec between two computers located

at two universities with an average round trip time of 31.5 ms.

In TCP/IP networks, end-to-end delays are much larger than the jitter. Informa-

tion theoretic research shows that the Shannon capacity of timing channels with no

jitter is infinite, assuming infinite precision of the system clock ( [42, 46–48, 51, 52]),

and the capacity can be made very large if the jitter of the underlying channel is

very small [54]. Motivated by these theoretical results, we are interested in designing

a TCP/IP covert timing channel that significantly improves the current state-of-
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Fig. 4.1. High Level Design Diagram of Covert Timing Channel

the-art data rate [58]. Additionally, our second goal is to design a computationally

non-detectable timing channel scheme, assuming that the packet inter-transmission

time of regular traffic is independently and identically distributed (i.i.d.), but the

distribution of the inter-transmission times could be general (e.g., Pareto).

In our design, we use packet inter -transmission times (denoted as Tk) to convey

information. Figure 4.1 shows a high-level view of our design. A malicious process

on the sender side manipulates the inter-transmission times and another malicious

process either at the receiver or en route to the receiver can decode the privileged

information by observing the inter-reception times. We encode L-bit binary strings in

a sequence of n packet inter-transmission times T1, T2, · · · , Tn. We call it the “L-bits to

n-packets” scheme. These n packets are transmitted in variable length time intervals.

The receiver will then map the n packet inter-reception times R1, R2, · · · , Rn back to

an L-bit binary string according to the code book.
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We make two novel contributions in this paper (both are also distinct from our

prior work [54]). First, we provide a systematic solution of selecting the values of

L and n for the L-bits to n-packets scheme, so that the data rate of our scheme is

near optimal. We implement a TCP/IP timing channel with our L-bits to n-packets

scheme, and conduct extensive experiments on the PlanetLab environment [85] with

five pairs of computers distributed worldwide to show the effect of differing delay and

jitter. We demonstrate significant performance improvement (2 to 5 times the covert

timing channel data rate) of our scheme over the state-of-the-art [58].

Our second contribution is to systematically develop a computationally non-

detectable timing channel scheme, assuming the packet intertransmission time is i.i.d.

Our design is based on the security of the cryptographically secure pseudo random

number generators (CSPRNG). The packet inter-transmission times (Tk’s) from the

proposed timing channel are devised to mimic any legitimate traffic with i.i.d. packet

inter-transmission time, e.g., the i.i.d. Pareto distribution for telent traffic [62]. This

allows two parties to communicate at a low data rate (e.g., 5 bits/sec) in a hostile

environment such as in battlefield or law enforcement settings while avoiding detec-

tion. The proposed non-detectable scheme is also implemented, and experiments are

conducted on PlanetLab. The similarity of the traffic patterns of our scheme and the

telnet traffic is verified.

The remainder of our paper is organized as follows: In Section 4.2, we review

related work. In Section 4.3, we present our system level design and the proposed

L-bits to n-packets scheme, with discussions on the trade-offs between the data rate

and the complexity of our scheme. In Section 4.4, we describe our implementation of

covert TCP/IP timing channels and our experimental results. In Section 4.5, we show

how to construct a timing channel scheme that is computationally not detectable. We

conclude with discussion and future research directions in Section 4.6.
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4.2 Related Work

The best achievable data rate of a covert timing channel measures the severity

of its threat, and can be obtained by estimating the information theoretic channel

capacity [42, 51, 54, 61]. To reduce the throughput of covert timing channels, several

methods such as timing channel jammers [46], fuzzy times [59] and network pump [60],

have been proposed. Another approach to defend against the usage of covert timing

channels is to detect the presence of such usage [56, 58, 81].

In [58], the authors illustrated the threat from IP covert timing channels using a

software implementation of covert timing channels over TCP/IP networks. They also

developed a detection mechanism for their IP covert timing channels by identifying

the regularity of the inter-transmission times. In their design, the sender and receiver

agree upon an interval length, say w ms. To signal bit value ‘1’, the sender transmit-

ted a packet in the middle of the time interval; to signal ‘0’, the sender remained silent

during that interval. Their scheme achieved a rate of 16.67 b/s with 2% character de-

coding error (w = 60 ms) in an experimental setting where the average RTT between

the two hosts is 31.5 ms. Their use of a simple coding scheme, basically an on-off

scheme, limits the data rate achievable for the timing channel. Their scheme requires

time synchronization between the sender and the receiver in order to correctly decode

a message. A constant shift in delay and jitter may have a cascade effect that may

cause subsequent bits to be decoded incorrectly.

In [65], the authors built a Keyboard JitterBug, a device interposed between the

keyboard and the computer, that can leak typed information through a covert network

timing channel when a user runs an interactive application. The authors utilized the

interactive session and added different delays to the timing sequence of the keystrokes

to signal 1 or 0. Their binary encoding scheme allows one bit of information to be

transmitted per keypress, and the rate of their timing channel scheme is limited by

the user’s typing speed. They then used a “4-bit to 1-keypress” encoding scheme to

improve the performance. This method uses 16 different delay values to encode the
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16 distinct 4-bit binary strings. The timing channel rate being tied to human input

is very low, and it is detectable by sophisticated detection algorithms such as [81].

In our proposed scheme, we use packet inter-transmission time to convey infor-

mation, not just the presence or absence of a packet in a fixed time interval. Our

method eliminated the need for absolute time synchronization between the sender

and the receiver, and it shares some similarities with the sparse time base used for

clock synchronizations in distributed systems in [50].

We propose a more general L-bits to n-packets scheme that maps binary strings

of length L to multiple packet inter-transmission times of size n, which includes both

the on-off scheme [58] and the keyboard jitter bugs as special cases. We further

provide methods for selecting the values of parameters L and n to get higher data

rates. Finally, we describe our design of a timing channel scheme that mimics a class

of normal traffic to avoid detection.

4.3 Covert Timing Channel Design

4.3.1 System Level Model and Design

Our approach can be applied to a wide variety of communication paradigms to

transmit covert information. However, for the sake of illustration, we describe here

a high level view (illustrated in Figure 4.1) for communication with TCP/IP. The

sender and receiver reside on two distant computers with several routers in between.

The sender has access to sensitive information and wants to leak this information to

the receiver using the timing of packet transmissions.

We use tk and rk to denote the times that the kth packet is transmitted and

received, respectively. We use Dk to denote the end-to-end delay of the kth packet,

so that rk = tk + Dk. The delay Dk include the delays from the TCP/IP network

and the processing delays on both computers running the timing channel software. It

can be expressed as Dk = D + ǫk, where D is a constant that represents the average
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delay, and ǫk is a random variable that represents the jitter. In TCP/IP networks,

jitter is typically bounded (e.g., −ǫmax < ǫk < ǫmax), but may not be i.i.d..

The packet inter-transmission (denoted as Tk) between the (k − 1)st packet and

the kth packet can be expressed as

Tk = tk− tk−1. Likewise, the packet inter-reception time (denoted as Rk) between the

(k − 1)stpacket and the kth packet can be expressed as Rk = rk − rk−1. Thus,

Rk = Tk + (ǫk − ǫk−1) (4.1)

Equation (1) models the timing channel, with Tk being the input to the channel

and Rk being the noisy output.

r1=94 msr0=31 ms r0=31 ms r1=94 ms

T1 = 60 ms

Sender 

Receiver

Sender

Receiver

R1 = 63 ms R1 = 63 ms

T1 = 68 ms

0 0

code #2 maps 11 to T1=68 mscode #1 maps 00 to T1=60 ms

t1=68 ms t0=0t1=60 ms t0=0

Fig. 4.2. Identical R1 for two distinct bit strings resulting in decoding
error for the timing channel

Let T
(1)
1 and T

(2)
1 be any two inter-transmission times representing two distinct

binary strings. We require that |T (1)
1 −T

(2)
1 | be large enough so that the corresponding

inter-reception times R
(1)
1 and R

(2)
1 are always distinguishable even with the noisy

component (ǫk − ǫk−1). Figure 4.2 illustrates a scenario when |T (1)
1 − T

(2)
1 | is too

small. In this example, D = 30 ms and |ǫk| < 5 ms for all k. Suppose we encode “00”

as T
(1)
1 = 60 ms, and “11” as T

(2)
1 = 68 ms. As shown in the figure, the inter-reception
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times R
(1)
1 and R

(2)
1 for “00” and “11” can be the same, for which it is impossible for

the receiver to decide if “00” or “11” was sent.

In our design, we use the parameter δ to denote this minimum difference of T
(1)
1

and T
(2)
1 , and δ > 4ǫmax ensures no confusion for any values of ǫk and ǫk−1. The

reason is that when |ǫk| < ǫmax, it follows directly from equation (1) that

T
(1)
1 − 2ǫmax < R

(1)
1 < T

(1)
1 + 2ǫmax (4.2)

T
(2)
1 − 2ǫmax < R

(2)
1 < T

(2)
1 + 2ǫmax (4.3)

If |T (1)
1 − T

(2)
1 | > 4ǫmax, then (2) and (3) guarantees that R

(1)
1 6= R

(2)
1 .

Another parameter in our code design is ∆, the minimum value for Tk (i.e., Tk ≥
∆). The intuition for imposing a minimum time ∆ between the transmissions of

any two consecutive packets is to avoid loss of timing information. If two packets are

transmitted too close to each other, they may be queued at the computers running the

timing channel software or on the intermediate routers, and queueing could destroy

the timing information [42].

Even though a better designed timing channel can achieve a higher data rate, we

must also keep in mind that the data rate cannot be arbitrarily large since it is upper

bounded by the channel’s Shannon capacity, the maximum possible data rate for two

parties to communicate reliably. In general, the Shannon capacity of timing channels

is not known. However, we show in [54] that among all i.i.d. continuous and bounded

jitter distributions in (−ǫmax, ǫmax), the Shannon capacity is the smallest when the

jitter distribution is uniform in that interval. In other words, the uniform jitter

distribution represents the worst case scenario in terms of channel capacity. A special

map of the bit-string to packet inter-transmission time, termed the geometric code is

proposed in [54]. We have shown in [54] that the rate of the geometric code comes

very close to the true capacity of the timing channel with uniform jitter distribution.

It is worth noting that the geometric code is universal that works with all bounded

jitter even when the underlying unknown distribution is non i.i.d..
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We next describe the geometric code and present a simple realization of the geo-

metric code by the L-bits to n-packets scheme. We then evaluate the performance of

our L-bits to n-packets scheme.

4.3.2 Geometric Codes

The family of geometric codes are those codes with Ti to be i.i.d geometric random

variables with probability mass function :

P [Ti = ∆ + k · δ] = p(1− p)k, k = 0, 1, 2, · · ·

We have shown in [54, Lemma 1] that the data rate of such a geometric code is

R(p) =
H(p)

∆ · p + δ · (1− p)

where H(p) = −p log2(p)− (1− p) log2(1 − p), and the achievable data rate for any

geometric code is:

R∗ = max
0<p<1

[H(p)/(∆ · p + δ · (1− p))].

Figure 4.3 shows the data rate R(p) as a function of p for two geometric codes

with system parameters (∆, δ) set to (50, 10) ms and (50, 5) ms. As shown, when

δ = 5 ms, R(p) attains its maximum value R∗ = 52 bits/sec. Likewise, when δ = 10

ms, R(p) attains its maximum value R∗ = 40.56 bits/sec. It is not surprising that

with fixed ∆, the achievable rate R∗ is higher when δ is smaller – the smaller δ is,

the shorter time it takes to transmit all packets.

4.3.3 L-bits to n-packets Scheme

Our design of the L-bits to n-packets scheme is based on insights from geometric

codes. In this scheme, each of the L-bit binary strings is mapped to a sequence of

packet inter-transmission times (T1, T2, · · · , Tn). In our basic scheme, Ti takes values

only from the set E = {T : ∆ + k · δ, k = 0, 1, · · · }.
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Fig. 4.3. R(p) for geometric codes.

To illustrate our design, we first give examples of a “2-bit to 1-packet” scheme

and a “4-bit to 1-packet” scheme with ∆ = 60 ms and δ = 20 ms. (Actually, for the

first L bit string, (n + 1) packets are needed including the starting packet. But for

subsequent L-bit strings, only n packets are needed.) A “2-bit to 1-packet” scheme

maps bit string “10” in one inter-transmission time T1 = 60 ms. Likewise, it maps

bit strings “01”, “11”, and “00” to T1=80 ms, 100 ms, and 120 ms, respectively. On

average, it takes 90 ms to transmit 2 bits, assuming each bit string is equally likely.

So, the data rate is 2
0.09
≈ 22 bits/sec.

Now consider a “4-bits to 1-packet” encoding scheme. A total of 16 different values

for the inter-transmission times T1 are needed to represent all the 4-bit binary strings.

We can use the following 16 values for the inter-transmission times T1: 60, 80, 100,
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· · · , 340, and 360 ms. On average, it takes 210 ms to transmit 4 bits, and the data

rate is 4
0.21
≈ 19 bits/sec.

In these examples, the 2-bits to 1-packet scheme outperforms the 4-bits to 1-

packet scheme in terms of data rate. It may appear from this example that the data

rate of the timing channel monotonically decreases with increasing L. However, the

interesting fact our investigation reveals is that the rate is not monotonic with L.

One design challenge is to determine the values for L and n, so that our timing

channel achieves a near optimal throughput – close to the data rate of the corre-

sponding geometric code. Thus, given a fixed total packets transmission time tn

(tn =
∑n

i=1 Ti), we would like to transmit the longest bit strings possible.

To aid our analysis, we introduce another n-dimensional vector k = (k1, k2, ..., kn)

to represent T = (T1, T2, · · · , Tn), for Ti = ∆ + ki · δ. We consider a special L-

bits to n-packets scheme, called an (n, K)-code, that satisfies
∑n

i=1 ki ≤ K. Using

an (n, K)-code, tn ≤ n · ∆ + K · δ. We have shown that the maximum number of

available codewords in an (n, K)-code is
(

n+K
K

)

. Therefore, the maximum length of a

bit strings that can be mapped to an (n, K)-code is

L = ⌊log2

(

n + K

K

)

⌋. (4.4)

The data rate R(n, K) of an (n, K)-code with system parameters (∆, δ) is thus

approximately

R(n, K) ≈ log2

(

n+K
K

)

n ·∆ + n
n+1
·K · δ bits/sec. (4.5)

A plot of R(n, K) as a function of K is shown in Figure 4.4, for two values of

n. In this figure, (∆, δ) = (50, 10) ms, and n = 3, 5. As shown, for a fixed value

of n, the data rate R(n, K) will initially increase as K increases till it reaches its

peak, and it then decreases as K increases. The intuition is that with increasing K,

the total number of codewords
(

n+K
K

)

is increasing. Meanwhile, tn, the time it takes

to transmit all n packets, will also increase with K. Initially, the gain in the total

number of codewords outpaces the increase in tn, and we see an increase of the data
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rate. After a certain point, increase in tn outpaces the gain in the total number of

codes, and we see a decrease of the data rate.

For a fixed value of n, the highest data rate using (n, K)-codes with system pa-

rameters (∆, δ) is approximately

R∗(n) ≈ max
K≥0

log2

(

n+K
K

)

(n ·∆ + n
n+1
·K · δ) bits/sec. (4.6)
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Fig. 4.4. R(n, K) for ∆ = 50 ms, δ = 10 ms.

In the n = 3 case, the (3, K)-code achieves its highest data rate R∗(3) = 36.96

bits/sec when K = 13. The optimal value of L can be calculated using formula (4).

The total number of codewords is
(

16
13

)

= 560, and L = 9. Thus, when n = 3, a 9-bits

to 3-packets gives us the best data rate. Likewise, when n = 5, a 15-bits to 5-packets

scheme yields the highest data rate of 37.73 bits/sec.
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Fig. 4.5. R∗(n) for ∆ = 50 ms, δ = 10 ms.

Figure 4.5 shows the optimal data rate R∗(n) as a function of L for the same

system parameter (∆, δ) = (50, 10) (ms), along with the rate of the corresponding

geometric code. In general, R∗(n) increases as L increases. When L is large, R∗(n)

is very close to the geometric code rate. However, the complexity of the codes also

increases as L increases. As shown in this figure, in order to gain a small amount

of data rate R∗(n), we must increase L drastically. For instance, using a 9-bits to 3-

packets scheme yields a rate of 37 bits/sec, while to achieve a data rate of 39 bits/sec,

we need to use a 66-bits to 32-packets scheme. The latter is much more expensive in

terms of storage for the code book and processing for encoding and decoding, since

266 codewords will have to be stored and searched for. However it only offers very

little gain in data rate (2 bits/sec).
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4.4 Experimental Results

Based on our design, we have developed a covert timing channel software running

over TCP/IP networks. Our software is implemented in Java, consisting of a server

program and a client program that act as the sender and the receiver, respectively.

The sender controls the TCP packet inter-transmission time by using sleep(T ), where

T is the desired time (in milliseconds) between two packets being transmitted. The

accuracy of the sleep(T ) function on our system is 1 ms. The receiver passively

collects the TCP packet reception times, and uses the shared code book to decode the

message. It is a one-way channel in that the sender does not receive feedback from the

receiver regarding when the packet is received or whether it is decoded correctly. This

limits the performance of the timing channel but increases the difficulty of detection.

In our implementation, we choose an 8-bits to 3-packets scheme for simplicity and

efficiency.

As mentioned in our design, our timing channel does not require time synchro-

nization between the sender and the receiver, which makes it attractive for an open

network like the Internet. Moreover, the errors occurring earlier will not affect the

decoding capability of messages sent later because of independent decoding of each

L-bit string. This is in contrast to [58], where a packet delay will cause subsequent

bits to be erroneously decoded.

We conducted our experiments using the PlanetLab environment. We ran our

covert timing channel software on five pairs of computers. The senders are hosts at

Purdue University, and the receivers are PlanetLab nodes located at Beijing Tsinghua

University, Technical University of Madrid, University of Zurich, Stanford University

and Princeton University. These five pairs are chosen to represent a wide range of

Round Trip Times between the senders and receivers. At the receiver side, we use

the packets captured by tcpdump to decode the timing channel message.

In a single experiment, the sender leaks the information obtained from a text

file of 1336 ascii characters to the receiver via our covert timing channel. A set of
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Table 4.1
Summary of Decoding Error for the Timing Channel Experiments

∆ δ data rate Princeton Stanford Zurich Madrid Tsinghua

(ms) ms (bits/sec) mean(%) stdev (%) mean(%) stdev (%) mean(%) stdev (%) mean(%) stdev (%) mean(%) stdev (%)

50 10 36.85 0.82 0.12 4.27 1.70 3.01 0.34 3.74 1.59 5.51 0.70

50 5 42.92 6.15 3.10 12.19 3.73 4.68 0.52 9.94 7.24 5.88 1.37

40 10 42.75 0.82 0.11 3.10 1.02 3.93 0.75 4.41 1.37 5.19 0.99

40 5 51.14 5.12 1.88 11.51 2.88 4.66 1.02 7.03 5.38 5.06 0.76

30 10 50.90 1.46 0.50 4.49 0.51 3.96 0.48 4.27 1.48 5.53 1.18

30 5 63.24 5.00 1.24 10.41 1.86 4.63 0.97 7.06 4.76 4.44 0.69

20 10 62.87 2.59 0.55 5.18 0.92 4.48 0.85 6.18 4.52 5.03 0.54

20 5 84.15 5.72 1.47 9.20 1.65 3.95 0.96 6.78 5.69 4.39 0.73

10 10 82.21 4.06 1.00 5.96 0.85 5.33 0.89 6.52 3.18 5.81 0.93

10 5 124.28 6.16 1.49 9.69 2.45 4.45 0.82 11.58 11.00 5.29 1.05

Average RTT (ms) 39.96 67.17 135.65 155.09 272.81
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experiments consists of 10 such experiments with system parameters (∆, δ): ∆ =

10, 20, 30, 40, 50 (ms) and δ = 5, 10 (ms). We ran the set of 10 experiments daily

between these five pairs of sender and receiver during morning hours (EST) for 10

days.

Table 4.1 summarizes our results of these experiments. In the table, we provide the

average and the standard deviation of the character decoding error of our experiments.

If one decoded character does not match the transmitted character, it is counted as

one decoding error. In our 8-bits to 3-packets scheme, if one of the three packet

inter-reception times deviates too much from the corresponding inter-transmission

time, it will result in one character decoding error (1 character is represented by 8

bits). Thus, a 1% of packet inter-reception time error could result in a 3% character

decoding error. In addition to the results on error rates, the actual data rate for all

the system parameters (∆, δ), and the average RTT time between the pair just before

our experiments are also shown in this Table. Two general trends are observable. As

∆ or δ decreases, the data rate and the error rate increase. The data decoding errors

are caused when the network jitter exceeds the assumed bound on the jitter. Note

that whether the jitter is i.i.d. or not, does not affect the performance of the system

as our L-bit to n-packet scheme is error-free for all bounded jitter. TCP can recover

from packet loss, but retransmitting missing packets could result in decoding errors

because of the jitter exceeding the assumed bound.

The setting in our experiments between Purdue and Priceton is comparable to

that of [58]. As shown, when ∆ = 40 ms, δ = 10 ms, the average decoding error rate

between Purdue and Princeton is only 0.82%. The data rate of this timing channel

is 42.75 bits/sec, which is more than twice the rate (16.76 bits/sec) in [58], while

achieving higher accuracy (their error was 2%). When ∆ = 10 ms, δ = 10 ms, the

average decoding error between Purdue and Princeton is 4.06% and the standard

deviation of the decoding error is 1.00%. In this case, we can achieve a rate of 82.21

bits/sec, which is five times the rate of [58].
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Fig. 4.6. Daily decoding errors for the covert channel between Purdue
and Princeton

Figure 4.6 provides a detailed view of our daily experimental results between

Princeton and Purdue. We notice there is an error spike (14%) on day 9 when

∆ = 50 ms, δ = 5 ms. This could either be due to large variations in packet delays or

packet losses on the network. We examined our log and compared the packet inter-

transmission times Ti and inter-reception times Ri. We found the error is caused by

the jitter of the network. In order to decode correctly, the combined jitter |Ri − Ti|
must be less than 2.5 ms for δ = 5ms. In this experiment, 4.26% of packets have

a combined jitter |Ri − Ti| = 3ms. and the jitter happens in random places. Since

3 packets map to 1 character, these 4.26% jitter results in 12.78% overall character

decoding error. This also explains why the error rate is so small when δ = 10, as it
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can tolerate combined jitter under 5 ms. The histogram of the combined jitter for

day 9 is shown in Figure 4.4.

Our experiments with a receiver located outside the US also yielded good results.

From Zurich and Purdue, all but one of the average decoding error are less than 5%.

When ∆ = 50 ms and δ = 10 ms, the average decoding error rate is only 3.01%

and the data rate is nearly 37 bits/sec. Daily experimental results are illustrated in

Figure 4.7.

Fig. 4.7. Daily decoding errors for the covert channel between Purdue and Zurich

In addition to the 10 daily experiments we ran between the five pairs, we also ran

the timing channel between Princeton and Purdue during various times of the day.

We found that the network is more congested during the afternoon hours. The RTT

can vary from 63 ms to 108 ms, and the combined jitter spreads more widely ranging
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from -50 ms to 120 ms. The decoding error thus increases to between 6% to 7%. The

histogram of the combined jitter during this time is shown in Figure 4.9. In contrast

to Figure 4.4 where the combined jitter is concentrated around 0, the combined jitter

during busy hours spreads much more widely, and can range from -50 ms to 120 ms.
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Fig. 4.8. Combined Jitter during Normal Time (Excluding |Ri − Ti| < 3)

In these experiments, we demonstrated that our L-bits to n-packets scheme achieves

good data rates with low error rate under various network conditions. However, this

timing channel can also be easily detected, as the inter-transmission times Ti for our

basic scheme are aligned on a grid of δ ms. One simple randomized scheme is for the

sender and receiver to generate a common pseudo-random sequence {vk, k = 1, 2, · · · }
using a shared seed, vk is uniformly distributed in (0, δ). The sender adds the pseudo-

random number vk to the inter-transmission time Tk from the basic code. So, the
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Fig. 4.10. Combined Jitter during Normal and Busy Time

inter-transmission time for this scheme is T rand
k = Tk + vk. Since the receiver knows

the exact value of vk for all k, it can decode just as in our basic scheme.

However, the above randomized timing channel can still be detected since the

probability distribution of T rand
k may not match any legitimate traffic pattern. In the

next section, we will introduce a new scheme that allows the timing channel traffic to

mimic a given legitimate traffic pattern. Moreover, we will show analytically that it

is computationally impossible to detect our proposed covert channel usage using only

the first order statistics of the packet inter-transmission time.
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4.5 Non-detectable Timing Channel

The design goal of our non-detectable timing channel is for the timing channel

traffic to be computationally indistinguishable from a class of legitimate traffic whose

packet inter-transmission times are i.i.d., while assuming bounded jitter. Telnet traffic

is an example of such traffic, as its inter-transmission times can be modeled by an

i.i.d. Pareto distribution [62].

A pseudo-random bit generator is called secure if an adversary cannot do better

than random guessing at the next bit in the sequence from the prefix of the se-

quence. It has been proved that if a generator passes the next bit test, it will pass

all polynomial-time statistical tests (Theorem 3.10 in [63]). Cryptographically secure

pseudo random number generators (CSPRNG) such as Blum-Blum-Shub, Rabin, and

RSA are provably secure PRNG. That is, they are able to generate pseudo random

numbers that are computationally indistinguishable from true random numbers. On

the contrary, linear feedback shift registers, a classical PRNG, is well known to be

insecure. A thorough discussion on the theory of computational indistinguishability

can be found in [63, 64].

Our non-detectable timing channel scheme is illustrated in Figure 4.11. In what

follows, we will use an 8-bits to 2-packets example to explain this scheme. In this

example, an 8-bit ASCII character will be mapped into 2 packet inter-transmission

times T1, T2 in three step. The shared code book contains the one-to-one mapping of

8-bit binary strings to two-dimensional vectors (k1

16
, k2

16
), where k1 and k2 are integers

between 0 and 15. These 256 vectors (k1

16
, k2

16
) are sufficient to accommodate all the

8-bit binary strings. Unlike our first scheme, the vector (k1

16
, k2

16
) does not directly

correspond to any inter-transmission time, which will be obtained later.

Suppose the sender wishes to transmit a message consisting of a sequence of n

characters msg = {c1, c2, · · · , cn}. The first step of our scheme is to look up the code-

word for each character in the message. We use (x2k−1, x2k) to denote the codeword
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Fig. 4.11. Non-Detectable Scheme (Sender)

for character ck. At the end of the first step, the message msg is transformed to a

sequence of numbers x = {x1, x2, · · · , x2n−1, x2n}.
In the second step, we use a CSPRNG to generate a sequence of pseudo uniform

(0,1) random numbers u = u1, u2, · · · , u2n−1, u2n. The seed used by CSPRNG is
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shared between the sender and receiver, but not with the detector of the covert timing

traffic. We then mask the sequence x with u to obtain a new sequence of numbers

r = r1, r2, · · · , r2n−1, r2n by setting rk = xk ⊕ uk
∆
= xk + uk mod 1. The masking can

be thought of as the well-known one-time pad encryption technique operating on x.

In the last step, we set Tk = F−1(rk), where F (x) is the given c.d.f. of the packet

inter-transmission time of legitimate traffic. We use the sequence T1, T2, · · · , T2n as

the packet inter-transmission times for message {c1, c2, · · · , cn}. It can be shown that

without knowing the seed, the sequence T1, T2, · · · , T2n is computationally indistin-

guishable from a sequence of true i.i.d. random variables with c.d.f. F (x), i.e., from

legitimate traffic.

This computational indistinguishability can be proved using the framework of

[63, 64]. The basic idea is the use of proof by contradiction. Suppose the following

statement “T is computationally indistinguishable from a sequence of true i.i.d. ran-

dom variables with c.d.f. F (x).” is not true. Then, we can find a polynomial time

algorithm Q that can tell that the sequence T is not a sequence of true i.i.d. random

variables with c.d.f. F (x). Since rk = F (Tk) and uk = rk − xk mod 1, we have

uk = F (Tk)− xk mod 1. Then, we can construct another polynomial time algorithm

Q* based on Q to tell that u1, u2, · · · , u2n is not from a true i.i.d. uniform (0, 1)

random variables, which contradicts the construction that u1, u2, · · · is generated by

a CSPRNG. Therefore, the statement the sequence T is indeed computationally in-

distinguishable from a sequence of true i.i.d. random variables with c.d.f. F (x) must

be true.

Another feature of our scheme is that it can mimic different traffic patterns using

the same code book. Only the c.d.f. F(x) for the desired traffic pattern is needed in

the last step to obtain T1, T2, · · · by setting Ti = F−1(ri). This allows the sender and

receiver to adapt to various traffic patterns easily. For instance, when the normal

traffic pattern changes, the sender only needs to determine the c.d.f. of the distribu-

tion of the normal traffic, and it can use the new c.d.f. to map r to the desired packet

inter-transmission times without changing the existing code book. Moreover, adapta-
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tion does not require any handshake between the sender and receiver, for the receiver

can independently compute the c.d.f. using the traffic pattern of the inter-packet

reception times.

Fig. 4.12. Message Recovery (Receiver)
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The procedure for recovering the message at the receiver is simply the reverse of

the sender scheme, and is shown in Figure 4.12. Let R1, R2, · · · , R2n be the packet

inter-reception times. We first calculate x∗
i = F (Ri)⊕ (1− ui) as depicted in step 1

and 2. In the last step, we first round x∗
i to the nearest value of k

16
, denoted as xd

i

(xd
i = ⌊16 · x∗

i + 0.5⌋/16). We then decode (xd
2k, x

d
2k+1) to character cd

k by looking up

the code book. The entire recovered message is then cd
1, c

d
2 · · · , cd

n.

The value of network jitter ǫi’s and the c.d.f. F (x) of the legitimate traffic affect

the decoding error, although the jitter does not need to be i.i.d.. Recall that Ri =

Ti + (ǫi − ǫi−1), where ǫi − ǫi−1 signifies the combined jitter in the network and will

be denoted as ǫ
(c)
i . In this example, the receiver can decode correctly if |ǫ(c)

i | <

1/(32 · sup |F ′(x)|), where F ′(x) is the first order derivative of F (x). This is because,

F (Ri) = F (Ti + ǫ
(c)
i ) = F (Ti)+F ′(t∗) · ǫ(c)

i = ri +F ′(t∗) · ǫ(c)
i , where t∗ ∈ (Ti, Ti + ǫ

(c)
i ).

Since xi = ri ⊕ (1 − ui), we have x∗
i = F (Ri) ⊕ (1 − ui) = xi + F ′(t∗) · ǫ(c)

i . Thus,

|x∗
i − xi| < 1/32, if |ǫ(c)

i | < 1/(32 · sup |F ′(x)|). This allows correct decoding (i.e.

xd
i = xi), since xd

i is the value of x∗
i rounded to the nearest k/16.

The example of 8-bit to 2-packet scheme is readily generalized to an L-bit to n-

packet scheme. The code book contains a one-to-one mapping of L-bit binary strings

to n-dimensional vectors (k1

K
, · · · , kn

K
), where K is a positive integer and k1, k2, · · · , kn

are non-negative integers smaller than K. Similar to the analysis for the above 8-

bit to 2-packet example, the value for K can be conservatively estimated as K <

((supx F ′(x)) · ǫmax)
−1 for correct decoding.

To demonstrate our non-detectable timing channel, we implemented an 8-bit to

2-packet scheme in which the timing channel traffic mimics the telnet traffic pattern.

We use Java’s SecureRandom class for the generation of cryptographically secure

pseudo random numbers.

A Pareto distribution has a c.d.f.:

F (x) = P [X ≤ x] = 1− (α/x)β, x > α, α, β > 0
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The inverse function of F (x) needed in the step 3 is:

F−1(x) = α(
1

1− x
)1/β , 0 < x < 1

In our experiments, we use parameter α = 100ms and the shape parameter

β = 0.95 as in [62]. The receiver is a PlanetLab node at Princeton University,

and the sender is a host at Purdue University. We sent the same text file as in the

previous experiments over this non-detectable timing channel. Our experiments were

conducted during peak time when the RTT varies from 39.8 ms to 63.5 ms. The data

rate is approximately 5 bits/sec, and the decoding error is only 1%. Figure 4.13 illus-

trates the distribution of the packet inter-transmission times from this experiment,

along with Pareto and geometric distributions. We observe that visually the resulting

traffic is similar to Pareto but distinct from geometrically distributed traffic. As the

distribution of the inter-transmission time matches that of a given distribution, our

scheme guarantees undetectability for any detector using only the first order statistics

of the traffic. It is worth noting that the same concept can be applied to mimic traffic

up to the second order (or even higher order) statistics. We are currently investigat-

ing efficient implementation that establishes the indistinguishability for higher order

state-of-the-art detectors. For example, a recent covert channel detection scheme [81]

uses entropy changes in correlated traffic to detect covert timing channels. Their

detection method is based on the observation “that a covert timing channel cannot

be created without causing some effects on the entropy of the original process”. As

the authors pointed out, this observation does not apply to i.i.d. processes as in our

setting. An interesting future research direction is to derive a model for some normal

traffic with correlated inter-packet transmission times, and to design a covert timing

channel that mimics the correlated traffic.

4.6 Conclusion

We have designed a robust L-bits to n-packets scheme for communication using

timing channels. The data rate of our scheme is close to the theoretical upper bound
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Fig. 4.13. Probability Distribution of Ti.

– the achievable rate of the geometric codes. We have implemented our scheme

and have conducted extensive experiments on the PlanetLab nodes and found that

our scheme achieves between two to five times the data rate of the previous state-

of-the-art. In local networks with greater control over timing, one can significantly

improve the achieved data rate. Thus, the data leakage rate can be much higher if the

receiver is planted closer to the sender. We have also designed a computationally non-

detectable timing channel scheme so that the distribution of the inter-transmission

times generated by our timing channel mimics any i.i.d. traffic pattern. The non-

detectable scheme results in a drop of the data rate; however it is still able to achieve

a rate of 5 bits/sec for telnet traffic with only 1% decoding error even during peak

time. This suggests that TCP/IP timing channels can be far stealthier than previously

thought possible.

There are several interesting future directions for this work. One is to investigate

the effect of jammers when additional jitter is added to the TCP/IP flow. Another
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is to design a computationally non-detectable covert timing channel that mimics

correlated traffic.
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5. CAMOUFLAGING TIMING CHANNELS IN WEB

TRAFFIC

5.1 Introduction

Due to the rapid growth of Internet and Web based applications, covert commu-

nication over the Internet has received increased attention from industry and the re-

search community. Since traditional firewalls do not usually exam packet inter-arrival

times, covert timing channels could be an attractive way for confidential communi-

cation between untrusted systems. With the emergence of new designs of network

timing channels, detection methods attempt to differentiate these timing channels

from legitimate traffic. The question that we ask us is whether we design network

timing channels that behave like legitimate traffic and that are robust to the timing

noise characteristic on the Internet.

In our prior work, we have presented a computationally non-detectable timing

channel for mimicking legitimate i.i.d. traffic [82] . The marginal distribution of the

packet inter arrival times from this timing channel can be any probability distribution.

However, these i.i.d. timing channels cannot mimic traffic that is auto-correlated.

Extensive research has shown that aggregated traffic is self similar and long range

dependent (LRD). For instance, the TCP connection start time for HTTP traffic, the

most observed traffic on the Internet [86], is shown to be LRD and non-stationary [67].

Our goal is to design a covert timing channel that can mimic LRD traffic, such as

HTTP traffic. In particular, we would like our timing channel traffic not only to have

the desired marginal distribution, but the same autocorrelation function (equivalently,

same long range dependence) as legitimate traffic trace data.
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To achieve this goal, we first analyze traffic trace data for HTTP traffic from

2009 available from CAIDA 1. We use the insights from these traffic traces to revive

and expand a prior statistical model for HTTP traffic [67] to better fit current data.

Our model uses a Fractional Auto-Regressive Integrated Moving Average (FARIMA)

time series to capture LRD behavior and also matches the marginal distribution of the

data. We then create covert timing channel traffic by embedding covert information

in this model without disturbing any first- or second-order statistical behavior of the

legitimate traffic. We implement the LRD timing channel and conduct experiments

with geographically distributed senders and receivers on PlanetLab. Our experimental

results indicate that the new timing channel traffic is statistically indistinguishable

from legitimate traffic, and our tests confirm it evades the best available detection

methods.

One scenario of using this timing channel is when a sender resides in a country with

tight censorship. She is able to manipulate the inter-transmission times of aggregated

HTTP traffic within her organization to communicate in a covert manner with a

receiver who is outside the geographical boundary of the country and where there are

no such censorship laws. Since HTTP traffic has a high volume in most settings, the

sender can achieve reasonable rates of covert communication. The receiver intercepts

the traffic en-route to the final web servers, observes the inter-reception times, and

decodes the privileged information from them using a code-book that the sender and

the receiver have agreed to a priori.

The remainder of our paper is organized as follows: In Section 5.2, we review

related work on network timing channels and long range dependent traffic. In Sec-

tion 5.3, we present our analysis on CAIDA data and updated traffic models. In Sec-

tion 5.4, we describe our design and implementation of covert HTTP timing channels.

Our experimental results are described in Section 5.5. We conclude with discussion

and future research directions in Section 5.6.

1Support for CAIDA’s Internet traces is provided by the National Science Foundation, the US
Department of Homeland Security, and CAIDA Members.
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5.2 Related Work

Past research on network timing channels has investigated channel capacity, schemes

for reducing the capacity, designs of network timing channels, and detection schemes

to identify the existence and usage of timing channels.

Early implementation of an on/off timing channel [58] demonstrated the feasibility

of leaking information by a network covert timing channel. In [65], the authors built

a Keyboard JitterBug, a device interposed between the keyboard and the computer,

that can leak typed information through a covert network timing channel when a

user runs an interactive application such as ssh. We designed a timing channel [82]

that maps L-bits strings to n packet inter transmission times.This design includes

both the on-off scheme and the keyboard jitter bugs as special cases. It significantly

improved the data rate of the timing channel. In fact, the data rate of this scheme is

close to the theoretical upper bound – the achievable rate of the geometric codes.

Given the threat of clandestinely leaking information by network covert timing

channels, researchers found ways to detect them [56,58,81]. However, network timing

channels can be very surreptitious. In [82], we constructed a computationally non-

detectable timing channel, mimicking any i.i.d. legitimate traffic patterns. The inter-

transmission times from telnet traffic are shown to be i.i.d. from a Pareto distribution

[62]. When used to imitate telnet traffic, our timing channel can evade detections

entirely. In spite of the strong non-detectability property, the usage of this timing

channel is limited to imitating i.i.d. legitimate traffic. It cannot be used to imitate

correlated traffic such as HTTP traffic, which represents more than 50% of Internet

traffic today. It is well-established that HTTP traffic is non-stationary and long range

dependent (LRD) [67, 68]. LRD means the autocorrelations are positive and decay

slowly, thus are not summable. The focus of this work is to construct timing channels

that emulate the long range dependence of HTTP traffic.

The discovery of long range dependence and self-similarity of Internet traffic ( [76])

had profound effect on our understanding of network traffic. Many papers on long
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range dependent and self similar network traffic have been published. Readers are

referred to [73] for a comprehensive overview.

Mathematical models and simulations are essential for network performance eval-

uation, traffic controls, and resource provisioning. Synthesized long range dependent

traffic is required as an input process for simulations in order to reflect the reality that

many traffic variables are long-range persistent. Fractional Gaussian noise (FGN) and

fractional ARIMA (FARIMA) processes are the two most widely-used input processes

for network simulations. Cleveland et al. proposed a stochastic model well suited for

TCP start time for HTTP traffic [67]. The authors analyzed 23 million TCP con-

nections organized into 10704 blocks of approximately 15 minutes each. They used

a FARIMA sequence to capture the long range persistence, and the model produces

synthetic traffic stochastically similar to that from the actual wire of an Internet link.

A fast Fourier transform method for synthesizing approximate sample paths for

Fractional Gaussian Noise (FGN) is proposed in [74]. A summary of other methods

for generating realistic network traffic can be found in [74].

Synthesizing a realistic traffic trace is evidently a crucial part of constructing

timing channel traffic to evade detection. Unlike traditional modeling and synthetic

trace generation, the synthetic traffic for our timing channel must meet more rigorous

requirements: 1) be statistically indistinguishable (not just similar) from the under-

lying HTTP traffic to avoid detection; and 2) be able to transmit covert information

through timing, and of course, be decodable by the receiver.

Next, we will present a stochastic model for HTTP new connection inter arrival

times based on packets trace data collected by CAIDA in 2009.

5.3 Model for A LRD Timing Channel

The goal of this research is to design a network timing channel that can be hid-

den within HTTP traffic. Persistent connections are adopted in HTTP/1.1, that is,

a single TCP connection is created and reused for multiple HTTP request/response
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interactions. Our timing channel will use the new TCP connection inter-arrival times,

not HTTP packet inter-arrival times, to carry covert information. Due to the net-

work jitters distorting timing information, larger inter-arrival times are more resilient

to decoding errors. Therefore, the TCP connection inter-arrival times, larger than

HTTP packet arrival times, are more reliable for transmitting covert information.

The tradeoff of the enhanced robustness is the corresponding throughput reduction

when compared to the packet inter-arrival time schemes in [58, 65, 82].

We use the packet traces collected by CAIDA in March 2009 as a baseline for

comparing our covert timing traffic and legitimate traffic. This dataset contains

anonymized passive traffic traces from CAIDA’s Equinix-Chicago and Equinix-Sanjose

monitors on OC192 Internet backbone links. The Equinix-Chicago Internet data col-

lection monitor is located at an Equinix datacenter in Chicago, IL, and is connected

to an OC192 backbone link (9953 Mbps) of a Tier1 ISP between Chicago, IL and

Seattle, WA.

The original data set from Equinix-Chicago direction A contains approximately 15

GB of compressed data. We first extract the new TCP connection packets for HTTP

from the dataset. The resulting data is only about 1% of the original data. Since

the attack scenario under consideration is a compromised edge router of an enterprise

network leaking information via timing channels, we further partition the new TCP

connection packet trace into subnets according to their 8 bits network prefix. Within

each subnet, we divide the one-hour trace into four 15-minutes intervals as in [67].

5.3.1 Limitation of the Existing Model for HTTP Traffic

A statistical model [67] for TCP new connection times was developed, based on

traffic traces collected at Bell Labs between 1998 and 2000. The authors conducted

extensive empirical as well as in-depth theoretical studies of 23 million TCP connec-

tions collected at Bell Labs between 1998 and 2000. They concluded that TCP start

times for HTTP are nonstationary and LRD, the marginal distribution of the inter-
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arrival times is approximately Weibull, and the autocorrelation of the log inter-arrival

times is modeled by adding white noise to a FARIMA time series.

FARIMA models are generalizations of Autoregressive Integrated Moving Average

ARMA model by allowing fractional values d in the degree of difference [69]. It is

commonly used to model long range dependent behavior. The FARIMA series sj can

be generated from equation (1):

(I − B)dsj = ǫj + ǫj−1 (5.1)

where B is the backward shift operator (Bsj = sj−1) and ǫi are i.i.d. Gaussian

random variables with mean 0 and variance σ2
ǫ . Their model is developed for data

with Hurst parameters around 0.75, and they used a fixed value 0.25 for the degree

of difference d. The Hurst parameters for the Bell Lab data are approximately 0.75,

and the relationship between H and d is H = d + 0.5.

One advantage of this model is that only one parameter, r, the rate of new TCP

connection arrival times, is needed to generate the traffic trace. In their model, the

parameters (α and λ) for a Weibull distribution are functions of the connection rate

r. The corresponding c.d.f. of the marginal distribution of the new connection inter-

arrival times for is:

F (t) = 1− e−(t/α(r))λ(r)

, t ≥ 0 (5.2)

The Internet has changed tremendously in the last decade. It is not surprising that

this model does not fit current CAIDA data well. For instance, we select a dataset

consisting of a 15-minute block of CAIDA traffic trace from a subnet, and compare

it with the model in [67]. The load is calculated as r = 0.6387 connection/seconds

for this data. We then create a synthetic dataset according to the model in [67] using

r = 0.6387c/s.

Figure 5.1 compares the empirical cumulative distribution functions from the

CAIDA trace and the trace generated according to the model in [67]. Although

it may appear that their empirical cdfs are very close to each other, the two-sample

Kolmogorov-Smirnov test rejects the null hypothesis that these two samples are drawn
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from the same distribution at level 0.05. The maximum distance between the two

empirical distributions is 0.2558, and the p-value is 2.8 · 10−27. This conclusion is

further confirmed visually by the Weibull plots in Figure 5.2. While the marginal dis-

tribution of CAIDA’s new TCP connection times is approximately Weibull, it does

not come from the same Weibull distribution as the model in [67].
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In addition to the mismatch of the marginal distribution between the CAIDA

data and the model, the second order statistics from the two data sets also differ.

The Hurst parameter for the log inter-arrival times in the CAIDA data set is 0.61,

while the model is developed for data with Hurst parameters around 0.75. In the

existing model, no calculation of the Hurst parameter value is done based on the

data. Instead, the value of the Hurst parameter is fixed as 0.75. Another misfit

is the autocorrelation function. Since it is difficult to discern the differences from

the autocorrelation plots in Figure 5.3, we plot the power spectrum density (PSD)

estimates in Figure 5.4. It shows significant difference between the PSD estimates of
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the CAIDA data and of model in [67]. The PSD and the ACF of a time series form

a Fouries transform pair, i.e. the PSD is the Fourier transform of the autocorrelation

function of the time series, assuming the time series is wide sense stationary. The

difference in PSD suggests different second order statistics.

The discrepancy described above indicates the need of updating the model for

HTTP traffic in order to create timing channels that can hide in today’s HTTP

traffic.

5.3.2 New Model for HTTP Traffic

We first design a new model that expands the model in [67], so that it can model

traffic with Hurst parameters other than 0.75. In our model, the scale and shape

parameters for Weibull distribution, denoted by α and λ respectively, are estimated

directly from the data, not computed from the load parameter r, to better fit a

particular trace data.

Table 5.1 contains the notations we use in our model2. The TCP new connection

inter-arrival times are denoted as tj, j = 1, · · · , n. Since tj can vary by several

orders of magnitude, lj = log2(tj) is used for model fitting as in [67]. The marginal

distribution of the t′is is approximately Weibull, with shape parameter λ > 0 and

scale parameter α > 0. Its cumulative distribution function (c.d.f.) is then:

F (t) = 1− e−(t/α)λ

, t ≥ 0; α, λ > 0 (5.3)

The pseudocode for generating synthetic traces using our model is shown in Al-

gorithm 3.1 NewModel, There are four input parameters in our synthetic trace gen-

eration model: α, λ, H , and ρ1. Here, α and λ are the scale and shape parameters

of the Weibull distribution, H is the Hurst parameter of lj = log2(tj), and ρ1 is the

autocorrelation of lj at lag 1. The values of all four parameters are estimated directly

from the data trace.

2we use the same notation as [67] whenever possible in our new model
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In the first 10 steps, we calculate all the parameters needed for synthetic trace

generation. We will show the derivation of the values of these parameters shortly as

we build our model. Steps 11 to 15 in for loop are the main component for generating

n data points.

The output of the algorithm is simply an array that contains the sequence of inter-

arrival times. They are statistically indistinguishable from today’s HTTP traffic.

As shown in Figures 1 to 4, the inter-arrival times from our new model match the

marginal distribution and second order statistics of the real traffic trace. This new

model will later be used to generate covert timing channel traffic, which will be shown

in Section 5.4.

The first step, d = H − 0.5 calculates the degree of difference in the FARIMA

model. The Euler constant γ = 0.5772 is set in step 2, and it is used in step 3 for

calculating the mean of lj = log2(tj). The variance of lj is calculated in step 4 using

the Weibull shape parameter λ. The variance of sj (denoted as σ2
s ) is calculated in

step 5, and it is used in step 11 for FARIMA series generation. The value of σ2
n is

calculated in step 6, and is used, along with the value of µl from step 3, to generate an

i.i.d. Log-Weibull sequence in step 12. We will show how the formulas for σ2
s and σ2

n

are developed shortly. The step 7 calculates the load r of the TCP new connections

as r = 1/E[tj ], and E[tj ] = Γ(α(1 +1/λ)). Note, Γ(·) is the Gamma function defined

as: Γ(x) =
∫ ∞

0
tx−1e−tdt. The load r is then used in steps 8 through 9 to calculate

parameters b0, b1, and b2, which are used to obtain lj from vj in step 14.
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Algorithm 5.3.1: NewModel(α, λ, H, ρ1)

[1]d = H − 0.5

[2]γ ← 0.5772 //Euler Constant

[3]µl = log2(α)− γ log2(e)/λ,

[4]σ2
l = π2 log2

2(e)/6λ2

[5]σ2
s = σ2

l ρ1(2− d)/(1 + d)

[6]σ2
n = σ2

l − σ2
s

[7]r = 1/(αΓ(1 + 1/λ))

[8]b0 = 0.7− e−0.7088−0.05857r

[9]b1 = 1− e−1.6301−0.06399r

[10]b2 = −e−4.1896−0.06254r

for j ← 1 to n

do











































[11] s[j]← FARIMA sequence with variance σ2
s

[12] n[j]← i.i.d.Log-Weibull (µl, σ
2
n) sequence

[13] v[j] = s[j] + n[j]

[14] l[j] = b0 + b1v[j] + b2v
2[j]

[15] t[j] = 2l[j]

return (t)

We now will explain the two key components, the FARIMA sequence (step 11)

and the i.i.d. random sequence with a Log-Weibull distribution 3 (step 12) in our

algorithm. We will show how we use these two sequences to build a model that

matches the first and second order statistics of a data trace.

A FARIMA series is commonly used to model long range dependent behavior [69].

It is a generalization of ARMA model by allowing fractional values d in the degree of

difference. The LRD series sj can be generated from equation (1):

(I − B)dsj = ǫj + ǫj−1 (5.4)

3Log-Weibul is a type of extreme-value distributions.
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where B is the backward shift operator (Bsj = sj−1) and ǫi are i.i.d. Gaussian random

variables with mean 0 and variance σ2
ǫ .

The long range dependence property of tj is well modeled by Eq (1) [67, 69].

The advantage of FARIMA models is that it can capture the LRD using only one

parameter – Hurst Parameter H . The degree of difference d is d = H − 0.5. In the

earlier model [67], d is fixed to 0.25; That model fitted the Bell Lab data well since

the Hurst parameters from those data are approximately 0.75. When a traffic trace

has a significantly lower or higher Hurst parameter, like recent CAIDA data, the old

model is no longer appropriate. One of our contribution is to model LRD traffic with

wide range of Hurst parameters, we allow d to be in (0, 0.5), corresponding to Hurst

parameters in (0.5, 1).

The i.i.d. Log-Weibull sequence {nj} is added to sj, in an attempt to capture

the first order and second order statistics of lj. This method was first proposed

in [67]. The random sequence {nj} and {sj} are not correlated, i.e. cov(ni, sj) = 0

for all i, j. Recall that lj = log2(tj), and tj is Weibull(α, λ). Thus lj has a Log-

Weibull distribution with mean µl and variance σ2
l . The values of µl and σ2

l can be

expressed in terms of the Weibull parameters λ and α: µl = log2(α) − γ log2(e)/λ,

and σ2
l = π2 log2

2(e)/6λ2.

Our goal is to obtain lj from sj and nj . For the ease of expositions, we use an

intermediate variable vj, and denote vj = sj + nj . The goal is to have vj statistically

as close to lj as possible. Thus, we design sj and nj , so that vj satisfies E[vj ] = µl

and var[vj] = σ2
l . In addition, vj retains the same second order statistics of lj . The

Hurst parameter H and the autocorrelation of lj at lag one, ρ1, are obtained from

the data.

We calculate the autocorrelation function as(k) for si according to [69], and obtain:

as(k) = ax(k) · 2k
2(1− d)− (1− d)2

k2 − (1− d)2

where

ax(k) =
d(1 + d) · · · (k − 1 + d)

(1− d)(2− d) · · · (k − d)
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Table 5.1
List of Notations

Symbol Explaination

tj HTTP connection inter-arrival times

α, λ Weibull scale and shape parameters

r = 1/E[tj ] new TCP connection rate

lj log scale of tj : lj = log2(tj)

ρ1 autocorrelation of lj at lag one

H Hurst Parameter of lj

d degree of difference in FARIMA model

d = H − 0.5

sj FARIMA series: (I −B)dsj = ǫj + ǫj−1

ǫj are i.i.d. Gaussian(0, σ2
ǫ )

nj i.i.d. Log-Weibull (µl, σ
2
n) random variables

uncorrelated with sj

vj intermediate random sequence to model lj :

vj = sj + nj
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In particular, the autocorrelation of sj at lag one is

as(1) =
1 + d

2− d

Since vj = sj + nj and var(vj) = σ2
l , we have

σ2
l = σ2

s + σ2
n

Define

θ =
ρ1

as(1)
= ρ1

2− d

1 + d
,

where ρ1 is the autocorrelation of lj at lag one, an input parameter to our new model.

Then, θ = σ2
s/σ

2
l , so that σ2

s = θσ2
l .

Also we obtain the value of the variance of sj using results in [69],

σ2
s =

2

1− d
· Γ(1− 2d)

Γ2(1− d)
· σ2

ǫ

so that,

σ2
ǫ =

θ(1− d)

2
· Γ

2(1− d)

Γ(1− 2d)
· σ2

l

The value of σ2
ǫ is used for generating the FARIMA sequence sj defined by equation

(1), which is used in step 11 in our model.

The parameters µl and σ2
n are used for generating i.i.d. Log-Weibull random

sequence nj in step 12, where

σ2
n = (1− θ) · σ2

l

Even though vj has the desired second order statistics, and satisfies E(vj) = µl and

var(vj) = σ2
l , its marginal distribution is not the desired Log-Weibull distribution.

Therefore, to obtain lj from vj with the desired Log-Weibull distribution, we apply

the following transformation:

lj = b0(r) + b1(r)vj + b2(r)v
2
j
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is used to obtain lj in step 14, so that lj has the desired Log-Weibull distribution.

The values of b0, b1, and b2 are computed in steps 8 to 10, according to equations

(17), (18), and (19) on page 168 of [67], We made some adjustment to b0 for a better

fit. Note that b0, b1, and b2 incoporate the effect of load on the inter-arrival times.

We generated synthetic traces according to our new model, and compare them

with the real data and the existing model in [67]. The input parameters for our new

model are estimated directly from the real data set. The value of the Hurst parameter

H is estimated using R/S method 4. Other methods and tools for Hurst parameter

estimation can be found in [78]. The value of ρ1 is estimated using a Matlab function

autocorr. The Weibull parameters (α, λ) are estimated using the Matlab function

wblfit. The CAIDA data set we used to generate figures 5.1 to 5.4 has the following

parameter values: α = 1.36, λ = 0.76, H = 0.65, ρ1 = 0.18. The load r is 0.64 c/s.

Figure 5.1 compares the empirical cumulative distribution functions from our

model, the model in [67] and the CAIDA trace. In this figure, the empirical cdf

of data from our model almost follow that of the CAIDA trace exactly. The Weibull

plots in Figure 5.2 are also very close between our model and the data. There two

figures demonstrate that the marginal distribution from our model is a much closer

match to the real data than the existing model.

The second order statistics also match well between our model and the data. Au-

tocorrelation plots are in Figure 5.3, and the power spectrum density (PSD) estimates

are in Figure 5.4. Figure 5.4 shows the PSD estimates of the CAIDA data is much

closer to that of our model than that of the existing model. These two figures show

that the second order statistics from our model also matches the real data better than

the existing model.

The fundamental reasons behind the better match is that we use H and ρ1 in our

model, in addition to the load(r) and that we measured these values directly from

recent real data.

4R/S method is also known as the rescaled adjusted range statistics method.
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5.4 Design of HTTP Timing Channel

As we have seen, our model can be used to generate synthetic data that is sta-

tistically indistinguishable from the real trace. If we can embed covert information

in our model while maintaining the statistical properties, a detection-resistant covert

timing channel can be created. In what follows, we will explain how we incorporate

this model in our HTTP timing channel design.

l(1)l(2)l(3)l(4) ...

T(1)T(2) T(3)T(4) ...  T(2n−1)T(2n)

Message:    c(1) c(2) c(3) ...  c(n)

F(x): CDF of an Log−Weibull random variable 

α, λ

−1

r(1)r(2) r(3)r(4) ...  r(2n−1)r(2n)

x(1)x(2) x(3)x(4) ...  x(2n−1)x(2n)

n(1)n(2)n(3)n(4) ...

ρ1

c(i) −> (x(2i−1), x(2i))

2: Codeword Masking using CSPRNG:
a) CSPRNG −> u(1), u(2), ... u(2n)

3: Extreme−Value sequence generation:

b)  r(i) = x(i)+u(i) (mod 1)

6: Inter−Transmission Time Generation:

T(i) = 2

1: Codeword Look Up:

Hurst Parameters: H
Autocorrelation at lag one:

Weibull Parameters:

n(i) = F    (r(i))

Input Parameters:

s(1)s(2)s(3)s(4)...

5: Combine FARIMA and Extreme−Value Sequences:
a)  v(i) = n(i) + s(i)
b)  l(i) = g(v(i)), g(v)=b0+b1*v+b2*v^2

4: Fractional ARIMA sequence Generation:

FARIMA −> s(1), s(2), ..., s(2n)

l(i)

Fig. 5.5. Encoder

The encoder of our HTTP timing channel is detailed in Figure 5.5. A single 8-

bit ASCII character ci will be mapped to two inter-arrival times T2i−1, T2i by this

encoder. A message, consisting of a sequence of 8-bit ASCII characters c1, c2, · · · , cn,

is encoded in a sequence of TCP new connection inter-arrival times T1, T2, · · · , T2n
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Message:    c(1) c(2) c(3) ...  c(n)

F(x): CDF of an Log−Weibull random variable 

α, λ

r(1)r(2) r(3)r(4) ...  r(2n−1)r(2n)

x(1)x(2) x(3)x(4) ...  x(2n−1)x(2n)

n(1)n(2)n(3)n(4) ...

−1

l(1)l(2)l(3)l(4) ...

Inter Reception Times at Receiver: R(1)R(2) R(3)R(4) ...  R(2n−1)R(2n)

ρ1

(x(2i−1), x(2i)) −−> c(i)

5: Get codewords by unmasking:
a) CSPRNG −> u(1), u(2), ... u(2n)

4: Get a Uniform (0,1) Random Sequence:

b)  x(i) = u(i) − r(i) (mod 1)

6: Reverse Codeword Look Up:

Hurst Parameters: H
Autocorrelation at lag one: 

Weibull Parameters:
Input Parameters:

3: Get the Extreme−Value Sequence:
a) v(i) = g   (l(i))
b)  n(i) = v(i) −  s(i)

r(i) = F(n(i))

s(1)s(2)s(3)s(4)...

2: Fractional ARIMA sequence Generation:

FARIMA −> s(1), s(2), ..., s(2n)l(i) = log2(R(i))

1:  Convert R(i) to log scale:

Fig. 5.6. Decoder

which have the same marginal distribution and autocorrelations as a legitimate HTTP

traffic trace.

The covert message is implanted in the i.i.d. Log-Weibull random sequence ni.

The sender and receiver share a code book, a one-to-one mapping of 8-bit binary

strings to two-dimensional vectors (k1

16
, k2

16
), where k1 and k2 are integers between 0

and 15.

The first step of our scheme is to look up the codeword for each character in

the message. We use (x2k−1, x2k) to denote the codeword for character ck. At the

end of the first step, the message msg is transformed to a sequence of numbers

x = {x1, x2, · · · , x2n−1, x2n}.
In the second step, we use a Cryptographic Secure Pseudo Random Number Gen-

erator (CSPRNG) to generate a sequence of pseudo uniform (0,1) random numbers
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u = u1, u2, · · · , u2n−1, u2n. The seed used by CSPRNG is shared between the sender

and receiver, but not with the detector of the covert timing traffic. We then mask

the sequence x with u to obtain a new sequence of numbers r = r1, r2, · · · , r2n−1, r2n

by setting

rk = xk ⊕ uk
∆
= (xk + uk) mod 1.

In the third step, we create an i.i.d. Log-Weibull random sequence {nk, k =

1, 2 · · · } by setting nk = F−1(rk), where F (x) is the c.d.f. of a Log-Weibull random

variable with mean µl and variance σ2
n. This step accomplishes the goal specified in

step 12 of our Algorithm 3.1 (in Section 5.3), that is to generate an i.i.d. Log-Weibull

random sequence {nj}. Additionally, the third step in our design also embeds the

covert information in {nj}. This sequence {ni} will then be added to a fractional

ARIMA sequence {s1, s2, · · · } generated in step 4. This fractional ARIMA sequence

has the same Hurst parameter as the trace data.

In the last two steps, the fractional ARIMA and the i.i.d. Log-Weibull sequence

are joined together, and transformed to the inter-arrival time T1, T2, · · · , T2n accord-

ing to our model introduced in Section 5.3. The sender then initiates new HTTP

connection times according to the values of T1, T2, · · · , T2n.

The sender and the receiver share the following using an auxiliary channel prior

to initiating the covert communication:

• Code Book: it contains the mapping from 8-bit characters to two-dimensional

vectors (x1, x2) = (k1/16, k2/16), where ki are integers between 0 and 15, inclu-

sive.

• Traffic Model Parameters α, λ, H , and ρ1: The underlying assumption is that

the sender does the determination of model parameters for legitimate traffic

that is similar in characteristic to the legitimate traffic in which he will embed

the covert information. For example, the daytime traffic over different weekdays

may be statistically similar.

• Seed for CSPRNG: it is used to generate a common CSPRNG sequence.
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• Seed for FARIMA series: it is used to generate a common FARIMA sequence.

The procedure for recovering the message at the receiver is simply the reverse of

the sender scheme, as illustrated in Figure 5.4. After the receiver get inter-arrival

times Ri, it will execute the following tasks:

• 1. Convert Ri to log scale: li = log2(Ri)

• 2. Generate si from the FARIMA model using the same seed as the sender, so

that the resulting series is identical to that used by the sender.

• 3 a) Obtain the intermediate sequence vi: vi = g−1(li)

3 b) Obtain the Log-Weibull sequence ni: ni = vi − si

• 4. Transform the Log-Weibull sequence ni to a random sequence ri: ri = F (ni),

where F (·) is the cdf of Log-Weibull distribution

• 5 a). Generate ui from the CSPRNG using the same seed as the sender

5 b). Obtain the codeword xi: xi = (ri − ui) mod 1

• 6. Get character ck from xi, xi+1 using codebook

At the receiver, the inter-arrival times observed are R1, R2, · · · , R2n. These are a

distorted version of sender’s inter-arrival times T1, T2, · · · , T2n. Ri = Ti + ǫi, where

ǫi’s are network jitters.

Our initial experiments show most decoding errors occur when the inter-arrival

times are small. We conducted more rigorous error analysis and proved that the

smaller the inter-arrival time, the less jitter it can tolerate. The detailed error analysis

can be found in section 5.4.1. Through our experiments and error analysis, we found

when the inter arrival times is greater than 100 ms, jitters has much less impact on

decoding errors.

Based on this observation, our method of reducing the decoding error is that if a

codeword x∗ is encoded with a small inter-arrival time, we will re-encode the same
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character x∗ using the next values of CSPRNG and FARIMA sequence until the inter-

arrival time T obtained is larger than 100 ms. Note that, using our encoder, the same

codeword can be mapped to different inter-arrival times. We will transmit all the

inter-arrival times obtained through the encoding process illustrated in Figure 5.5,

including the small inter-arrival times that are less than 100 ms so that the desired

statistical properties of the traffic is not disturbed. The receiver will record all the

inter-reception times, but the decoder will discard the small inter-reception times

when recovering the covert information.

In our encoding scheme, it is important that an error in one character does not

ripple over to subsequent characters and is contained. In our basic timing channel

design, each character is represented by two inter-arrival times. Due to ”re-encoding”

in our error correction, a character could be mapped to three or more inter-arrival

times. In order to contain the character decoding error, we require even number

of inter-arrival times (including small inter-arrival times) to represent one character.

This design guarantees that even if the decoder mistakenly discards a ”small” inter-

reception time or accepted a ”larger” inter-reception time, it can always start at the

right positions to decode characters.

5.4.1 Analysis of Decoding Errors

In Section 5.4, we presented our design of a covert timing channel that can mimic

LRD traffic, based on a model we proposed in Section 5.3. The design of our timing

channel encoder that converts a character ck to two inter-arrival times T2k−1, T2k (for

k = 1, 2, · · · , n), is illustrated in Figure 5.5. Due to network jitters, the inter-reception

times R2k−1, R2k obtained by the receiver are slightly distorted from T2k−1, T2k, and

Rj = Tj + ǫj (ǫj are network jitters).

The decoder in Figure 5.4 uses R1, R2, · · · , R2n to recover the covert message. Our

initial experiments show most decoding errors occur when the inter-arrival times Tj
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are small. Here, we present a more rigorous error analysis and show that the smaller

the inter-arrival time, the less jitter it can tolerate.

Let lDj = log2(Rj) = log2(Tj + ǫj), and recall that lj = log2(Tj). We have

∆lj = lDj − lj = log2(Tj + ǫj)− log2(Tj) (5.5)

By the mean value theorem, there is a T ∗ ∈ (Tj, Tj + ǫj) such that

log2(Tj + ǫj)− log2(Tj) =
ǫj

ln(2)T ∗
(5.6)

By Equations (5) and (6), we have

∆lj =
ǫj

ln(2)T ∗
(5.7)

Recall that {nj} is an i.i.d. Log-Weibull random sequence, and {sj} is a a LRD

FARIMA sequence. In our encoder, we used an intermediate random variable vj =

nj + sj to obtain the Log-Weibull distributed lj, using lj = b0 + b1 · vj + b2 · v2
j .

Let vD
j satisfies lDj = b0 + b1 · vD

j + b2 · (vD
j )

2
. and ∆vj = vD

j − vj . Then, we have

∆lj = b1∆vj + b2 · (vj + vD
j ) ·∆vj

Based on the values of b1 and b2, calculated according to [67], ∆lj ≈ ∆vj .

Dente nD
j = vD

j − sj in step 3b of the decoder in Figure 5.4. Recall that {sj} is

shared between the encoder and decoder since they share the seed for generating the

sequence, and vj = nj + sj. We have,

∆lj ≈ ∆nj = nD
j − nj (5.8)

In step 3 of Figure 5.5, nj = F−1(rj), where F−1(x) is the inverse function of c.d.f.

of the Log-Weibull distribution. Therefore,

∆nj = −b ln(− ln(rD
j )) + b ln(− ln(rj)), (5.9)

where b = −1/(ln(2) ·λ), and λ is the shape parameter of the Weibull distribution.

Note rj = uj + xj (mod 1) = uj ⊕ xj from step 2b of Figure 5.5. By equations

(7), (8), and (9), we have
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−ǫ

ln(2) · b · Tj
= ln(− ln(uj ⊕ xD

j ))− ln(− ln(uj ⊕ xj)) (5.10)

Thus,
−ǫ

ln(2) · b · Tj
= ln

ln(uj ⊕ xD
j )

ln(uj ⊕ xj)
(5.11)

So that,
ln(uj ⊕ xD

j )

ln(uj ⊕ xj)
= exp{ −ǫ

ln(2) · b · Tj

} (5.12)

Denote

β = exp{ ǫj

ln(2) · b · Tj

} (5.13)

We have

uj ⊕ xD
j = ((uj ⊕ xj)

β = rβ
j

∆xj = xD
j − xj = (xD

j ⊕ uj)− (xj ⊕ uj) = rβ
j − rj ,

In order for our decode to decode correctly, we would like to have |∆xj | < 1/32.

When 0.92 < β < 1.08, we have |∆xj | < 1/32 regardless of the values of uj.

By equation (13), we have

| ǫj

ln(2) · b · Tj

| = | ln(β)| (5.14)

Thus,

|Tj| = |
ǫj

ln(2) · b · ln(β)
| (5.15)

Since b = −1/ ln(2) · λ, we have

|Tj | = |
λǫj

ln(β)
| (5.16)

We can see from Equation (16) that if Tj is too small, ln(β) will be too large,

causing β to be outside the interval (0.92, 1.08) for correct decoding. Using the

Weibull parameter λ = 0.9 in our data 1 from Subnet 2 (Table 5.2, Section 5), and

choosing β = 1.08, or 0.92, the worst case scenario, we have 1/ ln(β) ≈ 12, and

Equation(16) gives
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|Tj | > (12λ)ǫj > 10ǫj (5.17)

If the maximum jitter in the network is 10 ms, We will not have decoding error

when Tj > 100 ms. Our analysis show that small Tj has less tolerance for network

jitters, and can cause decoding errors. Our proposed solution is to add redundancy

and if a character is encoded with a small T value, we will re-encode this character

until it is encoded with a larger T value.

5.5 Experiments

We implemented this covert timing channel design in Java, using a client/server

architecture. The sender injects the covert information into the i.i.d. Log-Weibull

series, and obtains the desired inter-arrival times Ti according to our design in Fig-

ure 5.5. It controls the inter-transmission time by using Thread.sleep(Ti) (Ti is in

milliseconds). The accuracy of the Thread.sleep(T ) method is 1 ms. The receiver

passively collects the TCP packet reception times and decodes the message by ex-

tracting the covert information from the inter-reception times Ri, according to the

design in Figure 5.4. There is no feedback from receiver to sender regarding when

the packet is received or whether it is decoded correctly.

We conducted our experiments on two pairs of computers using the PlanetLab

environment. The receivers are hosts at Purdue University, and the senders are Plan-

etLab nodes located at Princeton University and Stanford University. The average

RTT between Purdue and Princeton is approximately 39.5 ms, and the average RTT

between Purdue and Stanford is approximately 73.5 ms. The average RTT times for

both pairs remained stable during the course of ten hour experiments through the

day.

In our experiments, we used parameters estimated from two subnets. Each subnet

has four data sets, each containing about 15-minutes traffic trace. The data was col-

lected by CAIDA in March 2009. Further details of the data set have been presented
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in Section 5.3. We will verify through our experiments if our covert timing chan-

nel traffic is statistically indistinguishable from these real data, and if it can avoid

detection.

The values of input parameters for the eight data sets, α, λ, H and ρ1, all estimated

directly from these trace data, are listed in Table 5.2. We create 8 timing channels

corresponding to the 8 traces. The sender sends a text file of 410 characters over

the covert channels mimicking subnet 1, and a text file of 1100 characters over the

covert channel mimicking subnet 2. We will see shortly that the timing channels

mimicking subnet 2 has a higher data rate than subnet 1. We ran a set of the eight

timing channels from Princeton to Purdue. The inter-arrival times from each of

these eight timing channels are later used to test if these timing channels can avoid

the best available detection schemes, such as the entropy based detection and the

Kolmogorov-Smirnov Test.

Additionally, we ran two timing channels hourly over the course of a day on two

pairs of hosts to see how network conditions impact the decoding error. The first

timing channel runs from Stanford University to Purdue University, mimicking the

first subnet. The second timing channel runs from Princeton University to Purdue

University, mimicking the second subnet. We found the decoding error ranges from

2.9% to 6%. The data rate for the covert channels mimicking the first subnet’s

traffic is approximately 2 bits/sec; the data rate for the second covert channel is

approximately 6 bits/sec.

The data rate for our covert timing channel is largely determined by E[tj ], the

mean value of the consecutive new HTTP connection request times. If one character

(8-bits) is encoded in two inter-arrival times, the data rate of our timing channel

is approximately 8/(2E[tj]) = 4r b/s. Because of the use of error-correction in our

timing channel, small inter-arrival times do not carry information, and one character

could be mapped to 2N inter-arrival times, where N is an integer and N ≥ 1. This

reduces the actual data rate to be less than the maximum achievable rate of 4r b/s.

As shown in Table 5.2, r = 2.12c/s for data 3 in subnet 2. The data rate of this timing
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Table 5.2
Parameter Values for Two SubNets

SubNet 1 data 1 data 2 data 3 data 4

Parameters

α 1.50 1.34 1.20 1.36

λ 0.77 0.74 0.73 0.76

H 0.61 0.52 0.81 0.65

ρ1 0.12 0.14 0.23 0.18

r (c/s) 0.57 0.62 0.70 0.64

SubNet 2

Parameters data 1 data 2 data 3 data 4

α 0.51 0.43 0.44 0.45

λ 0.90 0.85 0.87 0.91

H 0.57 0.56 0.59 0.70

ρ1 0.08 0.10 0.12 0.09

r (c/s) 1.87 2.15 2.12 2.11
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channel is 6 bits/sec, less than 4r b/s. Although the data rates are not very high,

we would caution the reader not to underestimate the potential security risks. Since

these timing channels mimic non-stationary LRD HTTP traffic, it can potentially be

used long-term without detection. Further, often systems have small-sized private

data items.

We compare the traffic trace from our timing channels and the real data. Fig-

ures 5.7 – 5.10 compare the first order and the second order statistics of the data trace

from our timing channel with its corresponding real data trace (data 1 of subnet 1 is

used5) . Figure 5.7 shows that the empirical distributions of the two traces are very

close to each other. In fact, the maximum distance between these two empirical dis-

tributions using the Kolmogrov-Smirnov test is only 0.066. Figure 5.9 shows the PSD

estimates of the covert traffic and the legitimate traffic, and they are very close to

each other. The closeness of the PSD indicates the closeness of their autocorrelations

functions.
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Fig. 5.7. Empirical cdf of the inter-arrival times from our covert chan-
nel and CAIDA data (Subnet 1, data 1)

5Data 4 of subnet 1 was used in Section 3.
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Fig. 5.10. Sample Autocorrelation Functions

Next, we evaluate how well our timing channel can evade current detection meth-

ods. First, we conduct two sample Kolmogorov-Smirnov tests (KS test) on each covert

traffic and real data pair. The two sample KS test uses the maximum distance be-

tween two empirical distributions, KS STAT = max(|F1(x)−F2(x)|), where F1(x)

and F2(x) are empirical distributions of the real data and the covert channel data.

Table 5.3 shows the values of KS STAT and corresponding p-values for each pair.
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Table 5.3
Kolmogorov-Smirnov Test

SubNet 1 data 1 data 2 data 3 data 4

KS-STAT 0.0657 0.0845 0.0637 0.0516

p-value 0.096 0.012 0.0863 0.2678

detect no no no no

SubNet 2 data 1 data 2 data 3 data 4

KS-STAT 0.0402 0.0442 0.0466 0.0513

p-value 0.2088 0.1088 0.08 0.043

detect no no no no

When the allowable false alarm level is set to 1% as in [81], none of our timing channel

traffic can be detected since all the p-values are greater than 1%.

The regularity test proposed in [58] checks if the variance of the inter-arrival times

is relatively constant, and the traffic is flagged as a covert timing channel if the vari-

ance remains constant. Our timing channel is designed to mimic the non-stationary

LRD HTTP traffic. More specifically, our timing channel traffic patterns match the

legitimate HTTP traffic patterns in each small time interval (say 15 minutes). The

marginal distributions of our timing channels match that of the changing legitimate

HTTP traffic patterns. Therefore, the variance of the inter-arrival times of our tim-

ing channels change the same way as the legitimate HTTP traffic patterns change.

Thus, by design, our timing channel can evade the regularity test independent of the

threshold used in the test.

A recent detection scheme based on entropy is proposed in [81], where data is first

partitioned into Q equiprobable bins according to a desired cumulative distribution

function F (x). The bin numbers y for the data value x can be calculated using

y = ⌊F (x) ∗Q⌋, and then used for the entropy and the corrected conditional entropy

computation. By using a single cdf for legitimate traffic, they implicitly assume
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that the legitimate traffic is stationary. The c.d.f. of a non-stationary traffic can

change over time, so their detection method does not apply directly to timing channels

mimicking non-stationary traffic.

Their recommended value for fine binning Q = 65536 also fails to work for small

data sets with less than 65536 data points. The reason is that legitimate traffic is

expected to be uniformly distributed among the Q bins, thus having entropy value

near 16 when Q = 65536. Traffic with entropy values less than 15.12 in [81] is flagged

as covert traffic. Consider legitimate traffic that follows exactly the desired c.d.f, but

only has 2000 inter-arrival times. Since the maximum entropy for any data sets with

2000 data points is log2(2000) = 10.97, the entropy for this legitimate traffic is far

less than the desired entropy 16, and will be falsely flagged as covert traffic.

In each of our 15-minute data sets from subnet 1, there are approximately 600

HTTP connections. It is appropriate to use Q = 128 for fine binning. We use Q = 5

to calculate CCE values as in [81]. Table 5.4 and 5.5 show the entropy values of covert

traffic mimicking subnet 1 and subnet 2 respectively, compared with the legitimate

traffic and the training data. Table 5.6 and 5.7 show the CCE values of covert traffic

mimicking subnet 1 and subnet 2 respectively, compared with legitimate traffic and

training data. The training data are the CAIDA data set that was used to obtain

the model parameters for the covert timing channels. The p-values are calculated for

each entropy or CCE value using T-test. The T-test was applied to determine if the

traffic coming from the covert channel differs significantly from the ”normal” traffic,

where normal traffic included the training and the legitimate traffic traces. As shown

in these tables, all the 8 covert timing channels evade entropy and CCE tests, even if

the allowable false alarm level is 5%.

5.6 Conclusion

Internet traffic has often been show to display LRD characteristics. Thus, tra-

ditional covert channel schemes can easily be detected by comparing their traffic



120

Table 5.4
Entropy Values for Covert Traffic 1

traffic type data 1 data 2 data 3 data 4

training data 6.81 6.80 6.85 6.82

legit 6.56 6.50 6.50 6.51

covert 1 6.85 6.84 6.87 6.89

p-value 0.33 0.36 0.28 0.24

detect? no no no no

Table 5.5
Entropy Values for Covert Traffic 2

traffic type data 1 data 2 data 3 data 4

training data 6.93 6.94 6.95 6.95

legit 6.29 6.38 6.44 6.34

covert 2 6.86 6.88 6.90 6.87

p-value 0.55 0.52 0.48 0.53

detect? no no no no

Table 5.6
CCE Values for Covert Traffic 1

traffic type data 1 data 2 data 3 data 4

training data 2.21 2.19 2.17 2.21

legit 1.84 1.81 1.82 1.84

covert 1 2.22 2.23 2.18 2.21

p-value 0.35 0.33 0.44 0.37

detect? no no no no
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Table 5.7
CCE Values for Covert Traffic 2

traffic type data 1 data 2 data 3 data 4

training data 2.26 2.21 2.22 2.22

legit 1.75 1.85 1.88 1.80

covert 2 2.25 2.25 2.24 2.22

p-value 0.37 0.37 0.39 0.43

detect? no no no no
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characteristics with Internet traffics. T o overcome this problem, we have designed

a covert timing channel scheme that can mimic legitimate traffics displaying LRD

property. We show that our covert timing channel can be hidden in the Web traf-

fic, the most observed traffic on Internet today. We used the HTTP new connection

inter-arrival times to carry the covert information. We found that the marginal distri-

bution and autocorrelation functions of the inter-arrival times from our covert timing

channel matched closely with that from recent traces of real traffic.

We implemented our design and have conducted extensive experiments on the

PlanetLab nodes and verified the close match of our covert traffic with the real the

data. Further, our experiments show that our our covert timing channels evade the

current best available detection methods. The data rates of our covert channels range

from 2 to 6 bits/sec, and decoding errors range from 3% to 6%.

There are several interesting future directions for this work. One is to develop

timing channels for short range dependent (SRD) traffic; and the other is to design

a covert timing channel to mimic other commonly used traffics, such as peer-to-peer

traffic.
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